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Abstract
Manual behavioral observations have been applied in both environment and laboratory experiments in order to analyze and 
quantify animal movement and behavior. Although these observations contributed tremendously to ecological and neuro-
scientific disciplines, there have been challenges and disadvantages following in their footsteps. They are not only time-
consuming, labor-intensive, and error-prone but they can also be subjective, which induces further difficulties in reproducing 
the results. Therefore, there is an ongoing endeavor towards automated behavioral analysis, which has also paved the way 
for open-source software approaches. Even though these approaches theoretically can be applied to different animal groups, 
the current applications are mostly focused on mammals, especially rodents. However, extending those applications to other 
vertebrates, such as birds, is advisable not only for extending species-specific knowledge but also for contributing to the 
larger evolutionary picture and the role of behavior within. Here we present an open-source software package as a possible 
initiation of bird behavior classification. It can analyze pose-estimation data generated by established deep-learning-based 
pose-estimation tools such as DeepLabCut for building supervised machine learning predictive classifiers for pigeon behav-
iors, which can be broadened to support other bird species as well. We show that by training different machine learning and 
deep learning architectures using multivariate time series data as input, an F1 score of 0.874 can be achieved for a set of 
seven distinct behaviors. In addition, an algorithm for further tuning the bias of the predictions towards either precision or 
recall is introduced, which allows tailoring the classifier to specific needs.
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Introduction

Neuroscience has taken a breathtaking ascent within just a 
few decades (Cobb, 2020). Despite countless success stories 
at the molecular, cellular, and clinical levels, the explanation 
of behavior by reverse engineering of neural components 
or by other bottom-up means has fallen short (Peebles & 
Cooper, 2015; Jonas & Kording, 2017). Instead, behavior 

itself has also to be analyzed with the same painstaking 
accuracy as done in other neuroscientific fields (Tinbergen, 
1963; Krakauer et al., 2017). As concisely phrased by Jerry 
Hirsh, “Nothing in neurobiology makes sense, except in the 
light of behavior” (Hirsh, 1986).

The detailed analysis of animal behavior also paved the 
way to modern experimental psychology and still greatly 
contributes to various psychological insights (Thorndike, 
1898; Pavlov, 1927; Skinner, 1938; Kilian et  al., 2003; 
Vallortigara et al., 2005; Zentall et al., 2013; Du et al., 
2016; Anselme, 2021). Ecology-driven research fields are 
particularly interested in the evolutionary roots of animal 
behavior, which can be affected by external factors such as 
limitations of nutrients, territories, or mates (Brown, 1969; 
Baker, 1972; Gill & Wolf, 1975, Aragón et al., 2003; Arak, 
1983; Bailey, 2003; Brown et al., 2006; Bentsen et al., 2006; 
Anselme & Güntürkün, 2019), whereas experimental and 
molecular biology combine their methods with behavioral 
observations to investigate medical conditions such as 
Parkinson’s disease and early life stress (Kravitz et al., 2010; 
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Mundorf et al., 2020). In addition, neuroscientists co-analyze 
behavioral paradigms in their experimental designs to 
identify the functional relevance of their neurobiological 
findings (Miri et al., 2017; Caggiano et al., 2018; Branco & 
Redgrave, 2020; Packheiser et al., 2021).

In order to quantify animal movement and behavior, 
both natural-habitat and laboratory experiments have con-
tinuously benefitted from on-site manual behavioral obser-
vations (von Frisch, 1967; Lindburg, 1969; Gallup, 1970; 
Calhoun, 1970; Altmann, 1974; Anschel & Talmage-Riggs, 
1977; Pepperberg et al., 1995; Pollok et al., 2000; Reiss & 
Marino, 2001; Dally et al., 2006; Prior et al., 2008). Despite 
all those pioneering contributions, certain challenges and 
disadvantages follow in the footsteps of manual behavioral 
observations: They are not only time-consuming and labor-
intensive but also have a grain of subjectivity, which might 
lead to difficulties in reproducing the experiments (Dell 
et al., 2014). The issues resulting from subjectivity may be 
mitigated by using camera video recording systems. Unlike 
a direct observation, a video recording ensures the capture 
of complete (within the captured dimensions) and detailed 
behavioral patterns during the observation period (Tosi 
et al., 2006). However, analyzing video recordings using a 
traditional approach involving pencil, paper, and stopwatch 
is time consuming as well. Furthermore, missed detections 
are still possible due to fluctuating attention of the observer 
(Anderson & Perona, 2014; Gomez-Marin et al.,2014; Arac 
et al., 2019).

Besides all these challenges in analyzing behavior, it 
should not be forgotten that behavior in itself is a complex, 
dynamic, and multi-dimensional domain (Gomez-Marin 
et al., 2014), which makes exploring innovative approaches 
a sensible strategy. At this stage, the recent technological 
developments in the field of computer vision in conjunction 
with a newfound interest in artificial intelligence applications 
have been supporting researchers: Less time and effort is 
needed to produce precise datasets of animal movement 
and behavior and the tracking of the animals can be done 
automatically, which minimizes the amount of human labor 
and the potential for missed detections (Dell et al., 2014; 
Bello-Arroyo et al.,2018). Consequently, researchers have 
been working with different commercial-proprietary and 
open-source software for the automated analysis of animal 
behavior with a focus on a particular animal model or 
different sets of animal groups (commercial-proprietary- 
EthoVision: Noldus et al., 2001, VideoTrack: ViewPoint 
Behavior Technology, ANY-maze: Stoelting, Wood Dale, 
IL, USA; open-source- SwisTrack: Lochmatter et  al., 
2008; Ethowatcher: Crispim Junior et al., 2012; JAABA: 
Kabra et al., 2013; idTracker: Pérez-Escudero et al., 2014; 
DeepLabCut: Mathis et al., 2018; MouBeAT: Bello-Arroyo 
et al., 2018; UMATracker: Yamanaka & Takeuchi, 2018; 
Tracktor: Sridhar et al., 2019; TRex: Walter & Cousin, 

2020). These software products have not only provided the 
foundation for quantitative and precise results like velocity, 
body-orientation, trajectory, and time spent in a particular 
area (Evans et al., 2015; Singh et al., 2016; Dankert et al., 
2009; Luyten et al., 2014, Wittek et al., 2021), but have 
also established the groundwork for automated analysis 
of measuring complex behaviors such as anxiety, stress, 
aggressiveness, risk assessment, shoaling, and spatial 
learning in different animal groups (Rodríguez et al., 2004; 
Choy et al., 2012; Piato et al., 2011; Green et al., 2012; 
Miller & Gerlai, 2012; Nema et al., 2016; Peng et al., 2016; 
Mazur-Milecka & Ruminski, 2017; Mundorf et al., 2020). 
Extending those applications to birds is advisable not only 
for extending the species-specific knowledge but also 
for contributing to the bigger picture of the evolutionary 
process. Most importantly, studies on pigeons have a long 
tradition in experimental psychology and importantly have 
contributed to insights about learning and memory (Vaughan 
& Greene, 1984; Troje et al., 1999; Fagot & Cook, 2006; 
Pearce et al., 2008; Wilzeck et al., 2010; Rose et al., 2009; 
Scarf et al., 2016; Güntürkün et al., 2018; Packheiser et al., 
2019). However, so far, the application of these automated 
analyses on birds is still limited. But there is a different 
species, which lends itself to a closer investigation with 
regards to automated behavior classification: Homo sapiens. 
Existing applications from industry and academia in the 
domain of human–computer interaction and computer vision 
have spun up a vast array of literature, mathematical models, 
and software approaches for human activity recognition, 
which should be further investigated in order to establish 
a baseline.

The increasingly large amount of data acquired by 
different technical devices and sensors, some of them 
ubiquitous to today’s human life (e.g., “smart devices” 
such as phones and watches), resulted in an explorative 
renaissance of machine learning methods by leveraging 
image- as well as sensor-data (raw or pre-processed) 
for human activity recognition. Various classification 
algorithms such as support-vector machine, hidden Markov 
model, decision tree, random forest, k-nearest neighbors, 
logistic regression, and stochastic gradient descent have 
been used to successfully analyze and classify human 
physical activity (Mannini & Sabatini, 2010; Anguita et al., 
2012; Paul & George, 2015; Kolekar & Dash, 2016; Xu 
et al., 2017; Nematallah et al., 2019; Baldominos et al., 
2019). In addition to these traditional machine learning 
methods, the emergence and widespread availability of new 
hardware allowing the use of deep learning architectures 
has motivated a tendency towards using deep learning 
approaches for human activity recognition as well. These 
include recurrent neural networks (RNNs) (Murakami & 
Taguchi, 1991; Murad & Pyun, 2017; Carfi et al., 2018; 
Koch et al., 2019), long short-term memory (LSTM) (Chen 
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et al., 2016; Singh et al., 2017; Pienaar & Malekian, 2019) 
and convolutional neural networks (CNN) (Wang et al., 
2019; Lee et al., 2017; Gholamrezaii & Taghi Almodarresi, 
2019; Naqvi et al., 2020; Cruciani et al., 2020; Mehmood 
et al., 2021; Mekruksavanich & Jitpattanakul, 2021).

In light of this, the current study aims to compound the 
technical knowledge acquired in both human and non-human 
domains in order to establish automated bird behavior clas-
sification techniques. We used DeepLabCut (DLC: Mathis 
et al., 2018) as a markerless pose estimation tool to procure 
multivariate time series data. As a further step, we devel-
oped a module named Winkie (a name which was inspired 
by a Dickin Medal owning pigeon of the same name that 
had assisted in the rescue of an aircrew during the Second 
World War). This module consists of submodules for pre-
processing and normalizing of the DLC data. Afterward, 
we applied and compared different machine learning and 
deep learning architectures to classify pigeon behaviors like 
eating, standing, walking, head shaking, tail shaking, preen-
ing, and fluffing. As a machine learning architecture, random 
forest gave a high weighted F1 score (0.81) over all behav-
iors and showed good performance for behaviors that were 
stable along spatial and temporal dimensions (such as eating, 

fluffing, preening, standing). The deep learning architecture 
InceptionTime, as a one-dimensional convolutional neural 
network (CNN), also demonstrated high overall performance 
(0.87). However, the particular performance for the highly 
dynamic behaviors such as head shake and tail shake were 
increased substantially in comparison to random forest.

Method

Using the Winkie module as part of a research workflow 
consists of a sequential multi-step process as shown in 
Fig. 1A. The same process is used for evaluating its perfor-
mance itself and each step will be discussed in the further 
sections.

Data acquisition and manual observation

Eight naïve adult homing pigeons (Columba livia) from 
local breeders were maintained at 85–90% of their free-
feeding body weight throughout the experiment, while water 
was accessible ad libitum. The experiment was conducted 

Fig. 1   Data preparation. A The Winkie module consists of a sequen-
tial multi-step process for pigeons. B The tracked body points (head, 
beak, left-right neck, body, left up-middle-down wing, right up-

middle-down wing, tail). C The number of frames per behaviors 
extracted after applying LabelAssistant. D The split distribution of 
fivefold non-shuffle cross-validation
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in a wooden box with a feeder located in the middle part. 
All procedures followed the German guidelines for the care 
and use of animals in science and were in accordance with 
the European Communities Council Directive 86/609/EEC 
concerning the care and use of animals for experimenta-
tion. They were also approved by Ruhr University Bochum, 
Germany.

Depending on their activity level in the experiment, 
pigeons received between 10 and 20 (10 min each) sessions 
in which they could freely move and consume grains. For 
instance, while highly active individuals were trained for 
20 sessions to increase the possibility of dynamic behavior 
occurrence, the stabile individuals received ten sessions. 
Each session was recorded with a GoPro HERO7 at 119.88 
frames per second with resolution of 1280 x 960 pixels. Ini-
tially, the videos were manually checked in detail to detect 
any occurrence of individual behaviors as described below 
and shown in Suppl​ement​ary Video1:

Eating: Consuming the food in the feeder or food dropped 
on the experiment platform.
Standing: Remaining at the same location for an indeter-
minate period.
Walking: Changing the location.
Head Shaking: Moving the head along a curve in fluent 
and repeated motion.
Tail Shaking: Moving the tail along a curve in fluent and 
repeated motion.
Preening: Maintenance behavior that involves the use of 
the beak to reposition feathers on different parts of the 
body. A preening event started each time when the beak 
touched the body and finished once the beak lost contact 
with the body.
Fluffing: Partial or total extension of one or both wings 
and ruffling feathers. Additional flapping of wings might 
occasionally occur.

The observer noted the time slice (starting and ending 
timecode) in which the behaviors occurred.

Pre‑processing video data

Markerless pose estimation and manual 
observation verification

Video-tracking was performed using the machine-learning-
based tracking software DeepLabCut (DLC: Mathis et al., 
2018). Since we were interested in behaviors in which dif-
ferent body parts are actively involved, we tracked different 
points from the pigeon body as shown in Fig. 1B (head, 
beak, left-right neck, body, left up-middle-down wing, right 
up-middle-down wing, tail). The data acquired via DLC 

processing consist of multivariate time series data, which 
is a series of location values per body part over a period 
of time. For instance, a 10-min video recording results in 
approximately 71,928 frames (600 s x 119.88 fps). In this 
sense, our usage of DLC can be understood as a lossfull, but 
semantically enriched and transformed, data reduction step: 
For each frame, we go from raw (decompressed) 1280 x 960 
x 8 bit = 9.5 MBit to 10-body parts x 2 x 32 bit = 640 bit. 
This comes down to a reduction factor on the bandwidth of 
the input data of roughly 15,000. In total, this process gen-
erated multivariate time series data for 10,424,241 frames.

In order to ensure the feasibility of detecting behaviors 
exclusively from the multivariate time series data, it was 
necessary to check whether a human observer can identify 
the behaviors mentioned above on the DLC as well. There-
fore, we developed a module called Pigeon Animator for 
visualization of time slices with frame precision. In addition 
to verifying the behaviors and performance of the tracking, 
we narrowed the time slices by replacing the timecodes with 
frame numbers (see Suppl​ement​ary Video2).

Labeling

After applying the verified labels of the manual observer 
to the individual frame data, non-labeled frames were 
removed from the data set, which led to 865,548 remain-
ing labeled frames. In order to make this process less error-
prone, we developed a custom module LabelAssistant that 
would ensure the integrity of the labels with regards to the 
DLC output and safeguard against specific error classes 
(e.g., ensuring consistency in the label names). As shown in 
Fig. 1C, we ended up with an imbalanced data set, especially 
since the natural frequency of occurrence of the behaviors is 
already unbalanced. The challenge of class imbalance will 
be discussed in the following sections in more detail.

Transformation and normalization 
of two‑dimensional Euclidean input data

DLC tracks absolute coordinates, while the behavior should 
be considered by looking at the data from a relative stand-
point in order to simplify classification and pattern matching 
(e.g., for hand gesture analysis: Do et al., 2020). In DLCIm​
porter, we developed parameterizable functions for pre-pro-
cessing the DLC data by normalizing it such that the body 
is translated into the origin (and the other parts translated 
accordingly, thereby representing the relative position to the 
body) while rotating all points such that the vector between 
body and the middle of the neck (basically the “spine”) 
becomes parallel to the y-axis. Since the body is in the ori-
gin, the spine is thereby implicitly located along the y-axis.

https://osf.io/9q7ku/
https://kiview.github.io/winkie/pigeon_animator.html
https://osf.io/bh7j3/
https://kiview.github.io/winkie/label_assistant.html
https://kiview.github.io/winkie/dlc_importer.html
https://kiview.github.io/winkie/dlc_importer.html
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For each frame, the displacement vector s is defined as:

and each body part bp is translated using s as the transla-
tion vector in the translation function Tv:

In addition, a new body part middle neck is added which 
for our data is defined as:

Based on this vector, the necessary rotation rotnorm as the 
angle in degree between the positive x-axis and the vector 
vmiddle neck is calculated:

Using this angle, the rotation matrix Rnorm was con-
structed and applied on all body parts:

Machine learning and deep learning 
architectures for behavioral classification

As discussed in the Introduction section, there is a plethora 
of machine learning and deep learning architectures that can 
be used to classify human activity and behaviors, each with 
its own strength and weaknesses for specific permutations 
of domains and input data. In addition, the field is constantly 
evolving, with new architectures and improved methods 
emerging continuously. In order to demonstrate the general 
feasibility of our approach, we selected random forests as a 
machine learning architecture and InceptionTime as a deep 
learning architecture.

The raw features that were used in both random forest and 
InceptionTime were defined according to their tracking like-
lihood values as given by DLC, which was an indication of 
the overall stability of the tracked body point. Accordingly, 
the x and y pixel coordinates of ‘head, left-right neck, body, 
left up-middle-down wing, right up-middle-down wing, tail’ 
were used as features, while ‘beak’ was excluded since track-
ing was unstable due to the frequent occlusion of the beak 
by the pigeon itself.

Overall generalization performance of fitted models is 
measured using five-fold non-shuffled cross-validation-score 
(Fig. 1D) as the arithmetic mean (10) of the weighted F1 
score (9), to cater for imbalances of classes in the data set. 
F1 score (8) is an established scoring mechanism for meas-
uring the accuracy of an information retrieval system and 

(1)s = (−coordinate(body, x),−coordinate(body, y))

(2)TV (bp) = bp + s

(3)vmiddle neck = vleft neck − vright neck

(4)rotnorm = arctan2
(
vmiddle neck x, vmiddle neck y

)
×
180

�

(5)Rnorm =

[
cos rotnorm − sin rotnorm
sin rotnorm cos rotnorm

]

is defined as the harmonic mean of precision (6) and recall 
(7) (Rijsbergen, 1979; Chinchor, 1992). Although most of 
the literature studies have opted to shuffle data as part of the 
train-test split, due to the time series nature of the data at 
hand containing implicit dependencies between consecutive 
data points, we decided against it, since this would lead to 
unrealistically good test scores (since very similar data can 
end up in the train- and test-set). This problem is further 
amplified by the fact that the original video recordings were 
performed using a high framerate of 119.8 FPS. In addi-
tion, the last fold (first 80% as training-set and last 20% as 
test-set) was used to show the classification performance of 
individual behaviors.

All evaluations were performed using an AMD Ryzen 
9 5950X @ 3.4–4.9 GHz, 32GB RAM, NVIDIA GeForce 
RTX 2070 Super 8GB RAM, running on Microsoft Win-
dows 10 Pro Build 19043. The Python machine-learning 
library scikit-learn (Pedregosa et al., 2011) was used for the 
random forest classifier and overall performance metrics 
while the deep learning stack of tsai, fast.ai and PyTorch 
was used for InceptionTime (Paszke et al., 2019; Oguiza, 
2020; Howard & Gugger, 2020).

Decision Trees and Ensemble Methods (Random 
Forest)

A decision tree in the context of machine learning can be 
understood as a binary tree with each node in the tree split-
ting the source set based on an inferred criteria of an input 
feature, leading to leaves containing the resulting class or 
a specific probability distribution of the classes. Decision 
trees used as classification trees have been shown to be an 
intuitive way to classify and label objects and if they are 
trained on high-quality data, they ensure very accurate pre-
dictions (Caruana & Niculescu-Mizil, 2006; Kingsford & 

(6)precision =
True Positive

True Positive + False Positive

(7)recall =
True Positive

True Positive + False Negative

(8)F1 =
2

precision−1 + recall−1

(9)F1weighted =
1

total_targets
×

n_classes∑

i=1

F1i × targetsi

(10)cv5 =
1

5

(
5∑

i=1

F1weighted(i)

)
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Salzberg, 2008). The intuitive character of decision trees 
can be demonstrated by giving an example of how a human 
might intuitively build one: For example, if you want to con-
struct a decision tree to identify the owner of a chirping 
sound, you can narrow down the possible answers by asking 
several consecutive and potentially dependent questions for 
binary splitting: Which birds are abundant during the current 
season, which ones are songbirds, is it night or day, etc. Each 
question will narrow the options and you will go on ask-
ing these questions until you reach a highly certain answer. 
Depending on the data used as input (the features that can 
be extracted from this input) and the possible answers to a 
sequence of questions (nodes), the resulting leaf node might 
contain a clear-cut answer (it is a Jay), or a distribution of 
class predictions (70% Kookaburra, 30% Lyrebird).

To further improve the predictive performance of 
machine learning algorithms, ensemble learning can be used 
to combine multiple different models into a single model 
(Dietterich, 2000; Peterson & Martinez, 2005). Random for-
ests are an ensemble learning method for classification that 
makes use of a set of different decision trees and is shown 
to generally outperform decision trees (Ho, 1995; Piryonesi 
& El-Diraby, 2020).

For our model, the number of maximum features per split 
maxf was defined as:

A good hyperparameter value nestimators for the number of 
trees in the forest was determined by calculating the valida-
tion curve for the set sestimators:

A reasonable number of trees considering the tradeoff 
between accuracy and time efficiency was selected as the 
hyperparameter to detect the performance of individual behav-
iors. In addition, the learning curves for different training set 
sizes were evaluated to determine the correlation between 
training set size, classification performance, and training time.

The model was created by segmenting the time series 
data into windows of different sizes using a sliding window 
approach with a step size of 1. The effect of different sizes 
on the performance was evaluated using a validation curve 
with the number of consecutive frames included in the input 
vector as a hyperparameter:

In order to combat the class imbalance, to which decision 
trees are sensitive, all models were trained using balanced 
class weights, with the weight wc for a class c adjusted to be 
inversely proportional to class frequencies in the input data 
(Sun et al., 2009):

(11)maxf = sqrt
(
nfeatures

)

(12)sestimators = {x ∈ ℕ | 1 ≤ x ≤ 100}

(13)dimvinput
=
(
nfeatures × windowsize, 1

)

InceptionTime

Through AlexNet winning the visual recognition challenge 
competition (ImageNet) in 2012, deep CNNs have been 
established as a state-of-the-art technique for domains such 
as image recognition, object detection or natural language 
processing, often reaching human levels of performance 
(Ren et al., 2015, Fawaz et al., 2019). Accordingly, Fawaz 
et al. (2020) propose InceptionTime to be an AlexNet equiva-
lent for time series classification, in which an ensemble of 
deep CNN models (inception modules) is used for classifica-
tion of multivariate time series data.

The optimal depth of the network depends on the lengths 
of patterns contained in each time series segment. In order 
to evaluate the effect of the depth hyperparameter on the 
model performance, we calculated the validation curve 
for the parameter range 1–6, with 6 being the default for 
InceptionTime.

Similar to the random forest, the time series was seg-
mented using a sliding window approach with step size of 
1. The window size was kept at 16 frames, which seemed 
suitable to capture not only long patterns, but also sudden 
and short ones.

The fitting of the models was done using one-cycle super-
convergence training for learning rate adaption as dynamic 
hyperparameter tuning (Smith & Topin, 2018). Mock train-
ing with cyclical learning rates was used to determine a good 
maximum learning rate (Smith, 2017), with the steepest 
point of the resulting learning rate curve being selected as 
the maximum learning rate.

According to Smith (2018), although historically small 
batch sizes have been recommended for regularization 
effects, when applying a one-cycle learning rate schedule 
(as we do) a high batch size can be used to minimize compu-
tational time, while still achieving high performance. With 
regards to our available GPU memory, a batch size of 1024 
was selected.

Post processing

Applying any of the aforementioned models (on novel or 
existing data) returns a probability vector xp with dim(xp) = 
nclasses, where nclasses is the total of different classes, for each 
classified frame, respectively each classified time window. 
In addition, the sum of all vector elements is always equal 
to 1. Conservatively, applying:

(14)wc =
total number of observations

number of classes × number of observationsc
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will yield the predicted behavior b at frame f.
For binary classification models, traditionally dif-

ferent threshold values for selecting a prediction (com-
pared to 0.5) can be applied to further tune the results 

(15)b(f ) = argmax
(
xp(f )

) with regards to precision and recall, depending on 
the needs of the application (Fielding & Bell, 1997). 
Inspired by these approaches, we propose an algorithm 
that allows individual thresholds for behavior tuples in 
a multi-class model:
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It is up to the user how those tuples are defined or opti-
mized. However, we will show the effect of some a-posteri-
ori chosen example values in the results section.

Results

Animal tracking

DLC training was performed using 1,030,000 iterations, 
achieving a root mean square error (RMSE) over all tracked 
body parts of 2.53 pixels for the train set and 6.41 pixels 
for the test set. Using a prediction cutoff value of 0.6, the 
train error remained the same and the test error could be 
reduced to 6.16 pixels. For our given video resolution of 
1280 x 960 pixels, this translates to roughly 5.6 mm in the 
physical world.

Random forest performance

The validation curve for the nestimators hyperparameter was 
calculated and analyzed, revealing a sufficiently good cross-
validation score of 0.79 for 20 trees, with the maximum 
score of 0.81 occurring for 95 trees (Fig. 2A). Based on this 

finding, the learning curve for 20 trees was calculated, show-
ing a continuous increase of the cross-validation score as a 
function of training-set size. However, the learning curve 
seems to reach a saturation point, for the maximum amount 
of available training data in our case (Fig. 2B). Further 
window size evaluation using a validation curve revealed 
that the overall performance was not strongly affected by 
the size of the window (Fig. 2C: F1single frame = 0.807 ± 
0.054, F12 frames = 0.806 ± 0.042, F14 frames = 0.813 ± 0.038, 
F18 frames = 0.827 ± 0.038, F116 frames = 0.835 ± 0.031, 
F132 frames = 0.850 ± 0.031, F164 frames = 0.852 ± 0.043). 
Since sudden behaviors occurred in short bursts of roughly 
16 frames, we further compared the single frame and 16 
frames performance in detail for individual classes as shown 
in Fig. 3. Both models gave high classification performance 
for the behaviors that were stable along spatial and temporal 
dimensions (meaning the behavior can be accurately classi-
fied by assessing the posture in a single frame). The individ-
ual behaviors’ classification performance remained mostly 
similar, except for preening and walking. While preening 
detection was slightly increased for 16 frames, walking 
detection was slightly decreased. Note that our transforma-
tion and normalization steps on the input data remove char-
acteristics of the walking movement, since the coordinates 
are transformed into a more stable position.

Fig. 2   Random forest evaluation. A Validation curve for random forest for number of trees as hyperparameter. No substantial improvement of 
score for n>20. B Learning curve and performance for different amounts of training examples. C Validation curve for different window sizes
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InceptionTime performance

The validation curve for the depth hyperparameter indi-
cated no significant effect of depth on the generalization 
performance as seen in the cross-validation score (Sup-
plementary Figure 1). In order to reduce the complexity 
of the model and reduce the potential for overfitting, the 
smallest depth value of 1 with a F1 cross-validation score 
of 0.874 ± 0.031 (which was higher than the best scores 
achieved using random forest) was selected for the fur-
ther evaluation. By calculating the confusion matrix on the 
last fold, similarly to random forest a good performance 

was acquired for behaviors that were stable along spatial 
and temporal dimensions. In addition, an increase in per-
formance, compared to random forest, was also achieved 
on highly dynamic behaviors such as head shake and tail 
shake (Fig. 4A and Fig. 4B) (recallhead shake 0.064 vs. 0.36 
and recalltail shake 0.16 vs. 0.54).

Post processing and model application

When analyzing the InceptionTime confusion matrix, we 
observed a prevalent confusion between ‘head shake - stand-
ing’ and ‘preening - standing’. Based on this observation, we 

Fig. 3   Confusion matrix for random forest. Confusion matrix for random forest with single frame (left) and sixteen frames (right) windows size 
(top absolute, bottom relative)
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defined the dynamic tuple thresholds as follows: [(standing, 
head shake): 0.2, (standing, preening): 0.1]

This changed the predictions in favor of precision (head 
shake increased to 0.63 and preening increased to 0.78) but 
led to worse recall (head_shake dropped to 0.08 and preen-
ing dropped to 0.57). Therefore, the tuple threshold needs 
to be adjusted to personal needs, e.g., is it more important 
to not miss any potential behaviors, or to reduce the number 
of false positives?

There are different possibilities to evaluate the output 
of the model for new data. While it is possible to directly 
work with the model output in a quantitative way, it seems 
desirable to also acquire forms of visualization that lend 
itself better to some form of human “quality control”. It is 
therefore possible to render the original videos with applied 
predictions (Fig. 5A, Suppl​ement​ary Video3) or visualize 
the predicted behaviors over time in the form of an ethogram 
(Fig. 5B). Both techniques can also be effectively used in 
conjunction. By assessing the ethogram, a user is able to 
gather a general overview of the occurring behaviors at a 
specific point in time at a quick glance. Interesting (or suspi-
cious) looking predictions can be counter-checked using the 
rendered videos containing the predictions as a text overlay. 
Especially in combination with tuned tuple thresholds, this 
can lead to a process that, while not fully automated, signifi-
cantly augments the previous manual and laborious process.

Discussion

We have demonstrated the feasibility of adopting exist-
ing machine learning classification approaches for pigeon 
behavior by using a simple single camera setup without fur-
ther tracking equipment. To further improve the usability 
of our approach, we have developed and released the open-
source software library Winkie to act as a starting point for 
future improvements and developments. Winkie is usable 
with commercial off-the-shelf computer hardware. While it 
might be possible to perform the classification directly on 
the video streams (Bohnslav et al., 2020), our software uses 
multivariate time series data as created by DLC to reduce 
the size and complexity of the video input data. Therefore, 
our software positions itself inside an ecosystem of emerg-
ing de facto industry standards of the scientific open-source 
community. Furthermore, users can configure the software 
depending on their needs, to change its bias between preci-
sion and recall for specific pairs of behaviors.

Although there is a movement among passionate psy-
chologists and neuroscientists to augment their experimental 
paradigms with automated behavioral tracking (Lochmatter 

et al., 2008; Crispim Junior et al., 2012; Kabra et al., 2013; 
Pérez-Escudero et al., 2014; Mathis et al., 2018; Bello-
Arroyo et al., 2018; Yamanaka & Takeuchi, 2018; Sridhar 
et al., 2019), existing automation tools generally lack sup-
port for analyzing bird-specific behaviors. Besides leading 
to significant amounts of time savings, our software aimed to 
extend the species-specific knowledge as a catalyst towards 
the initiation of the classification of bird behavior and to 
inspire new approaches (Miller, 1988). Considering the chal-
lenges to combine behavioral and neurophysiological meas-
urements, we focused on developing a software that can be 
used with raw behavioral data being captured from simple 
hardware setups, such as single camera video recordings.

The relevance of our approach becomes visible when con-
centrating for example on behaviors like preening, scratch-
ing, or head shaking, which are typical avian maintenance 
and comfort actions (Cotgreave & Clayton, 1994). However, 
encountering a stressful situation induced by a competitor or 
predator can elevate the occurrence of these activity patterns 
(Delius, 1967, 1988; Fernández-Juricic et al., 2004; Wittek 
et al., 2021). Similarly, preening rates also increase after 
injections of dopamine or adrenocorticotropic hormone, 
with the latter also showing increased head shaking (Delius 
et al., 1976; Delius, 1988; Acerbo, 2001; Kralj-Fiser et al., 
2010). Thus, these actions can serve as a behavioral readout 
of social conflicts and/or neural processes. But although a 
vast variety of research has reported these behaviors (Miller, 
1988; Moyer et al., 2003; Prior et al., 2008; Clary & Kelly, 
2016; Kraft et al., 2017; Wittek et al., 2021), there has been 
no exact classification and automated analysis of them so far. 
By using our approach, it is easily possible to disambiguate 
and quantify different kinds of reactions of the animal along 
the time frame in stressful contexts and/or when injected 
with various drugs. Thus, we anticipate that this open-source 
library, and other developments inspired by it, will pave the 
way for a more quantitative behavioral analysis of different 
bird species and beyond.

Future directions and challenges

In this manuscript, we demonstrated how machine learning 
systems can support classical experimental-psychological 
and ethological approaches by detecting and quantifying 
avian behavior. It is important to note that future studies 
should bear in mind that not only the amount but also the 
sequence of behavior contains highly relevant insights. 
Besides stereotypical behavioral patterns recorded by clas-
sical ethological approach, there are also subpatterns which 
might be of interest. This can be described with an ontol-
ogy in which patterns are an aggregate of subpatterns. For 
example, head shake can be defined as a continuous and 
alternating sequence of the head-move-left and head-move-
right subpatterns that can remain undetected by manual 

Fig. 4   Confusion matrix for InceptionTime. A Confusion matrix for 
InceptionTime with absolute values. B Confusion matrix for Incep-
tionTime with relative values

◂

https://osf.io/5saq9/
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observation or supervised learning, simply because they 
are ignored or unknown (Luxem et al., 2020). One promis-
ing solution to detect such subpatterns and possible behav-
ioral sequences is using unsupervised machine learning 
techniques. Besides, in order to understand the functional 
framework of these behavioral sequences, their correlation 
with neural activity patterns is easy to implement. In addi-
tion, for the behaviors that are hard to capture in two dimen-
sions due to occlusions resulting from the camera perspec-
tive, three-dimensional tracking should be considered (Nath 
et al., 2019).

We have used the DLC output as-is, without applying 
the filters available in DLC or implementing our own. The 
lack of filtering might lead to glitches in tracking and ana-
tomically impossible movements. Besides using the avail-
able DLC filters or other generic approaches for smoothing 
such as Kalman filtering (Kalman, 1960) or applying the 
Ramer–Douglas–Peucker algorithm (Wu & Marquez, 2003), 
tracking can be also smoothed and aliased by formulating 

anatomical constraints for the tracked skeleton through 
inverse and forward kinematics (Halvorsen et al., 2008; 
Nilsson et al., 2020).

Besides our multiclass classification approach, applica-
tions from the human domain have shown promising results 
when using fewer classes or ensemble classifiers with multi-
ple binary classification models (Jethanandani et al., 2019), 
which possibly induces better performance. As we explained 
in the Method section, we ended up with an imbalanced 
data set in which rare behaviors like head shake and tail 
shake were not equally present. Although this fits the natu-
ral occurrence frequency of these behaviors, generating a 
more balanced dataset, by including more data of minor-
ity classes, undersampling of majority classes or by using 
synthetic oversampling techniques on the minority classes 
(such as SMOTE: Chawla et al., 2002), could lead to better 
performance for all variants of classification.

Overall, we demonstrated that existing machine learn-
ing approaches can be used in conjunction with markerless 

Fig. 5   Classification results on novel video. A One possibility to eval-
uate the model performance is applying the model to the new data to 
get predictions and render the original videos with the predictions as 
overlay. B Behaviors that were checked in the videos. C Ethogram of 

predictions for novel data. Observer can go to the related frame num-
ber in the original or rendered video to double check the occurrence 
of the behavior
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pose-estimation tracking data in pigeons – a classic labora-
tory animal in psychological research on learning, memory, 
and cognition. The trained model showed high performance 
on the validation data that was never seen by the model 
before. In addition, we developed an open-source library 
as a starting point for further automated classification of 
bird behaviors. Our system is interface compatible with 
other machine learning architectures from scikit-learn and 
PyTorch and is thereby naturally extensible. We are hopeful 
that our system will help other scientists to extract detailed 
behavioral data under all kinds of different experimental 
conditions.
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