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Abstract
The Wiener diffusion model with two absorbing boundaries is one of the most frequently applied models for jointly modeling 
responses and response latencies in psychological research. We consider four methods for sampling from the model with 
and without variability in drift rate, starting point, and non-decision time: Inverse transform sampling, rejection sampling, 
and two new methods based on adaptive rejection sampling (ARS). We implement these four methods in an R package, 
validate the methods, and compare their sampling speed in different settings. All four implemented methods provide samples 
that follow the intended distributions. The ARS-based methods, however, outperform the other methods in sampling speed 
as the requested sample size increases. We provide guidelines for when using ARS is more efficient than using traditional 
methods and vice versa.

Keywords Sampling methods · Adaptive rejection sampling · Wiener diffusion model

Binary choice tasks, in which a rapid decision between two 
alternatives is required, are an indispensable component in 
the toolbox of many experimental psychologists. In studying 
response behavior in such tasks, researchers are interested in 
making inferences as to the cognitive mechanisms underly-
ing the observed decisions. For this purpose, the application 
of cognitive modeling is often helpful.

The Wiener diffusion model (WDM; Ratcliff, 1978) is 
arguably one of the most prominent cognitive models of 
such tasks (for extensive reviews see Ratcliff & McKoon, 
2008; Ratcliff et al., 2016). It assumes that in order to make 
a binary choice, information on the current stimulus dis-
play is sampled over time. Such information can—depend-
ent on the task at hand—constitute evidence in favor of one 
decision and, by implication, against the other. Entering a 
mental decision-state is tantamount to accumulating a criti-
cal amount of evidence in favor of one of the two response 
options.

At its core, the WDM is based on a two-dimensional Wie-
ner process with drift rate � , variance � = 1 (without loss of 
generality), and two absorbing boundaries at 0 and a, where 
a > 0 . The value X(t) ∈ ℝ that the process takes at any given 
time t ≥ 0 corresponds to the level of evidence accumulated 
thus far and needs to be interpreted relative to the so-called 
starting point z := X(0),where 0 < z < a . This latter quan-
tity models the initial state of evidence before any stimulus-
related information has been accumulated. The boundaries 
of the process are absorbing in so far as the process remains 
stationary as soon as X(t) = 0 or X(t) = a and the decision 
itself is determined by the boundary at which the absorp-
tion occurs. These boundaries hence correspond to the criti-
cal evidence for the respective associated decision and the 
time required to reach one of the boundaries—referred to as 
first-passage time—equals the time required for the decision 
process to complete.

The tendency of the process to approach either the upper 
or the lower boundary is determined by the sign of the drift 
rate � . That is, if � is negative (positive) the process will tend 
to the lower (upper) boundary. The strength of this tendency 
is represented by the drift rates’ absolute magnitude. This 
parameter is generally assumed to reflect the efficiency of 
information uptake.

Within the WDM, speed–accuracy trade-off occurs 
because erroneous decisions become less likely and decision 
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times longer as the boundary separation increases (i.e., 
the greater a). Moreover, the initial evidence state can be 
expressed as the relative position w of the starting point 
between the upper and lower boundary such that a value of 
w = 0.5 corresponding to the starting point z = a/2 (i.e., both 
boundaries having the same distance to the starting point z). 
This parameter (w) can accommodate possible response 
biases: The closer the process starts to one boundary (rela-
tive to the other), the greater is the probability of absorption 
at that boundary for a given drift rate �.

Response times not only comprise the decision time itself 
but also other components unrelated to the decision process, 
such as stimulus encoding and motor execution, and psy-
chological models like the WDM additionally propose an 
additive non-decision time t0 to capture such components. 
Another important extension of the WDM is the introduction 
of within-person (i.e., between-trial) variability in the drift 
rate � , the relative starting point w, and the non-decision time 
t0 (see, e.g., Ratcliff & Smith, 2004); that is, these quantities 
are assumed to be random variables themselves. A common 
assumption about the distributions for these random vari-
ables are: � follows a normal distribution with mean �� and 
standard deviation s� , w follows a uniform distribution with 
minimum and maximum equal �w − sw∕2 and �w + sw∕2 , 
respectively, and t0 follows a uniform distribution with mini-
mum and maximum equal mint0 and mint0 + st0 , respectively 
(see, e.g., Hartmann & Klauer, 2021).

The WDM possesses many desirable properties, which 
are pivotal for the model’s success. First, the WDM has 
received ample empirical support in diverse psychological 
domains (e.g., Arnold et al., 2015; Lerche & Voss, 2019; 
Ratcliff et al., 2016; Voss et al., 2004). Second, as argued 
by these authors, when the model fits the data, it provides a 
consistent account of the data in terms of psychologically 
interpretable processes. Notably, a process of evidence accu-
mulation, associated with the decision time, is separated 
from encoding and motor processes, associated with the 
non-decision time. Third, it makes full use of both accuracy 
and latency data and can account for both data types simul-
taneously (see, e.g., Ratcliff, 1978). Lastly, the WDM is able 
to model speed–accuracy trade-off as well as response bias 
in a natural fashion. As pointed out by Jones and Dzhafarov 
(2014), the account provided by the WDM hinges, however, 
on specific distributional and structural auxiliary assump-
tions, and alternative accounts of a given dataset implying 
different psychological interpretations can always be con-
structed based on different sets of auxiliary assumptions. For 
such reasons, it is desirable to validate the interpretation of 
the WDM parameters in terms of psychological processes 
via selective-influence studies in each domain of application 
as elaborated on by Klauer (2014).

However, the WDM also possesses a particular tech-
nical disadvantage, which relates to its first-passage time 

distribution. This distribution is of paramount interest for 
practical applications, since it contains all relevant informa-
tion for modeling the decision process (i.e., the decision time 
and the decision itself). Technically, the probability density 
function (PDF) of the first-passage time distribution can be 
represented by two separate functions—each proportional 
to the PDF conditioned on absorption at the lower (upper) 
boundary. Note that each of those separate functions does 
not integrate to one, but instead to the probability of absorp-
tion at the respective response boundary. However, the PDF 
as well as the cumulative distribution function (CDF) of 
the first-passage time distribution are not available in closed 
form. Instead, the PDF and CDF for the first-passage time 
distribution of a Wiener process with two absorbing bounda-
ries are expressed in terms of an infinite series (see, e.g., 
Cox & Miller, 1965, Chapter 5.7). Although many advances 
regarding the applicability of the WDM have been made in 
recent years (see e.g., Blurton et al., 2012; Blurton et al., 
2017; Gondan et al., 2014; Navarro & Fuss, 2009) this fact 
still hinders many practical applications.

One of the immediate consequences of this problem is that 
all sampling algorithms available to date involve computation-
ally expensive numerical procedures, which render computa-
tion times infeasible for many sampling-heavy applications. 
Tuerlinckx et al. (2001), for example, provide an overview of 
four approaches to sample first-passage times from WDMs and 
in a more recent paper Drugowitsch (2016) introduces a rejec-
tion sampling (RS) method that rapidly samples first-passage 
times when the relative starting point is 0.5. Nevertheless, the 
sampling time of all these methods increases drastically with 
increasing sample size. We therefore derived a new sampling 
approach building on the works of Gilks and Wild (1992) who 
suggest an adaptive rejection sampling (ARS) procedure for 
Gibbs sampling, which needs fewer and fewer rejection steps 
the more samples are drawn and therefore keeps the sampling 
time relatively low. In addition, we developed a variation of 
the ARS method that deals with some of the ARS’s weak-
nesses. More details about the ARS method and its variation 
are presented in the next section, where we also present two 
existing methods with which we compare the new methods. 
In short, the ARS method outperforms the other methods in 
cases with no within-person variability, with within-person 
variability only for the relative starting point, or in many cases 
with sample sizes larger than 100,000. We find that it is up to 
five times faster than the other methods in these cases.

Methods

Adaptive rejection sampling

ARS (Gilks & Wild, 1992) is a RS method. It requires an 
envelope function gu(x) and a squeezing function gl(x) such 
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that gl(x) ≤ g(x) ≤ gu(x) for all x, where f (x) = Cg(x) is the 
PDF from which one wishes to sample and C is a constant. 
The envelope function should be proportional to a PDF from 
which it is easy to sample. Sampling from f (x) proceeds by 
taking a proposal sample x∗ from gu(x) and sampling a value 
u from a uniform distribution. If u ≤ gl(x

∗)∕gu(x
∗), x∗  is 

accepted, obviating the costly evaluation of g(x∗) . If the 
inequality does not hold, g(x∗) is evaluated and it is checked 
whether u ≤ g(x∗)∕gu(x

∗) . If this inequality holds, x∗  is 
accepted and otherwise rejected. The new idea of ARS is to 
use an envelope and a squeezing function which are updated 
after each rejection step.

As mentioned by Gilks and Wild (1992), there are 
some prerequisites that must be fulfilled in order for ARS 
to yield valid samples; the function g(x) must be (a) dif-
ferentiable on the whole domain of x and (b) log-concave, 
that is, h(x) ∶= log(g(x)) must be concave. The envelope 

function is constructed by (1) taking some initial values 
Tk = {xi ∶ xi ≤ xj for i < j and i, j ∈ {1, ..., k}} , (2) calculat-
ing the linear tangents of h(x) at these points, (3) calculating 
the x-coordinates of the points, zi, at which adjacent tangents 
intersect, and (4) constructing an upper hull of h(x), uk(x), as 
a piecewise linear function connecting these points. This pro-
vides an envelope function, exp(uk(x)) , from which it is easy to 
sample. The lower hull lk(x) is constructed as a piecewise linear 
function connecting the points (xi, h(xi)) for adjacent xi’s. This 
provides a squeezing function, exp(lk(x)) . Panel A of Fig. 1 
shows an exemplary log-density function h(x) along with its 
upper hull function uk(x) and lower hull function lk(x) for k = 3.

A proposal value x∗ is sampled first: Let Ji be the inte-
gral for the piecewise function exp(uk(x)) from zi− 1 to 
zi, J0 = 0, and J =

∑k

j=0
Jj . First, uprop is uniformly sam-

pled from [0, 1] , then we find i ∈ {1, ..., k} , such that 

Fig. 1  Exemplary log-density with lower and upper hull function. 
Note. The log-density h(x) denotes the log-transformed PDF of an 
exemplary distribution with a log-concave PDF. Panel A depicts 
the log-density along with its lower and upper hull, lk(x) and uk(x), 
respectively, for k = 3 points and Tk = T3 = {x1, x2, x3} . Panel B 
depicts the log-density along with its lower and upper hull for k + 1 = 

4 points and Tk+1 = T4 = {x1, x2, x3, x4} . Here a proposal value x∗ was 
added to Tk (becoming x3 in the set Tk+1 ), and the lower and upper 
hull were recalculated, resulting in lk+1(x)  and uk+1(x) , respectively. 
The zi’s denote the intersection points of the piecewise linear upper 
hull functions in both panels
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(
∑i−1

j=0
Jj)∕J ≤ uprop < (

∑i

j=0
Jj)∕J , and then we have to invert 

for

by calculating x∗, such that u∗
prop

= ∫ x∗

zi−1
exp(uk(x))dx ∕ Ji to 

get the proposal value. Once the proposal value x∗ is sam-
pled, the same rejection step as in RS is used: If for a uni-
formly sampled value u (from [0, 1]) either

or

holds, the value will be accepted and rejected otherwise. If 
h(x∗) needs to be calculated during this rejection step (i.e., 
the inequality in Eq. 2 does not hold), an updating step will 
be conducted by including x∗ in Tk resulting in Tk+ 1 and by 
recalculating the upper and lower hull for Tk+ 1, which results 
in uk+ 1(x) and lk+ 1(x), respectively. Panel B of Fig. 1 shows 
how such a proposal value x∗ is added to Tk to form Tk+ 1 and 
how the new upper and lower hull functions approximate the 
log-density function even better (for more technical details, 
see Gilks & Wild, 1992). The advantage of the updating 
step is that the envelope and squeezing function will thereby 
come to approximate g(x) increasingly closely with every 
new updating step which will make it increasingly more 
likely that values sampled from the envelope function can 
be accepted without the costly evaluation of g(x).

The conditional first-passage time PDF of the WDM 
given absorption at the lower (upper) boundary is not log-
concave. Therefore, we decided to use change-of-variables 
with the following transformation of T, the first-passage 
time, to get a new variable A:

where α0 is a location parameter and sα a scaling parameter.1 
The resulting PDF of A is then

However, this PDF, like the original first-passage time 
PDF, can only be represented as an infinite series. This fact 
renders rigorously proving log-concavity difficult and we 

(1)u∗
prop

=
uprop − (

∑i−1

j=0
Jj)∕J

Ji

(2)u ≤ exp(lk(x
∗) − uk(x

∗))

(3)u ≤ exp(h(x∗) − uk(x
∗))

(4)� = v(�) =
log(�) − �0

s�
,

(5)
fA(�) =

|

|

|

�

��
v−1(�)

|

|

|

× fT (v
−1(�))

= s� exp(s�� + �0) × fT (exp(s�� + �0)).

were unfortunately not able to devise a way to do so. Nev-
ertheless, a number of arguments make us confident that 
this new PDF (fA(α)) is log-concave. First, using the same 
change-of-variables as in Eq. 4 for the PDF of the first-
passage time of a Wiener process with only one absorb-
ing boundary (i.e., the inverse Gaussian PDF) results in a 
function for which log-concavity can in fact be proven (see 
Appendix “A”). Second, the second partial derivative of the 
new PDF with respect to α can be calculated numerically, 
and in an extensive simulation study described in the Sec-
tion “Log-concavity for ARS”, no violations of log-con-
cavity were found. Third, the above-described ARS algo-
rithm would crash in the updating step if updating entered 
a region of g(x) for which log-concavity is violated; but the 
new sampling method performs very stably across many mil-
lions of sampling and updating steps. Fourth, the validity of 
the sampled values can be checked in terms of whether they 
follow the intended first-passage time distribution, and as 
described below, they did so in extensive simulations (see 
Section “Accuracy of the sampling methods”). Nevertheless, 
we acknowledge that the absence of a formal proof of log-
concavity is a weakness of the proposed method.

Use of the ARS method does not only require the PDF, 
but also its derivative with respect to α. In this respect, the 
new method builds on Hartmann and Klauer (2021) who 
provided an efficient algorithm for computing this derivative.

Assuming that the PDF of random variable A is log-
concave, one can sample α values from this new distribu-
tion using ARS. In order to get first-passage times, one can 
back-transform the sampled α values using v− 1(α) to get 
random samples from the first-passage time distribution of 
the WDM. Note that the ARS method is a method to sample 
from the conditional first-passage time PDF given absorp-
tion at the lower (upper) boundary. When sampling both the 
absorbing boundary and first-passage time, the boundary is 
first sampled from a simple Bernoulli distribution with the 
appropriate absorption probabilities

followed by sampling the first-passage time from the dis-
tribution of first-passage times conditional on the sampled 
boundary.2

(6)

P(absorption at upper bound) =
1−exp(2�aw)

exp(−2�a(1−w))−exp(2�aw)

P(absorption at lower bound) = 1 − P(absorption at upper bound)

1 These parameters are chosen conditional on a, � , w, and the 
response so that exp(�0) is the expected mean of T and exp(s�) close 
to its standard deviation.

2 For cases where within-person variability is used for � , w, or t0 
the absorption probability is the CDF at t = ∞ . In a similar vein, for 
cases where the samples are to be drawn with truncation at Ttrunc the 
CDF for the upper  (CDFupper) and the lower bound  (CDFlower) need to 
be calculated at t = Ttrunc and the absorption probability for the upper 
boundary will be CDFupper∕(CDFupper + CDFlower ).
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Alternative sampling methods

In the following three paragraphs, we describe three sampling 
methods with which we compared the ARS. We restrict our-
selves to sampling methods that sample from the exact first-
passage time distributions (up to a prespecified precision for 
numerical errors) rather than from approximations thereof. 
Diffusion processes can be approximated in terms of a random 
walk with small time steps (e.g., Diederich & Busemeyer, 2003) 
or in terms of discrete approximations of the stochastical dif-
ferential equation describing the diffusion process (e.g., Smith, 
2000), and sampling methods have been proposed that sample 
from such approximations (Tuerlinckx et al., 2001). Tuerlinckx 
and colleagues also proposed an exact RS method that we do 
not consider, because a later proposal by Drugowitsch (2016), 
which we do consider, improves on it. All of the sampling 
methods that we consider can be modified to sample from a 
first-passage time distribution with truncation from above. We 
initially describe how these algorithms generate samples from 
a Wiener first-passage time distribution and will later delineate 
how within-person variability can be incorporated.

Inverse transform sampling (ITS) ITS is a widely applicable 
method to generate random samples. In the present case, we 
start from the CDF F of first-passage times given absorption 
at the lower (upper) boundary and use its inverse function, F− 1 
(i.e., the quantile function), to transform random draws from a 
uniform distribution into samples from the target distribution. 
More precisely, if � ∼ U(0, 1) (i.e., U is uniformly distributed 
on [0, 1]) then F− 1(U) will be distributed as first-passage time 
of the WDM given absorption at the lower (upper) boundary 
(Devroye, 1986). In the case of the Wiener first-passage time 
distribution, there unfortunately exists no analytic quantile 
function. In order to apply ITS, we therefore have to employ 
a numeric root finding algorithm. We used a simple, yet effi-
cient bisection method for this purpose. Like ARS, ITS as 
stated is a method to sample from the conditional first-passage 
time PDF given absorption at the lower (upper) boundary.

Rejection sampling (RS) As already mentioned, Drugow-
itsch (2016) proposed an RS algorithm that is quite fast when 
the relative starting point is set to 0.5, although as discussed by 
Drugowitsch (2016), it can be extended to cases with relative 
starting points other than 0.5, which we did. An RS algorithm 
uses envelope functions—or rather proposal distributions—from 
which it is easy to sample. These proposal distributions when 
multiplied with a suitable factor need to dominate the distribu-
tion of interest. The closer the proposal resembles the distribu-
tion of interest (i.e., their function values are close to each other) 
the fewer rejections are needed. Drugowitsch uses different 
proposal distributions based on the exponential distribution, a 
scaled-inverse χ2-distribution, and the inverse Gaussian distribu-
tion (for technical details, see Drugowitsch, 2016).

Pseudo‑adaptive rejection sampling (P‑ARS) This sampling 
method builds on the ARS method presented above. The dif-
ference to ARS is that after each sample the upper and lower 
hull are discarded in the P-ARS, that is, the hull functions are 
updated until the first sample is drawn, but the updates are 
not kept for the next sample. The cost of this is a consider-
able slowdown due to the calculation of the hull functions for 
each new sample. This is especially momentous when using 
no within-person variabilities. Therefore, P-ARS is predicted 
to be slower than ARS in these cases. However, when within-
person variability is introduced, P-ARS avoids costly numeri-
cal integration, as described next, and thus might outperform 
ARS for this reason in these cases.

Sampling from the WDM with within‑person 
variability

Given within-person variability, the ARS method requires 
numerical integration across the parameters (drift rate and/or 
starting point) with trial-by-trial variability. The ITS, RS, and 
P-ARS methods outlined above can sidestep costly numerical 
integration by adopting a two-step sampling scheme: First, 
parameters with trial-by-trial variability are sampled; next, a 
boundary and first-passage time are sampled from the WDM 
with these parameters and no within-person variability.

Note, however, that this sampling scheme needs to be 
modified when sampling conditional on a specific response 
such as when sampling first-passage times at the lower 
threshold. The above two-step procedure will ensure that 
the respective parameters are distributed according to their 
assumed distributions, but the subsequently sampled first-
passage times conditional on absorption at a specific bound-
ary will not follow the intended distribution. This phenom-
enon is caused by the fact that the larger the sampled starting 
point and/or drift rate is, the more likely absorption at the 
upper boundary becomes compared to absorption at the lower 
boundary and vice versa. Consequently, if one only considers 
those processes that absorb at the upper (lower) boundary, the 
distribution of parameters will deviate from the unconditional 
distribution of parameters in so far as higher (lower) parame-
ter values are overrepresented compared to the unconditional 
parameter distribution. One therefore needs to account for 
this fact by conducting an additional rejection step such that 
parameters are sampled based on their likelihood of leading 
to an absorption at the relevant boundary.

To obtain the desired behavior of the sampler, one therefore 
first samples the random parameters according to their respec-
tive (unconditional) distributions. In a second step, a randomly 
sampled value u (from U(0, 1) ) is drawn and the just sampled 
parameters are accepted only if u is less than or equal to the 
probability of a Wiener process with the proposed parameters 
being absorbed at the boundary of interest. This additional step 
introduces an obvious computational cost.
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R Package

The implementations of the sampling methods introduced 
here build on Hartmann and Klauer’s (2021) work which 
derived efficient methods for computing PDF, CDF, and 
their partial derivatives as implemented in an R package 
called WienR (Hartmann & Klauer, 2021). We extend this 
package by a sampling function with which one can sample 
from a (truncated) first-passage time distribution (condi-
tional on the absorption at one of the two boundaries) of the 
WDM with up to seven parameters.3

Installation and usage

The R package WienR is listed in the comprehensive R 
archive network (CRAN). Therefore, it can be installed by 
using the function call install.packages("WienR").

The newly implemented sampling function sampWie-
ner()4 can be used like many other sampling functions 
in R. Its first argument is N, the number of samples to be 
drawn. The second to eight arguments are the parameters of 
the model a, v, w, t0, sv, sw, and st0 which refer to, in 
order, the upper boundary, the (mean) drift rate, the (mean) 
relative starting point, the (minimal) non-decision time, the 
within-person variability of the drift rate, the within-person 
variability of the relative starting point, and the within-per-
son variability of the non-decision time. The next argument 
is response where "upper", "lower", or "both" 
boundaries can be specified. There are default values for t0, 
sv, sw, and st0 since these arguments are not required for 
the standard WDM and therefore are set to zero. The argu-
ment response has "both" as default.

In addition to those necessary parameters, there are six 
further parameters, starting with bound, that is, the trunca-
tion from above. Its default is set to infinity. Next is method 
where the four previously described sampling methods can 
be chosen. The options are "ars" (the default), "rs", 
"its", and "p-ars" which stand for the methods ARS, 
RS, ITS, and P-ARS, respectively. The third optional param-
eter is precision where one can specify with which pre-
cision the evaluations of PDF, CDF, and partial derivatives 

are calculated (its default is 1e-12). The fourth parameter 
is n.threads which is the number of threads to be used 
(default is one). The two last arguments are special in that 
they only concern the ARS method. The first of those two, 
ars_list, requires a list consisting of information about 
the upper and lower hull functions as well as some additional 
information. Its default is NULL, meaning no information 
is used. The second of those two, ARS_STORE, is used to 
specify whether the information about upper and lower hull 
etc. should be stored (default is FALSE).

The output of the function is a list containing the N first-
passage times q and responses response as well as the 
whole function input as a string. In addition, if the ARS 
method is selected and ARS_STORE is set to TRUE, a list 
containing the information about upper and lower hull as well 
as some additional information is stored. If both response 
boundaries are used this list consists of two sub-lists con-
sisting of the equivalent information for both the response 
"upper" and the response "lower", respectively.
Here is an example function call to sampWiener() with a 
sample size N of 10, an upper boundary a of 1, a drift rate v 
of 0.3, a relative starting point w of 0.6, a non-decision time 
t0 of 0.2 and using the default for all other arguments: 
> set.seed(1234) 
> sampWiener(N = 10, a = 1, v = .3, w = .6, 
t0 = .2) 
The set.seed() function call allows the reader to 
reproduce the output, which can be seen here: 
$q 
[1] 0.4992622 0.2939385 0.2920679 0.2636080 
0.3015461 0.2564201 0.2723436 0.3961437 
0.7115215 0.4110627 
$response 
[1] "upper" "upper" "upper" "upper"  
"upper""upper" "upper" "upper" 
"upper" "lower" 
$call 
sampWiener(N = 10, a = 1, v = 0.3, 
w = 0.6,t0 = 0.2) 
attr(,"class") 
[1] "Diffusion_samp" 
 
 
Results
In the following, we present three different simulation studies 
and their results. The first simulation study tests log-concav-
ity of the PDF of A (see Eq. 5), the second checks whether the 
four sampling methods produce random samples that are dis-
tributed according to the intended first-passage time distribu-
tions, and the third evaluates which of the sampling methods 

3 When the absorption probability at a given boundary (see 
Eq.  6) becomes very small, computation of the conditional PDF 
and CDF given absorption at that boundary becomes numeri-
cally unstable. However, the current algorithm mostly works with 
the joint PDF and CDF for absorption boundary and response 
latency (e.g., with P(T < t&Absorption = upper)  instead of 
P(T < t ∣ Absorption = upper)) , which avoids the issue. To increase 
efficiency the four sampling methods are implemented in C++ and 
can be called through R like the other functions of WienR (see the 
package source code, e.g., at CRAN).
4 Since names like rwiener (Wabersich & Vandekerckhove, 2014) 
or rdiffusion (Singmann et  al., 2020) are already used by other 
packages we decided to use another notation.

https://CRAN.R-project.org/package=WienR
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is fastest in which condition. In addition, we compared the 
speed of the WienR package with two other packages that are 
able to sample random first-passage times from the WDM, 
namely RWiener (Wabersich & Vandekerckhove, 2014) 
and rtdists (Singmann et al., 2020). The results of this 
speed comparison can be found in Appendix C, in which it 
is shown that our package with the ARS method outperforms 
the other packages. For all simulation studies, we used the 
same random seed (2021) in our R scripts. All scripts and 
graphics can be found on https:// osf. io/ mqtj9/.

Note that in all simulation studies the non-decision time t0 
and its within-person variability st0 are not used. This is due 
to the fact that these parameters do not affect the sampling 
methods. The non-decision time just adds to the first-passage 
time and for st0 > 0 can be sampled separately.

Log‑concavity for ARS

In this first simulation study, we randomly sampled N = 10,000 
values for each parameter of a WDM with five parameters 
(excluding non-decision time and its within-person variability). 
The upper boundary a is uniformly sampled from [0.5, 2] , the 
mean drift rate ��

 is sampled from a standard normal distribution, 
the mean starting point �w is sampled from a beta distribution 
with both shape parameters being eight, the within-person vari-
ability for the drift rate s� is uniformly sampled from [0, 2] , and 
the within-person variability of the relative starting point sw is 
uniformly sampled from [0, 0.2] . In addition, the responses are 
sampled from a Bernoulli distribution with p = 0.5.

This resulted in 10,000 random parameter sets. For each 
of these parameter sets, we generated 500 first-passage times 
t, covering the range from 0.01 to 5 s in steps of 0.01 s. 
These were transformed to 500 α values using Eq. 4. For 
each α we numerically calculated the second derivative of 
log( fA(�)) (see Eq. 5) as follows: The first derivative

where t = v−1(�) = exp(s�� + �0) , fT is the density of the 
random variable T (i.e., the first-passage time variable), and 
f ′
T
 its partial derivative with respect to t, can be calculated 

using the WienR package. Log-concavity would be violated 
if for any of the 5,000,000 α values (10,000 parameter sets 
times 500 α values per parameter set), the second deriva-
tive were positive. Based on the first derivatives, the second 
derivative can be calculated numerically using the num-
Deriv package (Gilbert & Varadhan, 2019). Because the 
numerically computed second derivative is only an approxi-
mation of the second derivative itself, it may become posi-
tive due to approximation error. In such cases, we calculate 
it anew with a higher precision for the PDF and its first par-
tial derivative with respect to t. Only 246 of the 5,000,000 

(7)�

��
log( fA(�)) = s�

(

f �
T
(t)

fT (t)
× t + 1

)

,

α values had positive numerical second derivatives of the 
log-density in the first run. Increasing the precision of the 
numerical calculation and rerunning these 246 cases elimi-
nated these positive numerical second derivatives.5

Accuracy of the sampling methods

A second simulation study checks whether the samples drawn by 
means of the different methods follow the intended first-passage 
time distribution. We have four sampling methods (ARS, ITS, 
RS, P-ARS), used two cut-off values for truncating the distribu-
tion from above (infinity and 0.5 s), two variability options for 
the drift rate ( s� = 0 vs. s� ∼ U(0, 1) ), and two variability options 
for the relative starting point (sw = 0 vs. sw ∼ U(0, 0.2) ). This 
leads to eight conditions per sampling method and 32 condi-
tions in total. For each condition, we generated 10,000 random 
parameter sets using the same fixed random seed as above. The 
upper boundary a was uniformly sampled from [.6, 2] , the mean 
drift rate �� from a standard normal distribution, and the mean 
relative starting point �w from a beta distribution with both shape 
parameters being eight. In addition the responses were sampled 
from a Bernoulli distribution with p = 0.5.

For each parameter set, we then sampled 10,000 first-
passage time values and checked whether the samples come 
from the first-passage time distribution with the correspond-
ing parameters using a one-sample Kolmogorov–Smirnov 
test. This resulted in 10,000 p values for each condition. We 
checked for each condition how many p values were below .05 
and whether the p values come from a standard uniform distri-
bution using again the one-sample Kolmogorov–Smirnov test.

As can be seen in Table 1, the percentage of the 10,000 p 
values smaller than .05 (in parentheses) approaches the expected 
value of 5% in all 32 conditions. For testing each set of 10,000 p 
values for uniformity, we used the ks.test() function from 
the stats package (R. Core Team, 2020). Three of the p value 
samples differ significantly from uniformity, one for the ITS, 
and two for the RS method. The probability of observing three 
or more significant outcomes of the Kolmogorov–Smirnov test 
across the 32 conditions is .21.6 Looking at the histograms of 
all three corresponding p value samples, there is no clear pattern 
indicating a deviation from uniformity (see Figs. 3, 4, and 5 in 
Appendix B). Altogether, the results speak in favor for a correct 
implementation of the four sampling methods.

5 The same pattern of results was found when not using both within-
person variabilities (i.e., setting either s� = 0, sw = 0, or s� = sw = 0 ); 
that is, there were no positive second derivatives for any α value.
6 We repeated the whole analysis with two different random seeds 
(2020 and 2022). For both seeds, the number of observed signifi-
cant Kolmogorov–Smirnov tests across the 32 conditions was not 
significant. The significant tests scatter randomly over the sampling 
methods and the conditions.

https://osf.io/mqtj9/
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Speed of the samplers

The speed of the four sampling methods was measured by 
the package bench (Hester, 2020). We compared the speed 
of the sampling methods for two truncation options (infin-
ity vs. 0.5 s), two boundary options (sampling from both 
bounds vs. from only one random boundary), two variabil-
ity options for the drift rate ( s� = 0 vs. s� ∼ U(0, 2) ), and 
two variability options for the relative starting point (sw = 0 
vs. sw ∼ U(0, 0.2) ), leading to 16 conditions. In addition, we 
varied the number of values sampled per simulation run in 
seven levels: Sample sizes were N =  10i, i ∈ {0, ..., 6} . To get 
a valid estimate of the speed, the median of 100 iterations 
was taken for each condition. The four core parameters—
upper boundary a, drift rate � , relative starting point w, and 
response—were sampled like in Section “Accuracy of the 
sampling methods”.

The first row of Fig. 2 depicts the speed comparisons 
between the four sampling methods (ARS, ITS, RS, and 
P-ARS) for the no-truncation condition with sampling from 
both boundaries for the four variability conditions, in order, 
s𝜈 = sw = 0, sw > 0 = s𝜈 , s𝜈 > 0 = sw, and s𝜈 , sw > 0 . These 
four figures show the same pattern for all the sampling meth-
ods as the previous four figures: With more within-person 
variability ARS requires more time, but as N increases, the 
sampling time increases less steeply than for the other meth-
ods. P-ARS is comparable to ITS and RS, but always at least 
slightly faster for N > 10.

The second row of Fig. 2 depicts the speed comparisons 
between the four sampling methods (ARS, ITS, RS, and 
P-ARS) for the truncation condition (truncation from above 
at 0.5 s) with sampling from both boundaries for the same 
four variability conditions. The ARS method is fastest for 
N > 1 with no within-person variability, for N > 100 with 
within-person variability in w only, for N > 100,000 with 
within-person variability in � only, but never with both varia-
bilities. The P-ARS method performs best or second best for 
N > 100, depending on the performance of the ARS method.

The third row of Fig. 2 depicts the speed comparisons 
between the four sampling methods (ARS, ITS, RS, and 
P-ARS) for the condition without truncation and with sam-
pling from only one random boundary for the four vari-
ability conditions. As can be seen, the ARS method has 
an advantage when N increases. It is superior with N > 10 
when using no within-person variability, with N > 100 when 
using within-person variability in w only, with N > 1,000 
when using within-person variability in � only, and with N 
> 1,000,000 when using within-person variability in w and 
� . For N > 10, the P-ARS method is always second fastest or 
fastest, depending on the performance of the ARS method. 
Third and fourth place are taken by the RS and ITS methods, 
for which the pattern is not always as clear as for ARS and 
P-ARS.

The fourth row of Fig. 2 depicts the speed comparisons 
between the four sampling methods (ARS, ITS, RS, and 
P-ARS) for the truncation condition (truncation from above 
at 0.5 s) with sampling only from one random boundary for 
the four variability conditions. Here the general pattern is 
similar, but the ARS performs worse than without trunca-
tion; the ARS method is superior with N > 1 when using 
no within-person variability, with N > 100,000 when using 
within-person variability either in w or � , and never when 
using within-person variability in w and � , at least not with 
N up to 1,000,000. The P-ARS method is mostly second 
fastest or fastest, depending on ARS and RS. Especially for 
N < 100 the RS method is most often the fastest. When using 
within-person variability with large sample sizes (about 
N = 1,000,000) the ITS and P-ARS perform comparably; 
sometimes ITS is better and sometimes P-ARS.

Table 1  The p values from testing for uniformity and in parentheses 
the proportion of significant tests when testing random first-passage 
time samples

Note. ARS, ITS, RS, and P-ARS denote the four different sampling 
methods, adaptive rejection sampling, inverse transform sampling, 
rejection sampling, and pseude-adaptive rejection sampling, respec-
tively. “Tr.” denotes truncation from above when using the different 
sampling methods; Inf = infinity (i.e., no truncation) and 0.5 means 
no sample will be larger than 0.5 s. s� and sw = 0 (> 0) means that 
the within-person variability for the drift rate and relative starting 
point, respectively, is zero (larger than zero). The observed proportion 
of significant (p < .05) one-sample Kolmogorov–Smirnov tests (in 
parentheses) is computed from testing 10,000 random first-passage 
time samples (in the just mentioned conditions) for each of 10,000 
random parameter sets. The resulting 10,000 p values (from all 
parameter sets) were then tested for uniformity using the one-sample 
Kolmogorov–Smirnov tests, resulting in 32 p values over all condi-
tions.

Tr. s� = 0 s� > 0

sw = 0 sw > 0 sw = 0 sw > 0

ARS
  0.5 .946 (.049) .702 (.046) .314 (.045) .915 (.047)
  Inf .201 (.045) .499 (.046) .554 (.046) .133 (.048) 

ITS
  0.5 .401 (.047) .134 (.051) .807 (.048) .950 (.051)
  Inf .471 (.047) .117 (.049) .045 (.049) .627 (.048) 

RS
  0.5 .817 (.050) .691 (.048) .110 (.051) .015 (.047)
  Inf .056 (.050) .111 (.051) .042 (.044) .935 (.051) 

P-ARS
  0.5 .730 (.047) .331 (.049) .315 (.052) .311 (.050)
  Inf .119 (.043) .245 (.052) .757 (.051) .059 (.045)
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Discussion

We proposed new methods for sampling from first-passage 
time distributions arising under the WDM based on adaptive 
rejection sampling and evaluated these methods as well as 
two alternatives for sampling from these distributions. The 
present comparison was restricted to sampling methods that 
intend to sample from the exact distributions rather than 
from approximations thereof.

In simulation studies, we checked whether the methods do 
indeed sample from the target distributions and results sug-
gest that they do. Further simulation studies compared the 
speed of the different methods in generating random values. 
Here, it turned out that overall, the new ARS method has the 
largest speed advantage when within-person variability of 
drift rate and starting point is set to zero and more than one 
sample is to be drawn with the same parameter values. For 
the cases with within-person variabilities, the ARS method 
is initially the slowest, but in sampling without truncation, 
overtakes the other sampling methods when N is larger than 
10,000. This suggests that the adaptive envelope and squeez-
ing functions constructed in the course of ARS sampling 
approximate the true PDF increasingly more closely, as sam-
pling proceeds, so that costly evaluations of the first-passage 
time density become increasingly rare. The P-ARS method 
can be used whenever the ARS method is slow, namely when 
using within-person variabilities, especially in connection 
with truncation. Given truncation and within-person vari-
abilities, the RS and ITS methods are comparable to P-ARS 
when N < 1,000.

The absolute size of the speed differences in Fig. 2 is 
small and will often be negligible. Having a fast sampling 
method is, however, helpful whenever applications rely 
on extensive simulations. For example, we developed the 
new sampling algorithms in the context of constructing an 
MCMC algorithm for fitting a complex, non-standard WDM 
at the core of which is the WDM without within-person vari-
ability (such variabilities are modeled separately at a higher 
hierarchical level in Bayesian modeling using the WDM; 
Vandekerckhove et al., 2011). In this algorithm, a truncated 
first-passage time distribution is involved in a rejection-sam-
pling step with relatively low acceptance rate. Each such 
step typically involves the sampling of thousands of random 
first-passage times, and the step is iterated countless times 
as the algorithm converges.

Other examples involve cognitive models in which the 
diffusion model is a building block, but in which additional 

processes are involved with associated response time dis-
tributions. For example, in the dual-stage two-phase model 
of response-conflict tasks (Hübner et al., 2010), three diffu-
sion processes interact to produce observed responses and 
response times. The first two of them run in parallel. If the 
first diffusion process reaches a boundary first, the response 
and response time is based on that process. Otherwise, if the 
second diffusion process terminates first, a third diffusion 
process is initiated after completion of the second diffusion 
process. In that case, the observed response is determined 
by the third process with overall response time given by the 
sum of the second and third diffusion process’ first-passage 
times. The likelihood function of this and similar models 
is very difficult to compute, but it is easy to sample from 
it by generating responses and response times for the three 
involved diffusion process. This makes it a prime candidate 
for likelihood-free estimation methods such as the probabil-
ity density approximation (Turner & Sederberg, 2014) that 
rely on the ability to generate large samples of simulated 
data for each of many parameter values.

As a final example, consider posterior predictive model 
checks in Bayesian posterior inference (Gelman et al., 
2004) in which aspects of the observed data and simulated 
data are contrasted with the values expected on the basis 
of the parameters from each set of parameter values in the 
usually large sample of parameter sets drawn from the pos-
terior distribution of parameters. For example, such model 
checks often assess whether the posterior distribution of 
parameter values adequately accounts for the observed 
means and variances of the response time distributions 
(see Klauer & Kellen, 2018, for examples of model checks 
of this kind). This involves computing the expected means 
and variances of first-passage times for many parameter 
values. These are again very difficult to compute for dif-
fusion models involving within-person variabilities, but it 
is easy to estimate them with adequate precision if large 
samples of first-passage times can be efficiently generated. 
In all of these and similar contexts, it is essential to have a 
highly efficient method for generating random first-passage 
times.

The newly implemented R function sampWiener() 
enriches the WienR package by providing multiple sampling 
methods to sample from the (truncated) first-passage time 
distribution of a WDM with 3–7 parameters. This enables 
the user to choose the sampling method that is best suited 
to his or her application according to the guidelines derived 
above.
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Appendix A: Log‑concavity of the inverse 
Gauss PDF with change‑of‑variables

Let T be inverse Gauss distributed with μ > 0 being the mean 
and λ > 0 the shape parameter. The PDF of T is given by

Using the formula for change-of-variables with 
� = (log(�) − �0)∕s� (see also Eq. 4) gives

Taking the logarithm of Eq.  9 and using that 
t(�) = exp(s�� + �0) gives

(8)fT (t;�, �) =

√

�

2�t3
× exp

(

−
�(t − �)2

2�2t

)

.

(9)
fA(�;�, �) = s� exp

(

s�� + �0

)

× fT (exp
(

s�� + �0

)

;�, �).

Taking the first derivative with respect to α gives us

and then taking the second derivative gives us

which is clearly negative. Therefore the PDF of an inverse 
Gauss with change-of-variables v(�) is log-concave.

(10)

log(fA(�;�, �)) = log(s�) + s�� + �0 +
1

2
log(�)

−
1

2
log(2�t(�)3) −

�(t(�)−�)2

2�2t(�)

= log(s�) −
1

2
s�� −

1

2
�0 +

1

2
log(�)

−
1

2
log(2�) −

�(t(�)−�)2

2�2t(�)
.

(11)

� log(fA(�;�, �))

��
= −

1

2
s� −

�s�(exp(2s�� + 2�0) − �2)

2�2 exp(s�� + �0)

(12)
�2 log(fA(�;�, �))

��2
= −

�s2
�
(exp(2s�� + 2�0) + �2)

2�2 exp(s�� + �0)
,
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Fig. 3  Histogram of p values for the ITS method without truncation and within-person variability for �

Appendix B: p‑Value Histograms
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within-person variability only for the relative starting point 
(i.e., sw> 0 and sv= 0), within-person variability only for 
the drift rate (i.e., sw= 0 and sv> 0), and within-person 
variability for both parameters (i.e., sw> 0 and sv> 0). 
The samples are drawn from both boundaries and without 
truncation.

Note that the precision for all methods are set to 1e-10 
(which is fixed for RWiener) except for rtdists. For 
the package rtdists, we set the precision argument to 4 
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Fig. 4  Histogram of p values for the RS method with truncation and both within-person variabilities
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Fig. 5  Histogram of p values for the RS method without truncation and within-person variability for �

Appendix C: Speed comparison with other R 
packages

Figure 6 shows the median sampling time (of 100 repeti-
tions for a sample size of 10 and 1000 each) needed for the 
four sampling methods of WienR, the rtdists-package, 
and the RWiener-package (only for the case with no 
within-person variability) in the four variability condi-
tions; no within-person variability (i.e., sw= 0 and sv= 0), 
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which roughly corresponds to a precision of 1e-4. A higher 
precision would take too long, especially for the cases with 
within-person variability of the drift rate, as can be seen in 
the bottom row of Fig. 6 where the differences to the meth-
ods of WienR are already quite large.

For cases with no variability in the drift rate and a sample 
size of 1000 the rtdists-package is about as fast as most 
of the other WienR-methods but still three to four times 
slower than ARS. For cases where the sample size is 10, it 
clearly performs worst. The package RWiener performs 
worst for a sample size of 1000 and second to last for a sam-
ple size of 10. Overall, the ARS and P-ARS methods out-
perform rtdists as well as RWiener in all conditions.
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Fig. 6  Speed comparison of the four WienR sampling methods with 
the RWiener-package and the rtdists-package. Note. sw and sv 
stand for the within-person variability in the relative starting point 
and the drift rate, respectively. For example, sv = 0 means no vari-
ability in the drift rate and sv> 0 means with variability for the drift 
rate. “methods” are the four sampling methods, namely ARS = adap-
tive rejection sampling, ITS = inverse transform sampling, RS = 

rejection sampling, and P-ARS = pseudo-adaptive rejection sampling. 
“rtdists” and “RWiener” are two other packages with which it is pos-
sible to sample first-passage times. Note, however, that “RWiener” is 
only able to sample first-passage times without using within-person 
variabilities and “rtdists” is only able to use a much lower precision 
(roughly about 1e-4) than the other methods/packages (here 1e-10); 
higher precision values would lead to much higher sampling times
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