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Abstract
Structural equation modeling (SEM) has been deemed as a proper method when variables contain measurement errors. In
contrast, path analysis with composite scores is preferred for prediction and diagnosis of individuals. While path analysis
with composite scores has been criticized for yielding biased parameter estimates, recent literature pointed out that the
population values of parameters in a latent-variable model depend on artificially assigned scales. Consequently, bias in
parameter estimates is not a well-grounded concept for models involving latent constructs. This article compares path
analysis with composite scores against SEM with respect to effect size and statistical power in testing the significance of
the path coefficients, via the z- or t-statistics. The data come from many sources with various models that are substantively
determined. Results show that SEM is not as powerful as path analysis even with equally weighted composites. However,
path analysis with Bartlett-factor scores and the partial least-squares approach to SEM perform the best with respect to effect
size and power.

Keywords Effect size · Factor scores · Partial least-squares SEM · Robust method · Measurement reliability

Introduction

Data in social and behavioral sciences are commonly
acquired through questionnaires, and constructs of interests
are tapped by indicators that typically contain measurement
errors. Because of its capability of modeling measurement
errors, structural equation modeling (SEM) is regarded as
a proper method for the analysis of such data (Bentler,
1980). While SEM can yield important information about
the structural relationship of the manifest and latent
variables, regression analysis using composite scores
directly serves the purpose of prediction and classification
of individuals. For a correctly specified model with two
latent variables, a recent study showed that regression
analysis via weighted composites yields larger effect size
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than SEM for the regression coefficient between the two
constructs (Yuan & Fang, 2021). However, substantive
studies often involve more constructs and it is also hard to
have a correctly specified model with real data. Because
path analysis1 with composite scores is a widely used
method for data analysis, it is important to find out
whether the method will deliver estimates with greater
effect sizes than SEM in the general case. This article
aims to address this issue via meta comparison. In
particular, we will compare the two classes of methods
with respect to effect size2 and/or statistical power
corresponding to the estimates of the path coefficients of
the structural model, and the square root of the sample
size times the effect size plays the role of non-centrality
parameter in the z- or t-statistics. The datasets come from

1Because a composite can be a dependent variable in one equation
and an independent variable in another equation, path analysis might
be a more proper terminology than regression analysis, although least-
squares method is used in estimating the regression coefficients with
each endogenous construct.
2Parallel to the effect size δ = μ/σ = E(μ̂)/[NVar(μ̂)]1/2 in
testing μ = 0 corresponding to the estimator μ̂ = x̄, the effect
size corresponding to a regression coefficient β̂ is defined as τβ =
E(β̂)/[NVar(β̂)]1/2, where N is the sample size.
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textbooks, software manuals and published studies where
SEM has been used in the original analyses.

Composite scores are not free of measurement errors
when variables/indicators contain measurement errors. A
criticism against path analysis using composite scores is
that the estimates of the path coefficients are biased (Croon,
2002; Devlieger & Rosseel, 2017; Hoshino & Bentler,
2013). However, recent literature pointed out that the
population values of factor loadings and path coefficients of
the structural model under SEM are artificially determined
(Yuan & Deng, 2021). This is because latent variables do
not naturally carry units and we have to assign a scale to
each latent variable under the SEM methodology. For an
exogenous latent variable, this can be done by fixing the
factor loading for one of its indicators at 1.0 or by fixing
the variance of the latent variable at 1.0, but the choice
between the two is arbitrary. The scale of an endogenous
latent variable is typically aligned to one of its indicators
by fixing the factor loading at 1.0. However, the choice of
the indicator as well as the value 1.0 are arbitrary. Note
that the population values of the factor loadings as well as
those of the path coefficients change with the change of the
scaling method, without affecting the population covariance
matrix of the indicators. Thus, for models involving latent
variables, the particular population values of parameters are
neither an integrated part of the observed data nor that of the
population distribution.

In addition, the scales of composite scores are also
artificially assigned. For example, the total scores contain
the same information as the average scores. It can be
shown that for a set of given values of the path coefficients
among latent variables, one can obtain identical values
for these coefficients under path analysis with composite
scores by adjusting the scales of the composites (e.g.,
Croon, 2002; Devlieger, Mayer & Rosseel, 2016), and vice
versa. Consequently, bias3 in the estimates by path analysis
with composite scores is artificial rather than substantively
grounded. Such a fact leaves more space for researchers
to choose methods according to the purpose of a study. In
particular, a key step of path analysis with either composites
or latent variables is to test the null hypothesis on the
path coefficients or to confirm the role of the theoretical
predictors. We should choose an approach that delivers
the greatest effect size or signal-to-noise ratio in order to
conduct this step most efficiently.

3Bias is defined as the difference between the expected value of an
estimate and the true population value, the value of bias becomes
artificial when the “true population” value is artificial. We can always
make the composites estimates unbiased by rescaling the composites.
For example, with η̂ and ξ̂ being the composites, regression coefficient
γ can be rescaled to γ∗ = cγ via the simple algebra η̂ = γ ξ̂ + ζ =
(cγ )(ξ̂/c) + ζ = γ∗ξ̂∗ + ζ , and we can always choose a value of c so
that γ∗ equals that of its SEM counterpart.

Both path analysis with composite scores and SEM
can be used for the purpose of prediction, but they are
from different perspectives and for different purposes.
The predictive relationship under SEM is among latent
variables that represent the population distribution, and all
individuals are equivalent under such a relationship. In
practice, when observed scores are used for prediction or
diagnosis, individuals are no longer equivalent. A person
with greater test scores is expected to perform better on
the criterion variable, and such a relationship is directly
characterized by the path coefficients under path analysis
with the composite scores. In addition, even when predictors
contain measurement errors, regression model with the
LS estimates still yields the best linear unbiased predictor
for a future value (see Fuller, 1987, p. 75). Consequently,
the issue of whether path analysis with composite scores
corresponds to larger signal-to-noise ratios than SEM
deserves further study. If the answer is yes, then path
analysis with composites not only enjoys more prediction
accuracy but also facilitates more efficient selection of
predictors. Note that it is the LS estimates of the regression
coefficients that yield a predicted value of the outcome
variable with the smallest mean-square error (MSE), not
parameter estimates under SEM or bias-corrected parameter
estimates (Fuller, 1987). We will further discuss the issue in
the concluding section.

We may believe that SEM will yield greater signal-
to-noise ratios for the path coefficients of the structural
model since the effect of measurement errors is removed
via the measurement model. However, this is not the
case for models with two-latent variables according to
the results in Yuan and Fang (2021). With more latent
variables, the issues become rather complicated. This is
because both measurement errors and correlations among
the composites affect both the values of the regression
coefficients and those of the standard deviations of their
estimates (Buonaccorsi, 2010, p. 109). Both measurement
and structural models might be misspecified, which also
affect the signal-to-noise ratios of the parameter estimates
under both SEM and path analysis with composite scores.
It is impossible to quantify the combined effect of these
sources on parameter estimates analytically. The Monte
Carlo method also becomes impractical because the location
and size of model misspecification are typically unknown,
and each empirical study tends to have its own features
in both model and data. Meta comparison is consequently
a viable and informative approach for us to find out
the strength of different methods in practice. While the
distribution of the data/sample also affects the performances
of different methods, we will use a robust technique
so that the effects of nonnormally distributed data or
data contamination on both parameter estimates and their
standard errors are properly regulated.
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In the following section, we will review the properties
of several weighted composites, including those under
the partial least-squares approach to SEM. A robust-
transformation technique will be described in a subsequent
section, and parameter estimates by both path analysis
with composite scores and SEM become more efficient
when applying normal-distribution-based methods to the
transformed data. Datasets, models, and results will be
presented in a follow-up section. Recommendation and
discussion will be provided in the concluding section. An
Appendix contains the information on statistical packages
and programs that are used to carry out the procedures
described in this article.

Weighted composites

There are an infinite number of ways to formulate composite
scores. We can only study a few of them, including the sum
score and those possessing certain optimal properties. They
are briefly described in this section.

The most widely used composite is the sum score or
the simple average, and we will refer to it as the equally
weighted composite (EWC). EWCs are easy to formulate
but they do not use any statistical/psychometric information
of the indicators/variables. It is known that both the path
coefficients and R2 values under path analysis are affected
by measurement reliabilities of the composites. More
reliable composites correspond to more efficient estimates
and greater R2 values, but an EWC can be less reliable than
a single indicator in the composition of the EWC. That is,
the sum score (x1 + x2 + . . . + xm) can be less reliable than
an individual score xj .

The Bartlett- and regression-factor scores are among
the most widely used composites for subscales (see e.g.,
Bartholomew, 2009; Lawley & Maxwell, 1971; Schuster &
Lubbe, 2020). While the literature has demonstrated that
Bartlett-factor scores possess different statistical properties
from those of the regression-factor scores (Croon, 2002;
Devlieger et al., 2016), Yuan and Deng (2021) showed that
their differences in path analysis are only for the values
of the estimated path coefficients. They also showed that,
for regression analysis, the two types of factor scores yield
identical standardized path coefficients, identical effect size
for testing the significance of the path coefficients, and
identical R2 value. In addition, the two types of factor
scores possess the property of attaining the maximum
reliability among all weighted composites (e.g., Yuan &
Bentler, 2002). Thus, Bartlett-factor scores are equivalent to
regression-factor scores for the purpose of path analysis, and
we will only need to include one of them in our comparison
of weighted-composite path analysis against SEM.

A method that systematically generates weighted com-
posites is the partial least-squares approach to structural
equation modeling (PLS-SEM), which has established its
identity in many disciplines. Systematic introductions to
PLS-SEM can be found in Wold (1980), Hair, Hult, Ringle,
and Sarstedt, (2017) and Henseler (2021). We will briefly
review the key elements of this method to make our
presentation self-contained. To distinguish the commonly
used SEM methodology from PLS-SEM, the former is
referred to as covariance-based SEM (CB-SEM). PLS-SEM
is essentially path analysis with weighted composites via
the method of least-squares (LS) regression, and the method
consists of two stages. Weighted composites are computed
in the first stage, and path analysis with the obtained
composites is conducted in the second stage.

Under PLS-SEM, indicators are unidimensional, that
is, each indicator only loads on a single construct. The
indicators for a particular construct form a block. The first
stage of PLS-SEM offers two ways to compute weighted
composites. One is termed as mode A and the other is
termed as mode B (Wold, 1980, 1982). Both are computed
by LS regression iteratively via the so-called environmental
variables, which are temporary variables that are derived
according to the model structure. Suppose the model has
m constructs, and a construct η is directly connected4

to other q constructs out of the remaining m − 1. Let
the block-wise average scores be the starting values for
the composites, and the composite of η is denoted as η̃.
Then the environment variable of η (denoted as ηev) is
defined as a linear combination of the q composites whose
latent-variable counterparts are directly connected to η. The
coefficients of the q composites in ηev can be either the
sign of the correlation between η̃ and the directly connected
construct (termed as the centroid scheme) or the value of the
correlation itself (termed as the factorial scheme, Henseler,
2021, pp. 90–91). Let yj (j = 1, 2, . . ., pη) be the block
of indicators of η. Under mode A, the weight wj in the
composite η̃ = w1y1 + w2y2 + . . . + wpηypη is updated
iteratively by the slope parameter of LS regression of yj on
the environmental variable ηev . Under mode B, the weights
(w1, w2, . . ., wpη ) in the composite η̃ are updated iteratively
by the coefficients of multiple regression of ηev on yj ,
(j = 1, 2, . . ., pη). The iteration alternates across the
m blocks of indicators until all the weights are stabilized,
and the m composites are consequently obtained. In our
analysis of the empirical data, we will use the centroid
scheme in the formulation of ηev , while analytical studies by

4A direct connection to η is defined as a latent variable that either
directly predicts η or is directly predicted by η. A covariance between
two exogenous latent constructs is not regarded as a direct connection
in PLS-SEM.
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Dijkstra (1983) and Schneeweiss (1993) imply that different
schemes yield essentially the same results.

In the SEM literature, a latent variable can either
directly predict or being predicted by a set of manifest
variables. The manifest variables being directly predicted
by a latent variables are called reflective/effect indicators,
and those that directly predict a latent variables are called
formative/causal indicators. Starting from Wold (1980,
1982), mode A has been recommended to compute the
weights for composites of reflective indicators and mode
B to compute the weights for composites of formative
indicators. While such recommendations are intuitive,
Dijkstra and Henseler (2015) noted that mode A converges
faster and yields numerically more stable weights than mode
B, but the composite obtained by mode A can be less
reliable than the corresponding EWC or a single indicator
of the block (Yuan, Wen & Tang, 2020). When applying
mode B to models with reflective indicators, Yuan and
Deng (2021) showed that, at the level of population, the
obtained composites are equivalent to the Bartlett-factor
scores, which are known to have the maximum reliability
among all weighted composites. However, results in Yuan
and Deng (2021) showed that sampling and/or specification
errors may cause mode B to yield negative weights even
when the items are positively scored, while all the weights
by mode A as well as all the factor loadings under CB-
SEM are positive for the same dataset. They consequently
proposed a procedure to transform mode A to mode B
according to the structure of a one-factor model for each
block of indicators. They also showed that the weighted
composites following the transformed mode (denoted as
BA) enjoy the same statistical properties as those directly
obtained under mode B. We will use the mode BA instead of
mode B in the following data analyses because the weights
under mode BA enjoy the numerical stability of those under
mode A and the resulting composites enjoy the statistical
properties of those under mode B.

Note that the equivalence of PLS-SEMmode B, mode BA

and regression analysis with the Bartlett-factor scores is for
correctly specified models, while the equivalence between
the Bartlett- and regression-factor scores in conducting
regression analysis does not need a correctly specified
model as long as the two types of factor scores are computed
based on the same model (Yuan & Deng, 2021). Since it is
unlikely to have a correctly specified model with real data,
we will include four types of composites in our comparison
of path analysis with weighted composites against CB-
SEM. They are equally weighted composites, Bartlett-factor
scores, composites by PLS-SEM mode A, and those by
PLS-SEM mode BA. So there are a total of five different
ways in estimating the coefficients of the structural model,
one is CB-SEM and the other four are path analyses with
different composites.

Robust transformation with real data

This section describes a robust transformation technique
for more efficient parameter estimates with real data. Most
classical methods of multivariate analysis are developed for
normally distributed data. They are not for real data. The so-
called full information maximum likelihood (FIML) method
for CB-SEM is normal-distribution-based maximum like-
lihood (NML). It becomes a pseudo maximum likelihood
method unless the true population distribution of the sam-
ple is multivariate normal. With real data, a robust method
can easily perform better than the pseudo NMLmethod with
respect to type I error control and statistical power, as will
be further discussed in this section.

Data in social sciences seldom follow normal distri-
butions. Such a fact has been repeatedly confirmed by
meta analyses (e.g., Blanca, Arnau, Löpez-Montiel, Bono,
& Bendayan, 2013; Cain, Zhang, & Yuan, 2017; Micceri,
1989). However, CB-SEM and path analysis are routinely
conducted under the normality assumption. With real data
typically having heavier tails than that of the normal dis-
tribution, results by NML are most likely misleading or
inefficient at least. In particular, the observed significance
of the likelihood ratio statistic Tml for the overall model
structure under CB-SEM is partly due to the extra kur-
toses of the data in addition to an imperfect model (Hu,
Bentler & Kano, 1992), and the true standard errors of
the parameter estimates by NML increase with the size
of the population kurtoses (Bentler, 1983; Browne, 1982).
For such data, robust methods5 by accounting for the dis-
tribution shape of the data not only yield more efficient
parameter estimates but also more reliable test statistics and
fit indices (Yuan & Bentler, 1998; Yuan & Zhong, 2013).
Robust M-estimation is a class of such methods under which
the contribution of each observation to the final estimate is
rationalized via scalar-valued weights. Cases sitting further
away from the center of the data will get smaller weights
(Huber, 1981). Yuan, Chan, and Bentler (2000) showed that
robust M-estimation can be carried out via a transforma-
tion procedure. The sample means and sample covariance
matrix of the transformed data are the robust estimates of the
population means and covariances, respectively. To use this
transformation, the researcher only needs to choose a cutoff
value to determine the percent of the outlying cases whose

5The robust method here is to compute the M-estimates of the
means and covariances first, and these are subsequently fitted by the
structural models (Yuan & Bentler, 1998). The method is different
from applying a mean-rescaling to the likelihood ratio statistic Tml

and using sandwich-type standard errors following the method of the
normal-distribution-based maximum likelihood (Satorra & Bentler,
1994).
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effects on the estimated parameters are regulated. In par-
ticular, with Huber-type robust M-estimator (Huber, 1981),
the cutoff value can be chosen via the quantile of a chi-
square distribution. For example, with p = 10 variables and
we choose the 95% quantile c.95 of χ2

10 as the cutoff value,
cases sitting further from the center of the data than c.95 will
be assigned smaller weights in estimating6 the means and
variances-covariances. The deviation of each case from the
center of the data is computed by the Mahalanobis distance,
with means and precision matrix being computed iteratively
using the robust estimates. The further a case is from the
center, the smaller the weights will become so that the con-
tribution/influence of the case on the resulting parameter
estimates is regulated. Note that, unless certain values of the
observed variables for a case are huge, the weights are not
zero so that the case is still counted in the estimation pro-
cess. Cases with extreme values correspond to tiny weights,
which are approximately equivalent to being removed from
the analysis.

Following the logic that the sample covariance matrix
is most efficient only when data are normally distributed,
Yuan et al. (2000) proposed using Mardia’s (1970) measure
of multivariate kurtosis to facilitate the choice of the
cutoff value in conducting robust transformations. They
recommended to start with the quantile c.95 as the cutoff
value. If the standardized multivariate kurtosis Ms of
the corresponding sample is not significantly different
from that of a multivariate normal distribution, then the
resulting transformed data will be obtained according to this
weighting rule. If Ms is still significantly different from that
of a multivariate normal distribution, then choosing c.90,
c.85, . . . as the cutoff values for weights until the resulting
Ms is not statistically significant. R and SAS code for
conducting the robust transformation can be downloaded at
https://www3.nd.edu/∼kyuan/overview robustMethod/ and
their use is documented in Yuan and Gomer (2021).
Existing studies indicate that the results following a robust
transformation are much more reliable in the analyses of
real data (e.g., Yuan et al., 2000). We denote the robust
transformation using Huber-type weights as the H(α)-
transformation, where α indicates that the quantile c1−α of
χ2

p is used as the cutoff value for regulating cases.
The scenario for robust M-estimation to work best is for

samples whose populations follow elliptically distributions
(Maronna, Martin, Yohai, & Salibián-Barrera, 2019).
However, outliers or data contamination can cause the
observed data skewed. It is difficult to distinguish whether

6All the parameters in CB-SEM or other statistical models can be
directly estimated by a robust method (see Yuan & Gomer, 2021).
Robust transformation is aligned with the saturated model under which
parameters are means and variances-covariances.

the skewness in the sample is due to a skewed underlying
population distribution or data contamination. Results with
real data in Yuan et al. (2000) and Yuan and Bentler
(1998) indicate that robust methods yield more reliable
model evaluation than NML although the datasets are not
symmetrically distributed. Monte Carlo results in Yuan,
Chan, and Tian (2016) imply that robust methods yield more
accurate parameter estimates than NML for asymmetric
distributions with heavier tails than that of the normal
distribution. The discussions by Huber (1981, p. 172) and
Hampel, Ronchetti, Rousseeuw, and Stahel (1986, pp. 401–
402) imply that robust methods are still preferred even when
the underlying population distribution is skewed.

Note that raw data are needed for the application of
robust transformation. With raw data, we can actually check
the normality assumption via the measure of multivariate
kurtosis (Mardia, 1970; Cain et al., 2017). While sample
skewnesses also reflect departure from normality, it has
been pointed out that, without mean structures, results of
path analysis and CB-SEM are asymptotically unaffected
by skewness of the underlying population distribution (Yuan
& Bentler, 2000). Consequently, we do not pay attention
to skewness of the observed data in the following section.
When only sample means and covariances are available, we
will have to assume that the raw data follow a multivariate
normal distribution in order to proceed with the analysis, as
will be done in the following section.

Like CB-SEM, path analysis with weighted composites
can also be conducted using the NML method. Because
PLS-SEM uses LS regression to estimate the path coeffi-
cients of the structural model, we will also use LS regres-
sion in estimating the path coefficients for the method of
path analyses with the Bartlett-factor scores and equally
weighted composites.

Data andmodeling results

In this section, we compare path analyses with weighted com-
posites against CB-SEM in estimating the coefficients of the
structural model. Nine real datasets and 11 models are used in
the comparison. These datasets and models were not chosen
to obtain particular results, nor were they selected so that a
model has to fit a dataset well enough. Rather, they are from
SEM textbooks, software demonstrations and authors who
were willing to share their raw data with us. These datasets
represent different areas where theoretical constructs are
modeled for studies of substantive interests. To save space,
we will only include the results of the path coefficients of
the structural model. Estimates of other model parameters
under CB-SEM are reported in supplementary material
(https://www3.nd.edu/∼kyuan/SEM PAcomparison/CB SE
Mtables.pdf). Note that the estimated factor loadings (λ)
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and error variances (ψ) in the supplementary material are
used to compute the Bartlett-factor scores that are used in
path analysis.

Each of the 11 models in this section is represented by
a path diagram. The path coefficients in each path diagram
are labeled using LISREL (Jöreskog & Sörbom, 1993)
notation under which γ is used for paths from exogenous
variables to endogenous variables, and β is used for paths
between endogenous variables. In the presentation we will
report the estimates of the path coefficients, their SEs and
the corresponding z-statistics. Because an empirical effect
size is just the value of a z-statistic divided by

√
N , we

will not separately report the values of the empirical effect
size.

Dataset 1

The first dataset (sample correlations and standard devia-
tions) was originally presented in Wheaton, Muthén, Alwin,
and Summers (1977), who studied stability of alienation as
predicted by socioeconomic status. This dataset has been
used to illustrate the CB-SEM methodology and its appli-
cations in textbooks and software manuals (e.g., Bentler,
2006; Jöreskog & Sörbom, 1993). The dataset has p =
6 variables and N = 932 cases. The six variables are
anomie 1967, powerlessness 1967, anomie 1971, powerless-
ness 1971, education 1966, and socioeconomic index (SEI)
1966. Several models have been used to fit this dataset in the
literature. We will consider the mediation model in Fig. 1
(the same as the model in Figure 3.3 of Joreskog and Sor-
bom, 1993, p. 88), which contains three path coefficients:
γ11, γ21, β21. An alternative model (Figure 2.11 of Bentler,
2006, p. 39) is to have correlated errors between anomie
1967 and anomie 1971, and between powerlessness 1967
and powerlessness 1971. We do not consider the model with

error-covariances because they empirically share the same
effect with the values of the path coefficients. In partic-
ular, path analysis with weighted composites accounts for
all associations through path coefficients. Including error-
covariances under CB-SEM does not yield a fair comparison
between the two classes of methods.

Because only the sample covariance matrix is available,
we will assume that the population distribution of the six
variables is multivariate normal. Fitting the model in Fig. 1
to Dataset 1 by NML results in Tml = 71.470 under
CB-SEM. The p-value is essentially zero when compared
Tml against χ2

6 . The corresponding value of the root mean
square error of approximation (RMSEA, Steiger & Lind,
1980) is .108, which also indicates that the model fit is not
adequate. However, the comparative fit index (CFI = .969)
implies that the model fits the data reasonably well (Bentler,
1990; Hu & Bentler, 1999). Such an inconsistency between
different fit indices is not a surprise since they evaluate the
model from different perspectives (Lai & Green, 2016).

Table 1 contains the estimates of the three path coef-
ficients, their standard errors (SEs) and the corresponding
z-statistics. As we noted earlier that the estimates of the
coefficients are not directly comparable, since they depend
on the scales of the predictors as well as that of the outcome
variable. While the z-statistics following path analyses with
the four types of composites are rather close, CB-SEM
yields uniformly the smallest z-statistics for each of the
coefficients. In particular, the z-statistic for γ21 under CB-
SEM is close to half of those under path analyses with
weighted composites. The results in Table 1 indicate that
PLS-SEM mode BA yields the largest z-statistic for γ11,
while path analysis with EWCs yields the largest z-statistic
for γ21, and PLS-SEM mode A corresponds to the largest
z-statistic for β21. Because, for correctly specified models
and conditional on the population weights, path analysis

Fig. 1 A model for stability of alienation (Bentler, 2006; Jöreskog & Sörbom, 1993; Wheaton et al., 1977; N = 932)
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Table 1 Parameter estimates (est), their SEs (se) and z-statistics for the path coefficients in Fig. 1 (p = 6, N = 932, Tml = 71.470, df = 6,
p-value = .000; RMSEA = .108, and CFI = .969)

CB-SEM BFS-PA EWC-PA PLS-SEM A PLS-SEM BA

θ est se z est se z est se z est se z est se z

γ11 −1.585 0.120 −13.219 −1.188 0.080 −14.837 −1.166 0.080 −14.628 −0.435 0.030 −14.727 −0.438 0.029 −14.874

γ21 −0.450 0.136 −3.303 −0.522 0.082 −6.374 −0.523 0.081 −6.443 −0 .183 0.029 −6.414 −0.183 0.029 −6.389

β21 0.705 0.054 13.163 0.549 0.030 18.175 0.548 0.030 18.209 0.520 0.029 18.227 0.518 0.029 18.109

BFS = Bartlett-factor score, EWC = equally weighted composite, PA = path analysis

using the Bartlett-factor scores and PLS-SEM mode BA are
equivalent, the observed differences between the results of
the two methods in Table 1 can be due to model misspecifi-
cation and sampling errors.

Dataset 2

The second dataset (sample covariance matrix) is from
Table 7.4 of the LISREL manual (Jöreskog & Sörbom,
1993, p. 193), which was from Wiley and Hornik (1973)
who studied communication processes with data collected
from El Salvador. The study consists of two constructs,
television watching by children and television possession by
their family. Each construct was taped by two congeneric
measures at three points in time. With a total of p = 12
manifest variables, the sample covariance matrix is from
a dataset with N = 189 participants. The path diagram

presented in Fig. 2 is for a model given by Joreskog
and Sorbom (1993, p. 194). It is an auto regression model
for each construct, and the two constructs at time 1 are
correlated. There are four path coefficients: γ11, γ22, β31 and
β42. Again, we will regard the raw data as being normally
distributed in the analysis.

Fitting the model in Fig. 2 to the television dataset by
NML yields Tml = 185.378, and the p-value is essentially
0 according to Tml ∼ χ2

49. The corresponding RMSEA =
.122 also indicates that the model fit is poor, but, with CFI
= .938, the model can be regarded as acceptable in real data
analysis. The estimates of the four coefficients by the five
methods are given in Table 2. Again, the z-statistics under
CB-SEM are uniformly the smallest. While PLS-SEMmode
BA yields uniformly the largest values of the z-statistic, the
results under path analyses by the four types of weighted
composites are close.

Fig. 2 A longitudinal model for two versions of television possession and watching at three occasions (Jöreskog & Sörbom, 1993; Wiley &
Hornik, 1973; N = 189)
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Table 2 Parameter estimates (est), their SEs (se) and z-statistics for the path coefficients in Fig. 2 (p = 12, N = 189, Tml = 185.378, df = 49,
p-value = 0; RMSEA = .122, and CFI = .938)

CB-SEM BFS-PA EWC-PA PLS-SEM A PLS-SEM BA

θ est se z est se z est se z est se z est se z

γ11 0.421 0.029 14.282 0.399 0.019 20.946 0.398 0.019 20.868 0.837 0.040 20.877 0.839 0.040 21.048

γ22 1.123 0.106 10.574 0.876 0.068 12.933 0.880 0.066 13.337 0.696 0.053 13.238 0.698 0.052 13.338

β31 0.881 0.047 18.906 0.846 0.042 20.385 0.846 0.042 20.272 0.829 0.041 20.283 0.830 0.041 20.361

β42 0.936 0.095 9.827 0.682 0.056 12.246 0.686 0.056 12.205 0.667 0.054 12.249 0.667 0.054 12.254

BFS = Bartlett-factor score, EWC = equally weighted composite, PA = path analysis

Dataset 3

The third dataset is from Table 10.1 of Schumacker and
Lomax (2010, p. 202), which is for a study of home resource
and educational achievement. With p = 9 variables, the
sample covariance matrix is based on a sample of size
N = 200. The model, represented by Fig. 3, is as given
in Figure 10.1 of Schumacker and Lomax (2010, p. 196),
which implies that the effects of both home resource and
ability on achievement are mediated by aspiration. The
model contains five path coefficients: γ11, γ21, γ12, γ22, β21.
Because only the sample covariance matrix is available, we
regard the raw data as being normally distributed in the
analysis.

Fitting the model in Fig. 3 to the educational-
achievement data by NML results in Tml = 57.167, which
corresponds to p-value = 3.39 ×10−5 when referred to χ2

21.
With CFI = .974 and RMSEA = .093, the model might
be regarded as adequate in practice. Table 3 contains the
estimates of the five path coefficients by each of the five
methods. While the z-statistics following path analyses are
comparable across the four different weighted composites,
those following CB-SEM are uniformly the smallest. In par-
ticular, the estimate of γ21 under CB-SEM is not statistically
significant (z = 1.900) at the level of .05. The smallest
z-statistic for γ21 by path analyses is 3.959 and with the

Bartlett-factor scores. Again, the largest z-statistics for the
five parameters are either by PLS-SEM mode BA (γ11, γ21)
or by path analyses using the Bartlett-factor scores (γ12, γ22,
β21).

Note that an estimate that is not statistically significant
at the level of .05 does not imply that its population
counterpart is 0. Many factors contribute to effect size and
power in statistical modeling, as was discussed earlier in this
article.

Dataset 4

The fourth dataset is from Table 8.1 of Kline (1998,
p. 254), which originated from Worland, Weeks, Janes, and
Strock (1984). The authors studied the effect of familial
risk on academic performance and classroom adjustment
with junior and senior high school students. Figure 4
contains the path diagram for the model as presented on
page 255 of Kline (1998), which suggests that the effect
of familial risk on classroom adjustment is completely
mediated by cognitive ability and scholastic achievement.
With one exogenous and three endogenous constructs, the
model contains three path coefficients: γ11, β21, and β32.
However, only a 12-variable correlation matrix based on a
sample of size N = 158 is available according to Kline
(1998). We will treat the sample correlation matrix as a

Fig. 3 A model of home resources and educational achievement (Schumacker & Lomax, 2010, N = 200)
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Table 3 Parameter estimates (est), their SEs (se) and z-statistics for the path coefficients in Fig. 3 (p = 9, N = 200, Tml = 57.167, df = 21,
p-value = 3.39 × 10−5; RMSEA = .093, and CFI = .974)

CB-SEM BFS-PA EWC-PA PLS-SEM A PLS-SEM BA

θ est se z est se z est se z est se z est se z

γ11 0.299 0.091 3.294 0.321 0.061 5.262 0.348 0.063 5.563 0.379 0.067 5.643 0.388 0.068 5.700

γ21 0.177 0.093 1.900 0.251 0.064 3.959 0.286 0.067 4.273 0.232 0.053 4.370 0.238 0.054 4.422

γ12 0.480 0.094 5.135 0.395 0.060 6.619 0.372 0.061 6.081 0.397 0.067 5.915 0.391 0.068 5.748

γ22 0.611 0.113 5.414 0.491 0.064 7.630 0.492 0.066 7.413 0.393 0.053 7.358 0.369 0.054 6.851

β21 0.548 0.113 4.846 0.520 0.069 7.485 0.468 0.071 6.605 0.350 0.052 6.709 0.368 0.052 7.061

BFS = Bartlett-factor score, EWC = equally weighted composite, PA = path analysis

sample covariance matrix and the underlying population
distribution as normally distributed in our analysis.

Fitting the structural model in Fig. 4 to the 12 × 12
correlation matrix by NML results in Tml = 181.424
(df = 51, RMSEA = .128, CFI = .892). The model
cannot be regarded as achieving an adequate fit according
to established norms (Hu & Bentler, 1999), but it serves
the purpose for comparing the different methods when the
model fit is poor. Table 4 contains the estimated coefficients
and the corresponding z-statistics. CB-SEM yields the
smallest z-statistics for γ11 and β21 but path analysis with
EWCs yields the smallest z-statistic for β32. In contrast,
PLS-SEM mode BA yields the largest z-statistics for all the
three parameters across the five methods.

Dataset 5

The fifth dataset is from Table 14.1 of Kline (2016,
p. 342), which contains the sample correlations and standard
deviations of p = 12 variables. The data were from
Houghton and Jinkerson (2007) who studied constructive
thought strategies and job satisfaction, based on a sample
of size N = 263 full-time university employees. With
three indicators for each latent variables, the 12 variables

respectively measure four constructs: 1) constructive
thinking, 2) dysfunctional thinking, 3) subjective well-
being, and 4) job satisfaction. Two models were estimated
for this dataset in Kline (2016). The first model, as
represented by only the solid arrows in Fig. 5, hypothesizes
that constructive thinking reduces dysfunctional thinking,
which leads to an enhanced sense of well-being, which
in turn results in greater job satisfaction. This model has
four path coefficients: γ11, β21, β31, and β32. The second
model includes both the solid and dashed arrows, which
hypothesizes that constructive thinking also has direct
effects on sense of well-being and job satisfaction. This
second model has six path coefficients: γ11, γ21, γ31, β21,
β31, β32.

The NML likelihood ratio statistic for the first model is
Tml = 66.061, corresponding to a p-value of .064 when
referred to χ2

50. With RMSEA = .035 and CFI = .984,
the model would be regarded as having achieved close fit
in practice. Table 5 contains the parameter estimates for
this model by the five different methods. Different from
the previous datasets, CB-SEM yields the largest z-statistic
for parameter γ11 (z = −1.813), although it is still not
significant at the level of .05. For the other three coefficients
(β21, β31, and β32), CB-SEM again yields uniformly the

Fig. 4 A model of familial risk for psychopathology and child adjustment (Kline, 1998; Worland et al., 1984, N = 158)
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Table 4 Parameter estimates (est), their SEs (se) and z-statistics for the path coefficients in Fig. 4 (p = 12, N = 158, Tml = 181.424, df = 51,
p-value = 0; RMSEA = .128, and CFI = .892)

CB-SEM BFS-PA EWC-PA PLS-SEM A PLS-SEM BA

θ est se z est se z est se z est se z est se z

γ11 −0.650 0.088 −7.364 −0.406 0.048 −8.516 −0.406 0.048 −8.384 −0.560 0.066 −8.442 −0.566 0.066 −8.581

β21 0.991 0.073 13.623 0.862 0.048 18.017 0.834 0.050 16.641 0.809 0.047 17.189 0.826 0.045 18.322

β32 0.642 0.071 9.004 0.595 0.065 9.083 0.612 0.069 8.907 0.594 0.064 9.228 0.618 0.063 9.830

BFS = Bartlett-factor score, EWC = equally weighted composite, PA = path analysis

smallest z-statistics. In particular, z = −1.980 for β31 under
CB-SEM is only marginally significant, the z-statistics for
this parameter by the other four methods are all larger than
2.997 in absolute value.

Fitting the second model to the job satisfaction data by
NML yields Tml = 62.231, corresponding to a p-value =
.081 when referred to χ2

48. The corresponding fit indices
(RMSEA = .034, CFI = .986) also imply that the model
has achieved close fit in practice. Table 6 contains the
estimates of the six coefficients of the structural model and
their corresponding z-statistics. None of the z-statistics for
the first three coefficients (γ11, γ21, γ31) is significant at
the level of .05. The z-statistic for β31 under CB-SEM (-
1.936) is not significant either while those by the methods
of path analysis with the four types of composite scores are.
Actually, for the three coefficients among the endogenous
constructs (β21, β31, β32), the z-statistics under CB-SEM are
uniformly the smallest.

Dataset 6

Weston and Gore (2006, Table 2) presented a sample
covariance matrix for a dataset with N = 403 cases
and p = 12 variables. The data were from a survey
of college students who participated in a vocational
psychology research project. The indicator variables were

based on a subset of items that measure social dimensions
(Holland, 1997). With three indicators for each construct,
the 12 variables respectively tap 1) self-efficacy beliefs,
2) outcome expectations, 3) career-related interests, and 4)
occupational considerations. Weston and Gore Jr considered
two structural models, as represented in Fig. 6. The model
represented by the solid arrows (model 1) suggests that the
effect of self-efficacy beliefs on career-related interests is
partially mediated by outcome expectations, while the effect
of self-efficacy beliefs on occupational considerations is
completely through the two mediator variables (outcome
expectations and career-related interests). This first model
has four path coefficients in the structural model: γ11,
γ21, β21, β32. The second model, represented by both
the solid and dashed arrows in Fig. 6, suggests that the
effects of self-efficacy beliefs on career-related interests
and on occupational considerations are partially mediated
by outcome expectations, and the effect of outcome
expectations on occupational considerations is also partially
mediated by career-related interests. This second model has
six path coefficients in the structural model: γ11, γ21, γ31,
β21, β31, β32.

Fitting the first model in Fig. 6 to the vocational-
psychology dataset by NML results in Tml = 416.061,
which corresponds to a p-value that is essentially 0 when
referred to χ2

50. With CFI = .913, and RMSEA = .135, the

Fig. 5 Two models of thought strategies and job satisfaction (Houghton & Jinkerson, 2007; Kline, 2016, N = 263)
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Table 5 Parameter estimates (est), their SEs (se) and z-statistics for the path coefficients in Fig. 5, excluding the two dashed arrows (p = 12,
N = 263, Tml = 66.061, df = 50, p-value = .064; RMSEA = .035, and CFI = .984)

CB-SEM BFS-PA EWC-PA PLS-SEM A PLS-SEM BA

θ est se z est se z est se z est se z est se z

γ11 −0.065 0.036 −1.813 −0.049 0.029 −1.706 −0.038 0.027 −1.385 −0.096 0.062 −1.557 −0.099 0.062 −1.610
β21 −0.332 0.062 −5.371 −0.291 0.044 −6.586 −0.290 0.043 −6.711 −0.380 0.057 −6.641 −0.396 0.057 −6.974
β31 −0.259 0.131 −1.980 −0.304 0.101 −3.010 −0.298 0.099 −3.021 −0.190 0.061 −3.104 −0.185 0.062 −2.997
β32 0.907 0.220 4.116 0.640 0.131 4.877 0.638 0.131 4.881 0.299 0.061 4.881 0.301 0.062 4.892

Table 6 Parameter estimates (est), their SEs (se) and z-statistics for the path coefficients in Fig. 5, including the two dashed arrows (p = 12,
N = 263, Tml = 62.231, df = 48, p-value = .081; RMSEA = .034, and CFI = .986)

CB-SEM BFS-PA EWC-PA PLS-SEM A PLS-SEM BA

θ est se z est se z est se z est se z est se z

γ11 −0.061 0.036 −1.690 −0.049 0.029 −1.700 −0.038 0.027 −1.385 −0.100 0.062 −1.618 −0.103 0.062 −1.673
γ21 0.036 0.026 1.387 0.031 0.020 1.496 0.011 0.019 0.573 0.100 0.057 1.743 0.095 0.057 1.655
γ31 0.066 0.056 1.194 0.062 0.044 1.424 0.050 0.040 1.236 0.086 0.057 1.505 0.096 0.057 1.684
β21 −0.317 0.061 −5.202 −0.281 0.044 −6.386 −0.285 0.043 −6.629 −0.367 0.057 −6.388 −0.378 0.057 −6.605
β31 −0.251 0.130 −1.936 −0.296 0.101 −2.930 −0.290 0.099 −2.937 −0.186 0.061 −3.043 −0.174 0.061 −2.846
β32 0.885 0.221 4.011 0.628 0.133 4.734 0.637 0.132 4.839 0.289 0.061 4.720 0.297 0.061 4.828

BFS = Bartlett-factor score, EWC = equally weighted composite, PA = path analysis

Fig. 6 Two mediated models for self-efficacy belief on occupational considerations (Weston & Gore, 2006, N = 403)

Table 7 Parameter estimates (est), their SEs (se) and z-statistics for the path coefficients in Fig. 6, excluding the two dashed arrows (p = 12,
N = 403, Tml = 416.061, df = 50, p-value = .000; RMSEA = .135, and CFI = .913)

CB-SEM BFS-PA EWC-PA PLS-SEM A PLS-SEM BA

θ est se z est se z est se z est se z est se z

γ11 1.186 0.096 12.364 1.090 0.077 14.151 1.097 0.077 14.232 0.580 0.041 14.251 0.581 0.041 14.287
γ21 0.046 0.009 5.161 0.038 0.009 4.047 0.037 0.010 3.797 0.187 0.048 3.906 0.206 0.047 4.364
β21 0.057 0.006 10.003 0.053 0.005 10.619 0.053 0.005 10.279 0.498 0.048 10.394 0.499 0.047 10.571
β32 10.368 0.822 12.615 6.480 0.392 16.523 6.044 0.396 15.246 0.614 0.039 15.593 0.649 0.038 17.091

BFS = Bartlett-factor score, EWC = equally weighted composite, PA = path analysis
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Table 8 Parameter estimates (est), their SEs (se) and z-statistics for the path coefficients in Fig. 6, including the two dashed arrows (p = 12,
N = 403, Tml = 361.848, df = 48, p-value = .000; RMSEA = .128, and CFI = .926)

CB-SEM BFS-PA EWC-PA PLS-SEM A PLS-SEM BA

θ est se z est se z est se z est se z est se z

γ11 1.187 0.096 12.381 1.091 0.077 14.175 1.098 0.077 14.232 0.580 0.041 14.263 0.583 0.041 14.381

γ21 0.039 0.011 3.462 0.038 0.009 4.065 0.037 0.010 3.797 0.187 0.048 3.904 0.206 0.047 4.347

γ31 0.415 0.096 4.320 0.438 0.079 5.568 0.494 0.079 6.238 0.251 0.040 6.333 0.238 0.039 6.043

β21 0.055 0.006 8.510 0.053 0.005 10.621 0.053 0.005 10.279 0.498 0.048 10.383 0.496 0.047 10.482

β31 0.390 0.061 6.347 0.442 0.046 9.573 0.457 0.046 9.909 0.425 0.044 9.700 0.410 0.043 9.451

β32 3.968 0.715 5.550 2.772 0.411 6.744 2.264 0.400 5.668 0.235 0.041 5.783 0.270 0.041 6.667

BFS = Bartlett-factor score, EWC = equally weighted composite, PA = path analysis

model might not be regarded as fitting the data adequately
although it is substantively sound (see Weston & Gore,
2006 and references therein). Such a discrepancy between
theory and goodness of model-fit is not unusual in empirical
modeling. Table 7 contains the estimates of the coefficients
represented by the four solid arrows. CB-SEM yields the
greatest z-statistic for parameter γ21, but for the other three
parameters the z-statistics following CB-SEM are uniformly
the smallest. The methods yield the greatest z-statistics for
γ11, β21 and β32 are PLS-SEM mode BA, path analysis
using the Bartlett-factor scores, and PLS-SEM mode BA,
respectively.

Table 8 contains the results of fitting the second model
in Fig. 6 to the vocational-psychology data. With two
additional parameters the statistic Tml drops to 361.848,
which corresponds to RMSEA = .128, and CFI = .926. The
partial mediation model still cannot be regarded as adequate
according to the established norms on fit indices (Hu &
Bentler, 1999). However, the value of Tml as well as those of
the derived RMSEA and CFI are affected by other factors in
addition to the structural model. In particular, extra kurtosis
of the observed sample alone can cause the significance
of Tml even if the model is literally correct (Hu et al.,
1992), but we do not have such information for this dataset,
because only a sample covariance matrix is available. In
Table 8, CB-SEM yields uniformly the smallest z-statistics
for all the six parameters. The greatest z-statistics for γ11,
γ11, γ11, β21, β31, β32 are obtained by PLS-SEM mode
BA, PLS-SEM mode BA, PLS-SEM mode A, path analyses
via Bartlett-factor scores, equally weighted composites, and
Bartlett-factor scores, respectively.

Dataset 7

The seventh is a raw dataset from Neumann (1994), who
studied the relationship of psychopathology and alcoholism.
The dataset consists of p = 10 variables and N = 335

cases. The single exogenous construct (family history) is
tapped by two indicators: family history of psychopathology
and family history of alcoholism. The other eight indicators
are respectively the age of 1st problem with alcohol, age
of 1st detoxification from alcohol, alcohol severity score,
alcohol use inventory, SCL-90 psychological inventory, the
sum of the Minnesota Multiphasic Personality Inventory
scores, the lowest level of psychosocial functioning during
the past year, and the highest level of psychosocial
functioning during the past year. With two indicators for
each latent construct, these eight indicators respectively
measure: age of onset, alcohol symptoms, psychopathology
symptoms, and global functioning. Neumann’s (1994)
theoretical model for this data set is represented by Fig. 7,
which has six path coefficients: γ11, β21, β31, β32, β41, β42.

With raw data, we can check the distribution prop-
erties of this psychopathology-alcoholism sample, which
corresponds to a standardized multivariate kurtosis Ms =
14.763. Consequently, the sample cannot be regarded as
normally distributed. Using the 95% quantile (c.95) of χ2

10
as the cutoff value for regulating observations according
to Huber-type weights, the resulting kurtosis of the trans-
formed sample is Ms = 2.248, still statistically signif-
icant when referred to N(0, 1). Further tuning with c.90
as the cutoff value for regulating observations results in
Ms = −.110. Thus, we can regard the transformed data
by H(.10) as approximately normally distributed. Our anal-
ysis and comparison below will be for this transformed
sample.

Fitting the model in Fig. 7 to the transformed sample by
NML results in Tml = 40.985, corresponding to a p-value
= .069 when referred to χ2

29. Fit indices (RMSEA = .035,
CFI = .987) also indicate that the model reached close fit.
The estimates of the six coefficients are reported in Table 9.
Estimates of β31 by the 5 methods are consistently not
statistically significant at .05 level although the z-statistic
under CB-SEM is the largest. For the other 5 parameters,
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Fig. 7 A model of symptoms of alcoholism and psychopathology (Neumann, 1994, N = 335)

PLS-SEM mode BA yields the largest z-statistics for γ11
and β41, PLS-SEM mode A yields the largest z-statistics
for β21 and β42, and path analysis with the Bartlett-factor
scores yields the largest z-statistic for β32. Again, a non-
significant z-statistic at the .05 level does not mean that we
can regard the parameter β31 as 0. Many factors contribute
to the significance of a parameter estimate in statistical
modeling in general.

Dataset 8

The eighth is a raw dataset from a study of health and
stress, and was examined in Yuan and Deng (2021), with
p = 24 and N = 264. The 264 participants were
recruited from both high-pressure professionals and from a

psychiatric hospital. The 24 variables are indicators of four
constructs. The three exogenous constructs are respectively:
1) emotional exhaustion with 5 indicators, 2) cynicism
with 4 indicators, and 3) professional efficacy with 6
indicators. The single endogenous construct (depression)
has 9 indicators obtained from patient health questionnaire
(PHQ9, Kroenke, Spitzer & Williams, 2001). The path
diagram for the structural model is in Fig. 8, which has three
path coefficients: γ11, γ12, and γ13.

As noted in Yuan and Deng (2021), with a standard-
ized multivariate kurtosis Ms = 23.292, we cannot regard
the sample as following a multivariate normal distribution.
Using Huber-type weights and cutoff value c.95 (95% quan-
tile of χ2

24) in the robust transformation, the standardized
multivariate kurtosis of the transformed sample is Ms =

Table 9 Parameter estimates (est), their SEs (se) and z-statistics for the path coefficients in Fig. 7 (p = 10, N = 335, Tml = 40.985, df = 29,
p-vale = .069; RMSEA = .035, and CFI = .987)

CB-SEM BFS-PA EWC-PA PLS-SEM A PLS-SEM BA

θ est se z est se z est se z est se z est se z

γ11 −0.342 0.071 −4.819 −0.226 0.042 −5.403 −0.175 0.038 −4.573 −0.250 0.053 −4.703 −0.285 0.053 −5.427

β21 −0.483 0.067 −7.217 −0.402 0.045 −8.924 −0.407 0.045 −9.035 −0.444 0.049 −9.047 −0.435 0.049 −8.811

β31 0.087 0.074 1.182 0.020 0.054 0.362 0.056 0.056 1.002 0.042 0.055 0.767 0.001 0.054 0.015

β32 0.627 0.086 7.324 0.495 0.059 8.398 0.483 0.061 7.926 0.448 0.055 8.101 0.453 0.054 8.335

β41 −0.222 0.093 −2.381 −0.243 0.066 −3.668 −0.222 0.068 −3.288 −0.192 0.055 −3.491 −0.209 0.056 −3.732

β42 −0.418 0.101 −4.135 −0.318 0.061 −5.200 −0.335 0.062 −5.423 −0.301 0.055 −5.462 −0.279 0.056 −4.986
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Fig. 8 A model of burnout and depression (Yuan & Deng, 2021, N = 264)

8.420, which is still highly significant. We subsequently
tuned the cutoff value and end up with Ms = −.003 under
the transformation H(.22). The results presented below are
based on fitting the model in Fig. 8 to this robustly trans-
formed sample by NML.

The likelihood ratio statistic for the overall model is
Tml = 469.579, highly significant when referred to χ2

246.
However, fit indices CFI = .948 and RMSEA = .059
suggest that the model in Fig. 8 fits the sample reasonably
well. The estimates of the three coefficients by the five
methods are given in Table 10, where the z-statistics for both
γ11 and γ13 under CB-SEM are not statistically significant
at the .05 level. The z-statistics for γ13 are not significant
under path analyses with the four weighted composites. But
the four estimates of γ11 under path analyses are significant.
Path analysis using the Bartlett-factor scores yields the

largest z-statistic for γ12 while PLS-SEM mode BA yields
the largest z-statistic for γ11.

Dataset 9

The ninth dataset is from Table 8.2 of Bollen (1989, p. 334),
which contains a sample covariance matrix of p = 11
industrialization-democracy variables based on a sample
of N = 75 developing countries. These 11 variables are
indicators of three constructs. Industrialization in 1960 is
an exogenous construct and has three indicators: gross
national product (GNP) per capita, energy consumption
per capita, and the percent of the labor force in industrial
occupations. Democracy 1960 is an endogenous construct
and has four indicators: freedom of the press, freedom of
group opposition, fairness of elections, and the elective

Table 10 Parameter estimates (est), their SEs (se) and z-statistics for the path coefficients in Fig. 8 (p = 24, N = 264, Tml = 469.579, df = 246,
p-value = .000; RMSEA = .059, and CFI = .948)

CB-SEM BFS-PA EWC-PA PLS-SEM A PLS-SEM BA

θ est se z est se z est se z est se z est se z

γ11 0.066 0.036 1.831 0.072 0.032 2.245 0.075 0.032 2.341 0.148 0.058 2.539 0.161 0.059 2.725

γ12 0.269 0.040 6.783 0.243 0.032 7.622 0.239 0.032 7.527 0.436 0.058 7.500 0.435 0.059 7.432

γ13 −0.044 0.032 −1.365 −0.044 0.030 −1.490 −0.044 0.030 −1.487 −0.079 0.054 −1.474 −0.084 0.053 −1.575

BFS = Bartlett-factor score, EWC = equally weighted composite, PA = path analysis
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Fig. 9 A model of industrialization and democracy (Bollen, 1989, N = 75), each of the four factor loadings on democracy 1960 equals that on
democracy 1965

nature and effectiveness of the legislative body. Democracy
1965 is another endogenous construct and has the same set
of indicators as democracy 1960 but measured at a later
time. Bollen (1989) considered multiple models for this
dataset. We will estimate the model in Fig. 9, which has
three path coefficients: γ11, γ21, and β21.

The difference of this model from the previous ones is
that each of the four factor loadings on democracy 1960 is
constrained to be equal to that on democracy 1965, due to
the nature of panel data. The constraints were also part of
the model in Figure 8.1 of Bollen (1989, p. 324), which
also contains six pairs of correlated errors. We do not
include the 6 error-covariances in the model since they
empirically share the responsibility of the path coefficients.
In particular, under CB-SEM error-covariances and the
path coefficients in the structural model jointly account
for the association of the indicators, whereas path analysis
via weighted composites and PLS-SEM account for the
association only through the path coefficients in the
structural model. Thus, it is not a fair comparison between
the two classes of methods when models under CB-SEM
have correlated errors.

Fitting the model (with three extra constraints on factor
loadings) in Fig. 9 to the p = 11 industrialization-democracy
variables by NML yields Tml = 72.709, which corresponds
to a p-value = .004 when referred to χ2

44. Fit indices CFI= .957 and RMSEA = .094 indicate that the model fits the
data reasonably well. Table 11 contains the estimates of the
three path coefficients by the five methods. Note that the
Bartlett-factor scores are computed using the factor loadings
and error variances estimated by NML, and they implicitly
used the equality constraints. However, the other three types
of composites do not use the equality constraints. PLS-
SEM mode BA yields the smallest z-statistic for β21 while
CB-SEM yields the smallest z-statistic for γ21. The largest
z-statistics for γ11, γ21 and β21 are obtained by PLS-SEM
mode BA, path analysis with EWCs, and path analysis with
the Bartlett-factor scores, respectively.

We have compared CB-SEM against path analysis with
four types of composites in estimating the path coefficients
of the structural models. Eleven models over nine datasets
were examined, with a total of 47 parameters. CB-SEM
yielded the smallest z-statistics 38 times, and largest

Table 11 Parameter estimates (est), their SEs (se) and z-statistics for the path coefficients in Fig. 9 (p = 11, N = 75, Tml = 72.709, df = 44,
p-value = .004; RMSEA = .094, and CFI = .957)

CB-SEM BFS-PA EWC-PA PLS-SEM A PLS-SEM BA

θ est se z est se z est se z est se z est se z

γ11 0.981 0.267 3.670 0.947 0.244 3.876 0.870 0.247 3.528 0.384 0.108 3.549 0.455 0.104 4.367

γ21 0.312 0.152 2.052 0.417 0.135 3.080 0.431 0.136 3.173 0.188 0.062 3.015 0.184 0.065 2.838

β21 0.887 0.074 11.978 0.766 0.059 12.973 0.757 0.060 12.687 0.783 0.062 12.536 0.773 0.065 11.919

BFS = Bartlett-factor score, EWC = equally weighted composite, PA = path analysis
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Table 12 Counts for each method to yield the largest and smallest z-statistics as well as the mean rank (1 to 5) and mean value of the z-statistics
across the 47 parameters

CB-SEM BFS-PA EWC-PA PLS-SEM A PLS-SEM BA

Count of largest z 3 11 5 7 21

Count of smallest z 38 0 7 0 2

Average rank of |z| 1.468 3.468 2.872 3.383 3.809

Average value of |z| 6.341 7.801 7.640 7.718 7.840

z-statistics 3 times.7 Path analysis with Bartlett-factor scores
never had the smallest z-statistics nor PLS-SEM mode A.
The frequencies for each method to yield the largest and
smallest z-statistics are reported in Table 12. For each
parameter, we also ranked the five z-statistics from the
smallest (rank 1) to the largest (rank 5) in absolute values.
The average value of the rank for each method across the
47 parameters is obtained and so is the average of the
absolute value of the 47 z-statistics. They are included
in Table 12 as well. All the results in Table 12 indicate
that CB-SEM has the smallest power8 and/or effect size
in testing the significance of the path coefficients of the
structural models. In contrast, PLS-SEM mode BA yielded
the largest average z-statistics and average rank, followed
by path analysis with Bartlett-factor scores. In particular, the
results in Table 12 indicate that path analysis with equally
weighted composites also corresponds to greater effect size
and statistical power in testing the path coefficients than
CB-SEM.

Because the focus of the article is on the effect size
and statistical power in estimating/testing path coefficients,
we did not include R2 values in the comparison. But
measurement errors are known to affect the R2 values. In
particular, the R2 for regression analysis with composite
scores will become smaller when either the outcome
variable or the predictors contain more measurement errors.
The value of the resulting R2 is proportional to the
reliability of the outcome variable and a weighted average
of the reliabilities of the predictors (Cochran, 1970).
There are 30 endogenous constructs within the 11 models
we examined. CB-SEM yields the largest R2 values for
29 out of the 30 cases. The only exception is for the

7They are respectively for the estimates of γ11 in Table 5, γ21 in
Table 7, and β31 in Table 9. However, two of the three estimates (γ̂11
and β̂31) are not statistically significant at the level .05.
8All the results of path analysis with weighted composites presented
in this article are conditional on the estimated weights, as is typically
done in practice (see e.g., DiStefano, Zhu & Mindrila, 2009). The
method is even more powerful when sampling errors in weights are
considered (Yuan & Fang, 2021)

regression model of democracy 1960 being predicted by
industrialization 1960 (the left part of Fig. 9), where PLS-
SEM mode BA corresponds to a greater value of R2 than
CB-SEM, due to a substantial change in weights from PLS-
SEM mode A to PLS-SEM mode BA. However, the R2

value under CB-SEM is not achievable when the model
is used for prediction or classification of individuals. This
is because we have to use the individual scores to predict
the individual outcome variables, and measurement errors
cannot be avoided with the observed scores. The reliabilities
of the observed scores affect not only the value of R2 but
also the prediction accuracy. Among path analyses with
weighted composites, PLS-SEMmode BA yields the largest
R2 in most cases, followed by path analysis using the
Bartlett-factor scores, PLS-SEM mode A, and path analysis
using equally weighted composites. Thus, PLS-SEM mode
BA and path analyses using Bartlett-factor scores are also
preferred from the perspective of prediction of individuals
with the smallest MSE.

Conclusions and discussion

In social and behavioral sciences, theoretical constructs are
commonly measured by indicators that contain measure-
ment errors. CB-SEM is regarded as a proper method for
modeling the relationship among the constructs because of
its function in separating measurement errors and the latent
constructs. However, the estimates of the path coefficients
under CB-SEM may contain sizable sampling errors due
to simultaneously estimating many parameters. In practice,
the substantive interests are often prediction and/or classi-
fication of individuals. Then path analysis with composite
scores has the advantage of directly estimating the relation-
ship of the observed scores. This article shows that path
analysis via weighted composites has an additional advan-
tage of yielding path coefficients with less relative errors,
as reflected by greater effect size and statistical power.
The most interesting finding is that even path analysis with
EWCs by the LS method yields estimates with greater
signal-to-noise ratio than CB-SEM on average.
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The results of this article imply that path analyses with
Bartlett-factor scores or PLS-SEM mode BA tend to yield
greater effect size for the path coefficients of the structural
model than PLS-SEM mode A or path analysis with EWCs.
Such a pattern is closely related to measurement reliabil-
ity of the composites. In particular, Bartlett-factor scores
and the weighted composites under PLS-SEM mode BA are
most reliable among all weighted combinations of the indi-
cators (Yuan & Bentler, 2002; Yuan & Deng, 2021). Con-
sequently, we recommend mode BA instead of mode A for
models with reflective indicators. Because formative indi-
cators typically do not contain measurement errors or they
do not share a common construct, mode B is still a viable
option for computing the weights of formative indicators.

Although latent variables are error-free and CB-SEM
directly models their relationship, measurement errors still
interfere with the accuracy of the resulting parameter
estimates. For a model containing two constructs (η, ξ ) with
a structural model η = γ ξ + ζ , let γ̂ls be the LS estimate
of γ when ξ and η were directly used in the estimation,
which is an ideal scenario. Then, the NML estimate of γ

under CB-SEM is mathematically less accurate than γ̂ls

even as the numbers of the indicators for both ξ and η go to
infinity. This is because both the number of factor loadings
and the number of error variances increase as the number of
indicators increases, and CB-SEM has to face the issue of
increasing number of model parameters. In contrast, as the
number of indicators increases and under proper conditions,
the reliabilities of all the composites ξ̃ and η̃ approach 1.0
(Hayashi, Yuan, & Sato, 2021). Let γ̂ ∗

ls be the LS estimate
for the model η̃ = γ ∗ξ̃ + ζ ∗. The signal-to-noise ratio
in γ̂ ∗

ls then converges to that of the LS estimate γ̂ls . That
is, as the number of indicators increases, the accuracy of
the LS estimate of the regression coefficient under path
analysis with composite scores approaches that under the
ideal scenario. The results imply that, as the number of
indicators increases, the advantage of path analysis with
weighted composites over CB-SEM becomes more obvious,
and the difference between the different types of composites
will be less clear.

While path analysis with composite scores yields path
coefficients with greater signal-to-noise ratio, the method
itself is unable to offer the information such as reliability
of individual items or the goodness of the overall model
structure. These are important features of measurement and
modeling, and can be directly obtained from CB-SEM.
Other aspects of measurement such as unidimensionality as
well as convergent and discriminant validity are also better
evaluated under CB-SEM. Thus, while path analysis with
composites has extra strength in prediction, classification
and diagnosis for individuals, CB-SEM still offers valuable
information that path analysis via composite scores does not
provide. We recommend CB-SEM analysis being conducted

first and followed by path analysis using Bartlett-factor
scores or PLS-SEM mode BA even if prediction is of
primary interest.

Under the assumption of normality on the distribution
of the composite scores, the mechanism for path analysis
to yield prediction with the smallest MSE is due to
the fact that the predicted value is the conditional mean
of the outcome variable. When data are not normally
distributed, the prediction is most accurate in the class of
linear predictors (Fuller, 1987, p. 75). In addition to the
properties inherited from conditional means, composites
under PLS-SEM mode BA also possess the property of
maximum reliability, which also directly contributes to
minimizing the MSE of the prediction. However, path
analysis with weighted composites or PLS-SEM is a
two-step procedure for modeling the relationship of the
constructs. We can also obtain the conditional mean of an
endogenous construct directly from the covariance matrices
under the CB-SEM model. While this direct approach
may seem more expedient, it is also a two-step procedure
since parameters under CB-SEM have to be estimated
before conditional means can be computed. With a correctly
formulated model structure, the direct approach may yield
equivalent predictors as those under path analysis using the
Bartlett-factor scores or PLS-SEM mode BA. The matter
becomes complicated with misspecified models. Regardless
of whether the model is correctly specified or not, PLS-
SEM has two mechanisms to maximize the predictive
relationship among constructs: 1) The estimated weights
under PLS-SEM maximize the correlation between the
indicators in different blocks by regression analysis via the
environmental variables (see e.g., Boardman, Hui & Wold,
1981); and 2) the estimated path coefficients maximize the
correlation between the predictors and the outcome variable
according to LS regression. Similarly, with misspecified
models, the parameter estimates under CB-SEM also alter
their values in order to account for the extra association
of the observed indicators (Yuan, Marshall & Bentler,
2003). Additional studies are needed for comparing the two
approaches.

The literatures of regression analysis with weighted com-
posites and measurement-error models contain proposals for
correcting the regression coefficients so that they become
consistent with those under CB-SEM or regression analysis
with true scores (e.g., Croon, 2002; Devlieger et al., 2016;
Devlieger & Rosseel, 2017; Dijkstra & Henseler, 2015;
Fuller, 1987; Hoshino & Bentler, 2013; Yuan et al., 2020).
However, the corrected estimates may not work well when
they are teamed with the composites for prediction or diag-
nosis of individuals. This is because the composites may
not be on the same scales as those of the latent variables
under CB-SEM or the true scores. Even if they are on the
same scales, the corrected estimates will break the property

1476 Behavior Research Methods  (2023) 55:1460–1479

1 3



of the “best in the class of linear predictors” of the intact LS
estimates (Fuller, 1987, p. 75). In addition, the estimated
path coefficients under two different types of composites are
not exchangeable for the purpose of prediction since they
may have different scales (Croon, 2002; Devlieger et al.,
2016).
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Appendix: Software implementation

The results in this article are computed using SAS IML pro-
grams, coded by the authors. The programs can be downloa-
ded at https://www3.nd.edu/∼kyuan/SEM PAcomparison/,
and are named according to the tables they generate
(Table1.sas to Table11.sas). The structures of the SAS IML
programs are about the same, as documented via the com-
ments within each program. Because Dataset 7 is not pub-
licly available, only the SAS IML program is provided
for the results in Table 9. For comparison purpose, EQS
(Bentler, 2006) programs are also provided for comput-
ing the results under CB-SEM, which are identical to
those obtained by the SAS IML programs. The website
also contains an R package that computes the results in
Table 7. Researchers who are familiar with the R language
(R Core Team, 2021) can modify the code to compute the
results in the other tables. Both the SAS IML and R pro-
grams are designed according to subroutines and functions,
respectively. The purpose of each subroutine or function is
explained via comments within the programs.

The results under CB-SEM can also be obtained by other
free and commercial SEM software (LISREL, Jöreskog
& Sörbom, 1993; Mplus, Muthén & Muthén, 2007;
lavaan, Rosseel, 2012). However, there might be differences
between the outputs of different programs. As implied by
the SAS IML source code, our results for CB-SEM are
computed by fitting the structural model to the unbiased
sample covariance matrices by minimizing the normal-
distribution-based discrepancy function Fml (e.g., equation
4.67 of Bollen, 1989). EQS also implements the NML
method the same way (see e.g., equation 5.13 of Bentler,
2016). Programs that do not operate according to the
above scheme may generate different results, which might
correspond to even smaller effect sizes than the CB-SEM
estimates presented in this article.

There are multiple free and commercial programs
for conducting PLS-SEM (e.g., ADANCO, Henseler &

Dijkstra, 2016; semPLS, Monecke & Leisch, 2012; cSEM,
Rademaker & Schuberth, 2020; SmartPLS, Ringle, Wende,
& Becker, 2015). They seem to require the input of raw
data, and will not work with sample covariance matrices.
In addition, these programs compute the weights for
standardized item scores. However, CB-SEM is typically
conducted using the sample covariance matrix instead of the
sample correlation matrix. For a fair comparison between
CB-SEM and PLS-SEM, the PLS-SEM methodology in
our SAS IML and the R programs (https://www3.nd.edu/
∼kyuan/SEM PAcomparison/) is implemented using the
sample covariance matrix instead of the sample correlation
matrix. Previous PLS-SEM programs do not contain the
option for computing the weights under mode BA. A
subroutine for computing this mode is in each of our
SAS IML programs and the R package. Note that PLS-
SEM mode BA involves estimating the error variance for
each reflective indicator. The program sets by default the
boundary values of negative error variances (Heywood
cases) to .05, and users can change it to another small
positive number.

References

Bartholomew, D. J. (2009). The origin of factor scores:
Spearmen, Thomson and Bartlett. British Journal of
Mathematical and Statistical Psychology, 62, 569–582.
https://doi.org/10.1348/000711008X365676

Bentler, P. M. (1980). Multivariate analysis with latent variables:
Causal modeling. Annual Review of Psychology, 31, 419–456.
https://doi.org/10.1146/annurev.ps.31.020180.002223

Bentler, P. M. (1983). Some contributions to efficient statis-
tics in structural models: Specification and estimation
of moment structures. Psychometrika, 48, 493–517.
https://doi.org/10.1007/BF02293875

Bentler, P. M. (1990). Comparative fit indexes in struc-
tural models. Psychological Bulletin, 107, 238–246.
https://doi.org/10.1037/0033-2909.107.2.238

Bentler, P. M. (2006). EQS 6 Structural equations program manual.
Encino: Multivariate Software.
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