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Abstract
Instance-based learning theory (IBLT) is a comprehensive account of how humans make decisions from experience during
dynamic tasks. Since it was first proposed almost two decades ago, multiple computational models have been constructed
based on IBLT (i.e., IBL models). These models have been demonstrated to be very successful in explaining and predicting
human decisions in multiple decision-making contexts. However, as IBLT has evolved, the initial description of the theory
has become less precise, and it is unclear how its demonstration can be expanded to more complex, dynamic, and multi-agent
environments. This paper presents an updated version of the current theoretical components of IBLT in a comprehensive
and precise form. It also provides an advanced implementation of the full set of theoretical mechanisms, SpeedyIBL, to
unlock the capabilities of IBLT to handle a diverse taxonomy of individual and multi-agent decision-making problems.
SpeedyIBL addresses a practical computational issue in past implementations of IBL models, the curse of exponential
growth, that emerges from memory-based tabular computations. When more observations accumulate over time, there is
an exponential growth of the memory of instances that leads directly to an exponential slowdown of the computational
time. Thus, SpeedyIBL leverages parallel computation with vectorization to speed up the execution time of IBL models. We
evaluate the robustness of SpeedyIBL over an existing implementation of IBLT in decision games of increased complexity.
The results not only demonstrate the applicability of IBLT through a wide range of decision-making tasks, but also highlight
the improvement of SpeedyIBL over its prior implementation as the complexity of decision features the number of agents
increase. The library is open sourced for the use of the broad research community.
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Introduction

A cognitive theory is a general postulation of mechanisms
and processes that are globally applicable to families of
tasks and types of activities rather than being dependent
on a particular task. Cognitive models are very specific
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representations of part or all aspects of a cognitive theory
that apply to a particular task or activity (Gonzalez, 2017).
Specifically, normative and descriptive theories of choice
often rely on utility theory (Savage, 1954; Morgenstern &
Von Neumann, 1953) or aim at describing the psychological
impact of perceptions of probability and value on choice
(Kahneman & Tversky 1979; 1992). In contrast, models
of decisions from experience (DfE) are often dynamic
computational representations of sequential choices that are
distributed over time and space and that are made under
uncertainty (Gonzalez et al., 2017).

Cognitive models of DfE can be used to simulate the
interaction of theoretical cognitive processes with the envi-
ronment, representing a particular task. These models can
make predictions regarding how human choices are made
in such tasks. These predictions are often compared to data
collected from human participants in the same tasks using
interactive tools. The explicit comparison of cognitive mod-
els’ predictions to human actual behavior is a common
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research approach in the cognitive sciences and in particular
in the study of decision-making (Gonzalez, 2017).

Cognitive models are dynamic and adaptable computa-
tional representations of the cognitive structures and mech-
anisms involved in decision-making tasks such as DfE
tasks under conditions of partial knowledge and uncer-
tainty. Moreover, cognitive models are generative, in the
sense that they actually make decisions in similar ways like
humans do, based on their own experience, rather than being
data-driven and requiring large training sets. In this regard,
cognitive models differ from purely statistical approaches,
such as machine learning models, that are often capable of
evaluating stable, long-term sequential dependencies from
existing data but fail to account for the dynamics of human
cognition and human adaptation to novel situations.

There are many models of DfE as evidenced by past mod-
eling competitions (Erev et al., 2010; Erev et al., 2017).
Most of these models often make broadly disparate assump-
tions regarding the cognitive processes by which humans
make decisions (Erev et al., 2010). For example, the mod-
els submitted to these competitions are often applicable
to a particular task or choice paradigm rather than present-
ing an integrated view of how the dynamic choice process
from experience is performed by humans. Associative learn-
ing models are a class of models of DfE that conceptualize
choice as a learning process that stores behavior–outcome
relationships and are contingent on the environment (Her-
twig, 2015). A common example of this type of models is
reinforcement learning (RL) (Sutton &Barto, 2018), and the
association between DfE and RL is becoming more explicit
in the literature (Konstantinidis et al., 2020; Speekenbrink
& Konstantinidis, 2015). Generally speaking, these kinds of
models rely on learning from reinforcement and the con-
tingencies of the environment as in the Skinnerian tradition
(Skinner, 2014; Sutton & Staw, 1995). These models have
shown to be successful at representing human learning over
time based on feedback.

In contrast to many of the associative learning models,
instance-based learning (IBL) models rely on a single
dynamic decision theory: instance-based learning theory
(IBLT) (Gonzalez et al., 2003). IBLT emerged from the need
to explain the process of dynamic decision-making, where a
sequence of interdependent decisions are made sequentially,
over time. IBLT provides a single general algorithm and
mathematical formulations of memory retrieval that rely
on the well-known ACT-R cognitive architecture (Anderson
& Lebiere, 2014). The theory proposes a representation
of decisions in the form of instances, which are triplets
involving state, action, and utilities. In general, states are
a representation of the features of the situation of the
environment in a task, actions are decisions an agent
makes in such states, and utilities are the expectations
the agent generates or the outcomes the agent receives

from performing such actions. The theory also provides
a process of retrieval of past instances based on their
similarity to a current decision situation, and the generation
of accumulated value (expectation from experience) based
on a mechanism called blending, which is a function of the
payoffs experienced and the probability of retrieving those
instances from memory (Lebiere, 1999; Lejarraga et al.,
2012; Gonzalez & Dutt, 2011).

Initially, IBLT was demonstrated in a highly complex,
dynamic decision-making task representing the complex
process of dynamic allocation of limited resources over time
and under time constraints in a “water purification plant”
(Gonzalez et al., 2003). Since its inception, many models
have been developed based on IBLT, demonstrating human
DfE in a large diversity of contexts and domains, from simple
and abstract binary choice dynamics (Gonzalez & Dutt, 2011;
Lejarraga et al., 2012), to highly specialized tasks such as
cyber defense (Aggarwal et al., 2020; Cranford et al., 2020)
and anti-phishing detection (Cranford et al., 2019). Also, IBL
models have been created to account for dyadic and group
effects, where each individual in a group is represented by an
IBL agent (Gonzalez et al., 2015). More recently, this IBL
algorithm has been applied to multi-state gridworld tasks
(Nguyen & Gonzalez, 2020a; 2020b; 2021b) in which
the agents execute a sequence of actions with delayed feed-
back. The recent applications of IBLT have led to sig-
nificantly more complex and realistic tasks, where multi-
dimensional state-action-utility representations are required,
where extended training is common, where real-time inter-
activity between models and humans is needed to solve such
tasks (Nguyen & Gonzalez, 2021b).

With the increased use of IBLT in generating models
on tasks of greater complexity and in multiple domains,
it has become clear that the initial, two-decade-old con-
ceptualization of IBLT needs to be updated. As IBLT has
evolved, the initial description of the theory has become
less precise, given that no formal implementation of the
IBLT process was provided. Thus, a comprehensive descrip-
tion of the current state of the theory along with a concrete
implementation of the whole IBL process is essential. More-
over, it is important to demonstrate the full capability and
generality of IBLT in a single manuscript, which explains
and illustrates how models of multiple and diverse deci-
sion tasks can be constructed based on the same theory to
generate predictions regarding DfE and learning across a
wide range of decision-making tasks. With that, the major
goal of this paper is to provide an updated view of the
theoretical components of IBLT in a comprehensive and
precise form. We also provide an open-source, efficient
implementation of the full set of mechanisms of IBLT and
demonstrate how such implementation can handle a diverse
taxonomy of individual and multi-agent decision-making
tasks.
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In the process of generating IBL models for more com-
plex tasks that require real-time interactivity between models
and humans, we have confronted a practical computational
problem, the curse of exponential growth (Bellman, 1957;
Kuo & Sloan, 2005). The curse of exponential growth is
a common problem in models that rely on the accumula-
tion of data over time and on computation of approximate
value functions represented as arrays and tables, such as
RL models (Sutton & Barto, 2018). As summarized in a
recent overview of the challenges in multi-agent RL models,
even advanced deep reinforcement learning techniques with
many successes in Atari, Go, and StarCraft games (Mnih
et al., 2013; Silver et al., 2016; Vinyals et al., 2019) suf-
fer severely from the increase in the dimensions of the
state-action space, particularly as the number of agents
increases (Wong et al., 2021). The problem becomes even
more complex under nonstationary environments and under
uncertainty, where information is incomplete. Dynamic con-
ditions significantly increase the diversity and number of
states as it is needed for every dynamic decision-making
task (Gonzalez et al., 2017). Thus, this paper also addresses
the critical question of how IBL models can tackle the curse
of exponential growth of memory.

In summary, we present three main contributions. First,
an updated view of IBLT provides a comprehensive and
precise view of the current theoretical components of
the theory, offering a concrete generic algorithm with a
formal implementation of the general process of IBLT.
Second, we demonstrate the applicability of IBLT across a
taxonomy of decision-making tasks varying in the number
of agents, the number of actions, the number of decision
options and states, and the type of delayed feedback. Third,
we provide a new, open-source library, SpeedyIBL, that
can handle the curse of exponential growth. SpeedyIBL
allows users to create multiple IBL agents relying on
IBLT with fast processing and response time while
maintaining the decision characteristics of IBL models.
We demonstrate how SpeedyIBL is increasingly beneficial
(compared to existing implementations, PyIBL (Morrison
& Gonzalez, 2015)) as the dimensions of the representation,
the number of agents and their interactions increase.
Through simulation experiments, we demonstrate how IBL
models are able to provide predictions across a taxonomy
of decision-making tasks with escalating complexity,
and how SpeedyIBL is increasingly more efficient than
PyIBL (Morrison & Gonzalez, 2015) as the dimensions of
task complexity increase.

Instance-based learning theory

An updated view of the general decision process proposed
in IBLT is illustrated in Fig. 1, and the current mechanisms

of IBLT are made mathematically concrete in Algorithm 1
(Gonzalez et al., 2003).

The process starts with the observation of the environ-
mental state, and the determination of whether there are past
experiences in memory (i.e., instances) that are similar to
the current environmental state (i.e., re cognition). Whether
there are similar past instances will determine the process
used to generate the expected utility of a decision alternative
(i.e., judgment). If there are past experiences that are simi-
lar to the current environmental state, the expected utility of
such an alternative is calculated via a process of blending
past instances from memory; but if there are no similar past
instances, then the theory suggests that a heuristic is used
to generate the expected utility, instead. After judgment,
the option with the highest expected utility is maintained in
memory and a decision is made as to whether to stop the
exploration of additional alternatives and execute the cur-
rent best decision (i.e., choice) or to continue exploring new
alternatives (i.e., exploration loop). When the exploration
process ends, the choice that has the highest expected utility
is executed, which changes the environment (i.e., execu-
tion loop). The loop from recognition to execution continues
over time, and the result from a decision may be observed
from the environment (i.e., feedback) immediately or with
delay from the execution of a choice. Such a decision result
(e.g., a reward) is used to update the utility of past instances
in memory through a credit assignment mechanism.

In IBLT, an “instance” is a memory unit that results from
the potential alternatives evaluated. These memory repre-
sentations consist of three elements which are constructed
over time: a situation state s, which is composed of a set of
features f ; a decision or action a taken corresponding to an
alternative in state s; and an expected utility or experienced
outcome x of the action taken in a state.

Each instance in memory has an activation value,
which represents how readily available that information
is in memory, and it is determined by the similarity to
past situations, recency, frequency, and noise according to
the activation equation in ACT-R (Anderson & Lebiere,
2014). Activation of an instance is used to determine the
probability of retrieval of an instance from memory which
is a function of its activation relative to the activation of
all instances corresponding the same state in memory. The
expected utility of a choice option is calculated by blending
past outcomes. This blending mechanism for choice has its
origins in a more general blending formulation (Lebiere,
1999), but a simplification of this mechanism is often used
in models with discrete choice options, defined as the
sum of all past experienced outcomes weighted by their
probability of retrieval (Gonzalez & Dutt, 2011; Lejarraga
et al., 2012). This formulation of blending represents the
general idea of an expected value in decision-making, where
the probability is a cognitive probability, a function of
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the activation equation in ACT-R. Algorithm 1 provides a
formal representation of the general IBL process.

Concretely, for an agent, an option k = (s, a) is defined
by taking action a after observing state s.

At time t , assume that there are nkt different consid-
ered instances (ki, xiki t ) for i =1, ..., nkt , associated with k.
Each instance i in memory has an Activation value, which
represents how readily available that information is in mem-
ory and expressed as follows (Anderson & Lebiere, 2014):

Λiki t = ln

⎛
⎝ ∑

t ′∈Tiki t

(t − t ′)−d

⎞
⎠ + α

∑
j

Simj (f
k
j , f

ki

j )

+σ ln
1 − ξiki t

ξiki t

, (1)

where d, α, and σ are the decay, mismatch penalty, and
noise parameters, respectively, and Tiki t ⊂ {0, ..., t − 1}
is the set of the previous timestamps in which the instance

i was observed, f k
j is the j -th attribute of the state s,

and Simj is a similarity function associated with the j -
th attribute. The second term is a partial matching process
reflecting the similarity between the current state s and the
state of the option ki . The rightmost term represents a noise
for capturing individual variation in activation, and ξiki t is a
random number drawn from a uniform distribution U(0, 1)
at each timestep and for each instance and option.

Activation of an instance i is used to determine the
probability of retrieval of an instance from memory.

The probability of an instance i is defined by a soft-max
function as follows

Piki t = eΛiki t
/τ

∑nkt

j=1 e
Λjkj t /τ

, (2)

where τ is the Boltzmann constant (i.e., the “temperature”)
in the Boltzmann distribution. For simplicity, τ is often
defined as a function of the same σ used in the activation
equation τ = σ

√
2.

The expected utility of option k is calculated based on
blending as specified in choice tasks (Lejarraga et al., 2012;
Gonzalez & Dutt, 2011):

Vkt =
nkt∑
i=1

Piki t xiki t . (3)

The choice rule is to select the option that corresponds to
the maximum blended value. In particular, at the l-th step of
an episode, the agent selects the option (sl, al) with

al = argmax
a∈A

V(sl ,a)t (4)

The flag delayed on line 14 of Algorithm 1 is true when
the agent knows the real outcome after making a sequence
of decision without feedback. In such case, the agent
updates outcomes by using one of the credit assignment
mechanisms (Nguyen et al., 2021). It is worth noting that
when the flag delayed is true depends on a specific task. For
instance, delayed can be set to true when the agent reaches
the terminal state, or when the agent receives a positive
reward.

SpeedyIBL implementation

From the IBL algorithm 1, we observe that its computational
cost revolves around the computations on lines 6 (Eq. 1),
7 (Eq. 2), 8 (Eq. 3), and the storage of instances with their
associated time stamps on line 13.

Clearly, when the number of states and action variables
(dimensions) grow, or the number of IBL agent objects
increases, the execution of steps 6 to 8) in Algorithm 1 will
directly increase the execution time. The “speedy” version
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Fig. 1 IBLT process from Gonzalez et al. (2003)

of IBL (i.e., SpeedyIBL) is a library focused on dealing with
these computations more efficiently.

SpeedyIBL algorithm is the same as that in Algorithm 1.
The innovation is in the mathematics. Equations 1, 2 and 3
are replaced with Eqs. 6, 7 and 8, respectively (as explained
below). Our idea is to take advantage of vectorization,
which typically refers to the process of applying a single
instruction to a set of values (vector) in parallel, instead of
executing a single instruction on a single value at a time. In
general, this idea can be implemented in any programming
language. We particularly implemented these in Python,
since that is how PyIBL is implemented (Morrison &
Gonzalez, 2015).

Technically, the memory in an IBL model is stored by
using a dictionaryM that, at time t , represented as follows:

M =
{
ki : {xiki t : Tiki t , ...}, ...

}
, (5)

where (ki, xiki t , Tiki t ) is an instance i that corresponds to
selecting option ki and achieving outcome xiki t with Tiki t

being the set of the previous timestamps in which the
instance i is observed.

To vectorize the codes, we convert Tiki t to a NumPy1

array (Harris et al., 2020) on which we can use standard
mathematical functions with built-in Numpy functions for
fast operations on entire arrays of data without having to
write loops.

After the conversion, we consider Tiki t as a NumPy array.
In addition, since we may use a common similarity function
for several attributes, we assume that f is partitioned
into J non-overlapping groups f[1], ..., f[J ] with respect to
the distinct similarity functions Sim1, ..., SimJ , i.e., f[j ]
1https://numpy.org/doc/stable/

contains attributes that use the same similarity function
Simj . We denote S(f k, f ki ) the second term of Eq. 1
computed by:

Hence, the activation value (see Eq. 1) can be fast and
efficiently computed as follows:

Λiki t = math.log(sum(pow(t − Tiki t , −d)))

+α ∗ S(f k, f ki )

+σ ∗ math.log((1 − ξiki t )/ξiki t ). (6)

With the vectorization, the operation such as pow can be
performed on multiple elements of the array at once, rather
than looping through and executing them one at a time.
Similarly, the retrieval probability (see Equation 2) is now
computed by:

Pkt := [P1k1t , ..., Pnkt knkt
t ] = v/sum(v), (7)

where v = math.exp([Λ1k1t , ..., Λnkt knkt
t ]/τ). The

blended value (see Equation 3) is now computed by:

Vkt = sum(xkt ∗ Pkt ), (8)

where xkt := [x1k1t , ..., xnkt knkt
t ] is a NumPy array that

contains all the outcomes associated with the option k.
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Experiments: Demonstration of the general
applicability of IBLT

To demonstrate the applicability of IBLT through a wide
range of decision tasks as well as to assess the efficiency of
SpeedyIBL, we compare SpeedyIBL performance against
a regular implementation of the IBL algorithm (Algorithm
1) in Python (PyIBL Morrison & Gonzalez, 2015), in six
different tasks that were selected to represent different
dimensions of complexity in dynamic decision-making
tasks (Gonzalez et al., 2005).

A taxonomy of individual andmulti-agent
decision-making tasks

Generally, computational cognitive science has taken advan-
tage of the availability of large amounts of behavioral data to
advance the “explanation” of cognitive processes involved
in various types of tasks, notably, decision-making (Grif-
fiths, 2015). These models often make excellent predictions
of human choices in a particular task. However, for the
advancement of cognitive science, it is generally impor-
tant not to simply make accurate predictions in a specific
task but to also provide general explanations and under-
standing of how and why people behave the way they do
across tasks.

The development of computational cognitive models that
are based on cognitive theories are expected to provide
prediction power without a heavy reliance on data (Hofman
et al., 2021). IBLT is a general postulation of mechanisms
and processes that are globally applicable to families of
dynamic decision tasks, rather than being dependent on the
requirements of a particular task. In this section, we present
a taxonomy of decision-making tasks that IBLT can address.

Table 1 provides an overview of six dimensions to vary
in six different decision-making tasks: (1) number of agents,
(2) number of actions, (3) complexity of the states, (4)
number of choice options (i.e., alternatives), (5) similarity
across states, and (6) feedback delays. The table also
presents six tasks that were selected to illustrate how IBLT
can handle these dimensions. Although we selected these

six specific tasks to illustrate the generality of IBLT, it
is important to note that the theory is applicable to any
diversity of tasks within these dimensions. For example
IBLT can handle any number of agents, actions, and other
task complexities.

In terms of the number of agents, we selected four single
agent tasks, one task with two agents, and one task with
three agents. The tasks selected for demonstration can have
between two to nine potential actions, the number of states
and choice options also vary from just a few to a significant
large number. We also include one task that requires of
similarity judgments across states (i.e., partial matching in
Eqs. 1 and 6) and five tasks that do not use similarity
judgments. Finally, we include one task with immediate
feedback and five tasks that involve feedback delays.

We describe each of the tasks below, starting from the
simplest task (repeated Binary choice), and moving up in
the level of task complexity. The binary choice task has only
one state and two options; the Insider attack task is a two-
stage game in which players choose one of six targets after
observing their features to advance. We then scale up to a
larger number of states and actions in significantly more
complex tasks. A Minimap task representing a search and
rescue mission andMs. Pac-Man tasks have a larger number
of discrete state-action variables. Next, we scale up to two
multi-agent tasks: the Fireman task has two agents and
four actions, and a Cooperative navigation task in which
three agents navigate and cooperate to accomplish a goal.
The number of agents increases the memory computation,
since each of those agents adds their own variables to
the joint state-action space. Based on these dimensions of
increasing complexity, we expect that SpeedyIBL’s benefits
over PyIBL will be larger with increasing complexity of the
task.

Binary choice

In each trial, the agent is required to choose one of two
options: Option A or Option B (as illustrated in Fig. 2).
A numerical outcome drawn from a distribution after the
selection, is the immediate feedback of the task. This is a

Table 1 Taxonomy of decision-making dimensions, and the illustration of six decision-making tasks

Task Num. of Num. of Num. of Num. of Similarity Delayed

Agents Actions States Options Judgments Feedback

Binary choice 1 2 1 2 No No

Insider attack game 1 6 4 24 Yes Yes

Minimap 1 4 ≈ 1041 ≈ 4 × 1041 No Yes

Ms. Pac-Man 1 9 ≈ 10347 ≈ 9 × 10347 No Yes

Fireman 2 4 ≈ 1015 ≈ 4 × 1015 No Yes

Cooperative navigation 3 4 ≈ 107 ≈ 4 × 107 No Yes
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Fig. 2 Binary choice task

well-studied problem in the literature of risky choice task
(Hertwig et al., 2004), where individuals make decisions
under uncertainty. Unknown to the agent is that the options
A and B are assigned to draw the outcome from a predefined
distribution. One option is safe and it yields a fixed medium
outcome (i.e., 3) every time it is chosen. The other option is
risky, and it yields a high outcome (4) with some probability
0.8, and a low outcome (0) with the complementary
probability 0.2.

An IBL model of this task has been created and reported
in various past studies, including (Gonzalez & Dutt, 2011;
Lejarraga et al., 2012). Here, we conducted the simulations
of 1000 runs of 100 trials. We also run the experiment with
5000 trials to more clearly highlight the difference between
PyIBL and SpeedyIBL. The default utility x0 was set to 4.4.
For each option k, where k is either A or B, we consider
all the generated instances taking the form of (k, x), where
x is an outcome. The performance is determined by the
average proportion of the maximum reward expectation
choice (PMax).

Insider attack game

The insider attack game is an interactive task designed to
study the effect of signaling algorithms in cyber deception
experiments (e.g., Cranford et al., 2018). Figure 3 illustrates
the interface of the task, including a representation of
the agent (insider attacker) and the information of six
computers. Each of the six computers is “protected” with
some probability (designed by a defense algorithm). Each

Fig. 3 Insider attack game

computer displays the monitoring probability and potential
outcomes and the information of the signal. When the agent
selects one of the six computers, a signal is presented to
the agent (based on the defense signaling strategy); which
informs the agent whether the computer is monitored or not.
The agent then makes a second decision after the signal:
whether to continue or withdraw the attack on the pre-
selected computer. If the agent attacks a computer that is
monitored, the player loses points, but if the computer is not
monitored, the agent wins points. The signals are, therefore,
truthful or deceptive. If the agent withdraws the attack, it
earns zero points.

In each trial, the agent must decide which of the six
computers to attack, and whether to continue or withdraw
the attack after receiving a signal. An IBL model of this task
has been created and reported in past studies (e.g., Cranford
et al. 2019; 2021). We perform the simulations of 1000 runs
of 100 episodes. For each option (s, a), where the sate s

is the features of computers including reward, penalty and
the probability that the computers is being monitored (see
Cranford et al., 2019 for more details), and a ∈ {1, ..., 6}
is an index of computers, we consider all the generated
instances taking the form of (s′, a, x) with s′ being a state
and x being an outcome. The performance is determined by
the average collected reward.

Search and rescue in Minimap

The Minimap task is inspired by a search and rescue sce-
nario, which involves an agent being placed in a build-
ing with multiple rooms and tasked with rescuing vic-
tims (Nguyen & Gonzalez, 2021a). Victims have been
scattered across the building and their injuries have differ-
ent degrees of severity with some needing more urgent care
than others. In particular, there are 34 victims grouped into
two categories (24 green victims and ten yellow victims).
There are many obstacles (walls) placed in the path forcing
the agent to look for alternative routes. The agent’s goal is
to rescue as many victims as possible. The task is simulated
as a 93 × 50 grid of cells which represents one floor of this
building (see Fig. 4). Each cell is either empty, an obstacle,
or a victim. The agent can choose to move left, right, up, or
down, and only move one cell at a time.

The agent receives a reward of 0.75 and 0.25 for rescuing
a yellow victim and a green victim, respectively. Moving
into an obstacle or an empty cell is penalized by 0.05 or
0.01 accordingly. Since the agent might have to make a
sequence of decisions to rescue a victim, we update the
previous instances by a positive outcome that once the agent
receives.

1740 Behavior Research Methods  (2023) 55:1734–1757



Fig. 4 Search and rescue map. The empty cells are white and the walls are black. The yellow and green cells represent the locations of the yellow
and green victims, respectively. The cell with the red color represents the start location of the agent

An IBL model of this task has been created and reported
in past studies (Gulati et al., 2021). Here we created
the SpeedyIBL implementation of this model to perform
the simulation of 100 runs of 100 episodes. An episode
terminates when a 2500-trial limit is reached or when
the agent successfully rescues all the victims. After each
episode, all rescued victims are placed back at the location
where they were rescued from and the agent restarts from
the pre-defined start position.

In this task, a state s is represented by a gray-scale
image (array) with the same map size. We use the following
pixel values to represent the entities in the map: s[x][y]
= 240 if the agent locates at the coordinate (x, y), 150
if a yellow victim locates at the coordinate (x, y), 200 if
a green victim locates at the coordinate (x, y), 100 if an
obstacle locates at the coordinate (x, y), and 0 otherwise.
For each option (s, a), where s is a state and a is an action,
we consider all the generated instances taking the form of
(s, a, x) with x being an outcome. The default utility was
set to 0.1. The flag delayed is set to true if the agent rescues
a victim, otherwise false. The performance is determined by
the average collected reward.

Ms. Pac-Man

The next task considered in the experiment is the Ms. Pac-
Man game, a benchmark for evaluating agents in machine
learning, e.g., Hasselt et al. (2016). The agent maneuvers
Pac-Man in a maze while Pac-Man eats the dots (see Fig. 5).

In this particular maze, there are 174 dots and each one is
worth 10 points. A level is finished when all dots are eaten.

To make things more difficult, there are also four ghosts in
the maze who try to catch Pac-Man, and if they succeed,
Pac-Man loses a life. Initially, she has three lives and gets
an extra life after reaching 10,000 points. There are four
power-up items in the corners of the maze, called power
dots (worth 40 points). After Pac-Man eats a power dot, the
ghosts turn blue for a short period, they slow down and try
to escape from Pac-Man. During this time, Pac-Man is able
to eat them, which is worth 200, 400, 800, and 1600 points,

Fig. 5 Ms. Pac-Man game
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consecutively. The point values are reset to 200 each time
another power dot is eaten, so the agent would want to eat
all four ghosts per power dot. If a ghost is eaten, his remains
hurry back to the center of the maze where the ghost is
reborn. At certain intervals, a fruit appears near the center
of the maze and remains there for a while. Eating this fruit
is worth 100 points.

We use the MsPacman-v0 environment developed by Gym
OpenAI,2 where a state is represented by a color image. Here,
we developed an IBL model for this task and created the
SpeedyIBL implementation of this model to perform the sim-
ulation of 100 runs of 100 episodes. An episode terminates
when either a 2500-step limit is reached or when Pac-Man
successfully eats all the dots or loses three lives. Like in
the Minimap task, for each option (s, a), where s is a state
and a is an action, we consider all the generated instances
taking the form of (s, a, x) with x being an outcome. The
parameter delayed is set to true if Pac-Man receives a posi-
tive reward, otherwise it is set to false. The performance is
determined by the average collected reward.

Fireman

The Fireman task replicates the coordination in firefighting
service wherein agents need to pick up matching items for
extinguishing fire. This task was used for examining deep
reinforcement learning agents (Palmer et al., 2019). In the
experiment, the task is simulated in a gridworld of size
11 × 14, as illustrated in Fig. 6. Two agents A1 and A2
located within the gridworld are tasked with locating an
equipment pickup area and choosing one of the firefight
items. Afterwards, they need to navigate and find the
location of the fire (F) to extinguish it. The task is fully
cooperative as both agents are required to extinguish one
fire. More importantly, the location of the fire is dynamic in
every episode.

The agents receive the collective reward according to the
match between their selected firefighting items, which is
determined by the payoff matrix in Table 2. The matrix is
derived from a partial stochastic climbing game (Matignon
et al., 2012) that has a stochastic reward. If they both select
the equipment E2, they get 14 points with the probability
0.5, and 0 otherwise. This Fireman task has both stochastic
and dynamic properties.

Here we developed an IBL model for this task. We
created the SpeedyIBL implementation of this model to

2https://gym.openai.com/envs/MsPacman-v0/

Fig. 6 Fireman game

perform the simulations of 100 runs of 100 episodes. An
episode terminates when a 2500-trial limit is reached or
when the agents successfully extinguish the fire. After each
episode, the fire is replaced in a random location and the
agents restart from the pre-defined start positions.

Like in the search and rescue Minimap task, a state s of
the agent A1 (resp. A2) is represented by a gray-scale image
with the same gridworld size using the following pixel
values to represent the entities in the gridworld: s[x][y] =
240 (resp. 200) if the agent A1 (resp. A2) locates at the
coordinate (x, y), 55 if the fire locates at the coordinate
(x, y), 40 if equipment E1 locates at the coordinate (x, y),
50 if equipment E2 locates at the coordinate (x, y), 60
if equipment E3 locates at the coordinate (x, y), 100 if
an obstacle locates at the coordinate (x, y), 0 otherwise.
Moreover, we assume that the agents cannot observe the
relative positions of the other, and hence, their states do not
include the pixel values of the other agent. For each option

Table 2 Payoff matrix

Agent 2

E1 E2 E3

Agent 1 E1 11 -30 0

E2 -30 14/0 6

E3 0 0 5

1742 Behavior Research Methods  (2023) 55:1734–1757

https://gym.openai.com/envs/MsPacman-v0/


(s, a), where s is a state and a is an action, we consider
all the generated instances taking the form of (s, a, x) with
x being an outcome. The flag delayed is set to true if the
agents finish the task, otherwise false. The performance is
determined by the average collected reward.

Cooperative navigation

In this task, three agents (A1, A2, and A3) must cooperate
through physical actions to reach a set of three landmarks
(L1, L2, and L3) shown in Fig. 7, see Lowe et al. (2017).
The agents can observe the relative positions of other agents
and landmarks, and are collectively rewarded based on the
number of the landmarks that they cover. For instance, if
all the agents cover only one landmark L2, they receive one
point. By contrast, if they all can cover the three landmarks,
they get the maximum of three points. Simply put, the
agents want to cover all landmarks, so they need to learn to
coordinate the landmark they must cover.

Here we developed an IBL model for this task. We
created the SpeedyIBL implementation of this model to
perform the simulations of 100 runs of 100 episodes. An
episode terminates when a 2500-trial limit is reached or
when each of the agents covers one landmark. After each
episode, the fire is replaced in a random location and the
agents restart from the pre-defined start positions.

In this task, a state s is also represented by a gray-scale
image with the same gridworld size using the following

Fig. 7 Cooperative navigation

pixel values to represent the entities in the environment:
s[x][y] = 240 if the agent A1 locates at the coordinate
(x, y), 200 if the agent A2 locates at the coordinate (x, y),
150 if the agent A3 locates at the coordinate (x, y), 40
if the landmark L1 locates at the coordinate (x, y), 50 if
the landmark L2 locates at the coordinate (x, y), 60 if the
landmark L3 locates at the coordinate (x, y), 0 otherwise.
For each option (s, a), where s is a state and a is an action,
we consider all the generated instances taking the form of
(s, a, x)with x being an outcome. The flag delayed is set to
true if the agents receive a positive reward, otherwise false.
The performance is determined by the average collective
reward.

General simulationmethods

All the experiments are conducted on a PC AMD 3.00-
GHz Ryzen 9 of 16GB RAM and 8 cores with Python
3.7.4 and Numpy 1.19.2. The detailed guideline on how to
use the SpeedyIBL package is available at https://github.
com/DDM-Lab/SpeedyIBL and the Appendix provides a
detailed tutorial including installation of the SpeedyIBL
library and examples on how to replicate our demonstrations
in the tasks offered in this paper.

The parameter values configured in the IBL models with
SpeedyIBL and PyIBL implementations were identical. In
particular, we used the decay d = 0.5 and noise σ =
0.25. The default utility values generally set to be higher
than the maximum value obtained in the task, to create
exploration as suggested in Lejarraga et al. (2012) (see the
task descriptions for specific values), and they were set the
same for PyIBL and SpeedyIBL.

For each of the six tasks, we compared the performance
of PyIBL and SpeedyIBL implementations in terms of (i)
running time measured in seconds and (ii) performance. The
performance measure is identified within each task.

We conducted 1000 runs of the models and each run
performed 100 episodes for the Binary choice and Insider
attack. Given the running time required for PyIBL, we only
ran 100 runs of 100 episodes for the remaining tasks. We
note that an episode of the Binary choice and Insider attack
tasks has one step (trial) while the remaining tasks have
2500 steps within each episode.

The credit assignment mechanisms in IBL are being
studied in Nguyen and Gonzalez (2020a). In this paper
we used an equal credit assignment mechanism for all
tasks. This mechanism updates the current outcome for all
the actions that took place from the current state to the
last state where the agent started or the flag delayed was
true.
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Table 3 Average running time in seconds of a run

Task PyIBL SpeedyIBL Speed up

time time Ratio

Binary choice 0.009 0.008 1.13

Insider attack game 0.141 0.065 2.17

Minimap 21951.88 (≈ 365 min ≈ 6 h) 78.40 (≈ 1.3 min) 279.00

Ms. Pac-Man 162372.58 (≈ 2706.2 min ≈ 45 h) 111.98 (≈ 1.86 min) 1450.00

Fireman 23743.36 (≈ 395.72 min ≈ 6.6 h) 37.72 (≈ 0.62 min) 629.00

Cooperative navigation 9741.37 (≈ 162 min ≈ 2.7 h) 2.59 (≈ 0.04 min) 3754.00

Results

In this section, we present the results of the SpeedyIBL
and PyIBL models across all the considered tasks. The
comparison these packages is first provided in terms of the
average running time and performance, and then in terms of
their learning curves.

Average running time and performance

Table 3 shows the overall average of computational time and
Table 4 the average performance across the runs and 100
episodes. The ratio in Table 3 indicates the speed improvement
from running the model in SpeedyIBL over PyIBL.

The ratio of PyIBL running time to SpeedyIBL running
time in Table 3 shows that the benefit of SpeedyIBL over
PyIBL increases significantly with the complexity of the
task. In a simple task such as binary choice, SpeedyIBL
performs 1.14 faster than PyIBL. However, the speed-up
ratio increases with the higher dimensional state space tasks;
for example, in Minimap SpeedyIBL was 279 times faster
than PyIBL; and in Ms. Pac-Man SpeedyIBL was 1450
times faster than PyIBL.

Furthermore, the multi-agent tasks exhibit the largest ratio
benefit of SpeedyIBL over PyIBL. For example, in the coop-
erative navigation task, PyIBL took about 2.7 h to finish a
run, but SpeedyIBL only takes 2.59 s to accomplish a run.

In all tasks, we observe that the computational time of
SpeedyIBL is significantly shorter than running the same
task in PyIBL; we also observe that there is no significant
difference in the performance of SpeedyIBL and PyIBL
(p > 0.05). These results suggest that SpeedyIBL is able to
greatly reduce the execution time of an IBL model without
compromising its performance.

Learning curves

Figure 8 shows the comparison of average running time
(middle column) and average performance (right column)
between PyIBL (blue) and SpeedyIBL (green) across
episodes for all the six tasks.

In the binary choice task, it is observed that there is a
small difference in the execution time before 100 episodes;
where SpeedyIBL performs slightly faster than PyIBL.
To illustrate how the benefit of SpeedyIBL over PyIBL
implementation increases significantly as the number of

Table 4 Average performance of a run of 100 episodes

Task Metric PyIBL SpeedyIBL t test

performance performance

Binary choice PMax 0.833 0.828 t = −0.83, p = 0.4 > 0.05

Insider attack game Average reward 1.383 1.375 t = −0.38, p = 0.69 > 0.05

Minimap Average reward 4.102 4.264 t = 0.87, p = 0.38 > 0.05

Ms. Pac-Man Average reward 228.357 228.464 t = 0.72, p = 0.47 > 0.05

Fireman Average reward 4.783 4.946 t = 1.07, p = 0.28 > 0.05

Cooperative navigation Average reward 2.705 2.726 t = 0.69, p = 0.48 > 0.05
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(a) Binary Choice

(b) Insider Attack

(c) Minimap

(d) Ms.Pac-Man

(e) Fireman

(f) Cooperative Navigation

Fig. 8 The comparison between SpeedyIBL (green line) and PyIBL (blue line) over time in the considered tasks
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Fig. 9 The comparison between SpeedyIBL and PyIBL in 5000 playing episodes of binary choice task

episodes increase, we ran these models over 5000 episodes.
The results in Fig. 9 illustrate the curse of exponential
growth very clearly, where PyIBL exponentially increases
the execution time with more episodes. The benefit of
SpeedyIBL over PyIBL implementation is clear with
increased episodes. The PMax of SpeedyIBL and PyIBL
overlap, again suggesting no different in their performance.

In the Insider attack game as shown Fig. 8a, the relation
between SpeedyIBL and PyIBL in terms of computational
time shows again, an increased benefit with increased
number of episodes. We see that their running time is
indistinguishable initially, but then the difference becomes
distinct in the last 60 episodes. Regarding the performance
(i.e., average reward), again, their performance over time is
nearly identical. Learning in this task was more difficult,
given the design of this task, and we do not observe a clear
upward trend in the learning curve due to the presence of
stochastic elements in the task.

In all the rest of the tasks, the Minimap, Ms. Pac-Man,
Fireman, and Cooperative navigation, given the multi-dimen-
sionality of these tasks representations and the number of
agents involved in Fireman, and Cooperative navigation
tasks, the curse of exponential growth is observed from early
on, as shown in Fig. 8b. The processing time of PyIBL
grows nearly exponentially over time in all cases. The curve
of SpeedyIBL also increases, but it appears to be constant
in relation to the exponential growth of PyIBL given the
significant difference between the two, when plotted in the
same scale.

The performance over time is again indistinguishable
between PyIBL and SpeedyIBL. Depending on the task, the
dynamics, and stochastic elements of the task, the models’
learning curves appear to fluctuate over time (e.g.,Ms. Pac-
Man), but when the scenarios are consistent over time, the

models show similar learning curves for both, PyIBL and
SpeedyIBL.

Discussion and conclusions

Cognitive models are used increasingly to make predictions
of human behavior and simulate the process by which
humans make decisions from experience (Cranford et al.,
2020; Nguyen & Gonzalez, 2020b; Nguyen et al., 2021). In
particular, many computational models have been developed
relying on IBLT (Gonzalez et al., 2003). These IBL models
have demonstrated how human decision processes are
captured and characterized (Gonzalez & Dutt, 2011), and
most importantly, they provide evidence for the application
and usefulness of the theory.

In this paper, we present an updated account of IBLT,
the current formalization of its theoretical components and a
comprehensive and precise presentations of the mechanisms
of the theory. We aimed at improving the IBLT clarity
and describing the mechanisms behind the general process
of IBLT with precise mathematical representations and
an algorithm implementation. Crucially, we demonstrated
the generality and ability of the theory to predict human
learning from experience in a wide variety of decision-
making tasks. That is, we provided a demonstration of
how models grounded on the same IBLT can be applied
and handle decision-making tasks varying in the number
of agents, the number of actions, the number of decision
options and states, and the type of feedback delays.

We observed that implementing IBL models for these
tasks using an existing library, PyIBL (Morrison &
Gonzalez, 2015), comes at a practical cost. It is difficult to
deal with the exponential growth of the memory of instances
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as more observations accumulate over time, which leads
directly to an exponential slow down of the computational
time when the characteristics of the tasks escalate from
a single-agent to multi-agent and multi-state settings.
Such problem is referred to as the curse of exponential
growth, a common computational problem that emerges in
many modeling approaches involving tabular computations.
Clearly, resolving the curse of exponential growth becomes
even more urgent when IBL models are expected to be
increasingly used in interactive, real-time tasks that involve
humans and models working together, similar to what has
been shown recently in a number of RL initiatives (Carroll
et al., 2019; Strouse et al., 2021).

To that end, we have developed a new implementation
of IBL cognitive models called SpeedyIBL that not only
employs a proper data structure for storing memory more
efficiently, but also leverages the parallel computation using
vectorization (Larsen & Amarasinghe, 2000) to speed up
the performance of IBL models in the presence of the curse
of exponential growth. We have assessed the robustness
of SpeedyIBL by comparing it with PyIBL, a benchmark
of the implementation of IBL models in Python (Morrison
& Gonzalez, 2015), across a taxonomy of decision-
making tasks varying in their increased complexity. We
specifically demonstrated that SpeedyIBL implementation
is able to perform considerably faster than PyIBL without
compromising task performance. Moreover, the results also
indicate that the difference in the running time of the
SpeedyIBL and PyIBL becomes profound, especially in
high-dimensional state spaces and multi-agent domains
wherein more agents concurrently collaborate in a task.

Overall, we have introduced SpeedyIBL implementation
that enables researchers to create multiple IBL agents
relying on IBLT with fast processing and response time.
SpeedyIBL can not only be used in simulation experiments
of extended learning time, but also can be integrated
into browser-based applications in which IBL agents can
interact with human subjects in real-time. Given that the
computation time of cognitive models in the literature is
often overlooked, we believe that the techniques used in
SpeedyIBL will be particularly useful for many other ACT-
R cognitive models that are still built upon a heavyweight
framework programmed in LISP. In that respect, numerous
examples can be cited, including a cognitive multi-agent
model (Reitter & Lebiere, 2011), a cognitive model for
human–robot interaction (Lebiere et al., 2013), hybrid
model consisting of a Deep RL agent and a cognitive
model (Mitsopoulos et al., 2021), and many other models
in the ACT-R literature3. Moreover, provided that research

3http://act-r.psy.cmu.edu/publication/

on human–machine behavior has attracted much attention
lately, we are convinced that SpeedyIBL will bring
significant benefits to researchers and demonstrate the
usefulness of IBL models in interactive tasks with human
players.

Transparency and openness

SpeedyIBL is provided as a free and open-source Python
library. All the codes, extensive documentation, simulation
data, and all scripts used for analyses presented in this
manuscript are available on GitHub https://github.com/
DDM-Lab/SpeedyIBL and on OSF https://osf.io/gwqte/. In
addition, the Appendix provides a detailed tutorial including
installation of the SpeedyIBL library and examples on how
to replicate our demonstrations in the tasks offered in this
paper.

Appendix A: SpeedyIBL Tutorial

In an attempt to increase the usage of SpeedyIBL, we hereby
provide a tutorial on how to install and use the SpeedyIBL
library, following existing research practice (Evans, 2019;
Henninger et al., 2021; Vincent, 2016). Specifically, we
explain how to build an IBL agent and elaborate on the
meaning of associated inputs and functions. Afterwards, we
present examples on two illustrative tasks: Binary Choice
“Binary choice” and Navigation “Cooperative navigation”.
It is worth noting that all the codes to run all the tasks and
to reproduce the results presented in the paper are available
at https://github.com/DDM-Lab/SpeedyIBL. In addition,
we provide a Jupyter notebook file of the tutorial, see
https://github.com/DDM-Lab/SpeedyIBL/blob/main/tutorial
speedyibl.ipynb, for running all the tasks considered in
this work using SpeedyIBL. We also make it available on
Google Colab https://colab.research.google.com/github/
nhatpd/SpeedyIBL/blob/main/tutorial speedyibl.ipynb, where
one can easily run it with no need to install Python and
any relevant modules on their personal computers. Finally,
we give a detailed instruction on how to reproduce all the
reported results using PyIBL and SpeedyIBL.

Installing SpeedyIBL

Note that the SpeedyIBL library is a Python module, which
is stored at PyPI (pypi.org), a repository of software for the
Python programming language, see https://pypi.org/project/
speedyibl/. Hence, installing SpeedyIBL is a very simple
process. Indeed, one can install SpeedyIBL by simply
typing the following line in a command prompt:
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Describing an Agent with SpeedyIBL

After installing the library, we need to import the class Agent of SpeedyIBL by typing:

We provide the descriptions of the inputs and main functions of the class Agent in the following tables.

Inputs Type Description
default utility float or None initial utility value for each instance, default = 0.1

or None if prepopulated
noise float noise parameter σ , default = 0.25
decay float decay parameter d, default = 0.5
mismatchPenalty float or None mismatch penalty parameter, default = None

(without partial matching process)
lendeque int or None maximum size of a deque for each instance that contains

timestamps or None if unbounded, default = 250000

Functions Inputs Description
choose list of options choose one option from the given list of options
respond reward add the current timestamp to the instance

of the last option and reward
prepopulate option, reward initialize time 0 for the instance of this option and reward
populate at option, reward, time add time to the instance of this option and reward
equal delay feedback reward, list of instances, update instances in the list by using this reward
instances no input show all the instances in the memory

Using SpeedyIBL for binary choice task

From the list of inputs of the class Agent, although we need five inputs to create an IBL agent, by using the defaults for
noise, decay, mismatchPenalty, and lendeque, we only need to pass the value of default utility (here in the example
is 4.4). Hence we create an IBL agent for the binary choice task as follows:

We then define a list of options for the agent to choose:

We are now ready to make the agent choose one of the two options:
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Next, we determine a reward that the agent can receive after choosing one of the options, see “Binary choice”:

After choosing one option and observing the reward, we use the function respond, see the table above, to store the
instance in the memory as follows:

That is, we have run one trial for the binary choice task, which the process includes choosing one option, observing the
reward, and storing the instance (respond). To conduct 1000 runs of 100 trials, we use two for loops as follows:
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Finally, we provide the following code to plot the running time and performance of this SpeedyIBL agent.

It is worth noting that the codes of both SpeedyIBL and
PyIBL for generating the results of the binary choice task
in the paper are available at https://github.com/DDM-Lab/
SpeedyIBL/blob/main/Codes/binarychoice.py. To plot
the results, please see https://github.com/DDM-Lab/
SpeedyIBL/blob/main/Codes/plot results.ipynb.

Using SpeedyIBL for Cooperative navigation task

First, let us build an environment class of the Cooperative
navigation task. Although constructing an environment
depends on specific tasks, it consists of two main functions:

reset and step. The reset function sets the agents to
their starting locations at beginning of each episode while
the step function moves the agents to new locations and
returns a new state, reward, and task status (task finished or
not) after they made decisions.

We would like to note that we created a Python module
vitenv containing all the environments of the tasks consi-
dered in the paper, which can be accessed at https://pypi.org/
project/vitenv/. The codes of the environments of other tasks
and this tutorial also available at our GitHub link https://github.
com/DDM-Lab/SpeedyIBL. Below is an illustrative code of
building the environment of the Cooperative navigation task:
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Now, we can call the environment and reset it as follows:
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Like in the binary choice task, we define three agents with default utility=2.5 and save them in a list agents:

Here we have used a dictionary episode history to save information of each episode that we will use for the delay
feedback mechanism. Next, we create a list of options:

Here we have used the hash function to convert an array into a hashable object used as a key in a Python dictionary.
Now we make the agents choose their options and save instances.

After choosing actions, the locations of the agents are updated in the environment by the step function:

When the agents finish the task (reach landmarks, i.e., t = True) or when they reach the maximum number of steps, we
update outcomes of previous instances by an equal delayed feedback mechanism.

In order to run 100 times of 100 episodes with 2500 steps, we use the code below.
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To plot the results of the task, we can use the same source code as provided in the binary choice task.

Reproducing results

All the results can be reproduced by running corresponding scripts for each task under folder Codes. In particular, to run
the tasks with SpeedyIBL or PyIBL, one can simply execute the following commands and the experiment will start.

1. Binary choice task:

With argument [name] is replaced by: libl for SpeedyIBL and ibl for PyIBL.
2. Insider attack game:

3. Minimap:

With argument [name] is replaced by: libl for SpeedyIBL and ibl for PyIBL.
4. Ms. Pac-Man:

With argument [name] is replaced by: libl for SpeedyIBL and ibl for PyIBL.
5. Fireman:

With argument [name] is replaced by: libl for SpeedyIBL and ibl for PyIBL.
6. Cooperative navigation:

With argument [name] is replaced by: libl for SpeedyIBL and ibl for PyIBL.
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