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Abstract
Researchers and practitioners often use single-case designs (SCDs), or n-of-1 trials, to develop and validate novel treat-
ments. Standards and guidelines have been published to provide guidance as to how to implement SCDs, but many of their 
recommendations are not derived from the research literature. For example, one of these recommendations suggests that 
researchers and practitioners should wait for baseline stability prior to introducing an independent variable. However, this 
recommendation is not strongly supported by empirical evidence. To address this issue, we used Monte Carlo simulations 
to generate graphs with fixed, response-guided, and random baseline lengths while manipulating trend and variability. Then, 
our analyses compared the type I error rate and power produced by two methods of analysis: the conservative dual-criteria 
method (a structured visual aid) and a support vector classifier (a model derived from machine learning). The conservative 
dual-criteria method produced fewer errors when using response-guided decision-making (i.e., waiting for stability) and 
random baseline lengths. In contrast, waiting for stability did not reduce decision-making errors with the support vector 
classifier. Our findings question the necessity of waiting for baseline stability when using SCDs with machine learning, but 
the study must be replicated with other designs and graph parameters that change over time to support our results.

Keywords AB design · Baseline · Data analysis · Machine learning · n-of-1 trial · Single-case design

Researchers in the healthcare and behavioral sciences are 
increasingly using single-case designs (SCD) to develop and 
validate novel treatments (McDonald & Nikles, 2021; Rader 
et al., 2021). When testing the effects of a treatment or inter-
vention, SCDs aim to demonstrate the presence of a func-
tional relation between the introduction of a treatment and a 
change in behavior or other relevant outcomes (Horner et al., 
2005; Tate et al., 2013). At this point, the reader should note 
that that the utility of these designs is not limited to research-
ers: Practitioners may also use SCDs to monitor the effects 
of treatment or intervention (Mitteer et al., 2018). In SCDs, 
an experimenter exposes one or more participants to two 
or more conditions. The first condition (phase A), which is 
comparable to the control group in a group design, consists 

of repeatedly measuring the dependent variable (e.g., behav-
ior, product) prior to introduction of treatment. On the other 
hand, phase B involves the implementation of the treatment 
while continuing the repeated measurement of the depend-
ent variable (Ledford & Gast, 2018). This sequence, referred 
to as an AB comparison, is particularly important in SCDs 
because it represent the basic unit of multiple experimental 
designs. For example, the AB comparison is central to the 
demonstration of functional relations in reversal (ABAB) 
designs, in multiple baseline designs, and in changing-cri-
terion designs.

When analyzing the repeated changes between phases A 
and B, researchers and practitioners may identify the pres-
ence of a functional relation if the independent variable 
generates reliable and consistent changes in the dependent 
variable (Fisher et al., 2003; Vannest et al., 2018). When 
assessing the effects of a treatment, the demonstration of a 
functional relation indicates that it is at least partly effective. 
On the contrary, the lack of a functional relation indicates 
that the treatment may be ineffective. To conduct these anal-
yses, many researchers and practitioners use visual inspec-
tion despite its limitations and sometimes poor accuracy 
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(Falligant et al., 2020; Lanovaz & Hranchuk, 2021; Ninci 
et al., 2015). Visual raters rely on multiple data features to 
help them identify the presence of a functional relation such 
as comparing level, trend, variability, consistency and over-
lap across phases (Kratochwill et al., 2010; Manolov & Van-
nest, 2019). A functional relation is said to exist when one 
or more of these characteristics change consistently across 
replications (Ledford et al., 2019).

When implementing SCDs, researchers and practitioners 
typically follow guidelines to design their procedures. For 
example, What Works Clearinghouse (WWC; 2020) devel-
oped the most highly cited guidelines (Kratochwill et al., 
2010), which provide guidance on how to implement SCDs. 
When using SCDs, an issue that researchers and practition-
ers must deal with involves trend stability during baseline. 
That is, too much trend during baseline may obscure changes 
observed in subsequent phases. One solution proposed by the 
original WWC guidelines involves “waiting to see whether 
the [baseline] series stabilizes as more data are gathered” 
(Kratochwill et al., 2010, p.19–20). This manipulation facili-
tates the comparison of patterns across phases, especially 
when using visual inspection. Some of the most popular 
introductory textbooks for teaching single-case designs (e.g., 
Barlow et al., 2009; Cooper et al., 2020; Kazdin, 2011; Led-
ford & Gast, 2018) also recommend waiting for baseline 
stability prior to introducing treatment.

Although this “response-guided” approach is commonly 
recommended, waiting for stability may lead to reductions in 
variance, which may have an impact on the analyses (Swan 
et al., 2020). Furthermore, having an experimenter selecting 
the “right” time to introduce a baseline may actually increase 
type I error rates when using visual inspection and randomi-
zation tests (Allison et al., 1992; Byun et al., 2017; Ferron 
et al., 2003; Todman & Dugard, 1999). In other words, wait-
ing for stability may increase the probability of conclud-
ing that a graph shows a change when no true change has 
occurred. Nevertheless, the extent to which response-guided 
decisions in baseline increase type I error rate remains to be 
further validated with analyses methods beyond randomiza-
tion tests and visual inspection.

Recently, researchers have examined the use of a blind 
response-guided approach to analyze multiple baseline 
graphs, which was referred to as masked visual analysis 
(Ferron et al., 2017). Masked visual analysis involves ran-
domly introducing the independent variable within a random 
tier of a multiple baseline design when data show stability in 
all tiers, and subsequently introducing it in other tiers when 
the visual raters conclude that the treatment was introduced 
in a tier. Then, the probability of the blind raters specify-
ing the correct treatment order at random can be computed. 
If this value is less than .05 and the blind raters identify 
the correct treatment order, researchers may deem that the 
graphs as showing a clear functional relation. Promisingly, 

the masked visual analysis can be applied to a variety of 
designs such as multiple baseline, reversal, and changing-
criterion designs (Byun et al., 2017; Fallon et al., 2020; Fer-
ron et al., 2017; Ferron et al., 2019; Joo et al., 2018). That 
said, the main limitation of masked visual analysis is that it 
continues to rely on visual inspection, which does not always 
produce consistent results and is difficult to apply on very 
large datasets (Fisher et al., 2003; Lanovaz & Hranchuk, 
2021; Wolfe et al., 2016).

Our study examined the effects of response-guided 
decision-making on the most basic unit of analysis, the AB 
comparison. Given that the multiple baseline, reversal, and 
changing-criterion designs are based on the repetition of 
this unit, studying how waiting for baseline stability affects 
decision-making errors in AB designs may produce results 
that are generalizable to multiple experimental designs. As 
indicated earlier, prior studies on the topic have limited their 
analysis to randomization tests and visual inspection. How-
ever, multiple other methods exist to analyze single-case 
graphs. To extend prior research, we selected two methods 
that have never been used to examine response-guided deci-
sion-making for single-case designs: the conservative dual-
criteria (CDC; Fisher et al., 2003) and machine learning 
(Hranchuk & Lanovaz., 2021). Both these methods perform 
well with short data series, which may make them relevant 
to examine the effects of response-guided decisions. Analy-
sis methods may behave differently on graphs with various 
characteristics (e.g., trend vs. no trend), which is why testing 
more than one method appears important (Manolov & Van-
nest, 2019). In sum, our study compared the type I error rate 
and power of two methods of analyses for AB graphs with 
fixed baseline lengths, response-guided baseline lengths, and 
random baseline lengths for sets of graphs with different 
characteristics.

Experiment 1 – Waiting for stability in trend

One type of stability in single-case designs involves trend. 
When using single-case designs, researchers and practi-
tioners typically wait for baseline to show minimal-to-no 
trend before introducing the independent variable (Ledford 
& Gast, 2018). The purpose of the first experiment was to 
examine the effects of waiting for baseline trend stability in 
datasets that showed an initial trend resulting from random 
variations.

Method

The first step of the method involved generating time series 
and AB graphs by conducting Monte Carlo simulations. 
Next, we applied the CDC method and the support vector 
classifier (i.e., a machine learning algorithm) to determine 
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whether each graph showed an effect or not. Finally, our 
analyses compared type I error rates and power across 
graphs with fixed, response-guided, and random baseline 
lengths. All our code is freely available under a MIT per-
missive software license: https:// doi. org/ 10. 17605/ OSF. IO/ 
H7BSG.

Monte Carlo simulation

Our study used a Monte Carlo approach to simulate a total 
of 160,000 time series that contained 30 points each. To 
generate our time series, we programmed Python (version 
3.7.7) to use the following formula:

In the formula, xt represents the autocorrelated value at 
time point t, which is composed of (a) the autocorrelated 
value from the previous time point, xt – 1, (b) a lag 1 auto-
correlation of a, and (c) an error term, εt, randomly gen-
erated from a normal distribution with a mean of 0 and 
standard deviation of 1. To produce our final values, yt, the 
code added a constant of 10 to prevent graphs with negative 
values. Half the time series contained no autocorrelation 
whereas the other half had an autocorrelation value of 0.4, 
which is the approximate mean autocorrelation reported in 
a recent study on single-case graphs (Barnard-Brak et al., 
2021a). We focused on first-order autocorrelations as more 
proximal events tend to produce larger effects than more 
distal events when analyzing behavior (Cooper et al., 2020). 
Each initial time series contained exactly 30 points.

As the purpose of our study was to examine whether wait-
ing for stability produced more or fewer errors than simply 
implementing the treatment when the trend was still unsta-
ble, our analyses required initially unstable time series. Dur-
ing data generation, we only kept time series that showed 
a trend above a maximum absolute threshold after a spe-
cific minimum number of points in baseline. The maximum 
allowable absolute threshold was set at 15 degrees for half 
the time series and at 30 degrees for the other half. The 
minimum number of points for phase A was equally distrib-
uted with values of either 3 or 5. We selected these values 
because applied researchers and practitioners typically want 
to reduce their number of baseline sessions to minimize the 
inconvenience to their clients (Lanovaz et al., 2017). The 
code involved a loop that continued creating novel 30-point 
series that met the previous criteria. As an example, assume 
that the maximum allowable trend was 30 degrees and the 
series had to have a minimum of five points in baseline. In 
this case, we would only keep a time series if it showed a 
trend larger than 30 degrees, or smaller than – 30 degrees, 
after five points.

yt = xt + 10

where xt = axt−1 + �t

The next step involved transforming these time series to 
AB graphs. Each 30-point data series yielded three sepa-
rate AB graphs. The first graph involved setting the number 
points in phase A at the minimum (i.e., three or five), which 
yielded a graph with a fixed baseline length. Then, we added 
either 5 or 10 points in phase B to the graph because treat-
ment phases tend to be longer than baseline phases. There-
fore, the AB graph did not use all the points from the times 
series. For example, a graph with three points in phase A 
and ten points in phase B would only use the first 13 points 
in the time series1 for the fixed baseline length. For half 
the series, we added a standardized mean difference (SMD) 
value to phase B, which simulated an effect to test for power. 
This SMD value was uniformly distributed integers from 1 
to 5, inclusively. For the other half of the series, we did not 
simulate an effect (SMD = 0) to examine type I error rate.

The second graph required waiting for stability using the 
same time series (i.e., response-guided decision to terminate 
phase A). That is, phase A ended when the trend was below 
the absolute value of the maximum allowable trend. Thus, 
the response-guided graphs always contained more points 
in phase A than the fixed baseline graphs. The other values 
(i.e., number of points in phase B and SMD) remained the 
same as for the first graph designed using the same time 
series. Using the same time series and keeping the other 
values constant allowed us to control the effects of waiting 
for stability. If phase A achieved stability after seven points 
and the phase B was set at ten points, the response-guided 
AB graph would contain 17 points (i.e., the first 17 points 
of the same 30-point series).

The third graph consisted of randomly selecting the 
number of points in phase A. To control for the potential 
confound of phase lengths, the frequency distribution of 
these phase lengths were exactly the same as the one for 
the response-guided graphs. That is, we picked the phase 
lengths randomly without replacement from the distribution 
of phase lengths observed in the responded-guided base-
lines. The SMD and number of points in phase B remained 
the same as for the first and second graphs derived from the 
same time series.

Our code repeated this process for 160,000 times series 
creating an initial dataset containing a total of 480,000 AB 
graphs. Table 1 presents the characteristic distributions 
of these times series. Note that the characteristics of the 
time series graphs were perfectly counterbalanced to con-
trol for interaction effects. Our dataset contained 5000 time 
series for each combination of characteristics showing no 
effect and 5000 times series for each set of characteristics 

1 We needed longer time series because the second graph involved 
achieving stability in baseline. Creating 30-point series ensured that 
we always had enough points to achieve stability.
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simulating an effect (i.e., 1000 for each of the five SMD 
values).

Analyses

To identify whether each graph showed a clear change, we 
applied the two objective methods that have been shown to 
perform best on baselines with few data points: the CDC 
method (Fisher et al., 2003) and a support vector classi-
fier developed by Lanovaz and Hranchuk (2021). The CDC 
relies heavily on level and trend whereas the support vector 
classifier considers additional dimensions of data analysis 
such as variability. The CDC method involved tracing a con-
tinuation of mean and trend lines from phase A unto phase 
B and increasing their height by 0.25 standard deviations. 
Then, we counted the number of points that fell above both 
lines. If this number of points was equal or higher than a 
threshold based on the binomial distribution, the graph was 
labeled as showing an effect. Otherwise, the graph was cat-
egorized as showing no effect.

The support vector classifier is a machine learning algo-
rithm that involves projecting the data into a higher dimen-
sion and then separating them with a hyperplane (i.e., a 
plane projected in more than two dimensions). The current 
study did not train the classifier: we simply downloaded 
the model previously developed by Lanovaz and Hranchuk 
(2021) and applied it to our data. Prior to its application, our 
code transformed the graphs to z scores and extracted the 
eight features required by the classifier: means of phases A 
and B, standard deviations of phases A and B, intercept and 
slope of phase A, and intercept and slope of phase B. Based 
on this input, the classifier categorized each graph as either 
showing an effect (1) or showing no effect (0).

Our initial analysis involved examining type I error rate 
and power across graphs having the minimum number of 
points (i.e., fixed graphs), response-guided graphs, and 
graphs having a random number of points in phase A. Com-
puting type I error involved dividing the number of graphs 
with a SMD of 0 that showed an effect according to the 
method of analysis (i.e., CDC or support vector classifier) by 
the total number of graphs with a SMD of 0. This measure 
represents the probability of concluding that a graph shows 
an effect when the graph includes no true effect (false posi-
tives). To compute power, we instructed Python to divide the 
number of graphs with a SMD of 1 or more that showed an 
effect according to the method of analysis by the total num-
ber of graphs with a SMD of 1 or more. Power identifies the 
proportion of graphs with a true effect that were correctly 
categorized as such by each method of analysis.

Following our main analysis, we examined the effects 
of initial confounding trend (i.e., decreasing or increasing) 
on type I error rate and power. This analysis assumed that 
the initial trend (i.e., trend following the minimum number 
of points) could differentially affect each method. The final 
analysis involved examining the impact of each character-
istic manipulated during time series generation: minimum 
number of points in phase A, number of points in phase 
B, autocorrelation, maximum absolute allowable trend, and 
standardized mean differences. 

Results and discussion

Figure 1 presents the type I error rate and power for the 
graphs having the minimum number of points (fixed), 
response-guided graphs, and graphs with a random 
number of points in phase A. For the CDC method, the 

Table 1  Characteristics manipulated across times series

Note. a: autocorrelation coefficient, n: number of times series with the value, SMD: standardized mean difference.

Characteristic Values

Minimum number of points in phase A
(fixed)

Shorter: 3 points (n = 80,000)
Longer: 5 points (n = 80,000)

Number of points in phase B Shorter: 5 points (n = 80,000)
Longer: 10 points (n = 80,000)

Autocorrelation Autocorrelation absent: a = 0.0 (n = 80,000)
Autocorrelation present: a = 0.4 (n = 80,000)

Maximum allowable trend Small: 15 degree (n = 80,000)
Large: 30 degrees (n = 80,000)

Effect size No effect:
With effect:

SMD = 0 (n = 80,000)
SMD = 1 (n = 16,000)
SMD = 2 (n = 16,000)
SMD = 3 (n = 16,000)
SMD = 4 (n = 16,000)
SMD = 5 (n = 16,000)
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responded-guided graphs produced marginally more type 
I errors than the fixed and random baseline graphs. Graphs 
with fixed baseline lengths had significantly less power 
than response-guided and random graphs when applying 
the CDC. In contrast, the support vector classifier produced 
consistent results for type I error rate and power regardless 
of baseline length. Figure 2 depicts type I error rate and 
power according to the direction of the initial trend. For both 
methods of analysis, we observed more type I errors and 
more power when the trend was initially decreasing. Nota-
bly, the CDC method produced type I error rates above .05 
in this case. The difference between graphs with increasing 
and decreasing trends was also larger for the CDC method 
than for the support vector classifier.

Table 2 shows the type I error rate and power based on the 
minimum number of points in phase A. Generally, increas-
ing the number of points in phase A marginally decreased 
both type I error rate and power. The only exception is the 

higher power for fixed graphs with 5 points in phase A using 
the CDC. Table 3 shows that manipulating the number of 
points in phase B produced larger differential effects across 
methods. For the CDC, increasing the number of points in 
phase B increased type I error rate while keeping a generally 
consistent power. For the support vector classifier, increas-
ing the number of points in phase B reduced type I error 
rate (except for the fixed baseline length) while increasing 
power. In Table 4, type I error increased with autocorrelation 
for both methods, but it reached above .05 for the CDC only. 
In comparison, power remained typically consistent for the 
support vector classifier and was marginally lower for the 
response-guided and random graphs for the CDC.

Table 5 examines the effects of manipulating the strin-
gency of the response-guided criterion. When the maximum 
allowable trend was higher, power and to a lesser extent 
type I error decreased. This issue was more salient for the 
graphs analyzed with the CDC. Finally, Table 6 presents the 
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Fig. 1  Type I error rate and power across fixed, response-guided, and random baseline lengths for the conservative dual-criteria and support vec-
tor classifier for trend stability
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Fig. 2  Type I error rate and power across fixed, response-guided (RG), and random baseline lengths when the initial trend was increasing and 
decreasing

Table 2  Type I error rate and power across different minimum 
lengths of phase A for trend stability

Note. CDC: conservative dual-criteria, SVC: support vector classifier.

Type I error rate Power

3 points 5 points 3 points 5 points

CDC
   Fixed .053 .036 .486 .503
   Response-guided .058 .044 .710 .652
   Random .051 .041 .651 .632

SVC
   Fixed .025 .015 .709 .686
   Response-guided .024 .014 .715 .679
   Random .022 .013 .715 .681

Table 3  Type I error rate and power across different lengths of phase 
B for trend stability

Note. CDC: conservative dual-criteria, SVC: support vector classifier.

Type I error rate Power

5 points 10 points 5 points 10 points

CDC
   Fixed .030 .059 .498 .492
   Response-guided .038 .064 .671 .690
   Random .033 .058 .634 .649

SVC
   Fixed .018 .023 .647 .748
   Response-guided .022 .016 .676 .718
   Random .020 .015 .670 .726
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effects of increasing the standardized mean difference. For 
a SMD of 1, the CDC produced the highest power whereas 
this pattern was reversed for SMDs of 3 or more (i.e., the 
support vector classifier performed best). For the CDC, 

the response-guided graphs produced the highest power 
closely followed by the graphs with random baseline lengths 
whereas the fixed graphs produced considerably less power 
than the two prior categories. For the support vector classi-
fier, power remained similar across fixed, response-guided, 
and random graphs.

In general, the results of the first experiment show that 
waiting for stability with the CDC had minimal impact on 
type I error, but it considerably increased power when com-
pared to fixed baselines. That said, randomly selecting the 
number of points in phase A produced similar conclusions to 
response-guided decisions. Given that the random selection 
of points may allow for the application of randomization 
tests (e.g., Levin et al., 2018), randomly selecting the num-
ber of points in phase A seems preferable when using the 
CDC. In contrast, both type I error rate and power remained 
consistent regardless of baseline length when the support 
vector classifier analyzed the data. In others word, waiting 
for stability in trend provided no additional gains for type I 
error rate and power.

Experiment 2 – Waiting for stability 
in variability

Another dimension of single-case graphs that may show sta-
ble or unstable patterns involves variability. In single-case 
designs, “variability refers to the fluctuation of the data (as 
reflected by the data’s range or standard deviation) around 
the mean” (Kratochwill et al., 2010, p. 5). Hence, a graph 
may show no trend, but still remain unstable in terms of 
variability (Barnard-Brak et al., 2021b). To examine this 
issue, we replicated our first experiment by creating datasets 
with high variability and examining the effects of waiting for 
stability on type I error rate and power.

Method

The data generation and analysis procedures remained 
the same as in the first experiment with the following four 
changes. First, the code generated the points using a random 
uniform distribution ranging from – 3 to 3, which produced 
more variable patterns than a normal distribution (i.e., more 
spread around the mean). This manipulation allowed us to 
produce graphs with higher variability. Second, the maxi-
mum allowable trend value was replaced by a maximum 
allowable standard deviation value, which was computed 
using the last three points of phase A. The two cut-off values 
were standard deviations of 1.0 and 1.5 to reduce the amount 
of variability. Third, the theoretical standard deviation of the 
uniform distribution was larger than for the normal distribu-
tion (1.73 instead of 1.00). To control for this issue, our code 
multiplied the SMDs by 1.73 during data generation to allow 

Table 4  Type I error rate and power in the absence and presence of 
autocorrelation for trend stability

Note. a: autocorrelation values, CDC: conservative dual-criteria, 
SVC: support vector classifier.

Type I error rate Power

a = 0 a = 0.4 a = 0 a = 0.4

CDC
   Fixed .033 .057 .496 .494
   Response-guided .027 .075 .693 .668
   Random .026 .065 .654 .630

SVC
   Fixed .011 .030 .696 .699
   Response-guided .007 .031 .701 .694
   Random .007 .028 .699 .697

Table 5  Type I error rate and power across maximum absolute trend 
values allowed for trend stability

Note. CDC: conservative dual-criteria, SVC: support vector classifier.

Type I error rate Power

15 degrees 30 degrees 15 degrees 30 degrees

CDC
   Fixed .048 .041 .544 .445
   Response-

guided
.054 .048 .749 .613

   Random .047 .044 .683 .600
SVC
   Fixed .024 .016 .716 .679
   Response-

guided
.021 .017 .709 .685

   Random .019 .016 .709 .687

Table 6  Power across different standardized mean difference values 
for trend stability

Note. CDC: conservative dual-criteria, SVC: support vector classifier.

Standardized mean difference

1 2 3 4 5

CDC
   Fixed 0.217 0.427 0.536 0.604 0.689
   Response-guided 0.274 0.563 0.757 0.869 0.941
   Random 0.259 0.543 0.710 0.812 0.884

SVC
   Fixed 0.176 0.547 0.829 0.948 0.988
   Response-guided 0.167 0.545 0.836 0.949 0.989
   Random 0.164 0.548 0.836 0.952 0.990
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comparisons across experiments. Finally, we did not repeat 
the trend analysis (see Fig. 2) as it was not relevant to the 
type of stability being studied in this experiment.

Results and discussion

Figure 3 displays the type I error rate (upper panel) and 
power (lower panel) of waiting for stability in variability 
during baseline. For the CDC method, having a fixed num-
ber of points produced the lowest type I error rate whereas 
the random number of points produced the highest power. 
For the support vector classifier, type I error rate and power 
remained generally consistent regardless of whether we 
waited for stability to introduce an effect. Tables 7 and 8 pre-
sent the analysis for the lengths of phases A and B, respec-
tively. Increasing the number of points in phase A margin-
ally decreased type I error rate while increasing power when 
using the CDC. Manipulating the length of phase A had no 
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Fig. 3  Type I error rate and power across fixed, response-guided, and random baseline lengths for the conservative dual-criteria and support vec-
tor classifier for stability in variability

Table 7  Type I error rate and power across different minimum 
lengths of phase A for stability in variability

Note. CDC: conservative dual-criteria, SVC: support vector classifier.

Type I error rate Power

3 points 5 points 3 points 5 points

CDC
   Fixed .029 .027 .512 .671
   Response-guided .040 .031 .645 .706
   Random .035 .030 .669 .720

SVC
   Fixed .013 .014 .701 .708
   Response-guided .016 .017 .705 .699
   Random .016 .017 .706 .700
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systematic effect on the conclusions drawn using support 
vector classifier. Having a larger number of points in phase B 
increased both type I error rate and power for the CDC. The 
support vector classifier with 10 points produced lower type 
I error rates for the response-guided and random baseline 
lengths, and higher power for all baseline lengths.

Table 9 presents the effects of autocorrelation while wait-
ing for stability in variability. For the CDC method, auto-
correlation was associated with higher type I error rate and 
lower power. For the support vector classifier, only type I 
error rate increased with the addition of autocorrelation. 
Table 10 examines the stringency of our standard deviation 
stability criterion. The effects of the maximum allowable 
standard deviation involved a small decrease in type I error 
rate when the criterion was less stringent criterion (i.e., SD 
< 1.5) for both methods of analysis. Making the criterion 
less stringent also decreased power with the CDC method. 
Finally, Table 11 displays the evolution of power when the 
value of the SMD increases. Similarly to what was observed 

during our trend analyses, the CDC had more power than the 
support vector classifier for low SMDs, but this pattern was 
reversed for higher SMDs (i.e., 3 or more). Interestingly, 
the random baseline length showed the most power when 
applying the CDC method.

Once again, the second experiment suggests that the support 
vector classifier is less affected by changes in baseline stabil-
ity than the CDC method. The results for the CDC analyses 
are mixed. Both the response-guided and random baseline 
lengths produced the highest power, but the response-guided 
baseline was also associated with the highest type I error rate. 
Amongst the three baseline lengths, the random length pro-
duced the fewest errors overall, which suggest that the ben-
efits of the response-guided decision-making are an artefact 
of longer baseline phases. For the support vector classifier, the 
three approaches produced similar patterns of errors and power, 
which questions the relevance of conducting additional baseline 
sessions.

Table 8  Type I error rate and power across different lengths of phase 
B for stability in variability

Note. CDC: conservative dual-criteria, SVC: support vector classifier.

Type I error rate Power

5 points 10 points 5 points 10 points

CDC
   Fixed .021 .035 .590 .593
   Response-guided .027 .045 .667 .684
   Random .025 .040 .683 .707

SVC
   Fixed .013 .014 .661 .748
   Response-guided .024 .010 .681 .723
   Random .024 .009 .681 .726

Table 9  Type I error rate and power in the absence and presence of 
autocorrelation for stability in variability

Note. a: autocorrelation values, CDC: conservative dual-criteria, 
SVC: support vector classifier.

Type I error rate Power

a = 0 a = 0.4 a = 0 a = 0.4

CDC
   Fixed .019 .037 .603 .580
   Response-guided .024 .047 .699 .652
   Random .020 .044 .719 .670

SVC
   Fixed .005 .022 .708 .701
   Response-guided .010 .023 .707 .697
   Random .010 .023 .706 .700

Table 10  Type I error rate and power across maximum allowable 
standard deviations for stability in variability

Note. CDC: conservative dual-criteria, SVC: support vector classifier.

Type I error rate Power

SD < 1.0 SD < 1.5 SD < 1.0 SD < 1.5

CDC
   Fixed .033 .023 .605 .578
   Response-guided .039 .032 .694 .657
   Random .035 .030 .713 .676

SVC
   Fixed .017 .010 .713 .696
   Response-guided .022 .011 .706 .698
   Random .022 .011 .705 .701

Table 11  Power across different standardized mean difference values 
for stability in variability

Note. CDC: conservative dual-criteria, SVC: support vector classifier. 
5266

Standardized mean difference

1 2 3 4 5

CDC
   Fixed 0.192 0.509 0.682 0.766 0.808
   Response-guided 0.238 0.587 0.770 0.864 0.919
   Random 0.234 0.604 0.804 0.892 0.941

SVC
   Fixed 0.146 0.555 0.853 0.971 0.997
   Response-guided 0.149 0.553 0.849 0.965 0.995
   Random 0.145 0.556 0.852 0.968 0.995
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General discussion

The results of our study suggest that the relevance of wait-
ing for baseline stability depends on the method of analysis 
being applied. For the CDC method, the response-guided 
and random baseline lengths typically produced fewer errors 
than the fixed baseline length. In contrast, the three baseline 
lengths yielded similar results for the support vector classi-
fier. Consistent with prior studies, the support vector clas-
sifier produced, on average, fewer decision-making errors 
than the CDC method (Lanovaz et al., 2020; Lanovaz & 
Hranchuk, 2021). One potential explanation for the better 
performance and stability of the support vector classifier is 
that Lanovaz and Hranchuk (2021) trained their model on 
graphs with and without trend. Therefore, the support vec-
tor classifier “learned” to differentiate between trend and 
background noise. In comparison, the CDC struggled with 
power when the trend of data was initially increasing. This 
observation may be explained by the development of the 
CDC, which emphasized reductions in type I error rate at 
the expense of power (Fisher et al., 2003).

For both methods, initially decreasing trends produced 
higher type I error rates and power. Contrarily, initially 
increasing trends produced lower type I error rates and 
power. These results were different from those obtained by 
Lanovaz and Hranchuk (2021) that observed higher type I 
error rates in the presence of a trend in the same direction 
as the expected change. One potential explanation is that 
trends in Lanovaz and Hranchuk were programmed, which 
made false positives more likely as the trends remained in 
the same direction for both phases. Prior studies had shown 
that increasing the number of points in phase B, but not in 
phase A, reduced type I error rates (e.g., Falligant et al., 
2020; Lanovaz et  al., 2017) when using the CDC. Our 
results were not consistent with prior research: Increasing 
the number of points in phase A marginally reduced type I 
error rate while increasing the number of points in phase B 
increased type I error rate for the CDC in both experiments. 
For the support vector classifier, increasing the number of 
points only decreased type I error rate for phase B when 
we manipulated variability (for two of three baselines). One 
hypothesis for why the results differ is that prior studies did 
not systematically introduce trends and variability in their 
datasets, which may have biased the results. The presence of 
autocorrelation increased type I error rate for both methods, 
but to a greater extent for the CDC. Taken together, these 
results underline the robustness of using machine learning to 
analyze single-case data with short, fixed baseline lengths.

As discussed previously, waiting for stability did not 
reduce decision-making errors when using the support vec-
tor classifier. Thus, these results suggest that waiting for sta-
bility in trend and variability may not be worth the additional 

time and effort involved in conducting additional baseline 
sessions. This surprising result may reduce the effort related 
to baseline data collection as researchers and practitioners 
may simply set a minimum number of points (e.g., 3 or 5), 
and then start treatment (or introduce the independent vari-
able) regardless of trend and variability when applying the 
support vector classifier. Reducing the number of baseline 
sessions may decrease the costs and limitations of imple-
menting single-case designs in research and practice. For 
example, researchers and practitioners may want to reduce to 
a minimum the number of baseline sessions conducted with 
an individual who exhibits dangerous behavior. Conducting 
fewer baseline sessions may also allow for the recruitment 
of more participants in single-case studies by reducing the 
cost of research per participant. In practice, publicly funded 
services may be able to reduce wait lists by conducting fewer 
baseline sessions with each individual. Similarly, individu-
als on private health plans with a coverage limit may benefit 
from more treatment sessions if the number of baseline ses-
sions is reduced. As such, reducing the number of baseline 
sessions could produce beneficial outcomes in both research 
and practice.

A limitation of our study is that we did not include visual 
inspection, which is often described as a recommended prac-
tice in the analysis of single-case graphs (Lanovaz & Hran-
chuk, 2021; Manolov & Vannest, 2019). Future research 
should continue examining how visual inspection is affected 
by response-guided decision-making. Second, the stabil-
ity criterion for the second experiment was based on the 
three last points of phase A. This manipulation was neces-
sary because phase A could have as few as three points. In 
the future, it may be relevant to examine whether requiring 
a larger number of points showing stability (e.g., 5) pro-
duces differential results. Another limitation is that our pre-
set parameters (e.g., autocorrelation, effect size) remained 
consistent within individual graphs, which introduced some 
stability. Changing the values of these parameters within 
graphs appears important to generate more instability and 
examine the generality of our findings. Finally, we limited 
our analyses to AB comparisons as it is the basic unit of 
analysis for many single-case experimental designs. Repli-
cating our study with single-case experimental designs (i.e., 
reversal designs, multiple baseline designs, and changing-
criterion designs) seems essential to examine whether fixed 
baseline lengths with machine learning would perform the 
same when the effects are replicated within and across par-
ticipants. Research on SCDs should also examine the rel-
evance of other recommendations proposed by standards 
and guidelines to identify their limitations and promote 
their adoptions by a growing number of researchers and 
practitioners.
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