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Abstract
Eye tracking and other behavioral measurements collected from patient-participants in their hospital rooms afford a unique 
opportunity to study natural behavior for basic and clinical translational research. We describe an immersive social and behav-
ioral paradigm implemented in patients undergoing evaluation for surgical treatment of epilepsy, with electrodes implanted 
in the brain to determine the source of their seizures. Our studies entail collecting eye tracking with other behavioral and 
psychophysiological measurements from patient-participants during unscripted behavior, including social interactions with 
clinical staff, friends, and family in the hospital room. This approach affords a unique opportunity to study the neurobiol-
ogy of natural social behavior, though it requires carefully addressing distinct logistical, technical, and ethical challenges. 
Collecting neurophysiological data synchronized to behavioral and psychophysiological measures helps us to study the 
relationship between behavior and physiology. Combining across these rich data sources while participants eat, read, con-
verse with friends and family, etc., enables clinical-translational research aimed at understanding the participants’ disorders 
and clinician–patient interactions, as well as basic research into natural, real-world behavior. We discuss data acquisition, 
quality control, annotation, and analysis pipelines that are required for our studies. We also discuss the clinical, logistical, 
and ethical and privacy considerations critical to working in the hospital setting.
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Introduction

Real-world behaviors such as social interactions are tradi-
tionally studied using simplified laboratory conditions in 
order to control for inherent natural complexities. Real-world 
environments offer the opportunity to study behavior, and 
its physiological correlates, in ecologically valid settings. 
Technological advances in recent decades have enabled us 
to capture and analyze critical behavioral and physiological 
variables in real time, over long periods of time, with greater 
fidelity than ever before (Jacob Rodrigues, Postolache, & 
Cercas, 2020; Johnson & Andrews, 1996; Wilhelm, Pfaltz, & 
Grossman, 2006; Topalovic et al., 2020) to enable modeling 
real-world variability and complexity through large data-
sets using modern computational methodology. Doing so 
in real-world environments allows us to convert real-world 
complexities from problems to assets, which can prove trans-
formative for understanding natural behavior and its relation-
ship to physiology (Holleman, Hooge, Kemner, & Hessels, 
2020; Matusz, Dikker, Huth, & Perrodin, 2019; Powell & 
Rosenthal, 2017; Zaki & Ochsner, 2009).

The inpatient hospital environment is a distinctive real-
world setting for investigating the relationship between 
behavior and physiology. It features monitoring of physi-
ological data (electrocardiograms, electromyograms, 
heart rate, blood pressure, neural recordings, etc.) as part 
of standard care that can be augmented with behavioral 
monitoring (eye-tracking, egocentric video, and audio 
recording, etc.). It also offers the opportunity to observe 
the relationship between behavior, perception, and physi-
ology before, during, and after clinical events relevant 
to the patients’ pathology. From a clinical perspective, 
a deeper grasp of the relationship between behavior and 
physiology accompanying clinical events has broad impli-
cations for diagnostics and our understanding of physio-
logical-behavioral relationships in clinical disorders (Vig-
ier et al., 2021; Clark et al., 2019; Wolf & Ueda, 2021). In 
addition, the hospital setting provides the opportunity to 
capture key caregiver–patient interactions, whose salience 
for patients in such an environment cannot be overstated 
(Jhalani et al., 2005; Pickering, Gerin, & Schwartz, 2002). 
Modeling these interactions has deep implications in terms 
of understanding joint clinical decision-making, clinical 
information transfer, patient outcomes, patient satisfaction, 
and the informed consent process in ways that cannot be 
replicated in controlled lab environments (Finset & Mjaal-
and, 2009; Kiesler & Auerbach, 2006; Weilenmann et al., 
2018; Girard et al., 2021; Muszynski, Zelazny, Girard, & 
Morency, 2020). From a basic science perspective, the 
inpatient hospital environment also offers a compelling 
immersive environment to advance basic knowledge by 
studying natural behavior, such as interactions with friends 

and family, clinicians, eating, reading, etc., in patients that 
have simultaneous behavioral, physiological, and psycho-
physiological monitoring (Hogan & Baucom, 2016).

Real-world behavior encompasses a multitude of physi-
ological and behavioral processes unfolding at different 
timescales, which are affected by ‘change events’ in the 
environment itself (Shiffman, Stone, & Hufford, 2008). This 
makes them challenging to study. Successfully studying the 
relationship between behavior and physiology in such set-
tings requires extracting meaningful insights from data that 
are rich, complex, and heterogeneous in nature and varied 
in time. Inpatient hospital settings are subject to these con-
siderations, as well as the additional complexity of hospital 
environments where unpredictable and potentially adverse 
events may unfold for patients. In addition, they give rise 
to ethical considerations that include patient privacy and 
well-being (and potentially the privacy of others), and the 
confidentiality of clinical information and doctor–patient 
interactions (Roter & Hall, 1989).

This paper presents methodology for collecting behavio-
ral and physiological data in epilepsy patients who undergo 
extra-operative invasive monitoring for seizure localization. 
Patients are implanted with intracranial electrodes (super-
ficial, depth or a combination of both) and then are admit-
ted to the Epilepsy Monitoring Unit (EMU) for 1–2 weeks 
for clinical identification of the epileptogenic zone and for 
functional mapping. This clinical setting presents a unique 
opportunity to capture behavioral data (eye-tracking using 
eye-tracking glasses, audio, and video recordings) synchro-
nized with neural activity recorded by intracranial electrodes 
implanted in the patients' brains, during real-world social 
interactions with friends, family, clinicians, and research-
ers. We discuss the privacy and ethical considerations that 
arise in this paradigm and how they can be addressed, as 
well as logistical challenges such as fitting seizure prone 
patients, who have significant head bandaging protecting 
their implantation sites, with eye-tracking glasses to collect 
data in a safe and robust manner. Finally, we describe data 
preprocessing and data fusion pipelines that can be used 
to construct a high-quality multimodal data set that blends 
real-world social behavior and neural activity, allowing us to 
study the neural correlates of real-world social and affective 
perception in the human brain.

Materials and methods

Participants

A total of six patients (four men, two women) underwent 
surgical placement of subdural electrocorticographic elec-
trodes (ECoG) or stereoelectroencephalography (SEEG) 
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depth electrodes as standard of care for epileptogenic zone 
localization. Together, ECoG and SEEG are referred to here 
as iEEG. The ages of the participants ranged from 22 to 
64 years old (mean = 37 years, SD = 13.47 years). No ictal 
events were observed during experimental sessions.

Informed consent

All participants provided written informed consent in 
accordance with the University of Pittsburgh Institutional 
Review Board. The informed consent protocols were devel-
oped in consultation with a bioethicist (Dr. Lisa Parker) and 
approved by the Institutional Review Board of the University 
of Pittsburgh. Audio and video of personal interactions were 
recorded during experimental sessions. Our protocol incor-
porated several measures to ensure privacy considerations 
and concerns could be addressed based on the preferences 
of individual participants. First, the timing of recording ses-
sions was chosen based on clinical condition and partici-
pant preference, to ensure that they were comfortable with 
recording of their interactions with the visitors present (and/
or expected to be present). Second, all visitors present in the 
room were notified about the nature of the experiment at the 
beginning of each recording session and given the opportu-
nity to avoid participation. Third, a notification was posted 
at the entrance of the patient room informing any entrants 
that an experiment was being conducted where they might 
be recorded so that they could avoid entering if they chose 
to. It is notable that there are no reasonable expectations of 
privacy other than for the patient, and this work was consid-
ered to meet the criteria for waiver of informed consent for 
everyone other than the participants themselves. Finally, at 
the end of each experimental recording, participants were 
polled to confirm their consent with the recording being used 
for research purposes and offered the option to have specific 
portions (e.g., a personal conversation) or the entire record-
ing deleted if they wished. Thus, explicit “ongoing con-
sent” was acquired through written informed consent at the 
beginning and end of each session; providing participants 
the opportunity both affirm their willingness to participate 
and to consider the content of the recordings before giving 
final consent. None of our participants thus far have asked to 
have recordings partially or fully deleted after the recording 
session was complete.

Electrode localization

Coregistration of grid electrodes and electrode strips was 
adapted from the method of Hermes, Miller, Noordmans, 
Vansteensel, and Ramsey (2010). Electrode contacts were 
segmented from high-resolution postoperative CT scans of 
participants coregistered with anatomical MRI scans obtained 
prior to electrode implantation. The Hermes method accounts 

for shifts in electrode location due to the deformation of the 
cortex by utilizing reconstructions of the cortical surface with 
 FreeSurferTM software and co-registering these reconstruc-
tions with a high-resolution postoperative CT scan. All elec-
trodes were localized with Brainstorm software (Tadel, Bail-
let, Mosher, Pantazis, & Leahy, 2011) using postoperative CT 
coregistered with preoperative MRI images.

Data acquisition

Multimodal behavioral data (audio, egocentric video, and 
eye-tracking) as well as neural activity from up to 256 iEEG 
contacts can be recorded simultaneously during unscripted 
free viewing sessions in which participants wore eye-track-
ing glasses while they interacted with friends and family vis-
iting them, clinicians and hospital staff responsible for their 
care, and members of the research team. In addition, par-
ticipants also engaged in other activities like eating meals, 
reading, and watching television. The type and duration of 
activities varied across different recording sessions. The 
timing and duration of recording sessions were determined 
based on clinical condition, participant preference and to 
coincide with the presence of visitors in the hospital room, 
where possible.

Behavioral data were captured by fitting each participant 
with SensoMotoric Instrument’s (SMI) ETG 2 Eye Tracking 
Glasses (Fig. 1a, c). An outward facing egocentric camera 
recorded video of the scene viewed by participants at a reso-
lution of 1280 x 960 pixels at 24 frames per second (Fig. 1b). 
Two inward facing eye-tracking cameras recorded eye posi-
tion at 60 Hz (Fig. 1c, d). Audio was recorded at 16 kHz 
(256 Kbps) using a microphone embedded in the glasses. 
SMI’s iView ETG server application, running on a laptop 
received and stored streaming data for all three modalities 
from the eye-tracking glasses by way of a USB2.0 wired 
connection. The iView ETG software also served as an inter-
face for researchers to calibrate the eye-tracking glasses to 
each participant with a three-point calibration procedure that 
enabled the accurate mapping of eye-tracking data to specific 
‘gaze’ locations on video frames, and to initiate and stop the 
recording of behavioral data.

Electrophysiological activity (field potentials) can be 
recorded from up to 256 iEEG electrodes at a sampling rate 
of 1 kHz using a Ripple Neuro’s Grapevine Neural Interface 
Processor (NIP) (Fig. 2). Common reference and ground elec-
trodes were placed subdurally at a location distant from any 
recording electrodes, with contacts oriented toward the dura.

A  MATLABⓇ script, running on the same laptop as the 
SMI iView ETG Server software, broadcasts numbered 
triggers every 10 s, injecting them simultaneously into the 
neural data stream via a Measurement Computing USB-204 
data acquisition (DAQ) device connected to the NIP’s digital 
port and into the eye-tracking event stream via SMI’s iView 
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ETG server application via a sub-millisecond latency local 
loop back network connection using UDP packets (Fig. 2). 
These triggers were used to align and fuse the heterogene-
ously sampled data streams after the experiment, during the 
Data Fusion stage (see below for details).

Best practices for behavioral recording

In each recording session, neural activity recording was ini-
tiated, followed by simultaneous initiation of recording of 
eye-tracking, egocentric video, and audio recording via the 
SMI ETG 2 Eye Tracking Glasses using the SMI iView ETG 
Software Server. Once the recording of all modalities was 
underway, the  MATLABⓇ script was initiated to generate 
and transmit triggers. At the end of each recording session, 
the tear down sequence followed the reverse order: 1) the 
MATLABⓇ script was terminated, marking the end of the 
recording, 2) the SMI iView ETG Software Server recording 
was halted, 3) the neural data recording stream was stopped 

on the NIP. Excess data from prior to the first numbered 
trigger and after the last numbered trigger were discarded 
for all modalities.

Shift in the placement of the eye-tracking glasses is 
possible if the participant inadvertently touches or moves 
them during a recording session. Such disruption can intro-
duce systematic error(s) in eye gaze data captured after the 
disruption(s), although errors can be mitigated with gaze 
correction (see Data Preprocessing for details). The poten-
tial for such an event increases with the duration of a record-
ing session. To minimize the risk of such error(s), we first 
instruct participants to avoid touching or nudging the glasses 
during a recording session to avoid disrupting the eye-track-
ing calibration completed at the beginning of the recording 
session. Second, we strive to reduce such errors by limiting 
an individual recording session to 1 h and including a short 
break for participants. During this interlude, the recording 
is terminated, and participants are offered the opportunity to 
remove the eye tracking glasses before initiation of the next 

Fig. 1  a) A participant in the UPMC Epilepsy Monitoring Unit 
implanted with iEEG electrodes, secured with bandaging, and fitted 
with SensoMotoric Instrument’s (SMI) ETG 2 Eye Tracking Glasses 
that have been modified with an ergonomic Velcro strap. b) An over-
the-shoulder view of the participant and the visual scene during an 
interaction with a researcher. c) Front (top) and back (bottom) view 

of the SMI ETG 2 Eye Tracking Glasses with the egocentric video 
camera (green circle) and inward facing eye-tracking cameras (red 
ellipses). d) A snapshot of the participant’s view (top) through the 
SMI ETG 2 Eye Tracking Glasses corresponding to b), and their 
eye movement (bottom) captured by the inward facing eye-tracking 
cameras
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session. The interlude serves two purposes: 1) it gives the 
participant a break from wearing the eye-tracking glasses, 
helping to alleviate fatigue and discomfort; 2) initiating a 
new recording allows the research team to re-secure and 
re-calibrate the eye-tracking glasses, renewing the accurate 
mapping of gaze to the egocentric video. Although we prefer 
≈ 1 h recordings as a best practice, maintaining this practice 
depends upon participants’ preference and the number visi-
tors. In some cases, recording sessions may be longer.

Ergonomic modifications to eye‑tracking glasses

Standard clinical care following iEEG implantation involves 
the application of a bulky gauze head dressing. This band-
aging is applied around the head to protect the operative 
sites where the iEEG electrodes are secured with bolts. 
The dressing also includes a chin wrap to provide further 
support in preventing dislodgement of the iEEG electrodes 
by securing the connector wires that carry electrical activ-
ity to clinical and/or research recording systems like the 
Ripple Neuro Grapevine NIP. In our studies, the bandag-
ing typically covered the participants’ ears, rendering the 
temples on the eye-tracking glasses unusable. To overcome 
this challenge, we modified the structure of the eye-tracking 

glasses, removing the temples and substituting them with an 
adjustable elastic band. We attached the elastic band to the 
frame of the eye-tracking glasses using Velcro patches sown 
at each end. The modification permitted secure placement 
of the glasses on the face of a participant, with the elastic 
band carefully stretched over the head dressing to avoid dis-
turbing the operative sites (Fig. 1c). To reduce any pressure 
the eye-tracking glasses placed on the participants’ faces as 
a result of the elastic band alteration, we further modified 
the glasses by adding strips of adhesive backed craft foam 
to the nose bridge and upper rims of the frame. These ergo-
nomic solutions enabled correct, robust, and comfortable 
placement of eye-tracking glasses for each participant with 
flexibility to adjust to individual bandaging and electrode 
placement configurations. As an added measure to mini-
mize the possibility of movement for eye-tracking glasses 
during recording sessions, the USB cable connecting the 
eye-tracking glasses to the laptop was secured to the par-
ticipants’ hospital gowns near the shoulder with a large 
safety pin to prevent the weight of the remaining length 
of cable from pulling on and displacing the glasses during 
a recording session. Sufficient slack was left in the cable 
segment between the glasses and the fixation point on the 
participants’ gowns to allow for free head movement while 

Fig. 2  A system diagram of the experimental setup for the collec-
tion of synchronized behavioral (egocentric video, eye-tracking and 
audio) and physiological (iEEG recordings) from participants dur-
ing real-world social interactions. The green, red, and blue lines rep-
resent egocentric video (1280x960 pixels; 24 fps), eye-tracking (60 
Hz), and audio (16 kHz). Digital triggers, represented by black lines, 

are inserted in the eye-tracking and iEEG recordings via a sub-mil-
lisecond local loopback UDP connection and a DAQ, respectively. 
iEEG recordings from up to 256 electrodes (visualized in MRI) are 
digitized at 1 kHz and combined with digital triggers using Ripple 
Neuro’s Grapevine Neural Interface Processor (NIP) are transmitted 
and stored on a computer
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preventing the secured cable segment from pulling on and 
potentially displacing the eye-tracking glasses.

Data preprocessing

The behavioral (eye-tracking, video, audio) and physiologi-
cal (neural) data streams captured during a real-world vision 
recording were preprocessed as follows before Data Fusion 
was initiated.

Eye‑tracking

The eye-tracking data stream is composed of time series data 
sampled at 60 Hz, where each sample (referred to as an eye-
tracking trace) contains a recording timestamp, an eye gaze 
location (X,Y coordinates in the space of egocentric video) 
and is labeled by the SMI iView ETG platform as belonging 
to a fixation, a saccade or a blink. Consecutive eye-tracking 
traces with the same label (fixation, saccade, or blink) are 
interpreted as belonging to a single eye-tracking ‘event’ 
of that type, whose duration is the difference in recording 
timestamps of the last and first eye-tracking traces in the 
block of consecutive traces with the same label (fixation, 
saccade, or blink).

As an example, a set of 60 eye-tracking traces (amounting 
to 1 s of recorded activity), where the first 30 are labeled 
as fixation, the next 12 labeled as saccade, followed by the 
final 18 labeled as fixation, would be interpreted as a fixation 
event ≈ 500 ms long (30 samples at 60 Hz), followed by a 
saccade event ≈ 200 ms long (12 samples at 60 Hz) followed 
by a fixation event ≈ 300 ms (18 samples at 60 Hz).

We developed custom Python scripts that parse eye-tracking 
traces and construct logs of eye-tracking events for each record-
ing session. In addition to the duration of each eye-tracking 
event, the median gaze location (median is used for robustness 
to outliers) was logged for each fixation event and the start/
end gaze locations were captured for each saccade event. Blink 
traces are denoted by a loss of eye-tracking (i.e., absence of 
gaze location) and as a result only the duration of blink events 
was tracked in the consolidated eye-tracking event logs.

Preprocessing of eye-tracking data also incorporates the 
detection and correction of systematic errors in gaze angle 
estimation that can be induced by the movement of eye-track-
ing glasses during recording sessions (e.g., if a participant 
inadvertently touches and moves the glasses due to fatigue), 
which disrupts the calibration of eye-tracking glasses (see Data 
Acquisition for details). Such issues were detected by manu-
ally viewing all experimental recordings using SMI’s BeGaze 
application, which renders eye-gaze, audio, and egocentric 
video together. The disruption of calibration for eye gaze 
tracking is visually detectable when viewing egocentric video 
overlaid with eye-tracking and audio because visual behavior is 
altered such that the gaze data fails to make sense consistently 

after loss of eye-gaze calibration (e.g., the subject is scrolling 
through a phone or reading a book or watching tv or talk-
ing to someone, but the gaze location is visibly shifted away 
from the obvious target). These issues were corrected using the 
SMI BeGaze application, which allows researchers to apply 
a manual correction (i.e., an offset) to eye gaze at any time 
point in a recording, which applies to all eye gaze data follow-
ing the corrected time point. The corrections were verified by 
reviewing the video that followed the correction, to ensure that 
corrected eye gaze data made sense consistently. Corrections to 
eye-tracking data preceded preprocessing in such cases.

Video

Recordings of egocentric (head-centered) videos offer a 
broad range of visual stimuli, including objects, people, 
and faces. Since the video recordings come from a camera 
mounted on the same glasses as the eye tracker they pro-
vide an egocentric view, i.e., the recorded videos capture 
the scene corresponding to where the participant is facing, 
and the perspective moves as the participant’s head moves. 
As a broad research goal, we wanted to know what objects 
were present in the recorded scenes. Our primary objects of 
interest were visitors’ faces and bodies, given the objective 
of examining social interactions. We processed videos to 
identify the location of faces and body parts of people in 
the video recordings. As a secondary objective, we were 
also interested in identifying other non-face and non-body 
objects. Finally, for all face locations, we extracted sev-
eral higher-level measures about human visual behaviors, 
including head pose (including orientation and position of 
the head), eye gaze (e.g., toward vs. away from the observer), 
and facial expressions.

To automatically identify faces, people, and other objects, 
we used a computer vision algorithm - YOLO v3 (Redmon, 
Divvala, Girshick, & Farhadi, 2016) for object detection on 
each video frame. The algorithm identified bounding boxes 
and labels for each object present in a video frame, including 
faces and people. A total of 1,449,098 video frames were 
processed this way. While there has been great progress in 
computer vision for automated object detection in the last 
decade, it is not perfect. For example, algorithms such as 
YOLO v3 are trained on image data sets which contain a 
predetermined list of object categories that may not include 
many objects that are present in a clinical setting. In addi-
tion, objects belonging to the predetermined list of object 
categories may also be mis-detected (false positives or false 
negatives). Since the annotations were supposed to serve as 
ground truth for analysis of neural data, their accuracy was 
essential and we implemented a second stage of annotation 
based on human judgement, to confirm the quality of auto-
mated object detection and correct misdetection. To avoid 
the time intensive prospect of manually annotating all video 
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frames in the second stage, we annotated the first video 
frame corresponding to each fixation, because fixations are 
typically brief (a few hundred milliseconds), defined by the 
lack of significant eye movement, and thus it is reasonable to 
assume that participants look at the same location/object in a 
relatively unchanging scene during a fixation. We identified 
the video frame corresponding to the beginning of each fixa-
tion using video timestamps present in eye-tracking traces. 
Human annotators provided coordinates of bounding boxes 
for each face, or person present in video frames for a total 
of 125,996 frames as part of the second stage of annotation.

Finally, we used the OpenFace software (Baltrusaitis, 
Zadeh, Lim, & Morency, 2018), a facial behavior analysis 
toolkit using computer vision technology, to extract addi-
tional high-level information for face regions. For each face 
region, OpenFace provides information about (1) the posi-
tion of 64 facial landmarks including eye, nose and mouth 
positions, (2) head orientation and position, (3) eye gaze 
direction and (4) facial expression information encoded fol-
lowing the Facial Action Coding System standard (Friesen 
& Ekman, 1978).

Audio

Audio recordings from a microphone embedded in the eye-
tracking glasses capture sound from the participant’s per-
spective. The clarity of recorded audio is influenced by the 
loudness of sounds and the distance of the source from the 
participant. Since our objective involves examining social 
interactions, speech detection and speaker identification are 
“events” of interest.

To detect time segments with speech in the audio record-
ing and to diarize the audio (i.e., to determine who spoke 
when), we use state of the art deep learning speech detec-
tion (Lavechin, Gill, Bousbib, Bredin, & Garcia-Perera, 
2020) and speaker identification (Yin, Bredin, & Barras, 
2018) pipelines available as part of an open-source toolbox 
(Bredin et al., 2020). Even these state-of-the-art models 
have unacceptably high error rates (particularly for diari-
zation) for them to provide useful annotations as labels in 
analysis of behavior–physiology relationships. In order to 
overcome this hurdle, we configured these models to be 
highly sensitive (leading to higher false positives, but very 
few false negatives) and then manually reviewed model pre-
dicted time segments for speech and speaker identification, 
to identify and correct false positives. Outside of parameters 
that control the sensitivity of the deep learning models, the 
efficacy of speech detection and diarization is influenced 
by the loudness of the speakers themselves, as well as their 
distance from the participant (i.e., the microphone). This 
means that the participant’s speech is the most reliably 
detected, while the quality of speech detection (and there-
fore speaker identification) for other speakers may vary. As 

a result, we chose to collapse audio diarization into two 
categories during manual review, the participant and speak-
ers other than the participant. Segments with concurrent 
speech from the participant and other speakers were labeled 
as participant speech.

Intracranial recordings

Response potentials and broadband high frequency activity 
(BHA) were extracted from the raw iEEG recordings for 
statistical analysis using  MATLABⓇ. Response potentials 
were extracted using a fourth-order Butterworth bandpass 
([0.2 Hz, 115 Hz]) filter to remove slow linear drift and 
high-frequency noise, followed by line noise removal using 
a fourth-order Butterworth bandstop ([55 Hz, 65 Hz]) filter.

BHA extraction involved two steps. First, the raw signal 
was filtered using a fourth-order Butterworth bandpass ([1 
Hz, 200 Hz]) filter followed by line noise removal using 
notch filters at 60, 120, and 180 Hz to obtain local field 
potentials. Next, power spectrum density (PSD) between 
70 and 150 Hz was calculated for the local field potentials 
with a bin size of 2 Hz and a time-step size of 10 ms using 
Hann tapers. For each electrode, the average PSD across the 
entire recording was used to estimate a baseline mean and 
variance of the PSD for each frequency bin. The PSD was 
then z-scored using these baseline measurements for each 
frequency bin at each electrode. Finally, BHA is estimated 
by averaging the z-scored PSD across all frequency bins 
(excluding the line noise frequency bin at 120 Hz).

iEEG recordings were subjected to several criteria for 
inclusion in the study. Any recordings with ictal (seizure) 
events were not included in the study. Artifact rejection 
heuristics were implemented to avoid potential distortion of 
statistical analyses due to active interictal (between seizure) 
or outliers. Specifically, we evaluated the filtered iEEG data 
against three criteria that are applied to each sample i.e., 
each time point in iEEG recordings, which corresponds to 
1 ms of neural activity. These criteria were applied to the 
filtered iEEG signal for each electrode, as well as the aver-
aged (across all electrodes) iEEG signal. The first criterion 
labels a sample as ‘bad’ if it exceeds 350 μV in amplitude. 
The second criterion labels a sample as bad if the maximum 
amplitude exceeds 5 standard deviations above/below the 
mean. The third criterion labels a sample as bad if consecu-
tive samples (1 ms apart at a 1000 Hz sampling rate) change 
by 25 μV or more. For the averaged iEEG signal, any sample 
satisfying any of these three rejection criteria is labeled as 
bad. Further, if more than ten electrode contacts (out of a 
typical 128) satisfy the bad sample criterion for a particu-
lar sample, it is labeled as a bad sample. Less than 10% of 
the samples in experimental recordings were labeled as bad 
samples. All data types were dropped from analysis for fixa-
tions that contained bad samples.
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Data fusion

Precise fusion of heterogeneous behavioral (eye-tracking, 
egocentric video and audio) and physiological (neural) 
data streams is essential for constructing a multimodal data 
set to answer our questions about the neural correlates of 
real-world vision. In our approach, eye-tracking provides 
the reference modality against which video/audio, psycho-
physiological, and neurophysiological (neural activity) data 
streams are aligned in time (Fig. 3). Each eye-tracking event 
is mapped to a corresponding egocentric video frame. For 
fixation events, we combine eye gaze location with bounding 
box locations/sizes from annotations for the egocentric video 
frame to determine what object (face or non-face) the par-
ticipant is fixating upon. Each eye-tracking event is mapped 
to an auditory time segment and labeled as belonging to 
a speech or silence segment, with additional labeling for 
speaker identity in the case of a speech segment. Finally, 

neural recordings are also aligned in time to eye-tracking 
events based on the temporal offset of eye-tracking events 
and neural data, from trigger events which are injected in 
both data streams at 10 second intervals during recording 
sessions.

The quality of multimodal data sets assembled by the 
data fusion process described above is reliant on the quality 
of the heterogeneously sampled behavioral, psychophysi-
ological, and physiological data streams fed into the data 
fusion process. Acquisitional variability, if present and left 
undetected, can severely degrade the quality of fused data 
sets by introducing alignment issues, and dropped video 
frames and/or recording offsets are common. Our methodol-
ogy includes cross-verification procedures that guard against 
such issues with careful examination of the raw data streams 
for each modality. These procedures assume that the raw 
data captured for any modality contains accurate and suffi-
cient timing information to diagnose and correct such issues. 

Fig. 3  Fused multimodal data set from a real-world vision record-
ing: The audio waveform is shown on top, with gray, pink, and brown 
segments denoting silence, participant speech, and speech from other 
speakers. Response potentials and broadband high-frequency activ-
ity heat maps from a 124 iEEG electrode montage are shown below 
the annotated audio. Vertical black lines demarcate fixations and sac-

cades, which are marked underneath the audio and neural time series 
with orange and blue braces, respectively. The bottom row shows 
video frames corresponding to each fixation event, with an orange 
‘+’ denoting eye gaze location and bounding boxes identifying the 
location of different objects, including persons and faces
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As long as hardware/software systems in use meet this basic 
assumption about raw data capture, the cross-verification 
approach we describe should scale. Below, we detail two 
specific issues that arose in our recordings using SMI ETG 2 
Eye Tracking Glasses and illustrate how we addressed them 
to ensure data quality in the fused data set.

Sampling rate variability

Variability in sampling rates is observed in engineered 
systems and can arise due to a variety of reasons ranging 
from temperature dependent variation in the frequencies 
of crystal oscillators that drive digital clock signals to 
propagation delays in circuit boards and circuitry run-
ning at different clock rates. If a fixed sampling rate is 
assumed, then these variations can accumulate as sam-
pling drift over time and potentially lead to significant 
timing offsets over long periods of operation. These phe-
nomena are addressed in engineered systems in various 
ways including using clocks far faster than the sampling 
rates desired and frequent resetting/calibration to mini-
mize drift accumulation.

Here, we describe our approach to detect and remove 
such issues from the final multimodal data set that results 
from our data fusion procedures. We evaluated variability 
in the sampling rate of eye-tracking traces based on their 
timestamps. Since audio, video and neural data are anchored 
to eye-tracking events, minor sampling variability for eye-
tracking does not introduce any error as long as other data 
streams can be aligned to eye-tracking correctly. We evalu-
ated the timing and mapping of all other modalities (audio, 
egocentric video and neural data) against eye-tracking. Spe-
cifically, we found the need to address sampling rate vari-
ability that arose in the egocentric video stream, so it could 
be reliably mapped to eye-tracking data.

The inter-frame interval for the video stream can vary 
systematically by small amounts from the rated 41.66 ms 
(24 fps) for a recording session. These deviations can be 
a source of error in the mapping of eye-tracking traces to 
video frames unless they are addressed during data fusion. A 
critical marker of this problem is an inconsistency between 
the number of frames present in the video and the number 
of video frames estimated from eye-tracking traces using 
Eq. 1. It is important to note that this variability is not always 
accounted for in manufacturer software or documentation. 
The solution to this issue is relatively simple because the 
eye-tracking traces include a ‘Video Time’ column which 
has millisecond resolution. Instead of assuming a fixed 
frame rate as Eq. 1 does

(1)
Video Frame Number
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

in .avi file

= Video Time in seconds
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

from eye-tracking traces

× 24 frames per second

We estimated video frame numbers corresponding to each 
eye-tracking trace using the ‘Video Time’ in them as follows

Addressing data gaps or corruption from behavioral 
modalities

Loss or corruption of data during media recordings on 
embedded devices is demonstrable and is a potential source 
of error for a fused multimodal data set that relies on precise 
alignment of multiple heterogeneously sampled modalities. 
As a result, our data fusion process pays close attention to 
identifying and characterizing such issues and addressing 
them to ensure data integrity. Here, we qualitatively describe 
different classes of issues observed in our data and how we 
address them to ensure data quality.

We observed missing frames in the egocentric video 
stream. Specifically, after correcting for sampling rate varia-
bility, we observed residual discrepancies between the num-
ber of frames that were expected per the video timestamps 
in the eye-tracking logs and the number of actually frames 
present in the video files from recordings. By evaluating 
timestamps for each frame in the ‘.avi’ files using OpenCV 
(Bradski, 2000), we found that the lost frames were at the 
beginning of the video stream (i.e., the first K frames of an N 
frame video are missing) frames. We confirm this diagnosis 
with an additional form of verification, which used low level 
audio and video processing tools to manually blend audio 
and video streams with and without a correction for miss-
ing frames and visually verifying the absence of lip-audio 
synchronization issues in the resulting video. Finally, we 
obtained an additional point of manual verification by visu-
alizing the ostensibly lost frames (decoders discard frames 
they deem corrupt when parsing a file, but they are present in 
the files) from the video file on a frame-by-frame basis, con-
firming that they are corrupted/garbled. The specific pattern 
of error (first K frames missing) observed with our experi-
mental equipment (SMI ETG 2 Eye Tracking Glasses) may 
not replicate with other hardware, though given engineering 
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constraints, other errors may arise instead. As an example, 
other eye-tracking glasses may have frame loss/corruption 
intermittently during a recording instead of at the beginning. 
However, our observations suggest that such issues may exist 
with other eye-tracking devices and data fusion pipelines 
should incorporate verification stages that can identify and 
correct such issues, with a preference for multiple modes of 
verification that are consistent with each other.

Blinks are a natural part of visual behavior, and the eye-
tracking records denote them as such. Since eye-tracking 
is lost during blinks, there is usually no information about 
gaze, pupil dilation etc. available for blink events. We see 
blinks interspersed among fixations and saccades, and they 
are typically a few hundred milliseconds long. However, we 
observed longer periods lasting several seconds in multi-
ple recordings. To understand this phenomenon better, we 
viewed the videos for periods where this happened, with 
gaze information overlaid using SMI’s BeGaze software. 
We found these anomalous blinks to be masking a real phe-
nomenon, where the participant may be looking out the 
corner of their eye, which takes their eye-gaze outside of 
the field of vision of the egocentric camera or upon occa-
sion, potentially taking their pupils outside of the field of 
vision of the eye-tracking camera. Since the system cannot 
accurately capture visual behavior as it relates to the video 
in these conditions, it labels those periods as blinks. These 
scenarios are easy to spot during manual inspection because 
the eye-gaze location before and after the blink tends to be 
near the periphery of the video frame. These conditions are 
not a significant challenge for data quality, because they can 
be easily dropped from analysis. However, awareness of their 
existence is meaningful for data fusion pipelines.

Results

We collected iEEG recordings from patients in the Epilepsy 
Monitoring Unit (EMU) who wore SMI ETG 2 Eye Tracking 
Glasses as they went about their day interacting with friends 
and family visiting them as well as members of the clinical 
team. We used computer vision models to identify objects, 
faces, and persons (bodies) in videos of the visual scenes in 
front of the participants during these sessions. Similarly, we 
used speech processing models to identify speech intervals 
and diarize the audio recorded from the internal microphone 
in the SMI ETG 2 Eye Tracking Glasses. All annotations 
from computer vision and speech processing models were 
validated and corrected, if necessary, by human annotators 
to ensure data quality. Here, we show that fused multimodal 
datasets (see Fig. 4 for a snapshot; see Supplemental Video for 
a dynamic version) which include annotated audio, eye-track-
ing, annotated video, and iEEG, can be developed using this 
process. Such datasets can help advance visual neuroscience 

research beyond traditional experimental paradigms and 
explore the neural correlates of real-world social vision.

Behavioral data

We collected data from six participants across 11 different 
free viewing recording sessions which ranged from 41 to 143 
min long and added up to a total of 16 h and 48 min. Social 
contexts differed across recording sessions and sometimes 
within a recording session, in terms of the number of indi-
viduals present, the number of interactions they had with the 
participant and the nature of those interactions.

Visual behavior

SMI Eye Tracking glasses captured visual behavior, cat-
egorizing each moment’s sample as belonging to a saccade, 
fixation, or blink. Visual behavior varied depending upon the 
social context during recording sessions. Saccades usually 
accounted for 10–15% of the recording duration (Fig. 5a), 
even though they account for nearly half the events (after 
accounting for blinks and occasional loss of eye-tracking) 
(Fig. 5b) as a result of the saccade–fixation–saccade struc-
ture of the active sensing cycle, a contrast highlighted by the 
skew in the distribution of saccade durations and fixation 
durations (Fig. 5c). Saccades and fixations are not perfectly 
balanced due to the loss of eye-tracking from blinks and 
other reasons (e.g., noisy conditions, participants closing 
their eyes for brief periods or looking out of the corner of 
their eye during the recording sessions).

We identified fixation targets by combining gaze location 
from eye-tracking with bounding boxes from the video frame 
corresponding to each fixation. We categorized fixations as 
face and non-face fixations, reflecting our focus on the social 
aspects of real-world vision. The social context during a 
recording session has a natural influence on the distribution 
of fixation targets. We found that participants fixated on faces 
less than 30–40% of the total time spent fixating during a 
recording session (Fig. 5d), even in the most social situations 
(e.g., EMU room full of multiple family and friends, with 
active conversations). The distribution of fixation durations 
for the two fixation categories showed that face fixations tend 
to be a little bit longer (Fig. 5e), indicating that even during 
the most social situations with familiar people, we look at the 
faces of people around us infrequently but when we do look at 
them, we tend to hold them in our gaze a little longer.

Auditory context

The SMI ETG 2 Eye Tracking glasses also recorded audio 
using a built-in microphone. We used deep learning mod-
els (Bredin et  al., 2020) to do auditory scene analysis, 
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Fig. 4  A snapshot of fused multimodal (audio, egocentric video, 
eye-tracking, and iEEG): On the left, an annotated audio snippet 
(top) and video frame (bottom) visualizes the world through the par-
ticipant’s eyes and ears as they interact with friends and family vis-
iting them during a recording session. Speech/silence and speaker 
diarization labels color the audio signal on top. The annotated video 
frame below depicts the participant’s eye gaze location with orange 

‘+’ marker with colored bounding boxes identifying the location and 
sizes of different objects detected by computer vision models and 
verified by human annotators. The right panel visualizes 1 s of neu-
ral activity across 124 iEEG electrodes, corresponding to the video 
frame/audio on the left, with response potentials on top and broad-
band activity at the bottom (see Supplemental Video for a dynamic 
version of this figure)

Fig. 5  Summary of dataset spanning visual behavior and the 
auditory environment: a) The duration of each recording session 
(with multiple sessions for each participant) broken down by time 
spent in different visual behaviors (saccades, fixations, and blinks). 
b) Similar to a), but counting distinct events for each visual behavior 
instead of time. c) Saccade and fixation duration distributions for 
each recording session. d) The fraction of time fixations were on 

faces and non-face objects for each recording session. e) Fixation 
duration distributions for face and non-face targets for each recording 
session. f) The fraction of each recording session broken down by 
time spent in silence and speech. g) The fraction of each recording 
session broken down by speech from the participant and other 
speakers
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augmenting it with manual annotation to ensure high reli-
ability. Once again, depending upon the social context dur-
ing each recording session, we observed varying levels of 
verbal discourse (Fig. 5f). We observed that speech could be 
detected from both the participant and others in the room, 
but the participant was reliably comprehensible due to their 
proximity to the microphone, whereas the volume and com-
prehensibility of the voices of other speakers would vary 
based on how close they were to the participant, making 
source identification more challenging even for manual 
annotation. To avoid potential confusion during manual 
annotation, we restricted speech diarization during supple-
mental manual annotation/verification to classifying speech 
as originating from the participants or other persons in the 
room. We found that the participants’ own verbal behavior 
varied across recording sessions, with comparable speech 
in the room, across recording sessions, even for the same 
participant (Fig. 5g).

Behavioral annotation: reliability and its cost

Egocentric video Automated software-driven annotation of 
video frames is straightforward and fast, but accompanied 
by a trade-off between speed and accuracy. The speed of 
automated annotation depends upon the algorithms used for 
object detection. YOLO v3 (Redmon et al., 2016) is a popu-
lar algorithm for object annotation (detection), performing at 
a rate of 45 fps on a NVIDIA K40 graphics processing unit 
(GPU), or 5 fps on a standard CPU. This means annotating 
an hour of video takes 32 min with a GPU, or close to 5 h 
with a CPU.

The accuracy of annotation algorithms is not high. We 
measured the quality of the automated annotations by com-
paring the automated annotations from software with human 
annotations for all sessions. We found that software-driven 
annotation only achieved an average of 69.5% intersection 
over Union score (a measurement for evaluating object 
detection algorithms, higher the better, with a threshold of 
100%). This means that the overlap ratio between the soft-
ware’s bounding boxes and the human annotators’ bounding 
boxes was only 69.5%, suggesting the accuracy of automated 
software-driven annotation may be limited.

Although human annotators produce higher-quality 
annotations, the process is time and labor-intensive. Human 
annotators annotated 125,996 frames out of 16 h and 48 min 
of videos. The total time spent on annotating 125,996 frames 
was 104 h, with an average of 6.19 h for an experienced 
human annotator to annotate an hour of video.

For quality control, 3% of frames from two sessions (ses-
sions from S5:#1 and S6:#4) were randomly sampled and 
verified by a second annotator. The overlap ratio between 
the first annotator’s bounding boxes and the second anno-
tators’ bounding boxes was 97.3 and 97.4%, respectively, 

for the two sampled sessions. This process underscored the 
significantly higher quality of human annotation over the 
automated software-driven annotation.

Speech detection and diarization Automated speech detec-
tion and speaker identification were computationally effi-
cient, with an hour’s audio being processed within 1–2 min. 
Manual verification and correction of misdetection was done 
with manual annotator’s listening to the audio, and correct-
ing false negatives/missed speech and false positives/speech 
labeled as silent and required an hour of manual effort for 
each hour of audio recording. Comparisons of automated 
speech detection with manually verified/corrected speech 
intervals for the first 10 min of each recording session 
revealed misdetection (speech classified as silence or vice 
versa) for ≈ 4% of the annotated audio. Manual annotation 
for speaker identification involved collapsing the automated 
speaker diarization labels into two categories, ‘participant 
speech’ and ‘other speech’. Speech segments where the par-
ticipant and other individuals were speaking concurrently 
were labeled as ‘participant speech’. Manual annotators lis-
tened to the full length of the recording assigning new labels 
to each speech segment manually, which took 75 min for 
each hour of speech.

Data fusion issues: detected and corrected

Next, we show results which motivate careful evaluation 
of the raw data for each modality before data fusion of het-
erogeneously sampled data streams from an experimental 
recording is attempted. Specifically, we describe and quan-
tify alignment issues between eye-tracking and video data 
collected using SMI ETG 2 Eye Tracking glasses that were 
identified and corrected (see Methods for details) during 
data fusion. We found two issues in the video stream, which 
would lead to misalignment between eye-tracking traces and 
the video frame they correspond to.

The first issue was related to corrupted and unrecoverable 
egocentric video frames at the beginning of each recording 
(see Methods for details). The duration of egocentric video 
lost as a result of this issue varied by recording, and ranged 
from the first 0 to 625 ms (Fig. 6a). In a video with the first N 
frames corrupted, this issue would lead to incorrect mapping 
of eye-tracking traces to a video frame N + 1 frames later 
than the egocentric video frame they corresponded to, which 
could lead to errors in annotation of fixations (e.g., as face or 
non-face fixation) across the entire video. After correction, 
the only impact of this issue is that eye-tracking traces/neural 
data for the first few frames that are corrupted and discarded 
cannot be used for analysis, which is a very minor loss.

The second issue was related to variability in the average 
frame rate for egocentric video recorded from each session. 
We observed that for different sessions, the average frame rate 
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of the recorded video was slightly above or below 24 frames 
per second. Eye-tracking traces are mapped to video frames 
using a ‘Video Time’ variable embedded in them. Estimat-
ing the video frame number corresponding to an eye-tracking 
trace using Eq. 1 which assumed a frame rate of 24 fps that 
was slightly higher or lower than the real frame rate of the 
video. The discrepancy led to an error between the estimated 
frame and the real frame corresponding to eye-tracking traces, 
which accumulated as the video recording progressed (Fig. 6b) 
and became visible with the eye-tracking traces mapping to 
far fewer/greater frames than were present in the video at the 
end of the recording. This problem was avoided by using the 

procedure defined in Algorithm 1, which is robust to these 
small variations in frame rate (see Methods for details). Both 
these problems co-occurred and addressing them as described 
in the Methods section gave us perfect consistency between the 
number of frames estimated in the eye-tracking traces and the 
number of frames present in the egocentric video. Lastly, we 
also evaluated audio and neural activity for similar alignment 
inconsistencies with the eye-tracking logs and found no issues 
with alignment.

Neural correlates of real‑world social vision

The number and cortical locations of intracranial EEG elec-
trodes from which neural data were recorded varied by par-
ticipant with a total of 686 cortical locations distributed across 
the temporal, parietal, occipital, frontal and cingulate areas of 
6 participants (Fig. 7a, b).

Finally, we aligned neural activity recorded from intracra-
nial EEG electrodes to the composite behavioral (eye-tracking 
+ visual behavior + auditory context) log using digital triggers 
embedded in the neural and the eye-tracking data streams. This 
final step allows identification and extraction of neural activ-
ity corresponding to individual eye-tracking events (saccades, 
fixations, and blinks).

Our analysis of real-world vision is anchored to fixations, 
and Fig. 7c visualizes average fixation response potentials 
(FRPs) and fixation-related broadband high-frequency activ-
ity (FRBHA) for face and non-face fixations from several of 
the 686 intracranial EEG electrodes for which real-world vision 
data were collected. Typical aspects of the FRP (e.g., enhanced 
N170 for faces, particularly in ventral temporal cortex loca-
tions) and FRBHA (Li, Richardson, & Ghuman, 2019; Ghu-
man et al., 2014; Boring et al., 2021; Jacques et al., 2019; Alli-
son, Puce, Spencer, & McCarthy, 1999) are well represented 
for electrodes from multiple lobes suggesting the alignment of 
neural activity and eye-tracking events is robust and provides a 
key “proof-of-principle” for this real-world paradigm, similar 
to that provided by recent studies in macaque monkeys engaged 
in free viewing of natural scenes (Barczak et al., 2019).

Discussion

We investigated the feasibility of combining neural record-
ings from iEEG electrodes with eye-tracking, video and 
audio recordings collected using eye-tracking glasses,  
annotated using computer vision and speech models 
to generate robustly fused multi-modal data sets from 
unscripted recording sessions in an inpatient hospital 
environment. Fusion of visual behavior with neurophysi-
ological recordings enables investigation of the neural cor-
relates of real-world social vision and affective perception. 
Summary views of the data highlight the heterogeneity 

Fig. 6  The potential effects of video frame corruption and video 
frame rate variability on the accuracy of data fusion: Visualiza-
tion of timing error for each recording session introduced in the 
alignment of eye-tracking events and corresponding egocentric video 
frames in the case a) Corrupted frames at the beginning of each video 
file are not detected and corrected in the eye-tracking to video frame 
alignment procedure. This is a fixed error that affects all eye-tracking 
events in a session. b) The procedure to map frames to eye-tracking 
traces does not address small variations in frame rate (i.e., Eq.  1 
instead of Algorithm 1). This is a time-varying error which accumu-
lates over the duration of a recording (scatter points indicate the final 
accumulated error at the end of each recording session) and its rate 
of accumulation (slope of shaded lines in the background) depends 
upon the magnitude of the deviation in video frame rate is from 24 
fps. We observe deviations as small as 1 frame (41.67 ms) over a 
49 min recording for S6:#4 and as large as 432 frames (18 s) over a 
2 h recording for S4:#1
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that emerges in uncontrolled behavior in ecologically valid 
settings, and underscore the need for care when trying to 
assess generalizability of observed effects across individu-
als. A natural approach to address these challenges is to 
define summary variables or learn then using data driven 
approaches like multiset canonical correlation analysis 
(Nielsen, 2002). The efficacy of our methodology was 
validated in the context of real-world social vision by fixa-
tion locked neural activity (FRPs and FRBHA) for face 
and non-face fixations from ventral temporal electrodes, 
which show category selective neural signatures that were 
also observed in traditional visual neuroscience experi-
ments. Our initial findings also point to several potential 

opportunities for the enrichment of behavioral and physi-
ological data collection as well as questions of significant 
interest for clinical and translational research.

Enriching behavioral monitoring

Higher‑fidelity capture of visual behavior

From analyzing the data sets presented here, three natural 
opportunities to improve the capture of visual behavior 
are apparent. The first entails higher fidelity data acquisi-
tion for behavioral data streams that we already capture. 
The eye-tracking glasses used in this study feature a single 

Fig. 7  a) Cortical distribution of the 686 intracranial EEG elec-
trodes from six participants over different lobes across the left and 
right hemispheres per the Desikan-Killiany atlas (Desikan et  al., 
2006). b) Per-participant electrode distribution across different corti-
cal regions. c) Visualization of locations of electrodes from all par-
ticipants on an inflated cortical surface with ventral, lateral (left and 
right), posterior, and anterior views. Average fixation locked neural 
activity from electrodes sampled across all participants and recording 
sessions. The colors of the boxes correspond to the lobe of the corti-

cal location being sampled and the outlines denote the neural signal 
that is visualized (solid lines denote fixation response potentials (uV) 
and dashed lines denote fixation response broadband activity (a.u.)). 
The average fixation locked response to ≈ 1000 fixations of face (red) 
and non-face objects (black) each is shown for each cortical location. 
One notable result is that differences in the neural response between 
face and non-face fixations appear prior to fixation onset, suggesting 
predictive activity/“pre-saccadic preview”(Buonocore, Dimigen, & 
Melcher, 2020; Huber-Huber & Melcher, 2021)
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head-centered perspective (egocentric) video camera operat-
ing at 24 frames per second with a resolution of 1280 x 960 
pixels capturing a  60∘ (horizontal) by  46∘ (vertical) region 
of the field of vision, with 2 eye-tracking cameras operat-
ing at 60 Hz. Increasing the spatial resolution of the video 
camera in pixels, improving the temporal resolution of both 
eye-tracking and video, and capturing a larger fraction of the 
field of vision can aid in better tracking of visual behavior 
over a more complete portion of the field of vision. The sec-
ond opportunity requires adding a new data modality (head 
position) using an inertial measurement unit (IMU) that can 
provide tracking for the physical frame of reference corre-
sponding to each video frame. The third opportunity involves 
considering the addition of depth perception information for 
eye-gaze, which may potentially be supported by the addition 
of a second egocentric camera or LiDAR (Roche, De-Silva, 
Hook, Moencks, & Kondoz, 2021). A review of available 
research grade hardware (Cognolato, Atzori, & Müller, 2018) 
provides an account of the capabilities of several research 
grade devices, which can be evaluated for their suitability 
with respect to each of these possibilities.

Aural scene capture

Analysis and annotation of the auditory scene recorded 
using the built-in microphone embedded in the eye-track-
ing glasses reveals the potential advantages of capturing 
the aural scene as well as the limitations of having a single 
microphone physically attached to the patient. The addition 
of high-definition microphone arrays in the room would 
enable a complete recording the auditory scene, including 
the capture and source localization of all sound, including 
speech. In the context of social behavior, such an enriched 
capture offers the opportunity to go beyond speech and 
speaker detection and into speech recognition, and its con-
version to text (Ren et al., 2019; Hannun et al., 2014; Zhang 
et al., 2018), thereby allowing the use of language models 
that could add an additional behavior modality for semantic 
and sentiment analysis (Kiritchenko, Zhu, & Mohammad, 
2014).

From monitoring visual behavior to visual monitoring 
of behavior

Heavily monitored inpatient hospital environments like 
an EMU are typically equipped with cameras that allow 
clinical care teams to monitor patient behavior. The same 
video streams also capture the physical behavior of other 
individuals (e.g., doctors, nurses, family) who are present. 
These video streams hold the potential to add two additional 
behavioral modalities to the multi-modal data set we have 
described. The first modality is affective behavior, for the 
patient and other individuals present, extracted using facial 

analysis tools like OpenFace (Baltrusaitis et al., 2018). The 
second modality is physical behavior using tools like Open-
Pose (Cao, Hidalgo Martinez, Simon, Wei, & Sheikh, 2019) 
and DeepLabCut (Mathis et al., 2021; Lauer et al., 2021; 
Nath* et al., 2019; Mathis et al., 2018; Insafutdinov, Pish-
chulin, Andres, Andriluka, & Schiele, 2016), which may 
enable us to explore the relationship between physiology and 
behavioral phenomena like interpersonal synchrony (Dela-
herche et al., 2012).

Enriching physiological monitoring

As part of standard care, inpatient hospital environments 
feature the monitoring of a wide variety of physiological 
data like electrocardiograms, electromyograms, heart rate, 
pupillometry, blood pressure, neural recordings, pulse oxi-
meter readings, saliva samples, urine samples as well as 
clinical events. A richer physiological data set than the one 
presented here—one that contains a greater number of the 
physiological modalities—can combine powerfully with 
behavioral markers to allow pursuit of highly relevant clini-
cal and translational research questions.

As an example, attention and arousal are thought to 
be modulated by the locus coeruleus-noradrenergic (LC-
NE) system. Pupil size (Murphy, Robertson, Balsters, & 
O’connell, 2011; Murphy, O’connell, O’sullivan, Robertson, 
& Balsters, 2014; Alnæs et al., 2014) in absence of light-
ing change and heart rate (Azarbarzin, Ostrowski, Hanly, & 
Younes, 2014) are both considered proxies for locus coer-
uleus (LC) activity. A data set that fuses electrocardiograms 
and pupillometry with human intracranial EEG along with 
visual behavior recorded during real-world social interac-
tions, such as those between patient-participants and clini-
cians, can enable investigation of the neural correlates of 
arousal and attention in ecologically valid and clinically 
salient settings.

Ethical considerations

Ethical considerations presented by research involving 
video and audio recording of real-world behavior in a 
clinical environment include issues of privacy protec-
tion, data sharing and publication of findings, and chal-
lenges of obtaining informed consent (Berg, Appelbaum, 
Lidz, & Parker, 2001; Degenholtz, Parker, & Reynolds, 
2002). Studies involving such recording affect the privacy 
of not only participants, but also the visitors, clinicians, 
and researchers with whom they interact. We believed, 
and the institutional review board concurred, that with 
regard to those interacting with participants, this study 
met the criteria for waiver of informed consent because 
obtaining consent was impracticable and the study pre-
sented only minimal risks to visitors and others interacting 
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with participants. Instead, a notice was placed on the door 
of patient rooms to alert anyone entering the room that 
video and audio recordings would be acquired. Visitors 
could opt-out by not visiting, or by requesting that their 
visit not be one of the interactions recorded (perhaps by 
rescheduling the visit). Clinicians were not able to opt-
out of entering and being recorded, as they were required 
to provide standard care; however, they were informed in 
advance that the study was being conducted and could 
raise concerns about their presence and interactions being 
recorded. These concerns are addressed on a case-by-case 
basis. (One can imagine, for example, that for reasons of 
personal safety a clinician might not want her employ-
ment location to be made public through future publica-
tion/presentation of study findings.) Moreover, the faces of 
those interacting with participants are to be obscured in all 
tapes/photos that are either shared or published.

The risks to participant privacy were more substantial, 
and were simultaneously compounded and mitigated by the 
clinical environment. In comparison to home environments, 
inpatient settings afford a lower expectation of privacy, with 
hospital staff coming and going, rooms often left open to 
the hallway, and, in some cases, rooms being under video 
and audio monitoring for reasons of clinical care. Patients 
generally trade-off their privacy for the prospect of clinical 
benefit. Nevertheless, the study involved greater reduction 
in privacy and for reasons that afforded no direct benefit to 
the participants themselves.

Participants were asked to give informed consent to study 
participation, including the video and audio recording, col-
lection of physiological data, data sharing, and publication 
of study findings. Study procedures - putting on, calibrating 
and wearing the eye-tracking glasses - served to remind par-
ticipants that their behavior was being recorded. At the end 
of each recording session, patient-participants were asked 
to consider the events that happened and explicitly consent 
to the recording being used for research purposes. In addi-
tion, separate consent/release was acquired for use of the 
video and audio recordings in figures for publications or in 
presentations. This is especially important because the study 
took place in a particular clinical setting, and thus for par-
ticipants who are identifiable in the recordings, publication/
presentation of findings would reveal health-related infor-
mation about them - namely that they were in an Epilepsy 
Monitoring Unit.

The question of data sharing for recordings that are inher-
ently not de-identifiable is an additional issue to consider. 
Processed data (annotations with identifiable information 
removed, for example audio diarization and generic aspects 
of the computer vision annotations) could likely be shared 
openly as long as substantial care was taken to assure de-
identification. Sharing raw data is a bigger challenge and 
would require additional layers of consent such as consent 

procedures used when creating public behavioral databases, 
though even with this level of protection care must be taken 
given the potential sensitive nature of the recordings in a 
clinical environment. Thus, at most, well-curated snippets 
of raw data may be publicly shareable, and sharing of raw 
data would likely have to be done under IRB approval at 
both institutions with a data use agreement.

In this study, we sought to study natural real-world social 
interactions and thus avoided recording doctor–patient inter-
actions or clinical events. For studies that seek to understand 
doctor–patient interactions or clinical events, these protec-
tions and privacy concerns become even more acute, and 
participants should be reminded when acquiring both pre- 
and post-session consent that the video/audio recordings will 
include sensitive clinical information.

Implications for clinical and translational research

Real-world social interactions in an inpatient hospital setting 
include caregiver–patient interactions (Girard et al., 2021; 
Muszynski et al., 2020; Gert, Ehinger, Timm, Kietzmann, 
& König, 2021), which include interactions with neuro-
surgeons and epileptologists in the case of patients in the 
EMU. Capturing physiological and behavioral data corre-
sponding to these interactions offers a unique opportunity 
to understand how clinical decision making in these dyadic 
interactions is affected by different circumstances based 
on factors like the severity of clinical issues involved, the 
presence of family, the patients' mental health. A deeper 
understanding of the relationship between patient physiology 
and behavior that accompanies clinically important interac-
tions has profound implications for clinical practice, patient 
outcomes, and patient satisfaction (Korsch, Gozzi, & Fran-
cis, 1968). Lastly, the described workflow can be applied to 
better understand seizure semiology, which is the keystone 
for seizure localization and directly related to optimal post-
operative results in curative epilepsy surgery.

Neural basis of real‑world behavior

Ecological validity is essential to the investigation of social 
behavior in the real world. The experimental paradigm 
we describe here is part of an emerging effort to address 
this challenge (Matusz et al., 2019; Topalovic et al., 2020; 
Babiloni & Astolfi, 2014; Stangl et al., 2021; Hasson & 
Honey, 2012). Laboratory psychology and neuroscience 
allows for tightly controlled experiments that are crucial for 
the advancement of knowledge and many aspects of what 
is discovered in these tightly controlled experiments have 
external validity (Anderson, Lindsay, & Bushman, 1999). 
However, an ecological approach often yields results that 
differ from those of laboratory experiments (Matusz et al., 
2019; Holleman et al., 2020; Gibson, 1979; Zaki & Ochsner, 
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2009; Powell & Rosenthal, 2017). For example, recent stud-
ies have shown that eye gaze patterns for static faces or even 
movie faces are very different from those observed during 
actual face-to-face interactions (Kuhn, Teszka, Tenaw, & 
Kingstone, 2016; Macdonald & Tatler, 2018; Pönkänen, 
Alhoniemi, Leppänen, & Hietanen, 2011; Risko & King-
stone, 2015; Risko, Laidlaw, Freeth, Foulsham, & King-
stone, 2012; Risko, Richardson, & Kingstone, 2016) and 
real-world settings have been shown to activate broader 
brain networks than do artificial conditions (Camerer & 
Mobbs, 2017; Hasson & Honey, 2012; Nili, Goldberg, Weiz-
man, & Dudai, 2010). Moreover, the “naturalistic intensity” 
(Camerer & Mobbs, 2017) of an interaction with one’s loved 
ones or a doctor or a threatening stranger is a key element 
of real-world experience that cannot be fully captured in a 
laboratory. Basic aspects of the organization of the “social 
brain” (Wang & Olson, 2018) are unlikely to change in real-
world environments; for example regions of the brain that 
show face selectivity in the lab (Tsao & Livingstone, 2008; 
Boring et al., 2021; Kanwisher, 2000) remain face selec-
tive in natural conditions (Fig. 7), as expected given that 
disruption to these regions cause real-world face processing 
abnormalities (Barton, Press, Keenan, & O’Connor, 2002; 
Parvizi et al., 2012; Zhang, Liu, & Xu, 2015). However, 
important aspects of how these regions code and process 
social information are likely to reflect real-world processes 
that differ from the laboratory environment. At a minimum, 
it is important to validate laboratory findings in real-world 
settings to determine the generalizability of models derived 
from controlled experiments (Anderson et al., 1999).

The complexity of studies in the real world is that there is 
enormous uncontrolled variability in natural environments. 
However, modern computational studies, such as those in 
artificial intelligence and computer vision, show that real-
world variability can be well modeled with sufficient data. 
Our paradigm is designed to enable real-world neuroscience 
by facilitating the collection and processing of large datasets 
combining behavior, physiology, and neural recordings that 
can be analyzed using modern computational techniques to 
test hypotheses about social behavior and its neural bases in 
natural environments.

The movement towards studying the neural basis of real-
world behavior has also been seen in recent studies with 
non-human subjects, enabled by the potential of telemet-
ric recordings that allow for neural activity to be recorded 
during natural behavior (Mavoori, Jackson, Diorio, & Fetz, 
2005; Roy & Wang, 2012; Fernandez-Leon et al., 2015). 
Parallel studies of natural neuroscience in non-human pri-
mates have the potential to allow for a deeper understand-
ing of the cellular-to-systems mechanisms for basic pan-
specific aspects of social behavior and cognition. Advances 
in computer vision provide the opportunity to annotate non-
human animal behavior and in relation to details of a natural 

environment (Mathis et al., 2018) just as they do in human 
studies. Recent work has also demonstrated that restraint-
free, real-world eye-tracking is also possible in non-human 
primates (Hopper et al., 2020; Ryan et al., 2019). Thus, the 
approach described in this work could be adapted to paral-
lel studies in non-human primates, leveraging the higher-
resolution methods that are possible to use in non-human 
primates, to allow a cellular-to-systems understanding of the 
neural basis of real-world cognition and perception.

Conclusions

We view the approach outlined above as part of an ongo-
ing paradigm shift in approach towards studying real-world 
behavior and cognition and their neural underpinnings. Real-
world “naturalistic intensity” and ecological validity is par-
ticularly important for studying social interactions and their 
neural correlates. Our current methodology augments eye-
tracking and behavioral monitoring in experimental record-
ing sessions in the EMU with neurophysiological monitoring. 
Extending behavioral monitoring to unscripted and more real-
world contexts can enable the collection of multi-modal data 
sets that are large enough for cutting edge machine learning 
techniques like deep learning to be pressed into service to 
learn relationships between behavior and physiology. Com-
bined behavioral and physiological data can be used both for 
studying basic cognitive phenomenon and can also be used to 
find markers that are predictive for clinically significant events 
like seizures, cardiac events, respiratory events, and others.
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