
Vol.:(0123456789)1 3

Behavior Research Methods (2023) 55:2353–2366 
https://doi.org/10.3758/s13428-022-01887-4

Construction and validation of the Dalian emotional 
movement open‑source set (DEMOS)

Mingming Zhang1,2 · Lu Yu1,2 · Keye Zhang3 · Bixuan Du1,2 · Bin Zhan4,5 · Shuxin Jia1,2 · Shaohua Chen1,2 · 
Fengxu Han1,2 · Yiwen Li1,2 · Shuaicheng Liu1,2 · Xi Yi1,2 · Shenglan Liu6,7 · Wenbo Luo1,2

Accepted: 24 May 2022 / Published online: 5 August 2022 
© The Psychonomic Society, Inc. 2022

Abstract
Human body movements are important for emotion recognition and social communication and have received extensive atten-
tion from researchers. In this field, emotional biological motion stimuli, as depicted by point-light displays, are widely used. 
However, the number of stimuli in the existing material library is small, and there is a lack of standardized indicators, which 
subsequently limits experimental design and conduction. Therefore, based on our prior kinematic dataset, we constructed 
the Dalian Emotional Movement Open-source Set (DEMOS) using computational modeling. The DEMOS has three views 
(i.e., frontal 0°, left 45°, and left 90°) and in total comprises 2664 high-quality videos of emotional biological motion, each 
displaying happiness, sadness, anger, fear, disgust, and neutral. All stimuli were validated in terms of recognition accu-
racy, emotional intensity, and subjective movement. The objective movement for each expression was also calculated. The 
DEMOS can be downloaded for free from https:// osf. io/ 83fst/. To our knowledge, this is the largest multi-view emotional 
biological motion set based on the whole body. The DEMOS can be applied in many fields, including affective computing, 
social cognition, and psychiatry.
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Introduction

Body movements convey a large amount of emotional infor-
mation that is essential for social communication. Johansson 
(1973) first used 10–12 bright spots representing the main 
joints and showed that such point-light displays (PLDs) can 
present human walking, running, and dancing; such motion 
patterns are referred to as biological motion. This technique 
neatly separates body movements from body shape. Emo-
tional biological motion stimuli, as depicted by PLDs, have 
been widely used in psychiatry (e.g., Jimenez et al., 2018; 
Nackaerts et al., 2012; Okruszek, 2018), developmental 
psychology (e.g., Ogren et al., 2019; Pavlova et al., 2001; 
Ross et al., 2012), psychophysics (e.g., Ye et al., 2019), and 
social neuroscience (e.g., Atkinson et al., 2012; Mazzoni 
et al., 2017; Pavlova, 2012).

Various early studies created sets in this field by plac-
ing reflective tapes on an actor dressed in black clothes and 
using a camera to record their emotional performance. For 
example, Walk and Homan (1984) recruited two female 
performers who were required to dance or walk. Twelve 
white cotton balls were attached to their shoulders, elbows, 
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wrists, hips, knees, and ankles. All performances were 
recorded using a TV camera. Six emotional videos, each 
lasting 15 or 20 seconds and representing happiness, fear, 
surprise, disgust, anger, or sadness, were finally created, but 
this set did not place a light spot on the head. Dittrich et al. 
(1996) employed two dancers (one female and one male) 
and attached 13 light points to their main joint. Dancers 
were instructed to perform fear, anger, grief, joy, surprise, 
and disgust. Twenty-four emotional dance expressions with 
a duration of five seconds were recorded, comprising four 
types (upright versus inverted and full-light versus point-
light). These studies originally explored individuals’ emo-
tion recognition of biological motion, but the number of 
PLDs they used was too small for the investigators to make 
an adequate selection.

Atkinson et al. (2004) may have constructed the most 
popular material set in this field. Ten actors with masked 
faces and bodies were recruited to express their emotions 
(anger, disgust, fear, happiness, and sadness) and neutral 
states. Two sets (i.e., PLD and full-light display) of 150 
emotional videos were made from the same digital material 
and contained static images corresponding to the peak of 
each video. The authors examined recognition accuracy for 
each condition and found that all emotions were correctly 
classified above the probability level (20%), except for dis-
gust. They also reported that exaggerated body movements 
produced more accurate classification and higher emotional 
intensity ratings. Atkinson and his colleagues then optimized 
this material system (Atkinson et al., 2007; Atkinson et al., 
2012). This set of dynamic and static biological motion has 
been widely used in neuroimaging research (e.g., Mazzoni 
et al., 2017; Peelen et al., 2010) and clinical populations 
(e.g., Philip et al., 2010; Strauss et al., 2015).

With the development of technology, motion capture sys-
tems have been widely used to collect human kinematic data 
(e.g., the position and rotation data of anatomical nodes) 
that can be processed by certain software (e.g., MATLAB) 
to produce PLDs. For example, Pollick et al. (2001) inves-
tigated the visual perception of PLDs of arm movements. 
Two actors were instructed to read emotional scenes and 
then to perform drinking and knocking movements to con-
vey ten emotions, including afraid, angry, excited, happy, 
neutral, relaxed, sad, strong, tired, and weak. Dynamic 
three-dimensional data for the head, right shoulder, elbow, 
wrist, and first and fourth metacarpal joints were recorded. 
One hundred and twenty arm movements were performed. 
Pollick et al. (2001) also found that these emotional arm 
movements could be represented by a two-dimensional cir-
cumplex structure of activation and pleasure. However, this 
set did not include data based on the whole body. Ma et al. 
(2006) used a high-speed optical motion capture camera 
system and created a library of 4080 movements performed 
by 30 nonprofessional actors. This library incorporated 240 

walking recordings, 3600 arm movements (knocking, lift-
ing, and throwing), and 240 sequences of arm movements 
separated by walking, including happiness, neutral, and 
sadness. They also built three types of models in 3D Stu-
dio MAX, based on the dynamic data of 15 main joints in 
the body. Unfortunately, these two relatively large material 
sets did not publicly provide rating indicators (e.g., recogni-
tion accuracy) that are essential to experimental design and 
operation. The absence of indicators is also not conducive 
to cross-cultural study.

Recently, some researchers have created similar material 
sets when studying the relationship between emotional bio-
logical movements and other factors. For example, Alaerts 
et al. (2011) recruited one male and one female actor. Each 
actor was required to perform five actions (walking, jump-
ing, kicking, drinking, wiping) and four emotions (neutral, 
happiness, sadness, anger), and 40 motion scenarios were 
created. During the production of PLDs, each video had 
three views (front, side, intermediate), resulting in 120 
PLDs. They also found that the recognition accuracy of 
female participants was higher than that of male partici-
pants, whereas the response time of male participants was 
longer, revealing a female advantage in the recognition of 
emotional biological motion. Halovic and Kroos (2018b) 
created 423 PLDs with 17 point-lights, containing five 
emotional states (happiness, sadness, anger, fear, neutral), 
and observed the influence of the actor’s gender on partici-
pants’ emotion categorization. Ross et al. (2012) created 
28 PLDs with 15 point-lights and four emotions (happy, 
sadness, fear, anger), and investigated the developmental 
changes in emotional biological motion recognition. They 
reported that the critical developmental period of emo-
tion recognition is 8.5 years of age. Note that although 
these researchers created some materials in their studies, 
these sets were not public, and access information was not 
provided.

In our prior study, we also created a public emotional kin-
ematic dataset (Zhang et al., 2020). Specifically, a portable 
wireless motion capture system with 17 wearable sensors 
was used, and 22 semi-professional actors performed move-
ments reflecting happiness, sadness, anger, fear, disgust, sur-
prise, and neutral based on standardized guidance and pre-
ferred daily events. We collected a total of 1402 recordings 
at 125 Hz that consisted of the position and rotation data of 
72 anatomical nodes. Recently, Ghaleb et al. (2021) used 
our dataset to test the proposed model framework (i.e., graph 
convolutional networks and spatial attention mechanisms) 
and reported accurate performance. However, this dataset 
has not been visualized and cannot be used as psychological 
experiment material.

Therefore, the present study aimed to produce a novel, 
comprehensive stimulus set, including neutral and emo-
tional PLDs, based on three views (i.e., frontal 0°, left 
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45°, and left 90°). There are several advantages of the 
Dalian Emotional Movement Open-source Set (DEMOS): 
(1) It contains 2664 videos based on the whole body, 
with identical proportions of female and male models, 
whereas most of the previous sets mentioned above com-
prise a smaller number. The relatively large amount of 
emotional biological motion material in the DEMOS will 
greatly increase the selectivity for researchers to con-
duct experiments. (2) There are three views of the whole 
body. In daily life, people do not always communicate 
face-to-face and sometimes need to identify each other’s 
emotions from a certain perspective. Previous studies 
have also highlighted the important influence of views 
on the recognition of human faces (Almeida et al., 2020; 
Foster et al., 2022; Goeleven et al., 2008; Thoma et al., 
2013) and bodies (Foster et al., 2022; Gross et al., 2012; 
He et al., 2020; Moors et al., 2015; Pollux et al., 2019; 
Thoma et al., 2013). Although Alaerts et al. (2011) con-
sidered this factor of view, they did not collect kinematic 
data of the head—a key point in the perception of the 
human body (Arizpe et al., 2017; Brandman & Yovel, 
2010; Minnebusch et al., 2009; Yovel et al., 2010) and 
emotional body movement (Witkower & Tracy, 2019). (3) 
The DEMOS has four mainstream indicators (i.e., recogni-
tion accuracy, emotional intensity, subjective movement, 
and objective movement) in the field of emotional biologi-
cal motion, which is beneficial for researchers to directly 
consider and control in their studies. Some prior sets did 
not publicly provide these indicators or just reported recog-
nition accuracy. Indeed, these indicators could be consid-
ered as extraneous variables that should be controlled. For 
example, recent research has maintained similar subjective 
movements across emotions (Mazzoni et al., 2017).

In summary, we describe the construction of the 
DEMOS and provide validation data for use. We also 
investigate the relationships between these indicators.

Methods

Construction stage

Raw kinematic data for creating biological motion videos 
were sourced from our recent work (Zhang et al., 2020). In 
the present study, we only selected happy, sad, angry, fearful, 
disgusted, and neutral recordings, and did not include sur-
prised items because of their ambiguous emotional valence 
(Reisenzein et al., 2019). Therefore, 1190 recordings served 
as raw kinematic data.

All operations in the construction stage (see Fig. 1) were 
conducted by three senior psychology graduate students with 
extensive experience in the field of emotion. Their opera-
tions followed consistent standardized guidelines. First, the 
original data in RAW format were converted to FBX for-
mat, based on the synchronization of MotionBuilder (https:// 
www. autod esk. com/ produ cts/ motio nbuil der) and Axis Neu-
ron (https:// www. neuro nmocap. com/ conte nt/ axis- neuron) 
software. Second, in-house Unity (https:// unity. com) pro-
grams were used to build the light-point model with three 
views (i.e., frontal 0°, left 45°, and left 90°), 13 key white 
nodes (i.e., head, both shoulders, sides-upper arms, hips, 
knees, feet, and hands), and a black background for each 
recording, all of which were then exported to MP4 format. 
Finally, we used Adobe Premiere (https:// www. adobe. com/ 
produ cts/ premi ere. html) to cut the video to two seconds. The 
length of these videos (i.e., two seconds) was in line with 
material used in some prior studies (Atkinson et al., 2012; 
Bellot et al., 2021; Mazzoni et al., 2017). The two-second 
clip should contain at least the onset and peak of the cor-
responding emotion in the original performance; otherwise, 
the video would be indicated as a “bad video” and then dis-
cussed by the three graduate students. If two of them voted it 
as not a bad video, this clip would be retained; otherwise, it 
would be excluded. Clips with distinctly low-quality signals 

Fig. 1  The construction flow of the DEMOS

https://www.autodesk.com/products/motionbuilder
https://www.autodesk.com/products/motionbuilder
https://www.neuronmocap.com/content/axis-neuron
https://unity.com
https://www.adobe.com/products/premiere.html
https://www.adobe.com/products/premiere.html
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were also excluded. Based on previous studies (e.g., Kret 
et al., 2011) and the features of software commonly used in 
experimental psychology (e.g., E-Prime and Psychtoolbox), 
the parameters of video materials were set as MP4 format, 
720 × 540 pixels, 25 frames per second (fps), and approxi-
mately 100 KB file size. The DEMOS includes 2664 valid 
videos (see Table 1).

Validation stage

Participants

As paid volunteers, 47 college students from Liaoning Nor-
mal University participated in the present validation stage 
after providing informed written consent. All participants 
were right-handed with normal or corrected-to-normal 
vision. They did not self-report any severe physical diseases 
or mental disorders. The study was approved by the Human 
Research Institutional Review Board at Liaoning Normal 
University, following the tenets of the Declaration of Hel-
sinki (1991). Forty-two participants were included in the 
data analysis (26 female; aged 18–25 years old, M ± SD, 
21.62 ± 2.00) because five participants dropped out.

Procedure

The validation procedure was conducted using E-prime 2.0 
(Psychology Software Tools, Inc.) with a 6 (emotion: neu-
tral, happiness, sadness, anger, fear, disgust) × 3 (view: 0°, 

45°, 90°) within-subjects design. Participants were required 
to complete three sessions. Each session consisted of only 
one view (i.e., 888 0°, 45°, or 90° videos) and took 1.5–2 
hours, at least 24 hours between each session to prevent 
fatigue. The order of three view sessions was counterbal-
anced across participants. In each session, 888 videos were 
randomly and equally assigned to eight blocks. Participants 
took a full break between each block. The participants were 
seated in a soundproof room with their eyes approximately 
70 cm from a 19-inch screen of 1440 × 900 pixels. The 
screen had a 60 Hz refresh rate. All stimuli were displayed 
in the center of the screen.

For each trial (see Fig. 2), a 300–600 ms fixation was 
presented first, and the two-second emotional video then 
appeared. After that, participants were required to complete 
three tasks using the mouse with their right index finger: 
(1) six-alternative forced-choice task (neutral, happiness, 
sadness, anger, fear, disgust), (2) emotional intensity rating 
with a 9-point scale (1 = very low intensity, 9 = very high 
intensity), and (3) subjective movement rating (1 = very low 
movement, 9 = very high movement), referring to the per-
ception of the amount of movement in the clips (Mazzoni 
et al., 2017; Vaessen et al., 2019). The inter-trial interval 
lasted 500 ms to 1000 ms. The order of six options in the 
forced-choice task and the order of the three tasks were 
counterbalanced across participants.

Before the formal experiment, a practice session was per-
formed and comprised six trials to ensure that the partici-
pants had a good understanding of the task.

Table 1  The number of videos under all conditions

Emotions Total

Happiness Sadness Anger Fear Neutral Disgust

Views 0° 156 147 151 169 113 152 888
45° 156 147 151 169 113 152 888
90° 156 147 151 169 113 152 888

   Total 468 441 453 507 339 456 2664

Fig. 2  An example trial sequence in the validation stage. ITI, inter-trial interval
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The low-level action feature (i.e., objective movement) 
may affect the neural difference between movement styles 
and has been considered in some brain neuroimaging stud-
ies (e.g., Cross et al., 2012; Pichon et al., 2008, 2009; Ross 
et al., 2019; Ross et al., 2020; Schippers et al., 2010; Wil-
liams et al., 2020). We used a custom MATLAB code from 
Cross et al. (2012) and Williams et al. (2020) to quantify the 
objective movement of the videos in DEMOS. Specifically, 
a difference image was calculated from two consecutive 
frames in each video. If the luminance change in any pixel 
exceeded ten units, it was labeled a “moving pixel.” We aver-
aged the number of moving pixels per frame and video to 
represent the value of objective movement. The theoretical 
scale of objective movement in a video should range from 0 
to 19,051,200 [720 pixels × 540 pixels × (2 s × 25 fps − 1)]. 
The minimum value indicates that there is no change in any 
pixels except the pixels of the last frame, and the maximum 
value indicates that all pixels have a change except the pixels 
of the last frame.

Data analyses

Multivariate analysis of variance (ANOVA) with a 6 (emo-
tion type: neutral, happiness, sadness, anger, fear, disgust) 
× 3 (view: 0°, 45°, 90°) design was performed to test the 
recognition accuracy, emotional intensity, subjective move-
ment, and objective movement. Pairwise or multiple com-
parisons were performed using Bonferroni correction. The 
one-sample t test against the chance level (i.e., 0.167 in the 
present experiment) in recognition accuracy for each condi-
tion was used to examine reliability.

To investigate the misclassification of the participants, 
for each stimulus emotion in each view condition, similar 
univariate ANOVA with five incorrect choices was con-
ducted. Multiple comparisons were performed using Bon-
ferroni correction. The one-sample t test against 0.167 in 

misclassification rate for each condition was used to examine 
whether the participants selected the confused emotion at a 
probability far higher than chance.

Pearson’s correlations were computed to explore the rela-
tionship among recognition accuracy, emotional intensity, 
and subjective movement under all conditions. To test the 
reliability of subjective movement rating, Pearson’s correla-
tions were also used to investigate the relationship between 
subjective movement and objective movement under all 
conditions.

All statistical analyses were performed using SPSS 26.0 
for Windows.

Results

Recognition accuracy

Mean recognition accuracies in the DEMOS were between 
0.414 and 0.776 (see Table S1). The main effects of view 
[F(2, 2646) = 3.97, p = 0.019, �2

p
 = 0.003] and emotion type 

[F(5, 2646) = 84.49, p < 0.001, �2
p
 = 0.138] were both signifi-

cant (see Fig. 3). Specifically, recognition accuracy of the 
90° view (M ± SD, 0.591 ± 0.272) was lower than those of 
the 45° view (0.622 ± 0.266, p = 0.027) and the 0° view 
(0.620 ± 0.269, p = 0.043), but there was no significant dif-
ference in recognition accuracy between the latter two view 
conditions (p > 0.05). Neutral stimuli (0.755 ± 0.139) were 
the easiest to identify, followed by happy (0.672 ± 0.305), 
angry (0.670 ± 0.271), fearful (0.637 ± 0.247), disgusted 
(0.506 ± 0.252), and sad ones (0.455 ± 0.232). There were 
no significant differences in recognition accuracy among 
happiness, anger, and fear (ps ≥ 0.451); the other multiple 
comparisons were significant (ps ≤ 0.035). The interaction 
effect between view and emotion type was not statistically 
significant [F(10, 2646) = 1.37, p = 0.187, �2

p
 = 0.005]. The 

Fig. 3  Violin plot of the distribution of recognition accuracy under all conditions. Dashed lines show the upper and lower quartiles. Solid lines 
depict median values. Dotted lines indicate the chance level (0.167)
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one-sample tests demonstrated that participants were able to 
reliably recognize all emotions above the chance level under 
all view conditions (ts ≥ 13.91, ps ≤ 0.001).

Misclassification performance

The results of ANOVAs showed that all effects of incorrect 
choice were significant [Fs ≥ 3.93, ps ≤ 0.004, all �2

p
 ≥ 0.017]. 

Specifically, in all view conditions, happy expressions 
tended to be most easily misclassified as anger (ps < 0.001; 
see Fig. 4), sad expressions were most easily confused with 
neutral (ps < 0.001), and neutral expressions were also 
mostly confused with sadness (ps < 0.001). For angry 
(ps ≥ 0.060), fearful (ps ≥ 0.058), and disgusted (ps ≥ 0.068) 
stimuli, there were no most easily misclassified responses 
regardless of the view condition.

The results of one-sample t tests showed that only the 
probabilities of misclassifying sad expressions as neutral 
were significantly higher than the chance level regardless of 
the view condition (ts ≥ 6.13, ps < 0.001), suggesting that 
sadness was quite highly confused with neutral.

Emotional intensity

The main effects of view [F(2, 2646) = 15.38, p < 0.001, 
�
2

p
 = 0.011] and emotion type [F(5, 2646) = 355.10, 

p < 0.001, �2
p
 = 0.402] were both significant (see Fig. 5). Spe-

cifically, the emotional intensity of the 0° view (M ± SD, 
5.81 ± 0.92) was rated higher than that of the 45° (5.69 ± 
0.98, p = 0.001) and 90° (5.62 ± 0.94, p < 0.001) views; the 
emotional intensity of the latter two conditions did not differ 
significantly (p = 0.169). Happy stimuli (6.54 ± 0.98) were 

Fig. 4  Mean probability of misclassification under all conditions. Red squares represent the probabilities significantly higher than the chance 
level. Diagonal entries denote recognition accuracies

Fig. 5  Violin plot of the distribution of emotional intensity under all conditions. Dashed lines indicate the upper and lower quartiles. Solid lines 
represent median values
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rated with the highest intensity, followed by angry (6.00 ± 
0.81), fearful (5.98 ± 0.72), disgusted (5.59 ± 0.65), sad (5.19 
± 0.70), and neutral ones (4.58 ± 0.27); all multiple compari-
sons were significant (ps ≤ 0.001) besides the difference 
between angry and fearful conditions (p > 0.05). The interac-
tion effect between view and emotion type was not statisti-
cally significant [F(10, 2646) = 1.41, p = 0.172, �2

p
 = 0.005].

Subjective movement

The main effect of emotion type was significant [F(5, 
2646) = 527.45, p < 0.001, �2

p
 = 0.499] (see Fig. 6). Specifi-

cally, happy stimuli (M ± SD, 6.11 ± 1.10) were rated with 
the highest movement, followed by angry (5.36 ± 0.91), 
fearful (4.98 ± 0.81), disgusted (4.41 ± 0.66), sad (3.88 ± 
0.71), and neutral items (3.74 ± 0.55); all multiple compari-
sons were significant (ps ≤ 0.001) besides the difference in 
subjective movement between sad and neutral conditions 

(p = 0.333). Neither the main effect of view [F(2, 
2646) = 1.02, p = 0.361, �2

p
 = 0.001] nor the interaction effect 

between view and emotion type [F(10, 2646) = 0.46, 
p = 0.919, �2

p
 = 0.002] reached statistical significance.

Objective movement

The main effect of emotion type was significant [F(5, 
2646) = 315.95, p < 0.001, �2

p
 = 0.374] (see Fig. 7). Specifi-

cally, the objective movement of happy stimuli (M ± SD, 
737.76 ± 143.94) were the highest, followed by angry 
(630.73 ± 133.76), fearful (621.80 ± 119.08), disgusted 
(520.13 ± 103.59), sad (463.51 ± 142.87), and neutral ones 
(453.20 ± 144.64); all multiple comparisons were significant 
(ps ≤ 0.001) besides the difference between angry and fearful 
conditions (p > 0.05) and the difference between sad and 
neutral conditions (p > 0.05). The main effect of view was 
also significant [F(2, 2646) = 27.48, p < 0.001, �2

p
 = 0.020]. 

Fig. 6  Violin plot of the distribution of subjective movement under all conditions. Dashed lines indicate the upper and lower quartiles. Solid 
lines represent median values

Fig. 7  Violin plot of the distribution of objective movement under all conditions. Dashed lines indicate the upper and lower quartiles. Solid lines 
represent median values
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Specifically, the objective movement of the 90° view (551.95 
± 154.94) was significantly lower than that of 0° view 
(592.69 ± 170.07; p < 0.001) and 45° view (591.25 ± 
167.00; p < 0.001). There was no significant difference in 
objective movement between 0° view and 45° view 
(p > 0.05). The interaction effect between view and emotion 
type did not reach statistical significance [F(10, 2646) = 0.56, 
p = 0.846, �2

p
 = 0.002].

Correlation analyses

We first conducted correlation analyses based on par-
ticipants’ performance, and significant positive corre-
lations were found among recognition accuracy, emo-
tional intensity, and subjective movement for happy 
(rs ≥ 0.683, ps ≤ 0.001), angry (rs ≥ 0.414, ps ≤ 0.001), 
fearful (rs ≥ 0.241, ps ≤ 0.002), and disgusted (rs ≥ 0.245, 

ps ≤ 0.002) stimuli, regardless of views (see Fig. 8). For 
the sad videos under all views, recognition accuracy was 
significantly positively correlated with emotional inten-
sity (rs ≥ 0.486, ps ≤ 0.001), emotional intensity was 
significantly positively correlated with subjective move-
ment (rs ≥ 0.704, ps ≤ 0.001), but recognition accuracy 
did not significantly correlate with subjective movement 
(rs ≤ 0.138, ps ≥ 0.095). For the neutral videos under all 
views, recognition accuracy was significantly negatively cor-
related with emotional intensity (rs ≤ −0.267, ps ≤ 0.004), 
emotional intensity was significantly positively correlated 
with subjective movement (rs ≥ 0.218, ps ≤ 0.021), but rec-
ognition accuracy was not significantly correlated with sub-
jective movement (rs ≤ 0.123, ps ≥ 0.193).

The correlations between subjective movement and 
objective movement under all conditions were significantly 
positive (rs ≥ 0.603, ps ≤ 0.001; see Table 2)

Fig. 8  Correlation matrix representing the relationships among recognition accuracy, emotional intensity, and subjective movement under all 
conditions. Color scale indicates the value of correlation. ns = not significant, *p < 0.05, **p < 0.01, ***p < 0.001

Table 2  Correlations between subjective movement and objective movement under all conditions

***p < 0.001

Emotions

Happiness Sadness Anger Fear Neutral Disgust

Views 0° 0.754*** 0.755*** 0.743*** 0.830*** 0.799*** 0.603***

45° 0.787*** 0.767*** 0.741*** 0.813*** 0.801*** 0.663***

90° 0.784*** 0.793*** 0.715*** 0.813*** 0.889*** 0.681***
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General discussion

In summary, we developed and validated a new stimulus set 
of emotional biological motion comprising many high-qual-
ity videos of PLDs (i.e., DEMOS), each displaying happi-
ness, sadness, anger, fear, disgust, and neutral. The DEMOS 
also has three views and four indicators.

Recognition accuracy is undoubtedly the most impor-
tant indicator for the reliability of an emotional material 
set. The present validation study showed that recognition 
accuracy for each emotion and each view in the DEMOS 
were relatively high and significantly higher than the chance 
level (0.167). At first glance, mean recognition accuracies 
in the DEMOS were between 0.414 and 0.776, that seemed 
to be lower than that of PLDs in Atkinson et al. (2004) 
(0.6306–0.8417), Walk and Homan (1984) (71–96%), and 
Ross et al. (2012) (overall 81.1% in adults), but comparable 
to or higher than Pollux et al. (2016) (40–90% in young 
adults), Alaerts et al. (2011) (44.2–58.6%), and Halovic and 
Kroos (2018b) (9–26%). It should also be noted that the 
number of options provided for participants often depends 
on the kind of emotions in their studies, resulting in differ-
ent chance levels. For example, we used a six-alternative 
forced-choice task, Atkinson et al. (2004) used five emo-
tions (i.e., anger, disgust, fear, happiness, sadness), and Ross 
et al. (2012) used four emotions (i.e., happiness, sadness, 
scare, anger). In the DEMOS, the distributions of recog-
nition accuracy under all conditions in Fig. 3 suggest that 
more than 75% of videos in the DEMOS can be accurately 
distinguished, higher than the chance level. Moreover, the 
loss of hand form information in PLDs should also be dis-
cussed. Previous work has found that the hands are used 
more in the recognition of some emotions compared to oth-
ers, particularly when the hands are used for shields in fear, 
fists in anger, or holding the nose in disgust (Fridin et al., 
2009; Ross & Flack, 2020). PLDs do not have the hand form 
information that contributes to emotion recognition (Johans-
son, 1973). Indeed, when looking at the data in Atkinson 
et al. (2004), the recognition rate significantly drops between 
point-light and full-light displays only for those three emo-
tions. The lost hand form information should be considered. 
Therefore, the overall recognition accuracy of the DEMOS 
is comparable to that of other validation studies, and this 
set provides researchers with many emotional whole-body-
based PLDs with a high recognition rate.

We also found that in addition to neutral PLDs, happy 
PLDs were recognized best. Regarding the difference in rec-
ognition accuracy among basic emotions, prior results were 
inconclusive. For example, Ross et al. (2012) did not observe 
significant differences in recognition scores for happiness, 
sadness, fear, or anger in either children or adults. Alaerts 
et al. (2011) found that angry PLDs were the easiest to rec-
ognize. However, the superiority of identifying happy PLDs 

in the present study is consistent with most previous sets, 
regardless of the number of forced-choice options (Atkinson 
et al., 2004; Halovic & Kroos, 2018a, 2018b; Lee & Kim, 
2017; Pollux et al., 2016; Walk & Homan, 1984). Happi-
ness had the highest subjective and objective movements 
and emotional intensity. Higher subjective movement rat-
ings indicate that participants may experience higher speed, 
emotional intensity, and exaggeration when watching happy 
PLDs. This is partially supported by our correlation results, 
in which significant positive correlations existed among 
recognition accuracy, emotional intensity, and subjective 
movement for happiness. Previous studies have shown that 
subjective speed or body movement affects the intensity rat-
ing and recognition accuracy for emotional expressions by 
participants (Atkinson et al., 2004; Wallbott., 1998).

From the perspective of affective computing, research-
ers tend to quantify body movements based on form, kin-
ematic (e.g., velocity), and dynamic (e.g., force) informa-
tion (de Gelder & Poyo Solanas, 2021; Witkower & Tracy, 
2019). This field has found that velocity, acceleration, and 
jerkiness strongly influence the perception of emotional arm 
movements (Paterson, 2001; Pollick et al., 2001; Sawada 
et al., 2003) and whole-body movements (Halovic & Kroos, 
2018a; Poyo Solanas et al., 2020a; Poyo Solanas et al., 
2020b; Roether et al., 2009; Vaessen et al., 2019). Although 
we only calculated a general value (i.e., objective movement) 
based on the luminance changes across frames, this index 
can denote the amount of motion within PLDs and compre-
hensively represent these above quantitative features (Cross 
et al., 2012; Pichon et al., 2008, 2009; Ross et al., 2019; 
Ross et al., 2020; Schippers et al., 2010; Williams et al., 
2020). The current results also showed significant positive 
correlation between subjective movement and emotional 
intensity for happy PLDs. The brain basis of behavioral and 
computational features for emotional body movements has 
recently been explored (Poyo Solanas et al., 2020a; Vaessen 
et al., 2019). Therefore, the typical subjective and objective 
features discussed above might contribute to the recognition 
superiority for happy PLDs in the present study.

We also found that happy PLDs tended to be misclassi-
fied as anger, but not vice versa. Most previous PLD sets did 
not report the misclassification performance (e.g., Alaerts 
et al., 2011; Halovic & Kroos, 2018b; Pollux et al., 2016; 
Ross et al., 2012), so it was hard to compare our results 
with theirs. However, this result is partially consonant with 
those of Dittrich et al. (1996) and Atkinson et al. (2004), 
who found that participants often mixed up angry and happy 
dynamic PLDs in both directions. Angry and happy body 
expressions share similar features in the body coding system, 
such as arms out and fast and energetic movement (Wit-
kower & Tracy, 2019). The current results also showed that 
happy and angry PLDs had more subjective and objective 
movements than other basic emotions, which supports the 
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above explanation. Moreover, both angry and happy perfor-
mances in the DEMOS frequently included fists shaking and 
arms forward or upward.

Sad expressions had the lowest recognition accuracy in 
the DEMOS. This finding was inconsistent with some previ-
ous PLD sets. Sad PLDs had the highest recognition accu-
racy in both Atkinson et al. (2004) and Ross et al. (2012) 
(in adults), had the second-highest recognition accuracy in 
young adults in Pollux et al. (2016), and were in the middle 
of the recognition accuracy rank in other studies (Alaerts 
et al., 2011; Halovic & Kroos, 2018b). The result of con-
fusion responses showed that the participants misclassified 
sadness as neutral and the reverse above chance in all view 
conditions. This may be due to less movement conveyed by 
sad and neutral PLDs. As shown in Figs. 6 and 7, sadness 
and neutral had less subjective and objective movements 
than other emotions, and there were no significant move-
ment differences between these two emotions, resulting in 
less available information to distinguish different emotions. 
Therefore, we observed relatively low recognition accuracy 
for sad PLDs.

We found that PLDs with the 90° view had the lowest rec-
ognition accuracy in general. Body orientation is an impor-
tant social interaction cue (Foster et al., 2022; Moors et al., 
2015). For instance, when someone faces us, they may want 
to communicate with us; otherwise, they may interact with 
other people. On the one hand, spatial overlap might con-
tribute to the recognition inferiority for the PLDs with 90° 
view that we observed. Human body movements are often 
not three-dimensionally symmetrical in daily life. There is 
some spatial overlap in body movements perceived from dif-
ferent views, especially for the hands, arms, and feet, that 
affects the speculation and recognition of the performer's 
action intentions and emotions (Poyo Solanas et al., 2020a; 
Poyo Solanas et al., 2020b). Ghaleb et al. (2021) recently 
analyzed the raw kinematic data of DEMOS and revealed the 
greatest significance of hands and arms for emotion recogni-
tion. Some studies have indirectly indicated that the spatial 
overlap of body movements in the side 90° view is the high-
est (Dael et al., 2012a).

On the other hand, a disconnect between the observer 
and the actor in different view conditions could be consid-
ered. When the actor is directed at the camera, it is easier to 
simulate the emotion portrayed, as observers are an active 
participant in it (Ross & Atkinson, 2020; Wood et al., 2016). 
There might be a disconnect as well between directed emo-
tions and side view compared to other views. For example, 
if the actor is angry, when they do not face the observer and 
the observer is hard to do anything to instigate the anger, 
it is difficult to recognize. Note that Alaerts et al. (2011) 
did not find significant differences in recognition accuracy 
for emotional PLDs among the same three views, presum-
ably because their PLDs did not include the head, which is 

an important factor in the recognition of emotional body 
movement. The head plays a key role in holistic body pro-
cessing (Arizpe et al., 2017; Brandman & Yovel, 2010; Min-
nebusch et al., 2009; Yovel et al., 2010) and emotional body 
coding (Witkower & Tracy, 2019). Head orientation also 
serves as a significant cue in the judgment of emotion (Dael 
et al., 2012b; Ekman & Friesen, 1967; Van Cappellen & 
Edwards, 2021). Taken together, these results suggest that 
future research should extract the dynamic spatial overlap 
of PLDs in the DEMOS and collect the participants’ feeling 
of disconnect to clarify our inference.

There was more similarity between fear and anger than 
between anger and happiness in terms of objective and sub-
jective movement. This result seems to be inconsistent with 
prior literature based on the analysis of kinematic data. For 
instance, happy and angry point-light walkers display both 
increased arm swing and faster walking, but fearful walk-
ers show fast short strides and less arm movement (Halovic 
& Kroos, 2018a). A possible explanation may be that the 
scripts used in angry and fearful PLDs have more similar 
emotional intensity. All performances in the DEMOS are 
based on standardized daily events (Zhang et al., 2020). We 
might provide the actors scripts in which anger and fear have 
similar emotional intensity during the performance phase, 
resulting in similar body movements as well. Indeed, the 
present result also did not show significant difference in 
emotional intensity ratings between angry and fearful PLDs 
(mean 6.00 versus 5.98), but other multiple companions 
reached statistical significance. Cross-cultural research on 
the emotion recognition of biological motion is also worth 
exploring in the future.

Regarding the relationships among these three subjec-
tive ratings, we first observed significantly positive correla-
tions under most conditions. The more subjective movement 
the PLD had, the more easily it was perceived with high 
emotional intensity and recognized. This result is in line 
with Atkinson et al. (2004), who reported that more exag-
gerated body movements enhanced recognition accuracy 
in addition to sadness and also induced higher emotional 
intensity for PLDs. The subjective movement in the pre-
sent study to some extent reflects the speed, power, or force 
of the PLD conveyed (Mazzoni et al., 2017; Vaessen et al., 
2019). Although we did not directly extract these physical 
indicators of PLDs, the objective movement index might 
tell part of the story, because subjective movement corre-
lated with objective movement under all conditions in the 
present study. A higher quantity of movement perceived by 
people might bring participants more information that rep-
resents action intention and emotion. Some studies have also 
observed positive correlations between emotional intensity 
rating and recognition accuracy for body expressions in both 
frontal and side views (Banziger et al., 2012; Banziger & 
Scherer, 2010).
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For sad and neutral PLDs, recognition accuracy did not 
correlate significantly with subjective movement. In Atkin-
son et al. (2004), for expressions of sadness, increased move-
ment reduced recognition accuracy. Sad body expressions 
are often characterized by the head tilting down, head in 
the hands, and less or slower movement (Halovic & Kroos, 
2018a; Michalak et al., 2009; Witkower & Tracy, 2019). The 
distribution of subjective movement in Fig. 5 also shows that 
more than 75% of sad PLDs have low movement (i.e., less 
than the midpoint of 5). This subjective experience may be 
related to the present finding. For neutral videos under all 
view conditions, emotional intensity was significantly nega-
tively correlated with recognition accuracy. Neutral body 
movements in the DEMOS consist of drinking, opening a 
door, squatting and standing up, tapping on both sides of the 
thighs, and marking time (Zhang et al., 2020), and have the 
lowest objective and subjective movement. Thus, they were 
easily identified in the present study. Neutral actions could 
not convey any emotional information and were rated with 
the lowest emotional intensity. Therefore, for neutral PLDs, 
the negative relationship between emotional intensity and 
recognition accuracy is not surprising.

We also found significant correlations between subjective 
movement and objective movement ratings under all condi-
tions, suggesting good reliability of subjective movement 
ratings. The quantity of movement within PLDs is one of 
the low-level parameters and features that can affect brain 
activity when investigating the neural basis of body move-
ments, and has been controlled in some functional magnetic 
resonance imaging and transcranial magnetic stimulation 
studies (Cross et al., 2012; Huis in't Veld & de Gelder, 
2015; Mazzoni et al., 2017; Pichon et al., 2008, 2009; Ross 
et al., 2019; Ross et al., 2020; Williams et al., 2020). Prior 
studies have also reported a high correlation between these 
two indicators (Ross et al., 2019; Ross et al., 2020). Taken 
together, although several previous studies have explored the 
relationship between these indicators, the present study not 
only considers these mainstream indicators, but also expands 
their relationships to different views.

Several limitations of the DEMOS should be noted. First, 
the index of objective movement in this work may reduce the 
complexity of body movements and limits our conclusion. 
Although this feature is essential to the early general pro-
cessing of the human body and has been taken into account 
in some neuroimaging research (e.g., Pichon et al., 2008, 
2009; Ross et al., 2019; Ross et al., 2020), there are many 
studies which examine the distinct contributions of velocity, 
acceleration, jerkiness, and force to social cognition from the 
dynamic human body (e.g., Bronner & Shippen, 2015; Cas-
tellano et al., 2007; Gross et al., 2012; Poyo Solanas et al., 
2020b). Reducing all these specific aspects of movements 
to a single value of “objective movement” may limit the 
usefulness of this work. The users can extract the original 

kinematic data of our PLDs in the DEMOS (Zhang et al., 
2020) or use other software (e.g., OpenPose; Cao et al., 
2017) to quantify these measures. Second, we did not col-
lect physiological data from the participants. Physiological 
responses (e.g., heart rate, galvanic skin response) directly 
reflect people’s physical arousal and can be used to predict 
the perception of emotional body expressions (e.g., Huis in't 
Veld et al., 2014a, 2014b). Therefore, physiological meas-
ures for the DEMOS are worth investigating.

The DEMOS can be applied in many fields. Research-
ers can use our materials to study the dynamic weights of 
different joints or parts in emotional body movements from 
different views and to explore the interaction with other 
forms of emotional material (e.g., voice, face). The clinical 
application of DEMOS will also facilitate the investigation 
of emotional and social dysfunction in psychiatric disorders 
(Okruszek, 2018).

Conclusions

The DEMOS that we constructed and validated consists of 
2664 emotional PLDs, comprising three views, five basic 
emotions, and neutral. We also provide users with four 
indicators. The DEMOS can be downloaded free of charge 
from https:// osf. io/ 83fst/. To our knowledge, this is the larg-
est multi-view emotional biological motion set based on the 
whole body. Researchers can choose appropriate materi-
als based on standardized indicators to design and conduct 
experiments in many fields, including affective computing, 
social cognition, and psychiatry.
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