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Abstract

Channel selection is a critical part of the classification procedure for multichannel electroencephalogram (EEG)-based brain—
computer interfaces (BCI). An optimized subset of electrodes reduces computational complexity and optimizes accuracy.
Different tasks activate different sources in the brain and are characterized by distinctive channels. The goal of the current
review is to define a subset of electrodes for each of four popular BCI paradigms: motor imagery, motor execution, steady-
state visual evoked potentials and P300. Twenty-one studies have been reviewed to identify the most significant activations
of cortical sources. The relevant EEG sensors are determined from the reported 3D Talairach coordinates. They are scored
by their weighted mean Cohen’s d and its confidence interval, providing the magnitude of the corresponding effect size and
its statistical significance. Our goal is to create a knowledge-based channel selection framework with a sufficient statistical
power. The core channel selection (CCS) could be used as a reference by EEG researchers and would have the advantages
of practicality and rapidity, allowing for an easy implementation of semiparametric algorithms.

Highlights

e Cortical sources activations differ depending on the brain—computer interface (BCI) task and their modulations.

e The results from 21 studies are combined to define an optimized subset of EEG electrodes per BCI task.

¢ The magnitude and significance of the Cohen’s d effect size are calculated for each task-dependent EEG electrode.
e This knowledge-based channel selection framework could be used as a reference by EEG researchers.
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Introduction and life sciences, a new nonmuscular channel could help

restore voluntary motor control or improve the effective-

Control of a computer or any other electronic device using
only brainwaves is a long-hoped-for next-generation inter-
action tool (Leeb et al., 2006). Direct brain—computer
interfaces (BCIs) can provide severely disabled people
with new augmentative communication and control tech-
nology (Wolpaw et al., 2002). In the field of health care
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ness of the rehabilitation process (Chaudhary et al., 2016).
Beyond medical applications, recent experimental research
has explored the usability of BClISs in the fields of multimedia
and gaming (van Erp et al., 2012). Healthy customers could
use this new input modality as part of an enhanced game
experience (Bos et al., 2010).

The detection of cortical generators may help control
external devices such as robots (Spataro et al., 2017), vir-
tual environments (Leeb et al., 2006), or spelling devices
(Kaplan et al., 2013) with various degrees of accuracy. Dif-
ferent strategies have been implemented to provide a con-
venient and straightforward way to command such devices.
For instance, a user could steer a wheelchair by thinking
about his or her right or left hand (Tsui et al., 2011). Func-
tional connectivity changes within associated regions of the
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cortex would then allow the two classes to be distinguished
(Pfurtscheller & Neuper, 2001). A motor imagery (MI) task
is often preceded by the study of motor execution (ME).
Sensorimotor rhythms are spontaneously generated in both
tasks, and analyzing the latter should help establish a more
profound understanding of the former. The specific mental
states resulting from these tasks can be produced in an exter-
nal stimulus-paced mode (synchronous BCI) or an internally
paced mode (asynchronous BCI). The aforementioned brain
signals are representative of endogenous BCI because they
do not depend on any external stimuli (Torres et al., 2020).

Steady-state visual evoked potentials (SSVEP)
(Gonzalez-Mendoza et al., 2015) and P300 visual evoked
potential (VEP) (Nicolas-Alonso & Gomez-Gil, 2012) rep-
resent the most commonly used exogenous BCIs. SSVEPs
are elicited by the repetitive presentation of a visual stimu-
lus that flickers or reverses at a fixed frequency. When a
user focuses his or her gaze on a specific flickering image,
an induced periodic brain electrical response is produced
and can be associated with a unique command. Similarly,
P300 is generated by a sequence of visual stimuli. When an
infrequent event appears, it elicits an electrophysiological
response that can be correlated with a specific choice. Other
BCIs may use different types of brain activity, for instance
emotion (Torres et al., 2020), speech (Wang et al., 2013) or
hearing (Nijboer et al., 2008).

Many methods have been employed over the past seven
decades to measure electrical or magnetic brain activ-
ity through invasive or noninvasive means (Waldert et al.,
2009). Invasive approaches, such as electrocorticography
(ECoG) (Schalk & Leuthardt, 2011), are believed to sup-
port more complex applications, because high spatial and
temporal resolution may be achieved. However, because
of several technical issues and the inherent risk of surgery,
only a few severely disabled patients have been implanted
with electrodes so far (Oxley et al., 2020). Noninvasive
approaches, such as functional magnetic resonance imaging
(fMRI) (Sitaram et al., 2007), positron emission tomography
(PET) (Aine, 1995), magnetoencephalography (MEG) (da
Silva, 2013) and electroencephalography (EEG) (Curran &
Stokes, 2003), have all been extensively used as neuroimag-
ing techniques (Vallabhaneni et al., 2005).

EEG represents the most prevalent method of signal
acquisition for noninvasive BCI. Electrical brain oscil-
latory activity, generated by feedback loops in complex
networks of neurons populations, is recorded by scalp
electrodes (Vallabhaneni et al., 2005). The advantages
of practicality, ease of use, high temporal resolution, and
high coverage are counterbalanced by the limited topo-
graphical resolution and frequency range (Hill & Wolpaw,
2016). However, consistent activation patterns associ-
ated with specific cognitive tasks have been highlighted
during fMRI or PET studies (Cabeza & Nyberg, 2000).

Assuming that the strength and accuracy of each modality
would be preserved, the complementarity of information
can be exploited by multimodal imaging techniques. The
integrated knowledge gained from high spatial resolution
measurements should help improve the accuracy of EEG-
based BCI applications (Blinowska et al., 2009).

Current EEG-based BCIs are often recorded from mul-
tiple channels. A higher number of electrodes ensures a
greater coverage of the brain and a more precise solution to
the inverse problem. For uniformly distributed sensors over
the full surface of the head, source localization accuracy has
been shown to increase drastically from 31 to 63 sensors but
much less from 63 to 123 electrodes (Michel, 2004). How-
ever, a greater number of channels can reduce the accuracy
of the classification because while some sensors carry sig-
nificant information, others introduce noise and thus deterio-
rate the results (Miiller et al., 2000). This so-called curse of
dimensionality can be alleviated by selecting an optimized
subset of electrodes. The lower computational complexity
also leads to easier real-time calculation and detection of
predefined cognitive tasks.

Channel selection is used to identify this optimized sub-
set of EEG electrodes. Most reviews and studies focus on
the evaluation and efficiency of nonparametric algorithms
to establish the optimal number of channels involved in a
specific application (Alotaiby et al., 2015; Ghaemi et al.,
2017; He et al., 2009; Barachant & Bonnet, 2011; Li et al.,
2011; Arvaneh et al., 2010; Schroder et al., 2005; Qi et al.,
2021; Gurve et al., 2020; Lal et al., 2004). To the best of our
knowledge, no reviews have been carried out using prior
findings from diverse recording modalities (fMRI, PET,
EEG). For this purpose, the current paper uses a selection
of past studies for four commonly used paradigms—MI, ME,
SSVEP, and P300. For each task, the most recurring elec-
trodes across studies are defined as the core channel selec-
tion (CCS) subset. The CCS represents the lowest common
denominator, meaning that the CCS electrodes are supposed
to be always activated and could be used either directly or
through a specific combination to determine the paradigm
characteristics.

Method

One of the primary purposes of a meta-analysis is to draw
conclusions from past studies often reporting disparate
results. Pooling independent effect size estimates can inform
about the direction and magnitude of an effect even more
accurately than any of the individual estimates. Non-sys-
tematic biases that may arise, for instance from preprocess-
ing steps, are assumed to become insignificant using this
approach (Sacchet & Knutson, 2013).
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Literature search

The review is based on the PRISMA (preferred reporting
items for systematic reviews and meta-analyses) statement
and the recommendations of the Cochrane Collaboration
(Liberati et al., 2009; Eccleston & Morley, 2009). Fully pub-
lished articles were drawn from searches on Google Scholar
in September 2020. English-language studies in which the
subjects were asked to perform either motor imagery (MI),
motor execution (ME), or to focus on SSVEP or P300, were
included. This literature search yielded 117 articles.

All neuroimaging techniques were incorporated as long as
the subjects were healthy human participants performing the
correct task (e.g., only hand movement was considered for
MI and ME; foot motion was rejected). Ninety-seven articles
met these further requirements. The quality of the data was
the most exclusive criteria. Studies that did not specify the
exact location (3D coordinates from any atlas or EEG elec-
trodes) of the brain structures involved in the task or did not
provide enough data to compute the mean and standard error
or deviation of these locations were excluded from further
analysis (see Fig. 1). After applying these criteria, 21 articles
remained. Figure 1a reproduces the standard PRISMA flow-
chart diagram, while Fig. 1b highlights the precise number
of papers excluded for each exclusion criterion.

The main purpose of this review is to create a knowledge-
based channel selection framework with sufficient statistical
power and practical significance. The latter can be estab-
lished by quantifying the effect size. To compute all these
measures, either the Z-score, the t-test, the Cohen’s r, or
Cohen’s g should be available along with the corresponding
standard error and deviation when necessary. The lack of
reporting of such measures (or access to the original data)
is a well-known issue in neuroscience (Poldrack et al., 2017)
and might explain the generally small numbers of included
studies in meta-analyses ((n=9) (Snyder & Hall, 2006),
(n=30) (Mullin et al., 2016), (n=9)) (Arns et al., 2013).

The metadata for the 21 articles (n=21) included
in this meta-analysis is detailed in Table 1. In total, 311
healthy subjects participated in these studies, with a highly
variable sample size ranging from 5 to 50 participants
(mean=14.8 +11.1). Most experiments used fMRI as a
single recording technique (62%) or EEG (24%). The pre-
processing details for cleaning, normalization and spatial fil-
tering are mostly linked to the technical modality employed,
and only three studies use channel re-referencing.

These studies compare brain activations according to
three main themes: (a) task dissimilarities, (b) stimuli char-
acteristics, and (c) individual differences. Among the first
group, four studies (Gerardin et al., 2000; Stippich et al.,
2002; Kraeutner et al., 2014; Burianova et al., 2013) com-
pared MI to ME, while four others (Menon et al., 1997;
Ramirez-Quintana et al., 2020; Ardekani et al., 2002; Mulert
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et al., 2004) investigated the target vs. no target detection in
P300, and two (Clark et al., 2000; Bledowski et al., 2004)
the differences between target and distractor. One paper
(Grafton et al., 1996) specifically investigated the difference
between MI and viewing, whereas one (Begliomini et al.,
2018) was dedicated to the differences between the left and
the right hand in ME, and another one (Perlstein et al., 2003)
to the dissimilarities between memory and control.

Fewer studies examined the impact of stimuli depending
on their frequency (three articles (Srinivasan et al., 2007;
Srinivasan et al., 2006; Martinez et al., 2007)), color (only
one (Ikegami et al., 2012)), or location (also only one (Russo
et al., 2007)). Differences between left- and right-handed
individuals were examined in two papers (Willems et al.,
2009; Begliomini et al., 2008), and a final one (Mokienko
et al., 2013) was interested in the impact of BCI training on
neural source activation.

EEG channel determination

Multichannel EEG measures signals using either the 10-20,
10-10, or 10-5 international systems for standard electrode
placement (Jurcak et al., 2007). The underlying neural gen-
erators are recorded as a mixture of signals emitted from
several potential time-varying sources inside the brain (von
Biinau et al., 2010). The goal of the BCI paradigms is to
produce distinct patterns of cortical activation to discrimi-
nate between various classes (Halder et al., 2011). For com-
monly used paradigms, knowledge of task-dependent corti-
cal generators can inform the relevant recording positions for
channel selection. In this paper, we review various studies
that use source localization to identify significant cortical
generators. The closest of the 62 selected EEG electrodes are
then estimated for each of the results obtained from fMRI
or PET. Our goal is to provide a knowledge-based channel
selection framework that could be used either as a verifica-
tion step or as part of the classification procedures.

The Koessler 3D anatomical atlas (Koessler et al., 2009)
was used to correlate the 3D Talairach coordinates of the
EEG electrode of the 10-10 system with their cortical pro-
jection points. For convenience, the Koessler 3D anatomi-
cal atlas is available as a CSV file at https://github.com/
QinXinlan/review-effect-size. This 10-10 resolution com-
bines the advantages of higher precision (yet still providing
background compatibility to the 10-20) and reproducibility
(by avoiding overlapping that may arise with the 10-5). The
likely Brodmann area (BA) (respectively macro-anatomi-
cal structure) beneath each sensor is then calculated as the
most frequently found in the population. Using the mean 3D
Talairach coordinates and standard deviations of each sen-
sor, it is possible to compute the Euclidian distance to each
cortical generator reported in the reviewed articles. Standard
deviations in x, y, and z play asymmetric roles, so the most
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Fig. 1 a Standard PRISMA flowchart diagram; b details of the exclusion criteria used with the associated number of studies, n.

likely electrode is not necessarily the closest one. When two
EEG electrodes are nearly equidistant from a cortical source,
both are recorded in the following tables with the electrode
at the minimal Euclidian distance in the first position.

Power analysis
Statistical power analysis reveals whether a finding actually

reflects a true effect. By definition, the power of a statistical
test is the probability that it will yield significant results. Its

complement =1 — power represents the error rate of failing
to reject a false null hypothesis (type II). The statistical power
is linked to three parameters: the significance criterion (type
I error rate), the sample size, and the effect size. This last
variable represents the degree to which the phenomenon can
be detected. The larger the effect size is, the more easily the
phenomenon can be exhibited (Cohen, 1977).

Every corresponding author of the 21 studies has been
contacted and solicited to provide necessary information for
computing the effect size. Most effects are reported as group

@ Springer



Behavior Research Methods (2023) 55:1980-2003

1984

Suruioy

Qords ojeuIp
-1000 XNOUINOJ,
-yoeRIIE[E], 0}

SIUSWAOW PEAY

puey (4Ja1)
JUBUIIOPUOU

Ay yym ssaxd

DINA (#10T “Te 19 Jounaery)

ON  -weaq Jels-fen( UOTJBZI[BULION uayM UOISN[OXyg  uoynq [enuanbog +102 91 WSy % «OFIN dIN 3 TIN I9UINIeIY "9
Qoeds (ININ) SQIOA UOTIOR
(Touray Jymnsuy [eo1do]  uonensi3ar Apoq [enuewuou pue
IWHMA WWw §)  -0INdN [BANUOIA piSuySnoryy  [enuew jo douBW (600T “Te 10 SWIIA)
oN Sumpjoowss [erjedS 0} UOTJRZI[RWION juowuSeay  -10j1od SururSewry 600T 7€ 1JoT 29 WSy TN N SWRIM °S
S9JBUIPIOOD
(ININD) @mnsuy
[eo130[0INaN puey
[ESNUOA pIe uonow Ioj 3Jor 10 1YSLI YY) Odd
-pue)s 03 uor UONO21I0d pue )M JUSWIAOW 2 SINLU (€102 “Te 10 OUSIOIN)
ON Surpoowrs -e[sueln TYINJ uorssaxrddns 1eq Suidsei3 mo[s €102 11 y3ry 29 +TAINJ N ONUSLIOIN "t
sjoeJnIe
uor}  3uomns uaym UoIS
-ouny 9JUAIAJoI -N[OX9 ‘uonow 1
porddns oy) pue  pue ‘suonenony SITp SUTAJOAUT
39S oSewI Yord Kouonbory ySry  uonisoddo 103uy
S[OX0A Q¢ JO 9ZIS udaMIeq suone| ‘spuax) Jeaur| xo[dwoo papis (200T ‘T8 30 yorddng)
ON  T9Isnjd p[OYSaIy], -91I0D SSOId Teaul] JO uonda1Ioy o[ pue Jy3ry 00T 14! w3y RN dIN % TN yorddng ¢
uonezIewIou
MO}} TeqO[D) a3xe|
ww  +[eNpIATPUI YO8 0) [[eWS WOIf
QI Jo uonnjosar  woiy aSew [gJ 9Z1S Ul paduer
ordomost [euy uedw Sursn uory $300[q0 uoWWOD (9661 “Te 10 uoyjeIn)
oN e 0) Suryjoowrg  -ezieuriou feneds ON Jjo dse13 uorsmoaig 9661 L sty 1ad N uoeIn ‘g
JUSWIDAOWI
snonunuod
(103uy o1 oYy
pue Xopur a3 jo
UOISUS)X/UOTXAY
QA1O9[9S) xo1d
wuw ¢ sajeuIp -wod J0 (s13uy
JO ssauyjoows -1000 YoRIIe[e], 9} JO UOISUIIXD
[euy & 0} 19)[Y J1XB)0I)S 0) JUOTX3[} SNOSU (000T “'Te 3° UIpIRIaD))
ON [eneds ueissnen UOTJBZI[EWLION  UOTJALIO UOTIOJA -eynurs) ordwig 0002 9 y3Sry NN 9N ¥ TN uIpIeIan |
Jurouaojor-o1 uoneorgnd () 9z1s poylewr
[ouuey) Sunoyy renedg UOTJRZI[BWLION Suruesy) wSipereq joreax odures ssoupopuey — Surpioooy Jsel, Joyine IsI1

(sSurp10oar s[dnnur 10y ATUO) ,. WOIJ I BIEp PIZATeU. SAIPNIS PIPN[OUT JO SIINJEJ UTR]A | 3|qeL

pringer

Qs



1985

Behavior Research Methods (2023) 55:1980-2003

000T

VSdd Jo [epow
JUSWR[S TUY
pazIpIepue)s oy}
0) UONBZI[BUWLION
= DHH (¢) wal
-qns yoeo jo A
-AT)ISUQS [[BISAO
a1y} 03 urpiodoe

SddA
paSeroAe-own uo
ZH G 01 G woly
191y ssedpueg
+3unyoo[q 1oy
-1dwre 10 ‘syuryq
‘SJUAWDAOW

249) syorjnIE
ym syooda jo
uonoafey = Haq
(7) yoroadde
sarenbs-jseoy

B )M uonew
-IoJsuer} Apoq
p1311 ® y3noay)
UONIALI0D
uonow + SuLIdY
Ieaul| pue juels

AyM
pue 3oe[q ut
paje[npour A[fep

UONRZI[EWION  -UOJ JO [BAOWIY -1osnuis uneis 0dd (LOOT “Te 19
ON ON =TI (1) =TInJ (1) 10qeD Ie[noIry L00T SI sy % TING 0ssny) ossny 1q 01
(19)oweIp W ¢)
rejdwo) (suonejor 199[qo Teoroyds
[ouIoy TSTINIA 2y /suone[suen) B JO quny) oy}
uerssnen) (¢ e Sursn uon uonouw peay pue Xapur oy} (870T “Te 10 TUTWIO
ON  Juisn Surgoows -BZI[RWLION J10J UOT}OQ1I0D) ynm Jurdseln 810C 91 1Jo] TN -1[3og) rurwor3og ‘6
(131owreIp
Srerdway 1L, wo ¢) s309[qo
uorn[osaI-y3Iy rerdwo) onserd reorroyds
oy Sursn uonez CSTININ ?W Jo quin oy
-1ewou [ereds Sursn uon pue Xopur Y} (800 “Te 10 TUTWIO
ON 100[qns-o[3urg -EZI[EULION  UOTIDALI00 UONOA im Suidsern 800C v W12 STy R I8 -1[3og) urworjsag ‘g
Jrerdwd) 149
(INIA) @mmnsug
[eo1S0[0INAN
[e9NUOIA 9}
[oUIdY UeISSNED) Sursn .ww g jo
ordonost ue yIm QZIS [OX0A YIIM
31 SUTAJOAUOD  QoedS JIXBI0QI9)S UOT)OAII0D
£q awnjoa yoed pIepue)s e ojul uonow-peay 1oy
10§ 19)y Sur uonezIew oSewr ueows oy SIUOUIOAOW DIIN (€10T “Te 10
ON -yjoouws [enedg -lou [enedS  OjUO0 JUSWIUII[BAY 193uy oyroadg €10C al 3y TN} TN 2 IIN  eAoueLIng) BAOURLING */
SurouaIayaI-a1 uoneorqnd (N 9z1s poyjow
[euuey) Surroyy renedg UONRZITEWLION Surues[) wSipereg joreax odwreg ssoupopuey — SUIPIOONY JoyIne ISIL]

(ponunuoo) | sjqey

pringer

a's



Behavior Research Methods (2023) 55:1980-2003

1986

oy
uerssnen) (¢

sojeuIp
-1000 yoeIre[e],

uonez
-Twrurwr arenbs

Souo}
(yuonbaxjur) zH
000T Kyuamy
pue (Juonbaiy)

zH 0001 £1y31e

WLIOJTUN B [)IM OIXB)0919)S 0) Jse9] Suisn uon s wdpered 0d4q (L66] “Te 19
oN Sumpoouws fenedg UOTEZI[EWIION  -091I00 JUSWIAAOJN  [[eqPpO AI0)Ipny 1661 11 Sty 29 +IIINF 00¢d UOUQJA]) UOUSIA "G
SO10
-uonbaly JuarayIp
1M SULIYOTY
Rt sagewir preoq
paun) pajesIpap -I3YO3YD [[ews
e Jusn £q Inoj jo Aeire ue
Apoamp Aouenb  uomosfarjoejnie  Jursn owin [eAI UI
-o1) JuLYdIY Joj wyioge u2210s 19Indwod
yoeo Jjouonez  (SSg) uoneredas 91) U0 IBD [RWS (L00T “TE 10
ON ON  -Ireurou 31oug 90IN0S puI g € JO uonesIAeN 1002 S VN oddq dAASS  ZoUnIe|n) ZounJeln ‘§1
ZH Ol
vlep paSeloAe oy} Surioyory seSewt
S[ouueyd uonn[osal Jo Surpuon-op UonRUIWEIUOD jueseajdun pue
DOHH PapIodal [eneds ww £ e pue Suruedw oiyder3omoo  ‘[ennou ‘queseard
Q71 2Y) JOQOUD UM UOTIBZI[BIO[ -9p poseq -01399[9 10} Sunuosaxdar (€007 “Te 10
-I9JoI 93BIOAY  90INO0S YVIHYOQT -UOISSAISAIIedur]  UONOQIIod duIgjO  soimoid o[eosheln £€00C 81 3y Odad JdAASS UIdIS[I9d) UIdIs[Iod "¢
wyogde
ueroerdeT ourdg ZH (¢ 03 € Woij
S[euueyd g suea[I0 sy00[qns owos ur Surduer saro
DT PIpI0daI MIN Y YIIm sjoejnte oy onp  -uonbaiy sninwns
011 2y3 Jo 20U PAIB[NO[ED URID sjun oner s[ouueyd> DI yIIm sjop 009 Jo (9007 “'Te 10 uesea
-19J01 9SeI1oAy -eyde ooeyINg as1ou-03-Teusig 0T Jo Teaoway  posodwod surened 9002 1 Sy Iscil ddASS -IULIS) UBSBATULIS ‘7]
ZH ] 0) ¢ Wwoj
Surduer saro
-uonboig snjnums
INHMA [m preoqis
W G9°/, 9ZIs Jo erdwoy o2y SuisIoaal
I0)[ ueIsSnen) © INIA 993 03 KTeprosnurs (L00T “'Te 10 uesea
ON  Sursn Surpoowrg UONEZI[EULION ON 1SeNU0d-YSTH LOOT 9 VN RAF dAASS -IULIG) UBSBATULIS ' |
SurouaIayaI-a1 uoneorqnd (N 9z1s poyjow
[euuey) Surroyy renedg UONRZITEWLION Surues[) wSipereg joreax odwreg ssoupopuey — SUIPIOONY yseL, JoyIne ISIL]

(ponunuoo) | sjqey

pringer

Qs



1987

Behavior Research Methods (2023) 55:1980-2003

uornn[osal
sfouueyd OFH reneds wuw / e
POpIOdAI €9 AYI JO  [IIM UONEZI[EI0]

QouQIgje1 95eI0AY  901n0S VIAYOT

S[OXOA
snongnuod
dIow 10 (] JO

ON $19)SN[O P[OYSaIY L,

0SX¥9Xy8
JO 9ZIS XINeW €
pue W ¢XexXe
JO OZIS [OXOA B
ON 0) Surjdwresoy

ON ON

[ouIay uer

-ssnen (WHMA)
WNWIxew
Jrey e ypim
[N} wrw-g ue
ON Ui Surgioowrs

(59D

srenuajod pajerax

-JUQAQ 9} JO
Surderoae puerd
pue sagewr
“VIHYOT W
Jo Surderoay
:soyoroxdde om,

SOYRUIPIO0D

XNEaUINOJ,

—yoearere], oy}
0} UOTJBZI[BWLION

SO)RUIPIOOD
XNeauInoy,
—oeIe[e], oy}

0) UONBZI[BWION
S[ouueyd 2y} e
ur 9oueLIeA AIe)
-1un pue Uedw
0I9Z B UIe}q0

0} UOTJeZI[BULION

arerdwo) 149
(ININ) @ymnsuy
-Tes130[0InaN
[eoNUOIA & O}
UOTJRZI[BWLION]

[suueys HOd
pue Dy A1oA9
10§ (AT OLF)
UOLISILID 9pN)
-1idwre ue Sursn
S[er) Jo uonodfoy

uonoaI

-10J JUSWSAOJN -PPO [ensIA JISSe[D)

VOd
Aq TeAOWI puaI)

+ UBOW OIOZ &
ure}qo o3 saLIds
- S[OX0A 9y}
Jo Surouad +

UONIALIO) UOTIOJA] -PPO [eNSIA JISSe[D)

ZH G 9
1 woly 1y ssed
-pueq Y1IomId)
-)ng I9pIo-payJ,
[opowt
(ouo 19p10)
JAISSIZo10INE
Ue yIIm suon
-B[OLIOD [BLIDS
93ue1-110ys jo
uonoaLInd + (S
821 Jo potrad
Jomod) 1y
ssed-y31y & yam
astou Kouanbary
-MO] JO [BAOWY

(zH

0001) nwns
123181 %()Z puR
(zH 00¢) Tnwns
1931eIU0U %08
ynm wipered

1reqppo K10Mpny

X, 101191 10318)
B puR ‘D), 10119]
Joyensipe ‘.1,
1991 oy} Jursn
snpnwmns ensia
pIepuels € yim

wSipered [[eq

XXXXX,
SI9)0RIRYD YIIM
a3ewr joSre) B
pue 00000,
SI9)0BIRYD JO
snnwns [ensia
pIepuels € yim
wiSipered [eq

(10o770ds
19739]) SUWN[Od
ur pan3yuod

Io11edS uryouo

(ooururIN|
Keagoymym pue
J1BWOIYO pue
doueuTWN| dN[q
/u213) suory
-1pu0od sadA)

om] [pIm  J9rrads
00¢d,, °y3 woly
payIpouwt X1new
101y 19qeydre
9 X g e Ul 1[nuins

JOYOIY-[enSIA

(#002
“Te 39 L[N HANIA 0T

(000t
“Te 19 IeD) Ne[D 61

(zooz “1e 10
TUBYIpIY) IUBNIPIY "§]

(ozoz 1810
ruejuInQ)-zaIrwey)
eurjuINQ)-ZaIIwey /|

(T10T T2 0
TureSoy) rresoy[ ‘9|

Surouaojor-a1
[euuey) Surroyy Teneds

UONRZI[BWLION

Suruea)

w3ipereq

uoneorgnd (N 9zIs

Odd 00¢ed
TIING 00¢d
TIING 00¢d

Odd 00¢ed

=[N
% Odd 00¢d
poyow

ssoupopuey  SuIp10d9y yse],

Joyine IsI1J

(ponunuoo) | sjqey

pringer

a's



1988

Behavior Research Methods (2023) 55:1980-2003

Table 1 (continued)

&

re-referencing

Channel
Spatial smoothing No

Spatial filtering

Normalization
Normalization

3D motion correc-

Cleaning

Paradigm
Three-stimulus

Year of
size (N) publication

10

2004

Sample

Recording Handedness
Right

method

fMRT* &

Task
P300

21. Bledowski (Ble-

First author

Springer

of EPI images

to the standard
Montreal Neuro-
logical Institute

tion to esti-

oddball task

EEG

dowski et al., 2004)

with a Gaussian
kernel (8§ mm

mate the three

with simple blue

shapes

translation and
three rotation
parameters of

FWHM kernel)

(MNI) template

head surface

rigid body trans-

formation

differences; thus, Cohen’s d has been favored in this review
(Cohen, 1977). Heuristically, this number measures the
statistical level of distinction between two variables. Given
two sample groups, the greater the distance between their
means, the more easily they can be separated. The Cohen’s d
index measures this distance in terms of standard deviations
units and is considered dimensionless: Cohen s d = A%
(where M, is the mean of group 1, M, the mean of group
2, and SD, the standard deviations, are assumed equal in
this equation, as they are similar in reality). A more-specific
Cohen’s d formula can be used, or other metrics can allow
the characterization of the phenomenon. For instance, in a
P300 experiment, group 1 could be defined as the target
stimuli and group 2 as the nontarget stimuli.

For all studies, the mean across subjects (computed from
Z-score, t-test, percentage of signal change, or raw data)
was calculated on every selected electrode. For each task
and each electrode, the mean effect size was computed, and
weighted by the number of subjects in individual studies.
To assess the statistical significance of the results, a 95%
confidence interval was also outlined. In this review, most
of the confidence intervals exclude 0, meaning that the mean
effect size is statistically significant at «=0.05 (Ellis, 2010).
If the mean effect size, the lower bound of the confidence
interval, and the weights used in the corresponding com-
putation are large enough, the selected EEG channel will
be validated. The R code used to calculate the effect sizes
per study (Ben-Shachar et al., 2020) and the weighted mean
effect size is available online at https://github.com/QinXi
nlan/review-effect-size.

Sample size estimation

How many studies would be necessary to obtain a sufficient
statistical power? Conventionally, in meta-analysis methods,
fixed effects and random effects models are used. In the for-
mer case, the included studies are assumed to represent the
entire universe of studies of interest and hence, there is no
possibility of sampling error (Hunter & Schmidt, 2000). In
view of the high variability of the phenomena under study,
the included studies are considered to only represent a small
portion of all the available data and thus, the slightly more
sophisticated random effects model is preferred.

To evaluate the sample size, i.e., the number of studies,
choices and hypotheses must be made on some parameters.
Typically, the type I error rate is set at a=0.05 and the rela-
tive seriousness of type I to type Il erroris 4 to 1 ( f=0.2
and thus power=0.8). The standard normal cumulative dis-
tribution function for f=0.2 yields a value of —0.842, and
a mean of the Z statistic of 1.64 —(—0.842)=2.482 for a
one-tailed test.


https://github.com/QinXinlan/review-effect-size
https://github.com/QinXinlan/review-effect-size
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Under the random effects hypothesis, the Z statistic has a
d-0

normal distribution with a mean equal to A* = \/v_*7<’ where
k is the number of studies (random effects estimates are usu-
ally noted with an asterisk (Hedges & Pigott, 2001)). The
“typical” sampling variance of the random effects estimate
is calculated (Valentine et al., 2010) with
Vi=v+12= % + d? * n + 72. Given a random effects anal-
ysis, the number of studies should then be k = W, where
A*=2.482.

A scoping review on different electrodes led us to believe
that the estimated population effect size may vary from
d=1.5to d =3 with a variance 7> =1 and for an aver-
age number of subjects per study n=15. For an estimated
population effect size of d=15, approximately four stud-
ies (k=3.2) are needed under the random effects assump-
tions to obtain an approximate power of 0.80. For a greater
estimated effect size of d = 3, only one study (k=0.88) is
needed to obtain a sufficient power, with all other hypotheses
remaining equal.

Hypothesis

This review and its potential applications rely on three
assumptions: (1) despite the substantial inherent variabil-
ity in the exact source localization of neural generators, the
sensorimotor and visual networks are postulated to be con-
sistent across subjects and sessions, and the other cortical
networks relevant to our BCI paradigms should probably be
considered more subject-dependent; (2) the estimated EEG
electrodes or their nearest neighbors are likely to reflect most
of the relevant cortical information; (3) the classification
accuracy is presumed to be optimized by the choice of an
adequate subset of electrodes.

Results
Motor imagery (MI)

MlI-based BCI is a popular interaction paradigm because it
relies on voluntary movement and can be used, in theory,
by healthy and impaired subjects alike in synchronous or
asynchronous paradigms. In particular, the movement of the
right and left hands is often selected because of its easily
distinguishable activity in the contralateral cortical regions
responsible for the movement of the limbs. MI is usually
defined as the mental rehearsal of a motor act (Crammond,
1997). This cognitive process appears to correspond to the
activation of the neural correlates of motor representations
(Rizzolatti & Craighero, 2004). It includes the planning
and preparation of movements but not the motor output or

somatosensory feedback. The neural network involved dur-
ing MI activates several cortical areas depending on the task
and on the participant’s handedness and familiarity with BCI
and the task. Several studies (Gerardin et al., 2000; Stippich
et al., 2002; Kraeutner et al., 2014; Burianova et al., 2013;
Grafton et al., 1996; Willems et al., 2009; Mokienko et al.,
2013) have described the mapping of cerebral networks by
localizing the main sources in each functional area across
participants. Table 2 compiles these results with similar
inclusion criteria (i.e., for healthy subjects).

The estimated EEG electrodes are then classified into
three main clusters as shown in Fig. 2. The first one gathers
all electrodes that are not contralateral (i.e., either bilateral
or unilateral). The second cluster represents all contralateral
sources that depend on the user experience (familiarity with
BCI). The third one corresponds to all contralateral sources
consistently present among subjects. Ipsilateral clusters can
also be activated alongside contralateral sources to a lesser
extent (Porro et al., 2000). If an electrode may be classified
as both contralateral and unilateral, the bilaterality may be
more influential and the electrode is labelled as such. Finally,
the effects of handedness for the dominant hand on elec-
trode activation is emphasized with an upper black point. For
instance, FC2 is mostly activated for left-handed participants
when moving their left dominant hand.

For the MI task, the CCS subset consists of electrodes
{FC4, FC2, FC1, C4, C6, CS5, C3, CP3, CP1}.

Motor execution (ME)

A voluntary movement is comprised of three phases: plan-
ning, execution, and recovery. During the first phase, similar
functional circuits, located in the frontoparietal, subcorti-
cal, and cerebellar areas, are activated in both ME and MI,
suggesting they share a common pattern in the planning
and preparation tasks. However, MI also activates distinct
regions that can be predominantly found in the left hemi-
sphere, namely the middle temporal gyrus and the fusiform
gyrus (BA 21 and 37, electrodes TP7, P7, and T7). The
predicted visual consequences of an action are believed to
be represented in the former gyrus (Schippers & Keysers,
2011), whereas lesions in the latter impair pantomime recog-
nition (Varney & Damasio, 1987). Thus, these regions could
be hypothesized to participate in the planning of an imagi-
nary movement. Furthermore, lesions in the superior and
inferior parietal cortex (BA 7 and 40; electrodes CP4, P1,
and P2) lead to impairment in the ability to imagine move-
ments. Therefore, these cortices could be responsible for
ensuring that the action being executed matches the intended
action (Danckert et al., 2002).

During ME, the secondary sensory area (S2, BA 43; elec-
trode CP6) seems to display heightened activation and is
assumed to be related to the processing of proprioceptive

@ Springer
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input (Dresel et al., 2005). More specifically, action plan-
ning has been associated with an increase of activity in the
left-lateralized supramarginal gyrus (Krdliczak et al., 2016)
(BA 40; electrode CP5). A possible explanation of these
differences between MI and ME relies on the evolutionary
theory of motor task learning. Mentally rehearsing the action
would allow for multiple attempts without the risk of caus-
ing any harm and, hence, would help find the best strategy
for a difficult motor task (Gerardin et al., 2000). Some stud-
ies (Gerardin et al., 2000; Stippich et al., 2002; Kraeutner
et al., 2014; Burianovai et al., 2013) compared the somato-
topic mapping during MI and ME, while others (Begliomini
et al., 2008, 2018) examined the effects of handedness. Their
results are summarized in Table 3.

For the ME task, only two clusters have been identified,
as illustrated in Fig. 3—either non-contralateral (bilateral or
unilateral) or contralateral. The ME topographical distribu-
tion, as expected, largely overlaps the MI one. However, the
assumption that MI is a more complex cognitive task might
explain why the number of cortical generators activated with
ME is much smaller for a simple task (Hardwick et al., 2017).
Interestingly, mental chronometry studies have shown that the
time course of MI positively correlates with ME, illustrating
the parallelism between these two tasks (Vargas et al., 2004).

For right-handed subjects (an estimated 90% of the
worldwide population), right hand MI and ME activates a
restricted cluster compared to left hand MI and ME (Buri-
anova et al., 2013). Right-handed subjects also show a pre-
dominant activation of motor and visuomotor control in
the contralateral (i.e., left) hemisphere, while left-handed
subjects have been characterized by a more bi-hemispheric
recruitment of neuronal circuits when performing a preci-
sion grasping task. This might indicate a left hemispheric
location of visuomotor control (Begliomini et al., 2018). In
general, the more repetitive the task is, the more special-
ized and smaller the neural circuit would be. Therefore, the
nondominant hand, being used less often, would require the
additional control provided by a more widespread neural
activation. Finally, it should be noted that the complexity
of the task, implying other functions, influences the later-
alization and the level of activation in some regions is age-
dependent (Ward & Frackowiak, 2003).

For the ME task, the CCS subset consists of electrodes
{FC4, FC2, FC1, FC3, C2, C1, C4, C3}. A common CCS for
all motor-related tasks (MI and ME) could also be defined
with the electrodes {FC1, FC2, FC4, C3, C4}.

effect size

Closest electrode(s) Cohen’s d weighted

NP
NP
NP
NP

15

21
12
12

-18 9
=27 6

27

Hem Talairach
X
15

R
L
R
L

BA

13

Laterality
Bilateral
Bilateral
Bilateral
Contralateral
Ipsilateral

Macro-anatomical

structure

Anterior

Ventral lateral nucleus

Area
Putamen

Anatomic area
Basal ganglia

Insula **
Thalamus

Steady-state visual evoked potentials (SSVEP)

Changes in the visual field are known to impact EEG activ-
ity. In particular, the periodic contrast or luminance modula-
tion of a fixed frequency (usually at a range of 640 Hz) elic-
its an SSVEP that can be detected at the same fundamental

Table 2 (continued)
Subcortical regions Caudate nucleus

Lobe
Cerebellum
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Bilateral or Unilateral

Stronger activatior
for dominant hand

°Fc2 Left-handed
Fc1°® Right-handec

Contralateral
depending on
BCI familiarity

Contralateral
for all subjects

Fig.2 Motor imagery paradigm: Activated electrodes with their Brodmann areas and handedness-linked brain laterality

frequency as the flickering stimulus. The cortical oscillations
are phase locked to the periodic stimulus and appear to be
predominantly present in posterior occipital areas as well as
the lateral geniculate nucleus and optic radiation (Krolak-
Salmon et al., 2003). The two major neural generators seem
to be localized in the primary visual cortex (V1/V2) and
the motion-sensitive (MT/V5) areas, respectively. However,
the two minor contributors seem to be located in the mid-
occipital (V3A) and ventral occipital (V4/V8) areas (Russo
et al., 2007). In addition to the occipital areas, steady-state
responses may also flicker over frontal and prefrontal areas
depending on the stimulus frequency (Srinivasan et al.,
2007). Furthermore, the narrow frequency bands surround-
ing each flicker frequency appear to synchronize different
patterns of cortical functional networks. Table 4 shows the
EEG electrodes calculated from the topographical maps of
the potential SSVEP power at the frequencies relevant to
one of our previous experiments (Srinivasan et al., 2006;
Luu & Ferree, 2005).

SSVEP-based BClIs often have a high temporal and spec-
tral resolution (usually less than 0.1 Hz) as well as high
accuracy and a high information transfer rate (ITR)(Nunez
et al., 2006), but can produce visual fatigue or discomfort
(Zhu et al., 2010). The temporal frequency, spatial fre-
quency, contrast, luminance, color, and hue of the driving
flickering stimulus all influence the amplitude and phase of
the SSVEP (Zhu et al., 2010; Regan, 1989). This depend-
ency on the input frequency partly reflects the delay between
the retina and primary visual cortex as well as the delays
between areas of the visual system (Schmolesky et al.,
1998). Moreover, the area of on-screen stimulus also has
an impact on the cortical modulation. For instance, a 6 Hz

@ Springer

frequency sinusoidal waveform displayed in the upper-left
quadrant of the screen will elicit a different SSVEP wave-
form than a similar stimulation displayed in the lower left
quadrant (see Table 5)(Nicolas-Alonso & Gomez-Gil, 2012;
Russo et al., 2007).

The review of five previous studies (Perlstein et al., 2003;
Srinivasan et al., 2006, 2007; Martinez et al., 2007; Russo
et al., 2007) is summarized in Fig. 4. Three different types of
information are illustrated using distinct systems. The color
clusters illustrate the differences between contralateral and
unilateral or bilateral sources. The corner symbols depict the
activations that depend on the on-screen quadrant location
(upper or lower, left or right). Finally, the text colors high-
light whether the EEG electrodes are activated for some or
all frequencies relevant to our experiment.

For the SSVEP task, the CCS subset consists of elec-
trodes {P1, PZ, P2, PO3, POZ, PO4, O1, OZ, O2}.

P300

Attention to a change in the environment elicits a burst of
activity, peaking at about 300 ms after the sensory stimu-
lus. This P300 event-related potential (ERP) is an umbrella
term encompassing two separate attentional processes. The
P3a, or Novelty P3, occurs in response to all rare sounds
or images—designated as deviant stimuli—regardless of
whether they are targets (Spencer et al., 2001; Gaeta et al.,
2003). The P3b appears after the appearance of a low-prob-
ability target item embedded in a train of high-probability
nontarget (or standard) items. Both the amplitudes of the P3a
and P3b, as well as their peak latencies, can be characterized
as functions increasing (respectively decreasing) with age
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Bilateral or Unilateral

I Contralateral

:Brodmann Area 6

Stronger activatior
for either hand:

°rc5 Left-handed
Fcz® Right-handed

Fig.3 Motor execution paradigm: activated electrodes with their Brodmann areas and handedness-linked brain laterality

Table 4 Mainly activated EEG electrodes according to the stimulus
frequency

10 Hz 11 Hz 12 Hz 13 Hz
(674 P1 F1 F6
CPZ PZ FzZ F8
P1 P2 P3 FC6
| 4 PO3 P1 FT8
P2 POZ PZ P3
PO3 PO4 P2 P1
POZ O1 P4 PZ
PO4 oz PO3 P2
CB1 02 POZ PO5
01 PO4 PO3
(674 PO5 POZ
02 PO6 PO4
CB1 PO6
01 PO8
oz CB1
02 0O1
oz
02
CB2

(Fjell & Walhovd, 2004). Additionally, the topographical
distribution of the two P3 components seems to also be age
dependent (West et al., 2010).

Typically elicited between 250 ms and 500 ms, the P3b is
believed to reflect the process of directed attention leading to
conscious awareness of salient stimuli (Menon et al., 1997).
Detecting this cognitive component can reflect user intention

@ Springer

and provide useful biomarkers for normal aging or several
brain or mental diseases (Friedman, 2003; Rossini et al.,
2007). Table 6 summarizes the locations and time-courses
(when available) of its neural generators from seven studies
(Menon et al., 1997; Ramirez-Quintana et al., 2020; Ardekani
et al., 2002; Mulert et al., 2004; Clark et al., 2000; Bledowski
et al., 2004; Ikegami et al., 2012). Furthermore, the source
contributions calculated from the functional magnetic reso-
nance imaging (fMRI) activation clusters are also indicated.
However, as the authors warn, the intrinsic technical and theo-
retical differences between ERP and fMRI might cause some
discrepancies. For instance, the temporally dispersed activity
reflected by fMRI (which is typically integrated over 1 sec-
ond and then averaged) might get lost when compared to ERP
(which is only averaged) (Bledowski et al., 2004).

Two different types of information are depicted in Fig. 5.
One highlights the contribution to the generation of the P300
for each electrode (low or high), while the other indicates the
time-dependent activation for several EEG electrodes, using
five 50-ms time intervals (Mulert et al., 2004). The chrono
stimulation is illustrated on two consecutive images for the
sake of simplicity.

For the P300 task, the CCS subset consists of electrodes
{CP3, CP4, P1, P3, P2, P4, P6}.

Discussion

In this paper, we first reviewed the source localization of
cortical generators induced by four widely used BCI para-
digms. The closest EEG electrodes were then computed for
each of these task-dependent neuronal sources. Our objective
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Table 5 3D Talairach coordinates of the two significant cluster maxima for steady-state visual potentials depending on the visual stimulus loca-
tion on the screen. The available data did not allow calculations of the Cohen’s d effect size per electrode.

Quadrant location Lobe

Macro-anatomical structure

Laterality BA Hem Talairach Closest electrode(s)

X Y Z

Upper left Right occipital Middle occipital gyrus Bilateral 18 R 13 =92 -9 02,0Z
Superior occipital gyrus Contralateral 19 R 36 -71 —4 PO4
Lower left Median parieto-occipital Superior parietal lobule, Bilateral 7,19 R 5 -74 2 PZ,POZ
cuneus
Right parieto-occipital ~ Inferior parietal lobule, supe-  Contralateral 7,19 R 38 —-65 0 P4,PO4
rior occipital gyrus
Upper right Median occipital Cuneus Bilateral 19 L -9 -86 -7 POZ, Ol
Left occipital Superior occipital gyrus Contralateral 19 L -35 =73 -5 PO3
Lower right Left Occipital Cuneus Bilateral 19 L -6 -80 3 POZ
Superior occipital gyrus Contralateral 19 L -31 -64 8 PO3,PO5
Bilateral Ppa Quadrant Location:

Lower left

Not Specified P. 1, 2, or 3 frequencies

I Contralateral

- Brodmann Area 6

D All 4 frequencies

Fig.4 Steady-state visual evoked potential paradigm: Activated electrodes with their Brodmann areas and brain laterality linked to quadrant

location or full-screen frequency

is to create a paradigm-based channel selection framework
that could be used as a reference by any EEG researcher.

Inter-subject variability

Brain atlases are becoming more ubiquitous in the field of
neuroscience because they provide a reference framework
for the analysis and visualization of neuroimaging data. By
nature, the human cerebral cortex is deeply convoluted, and
its folding pattern presents dramatic inter-subject variabil-
ity (Van Essen & Dierker, 2007). Brain size and shape, as
well as the dimension of cortical areas, also differ drastically
across individuals (Andrews et al., 1997). Quantification of
the inter-subject variability of functional connectivity has
demonstrated a nonuniform distribution across brain regions.

The prefrontal and temporoparietal regions exhibit the high-
est level of variability, whereas the sensorimotor and visual
networks show the lowest level (Mueller et al., 2013). The
higher variability in the former regions is hypothesized to
indicate the larger influence of environmental or epigenetic
over purely genetic factors. Conversely, the latter regions
seem to represent the hallmarks of common mammalian
brain evolution and development (Zilles & Amunts, 2013).

The estimated EEG electrodes corresponding to known
cortical generators do not hold identical significance prob-
ability. The lower inter-subject variability of sensorimotor
and visual networks should be more constant across subjects
and result in a higher average accuracy for BCI classifica-
tion. Assuming the repeatability of the motor or visual task
performed by the subject, the estimated EEG electrodes

@ Springer
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230 - 280

Contribution
F5 Low

Not Available
P3  High

Time
(in ms)
280 - 330 330 - 380 380 - 430 380 - 430

Fig.5 P3b component of the P300 paradigm: Electrodes’ level and chronology of activation with corresponding Brodmann areas

for an individual can be hypothesized to remain mostly
unchanged over time and across sessions if they belong to
motor (BA 4, 6, 8), sensory (BA 1, 2, 3, 5, 40), or visual (BA
17, 18, 19) regions. For electrodes that are part of other brain
areas, more variability should be expected between subjects.

Equivalent current dipole

Scalp EEG electrodes are generally believed to record mac-
roscopic postsynaptic potentials created by assemblies of
pyramidal cells of the neocortex (mostly located in cortical
layers III, V, and VI) (Olejniczak, 2006). To measure this
generated electric field at a distance from the sources, the
underlying neuronal currents must be well organized in space
and time. The estimation of cortical generators corresponding
to a certain distribution of electrical potentials recorded at the
scalp is an ill-posed problem, known as the inverse problem.
Different models of the neuronal sources and of the volume
conductor have been investigated to estimate approximate
solutions. Most neurophysiological findings are based on the
simplest source model, namely the equivalent current dipole.
Because of the columnar organization of the cortex, the result-
ing EEG potential is assumed to behave as if it were produced
by normally oriented current dipoles over the entire cortical
sheet (da Silva, 2004; Attal et al., 2009).

An equivalent dipole approximates the barycenter of the
corresponding active cortical area at a given time with no
appreciable delay in the scalp sensor measurement. Assum-
ing that the signal propagates linearly and instantaneously
inside a homogeneous and isotropic medium, both the posi-
tion and orientation of the dipole affect the potential scalp
spatial pattern. If the dipole is radial to the scalp surface or
located in superficial cortical areas, the closest EEG elec-
trode should record the highest potential activity regard-
less of its orientation. For a deeper tangential dipole, the

@ Springer

maximum amplitude would be recorded at a neighboring
electrode (Congedo, 2013). Hence, under the linear con-
duction model assumption, the closest EEG electrode or its
neighbors should receive most of the signal generated by the
underlying cortical generator.

Signal-to-noise ratio

Four main types of noise affect the recorded EEG signals.
Instrumental noise might arise from equipment but is typi-
cally low and is considered to be uncorrelated with the sig-
nals. Environmental noise is routinely avoided by acquir-
ing the data in a sound-attenuated and electromagnetically
shielded EEG chamber. Biological noise emerging from
extra-cerebral artifacts, such as blinks or muscle movements,
may be removed using preprocessing algorithms, such as
ICA (Shen et al., 2002) or ABC (Guttmann-Flury et al.,
2019). We presume that the channel selection procedure is
applied to cleaned data, free from these three types of noise.
However, the underlying cerebral background noise is still
present and accounts for most of the EEG signals.
Conventionally, background noise summarizes all spon-
taneous neural activity of various magnitudes and frequen-
cies unrelated to the task at hand. With the hypothesis that
this noise is generated from randomly distributed and sta-
tistically independent stationary dipole sources, averaging
single events should yield the reproducible part of the sig-
nals and cancel the noise. Thus, time-locked averaging to a
stimulus (visual or auditory) can be used to determine the
locations and time courses of the relevant sources with a high
signal-to-noise ratio (SNR) (de Munck et al., 2002). Latency
adjusted averaging can also be used to enhance the SNR of
evoked responses (e.g., by applying an adequate narrow-band
Gaussian filter) (de Munck et al., 2002; Burghoff et al., 2005).
Furthermore, SNR can be improved by channel selection,
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which may also increase classification accuracy and reduce
computational complexity. Assuming that close electrodes
record similar background noise, subtracting a low-SNR
neighboring electrode from a selected one might meliorate
the SNR, and, thus, the accuracy (Wang et al., 2004).

Limitations

This review summarizes the results from 21 studies. Each
paradigm uses the same type of task; however, different con-
ditions or experimental setups might alter the homogeneity
of the results. For example, in the MI paradigm, subjects
were asked to imagine flexion or extension of single fingers,
specific finger movements, or precision grasping of objects.

Additionally, the participants’ demographics are biased
towards right-handedness; more specifically, in the visual-
related experiments (SSVEP or P300), no article mentions
left-handed participants. For motor-related experiments
(MI or ME), specifying right-handedness as an inclusion
criterion accounts for 62% of the reviewed papers but 24%
do not report on it, 9% mention both, and 5% refer to left-
handedness only. Nevertheless, the effects of handedness
have been well established in the motor areas (Zapata et al.,
2020) and, to a lesser degree, in the visual areas (Willems
et al., 2010). Hence, the results derived from these studies
should be applied carefully, and the linked variability must
be considered.

For motor-related tasks, participants were instructed to
use their dominant, nondominant, or both hands depending
on the paradigm. These conditions yield a hand-dependent
heterogeneity. Figure 6 illustrates this issue for four of the
reviewed studies on electrode FC1 during an MI task. For
this electrode, data were only available for right-handed
subjects. The individuals’ Cohen’s d effect sizes were

Bo

clearly greater when using the dominant hand compared to
the left hand. As a consequence, the right-weighted mean
effect size differed from the left one. However, for most
electrodes, data were insufficient to generalize the observa-
tions. To harmonize the results, the weighted mean effect
size for both hands were only reported in Tables 2 and 3.

Moreover, the data acquisition was usually executed
during a single session. Inter-session variability has been
highlighted for time-varying brain functions (resting state
networks) (Meyer et al., 2013). Considering the dynamic
aspect of task learning involved in most BCI paradigms, the
average cortical locations probably vary for a single subject
across time and across sessions (Chervyakov et al., 2016).
The procedure of averaging over trials is arguably subopti-
mal but is still the most commonly used. Intra-subject vari-
ability, as a result, is mostly unaccounted for in this review.

This variability issue is also reflected in the Cohen’s d
effect size. For one study (Ramirez-Quintana et al., 2020),
the corresponding author provided the raw data from eight
subjects who performed 34 trials each. Thus, it was possible
to calculate the effect size by averaging all trials regard-
less of which subject performed the action (N=272). To
compare, the ERP was computed for each subject, and the
resulting values were used to determine the effect size across
subjects (N=28). The obtained subject-dependent effect
size (5.18 +1.1) proved to be much larger than the trial-
dependent effect size (1.39+0.05), in which the means were
obtained from electrode O1 and displayed with their stand-
ard error. This highlights the greater intra-subject variability
compared to the inter-subject one.

When averaging over all trials for a specific subject, the
signal of interest stands out while the noise decreases. Theo-
retically, a high number of trials would completely cancel
the noise. A researcher might favor a type of calculation

dy
N =32 —_—T < Left
1.37[0.57 ; 2.15] )
> Right
Motor
N=16
078 [-0.31;1.87] @ Dominant
Multimodal
N =14 t Non Dominant
1.84[1.06;294] 4, 21 4.45] Mixed Dominant
Partially and
N=8 T )
' Non Dominant
3.26 [1.87 ; 4.65)
Weighted Mean
Effect Size Right B ———
1.87[1.03 ; 2.85]
Weighted Mean
Effect Size Left
1.27[0.33;2.37)
Weighted Mean |
Effect Size Both : . ]
: 179[0.86 ; 2.85]
0 1 2 3 4 5 (Cohen's d)

Fig.6 Cohen's d effect size per study for MI task on electrode FC1 and weighted mean effect size according to the subject handedness, hand

used, and sample size N (number of subjects)
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depending on the application the study is aimed at. To char-
acterize an ERP, one might prefer to average per subject
to remove intra-subject variability and to get a noise-free
signal. When designing a new study, the weighted mean
effect size could be used to predict the minimum number
of subjects to include in the experiment. However, it should
be noted that, because nearly all reviewed studies compute
subject-dependent averages, the results shown in the tables
are only valid for similar computations.

Conclusion

The current review summarizes the subsets of EEG elec-
trodes corresponding to the most significant cortical source
activations. Sample sizes were estimated depending on the
effect sizes values to obtain a statistical power of 80%. For
every electrode, the weighted mean Cohen’s d provides
the magnitude of the corresponding effect size. It should
be noted that each element in a subset must have a large
Cohen’s d with a high lower bound confidence interval, con-
firming its significance.

For each of the four commonly used BCI paradigms—MI,
ME, SSVEP, and P300—the core channel selection (CCS)
was extracted from the defined groups. These CCS allow
implementing semiparametric algorithms that could adapt to
various modalities of these paradigms. A meta-analysis with
a greater number of studies would lead to more specifically
adapted and extended subsets. Ideally, this meta-analysis
should be followed by a sufficiently powered experiment
that would assess the validity of the different CCS. It could
also be interesting to compare the CCS to other data-driven
channel selection methods.

A relevant definition of subsets would replace the non-
parametric channel selection procedure while reducing the
computational complexity and optimizing the BCI accuracy.
This knowledge-based channel selection framework would
have the advantages of practicality and rapidity, allowing for
an easy implementation.
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