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Abstract
Categorical cutpoints used to assess the adequacy of various statistics—like small, medium, and large for correlation coefficients 
of .10, .30, and .50 (Cohen, Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum 
Associates.)—are as useful as they are arbitrary, but not all statistics are suitable candidates for categorical cutpoints. One such is 
kappa, a statistic that gauges inter-observer agreement corrected for chance (Cohen Educational and Psychological Measurement, 
20(1), 37–46, Cohen, Educational and Psychological Measurement 20:37–46, 1960). Depending on circumstances, a specific 
value of kappa may be judged adequate in one case but not in another. Thus, no one value of kappa can be regarded as universally 
acceptable and the question for investigators should be, are observers accurate enough, not is kappa big enough. A principled way 
to assess whether a specific value of kappa is adequate is to estimate observer accuracy—how accurate would simulated observers 
need to be to have generated a specific value of kappa obtained by actual observers, given specific circumstances. Estimating 
observer accuracy based on a kappa table the user provides is what KappaAcc, the program described here, does.
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Categorical cutpoints used to assess the adequacy of vari-
ous statistics—like small, medium, and large for correla-
tion coefficients of .10, .30, and .50 (Cohen, 1988)—are as 
useful as they are arbitrary. Of course, most authors know, 
for example, that the difference between p values falling 
just below or just above the conventional cutpoint of .05 is 
inconsequential (Cohen, 1990; Rosnow & Rosenthal, 1989). 
Nonetheless, descriptions of results, especially when many 
variables are analyzed, are often improved with the use of 
defined and consistently used categorial terms.

Not all statistics are suitable candidates for categorical 
cutpoints, however. One such is kappa, a statistic that gauges 
inter-observer agreement corrected for chance (Cohen, 1960). 
Depending on circumstances I will detail shortly, a specific 
value of kappa may be judged adequate in one case but not 
in another. Thus, kappa is unlike other common statistics for 
which it is reasonable to say, for example, that a specified 
value represents a medium effect. Nonetheless, categorical 
terms for specific values of kappa have appeared in the litera-
ture (e.g., Fleiss, 1981, characterized kappas of .40–.60 as fair, 
.60–.75 as good, and over .75 as excellent). However, these 

definitions were not supported with a convincing rationale—
unlike Cohen (1988) who offered detailed rationales for his 
suggested categorical terms—and did not take into account 
circumstances affecting the value of kappa, most importantly 
the order of the kappa table (i.e., the number of codes). In 
sum, no one value of kappa can be regarded as universally 
acceptable. The question for investigators should be, are 
observers accurate enough, not is kappa big enough.

Estimating how accurate observers would need to be to 
have generated a specific value of kappa, given its specific 
circumstances, provides a principled way to assess whether 
a specific value of kappa is adequate. When training and 
checking observers, our main concern should not be the 
magnitude of kappa but the level of observer accuracy we 
regard as acceptable. As always, the cutpoint selected is 
arbitrary. Gardner (1995) characterized 80% accuracy as 
discouragingly low “but possibly representative of the accu-
racy of classification for some social behaviors or expres-
sions of affect” (p. 347). It seems reasonable to expect better, 
and—although 100% accuracy will likely elude us—85% or 
90% accuracy may represent reasonable goals. KappaAcc, 
the computer program described here, computes estimated 
observer accuracy for a kappa table the user provides. It is 
based on equations developed by Gardner (1995) that take 
into account the circumstances of the particular kappa table.
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Kappa and weighted kappa

Researchers who ask observers to code or rate behavior 
often gauge inter-observer agreement with kappa (Cohen, 
1960), primarily because kappa corrects for chance agree-
ment, whereas a percentage agreement—sometimes seen in 
older literature—does not. To check agreement, researchers 
ask two observers to code (nominal scale) or rate (ordinal 
scale) the same sequence of events (or time intervals, or 
sessions), applying K codes or ratings to N events. Their N 
pairs of judgments are then tallied in a K × K kappa table 
(also called an agreement or confusion matrix). Rows rep-
resent one observer, columns the other observer, and rows 
and columns are labeled with the K mutually exclusive and 
exhaustive codes or ratings.

Cohen’s kappa is an omnibus statistic, a single number 
that summarizes the agreement evidenced by the kappa 
table. The standard formula is:

PO represents observed agreement (the sum of the prob-
abilities on the upper-left to lower-right diagonal), PC repre-
sents chance agreement (the sum of the corresponding row 
and column probability products), and the formula empha-
sizes that kappa gauges observer agreement corrected for 
chance.

The formula for weighted kappa (Cohen, 1968) is more 
general:

Each observed value ( xij ) and each expected value (eij ) is 
multiplied by the corresponding cell in an array of weights 

κ =
PO − PC

1 − PC

,wherePO =

K∑

i=1

piiandPC =

K∑

i=1

p+ipi+

κwt = 1 −

∑K

i=1

∑K

j=1
wijxij

∑K

i=1

∑K

j=1
wijeij

( wij ). (Note: The formula for weighted kappa in Bakeman & 
Quera, 2011, p. 82, contains a typo; the “1 –” before the frac-
tion was inadvertently omitted.) With standard weights—all 
cells on the diagonal set to 0, indicating agreement, and all 
off-diagonal cells set to 1, indicating that all disagreements 
are weighted equally—both the standard and the weighted 
kappa formulas yield identical results. If observers agreed 
for all events, the sum of the wijxij products would be 0, the 
fraction after “1 –”would be 0, and so κ and κwt would equal 
1, indicating perfect agreement.

When codes are nominal, it usually makes the most 
sense to weight all disagreements equally. But when rat-
ings are ordinal, other arrays of weights could make sense. 
Figure 1 shows four possible weighting schemes, assum-
ing K = 5: (a) the standard array weights agreements 0 and 
disagreements 1; (b) the linear array weights more extreme 
disagreements more highly (e.g., weighting a 1–3 disagree-
ment 2 but a 1–5 disagreement 4); (c) the w/1 standard 
array regards disagreements within one scale point as 
agreements and weights them 0; and (d) the w/1 linear 
array likewise regards disagreements within one scale point 
as agreements but weights more extreme disagreements 
more highly. The default for the KappaAcc program is the 
standard array, but the user can select one of the other three 
weighting schemes or define a custom scheme if they wish.

Observer accuracy

Once paired observer judgments are tallied in a kappa table 
and kappa or weighted kappa has been computed, research-
ers understandably want to know whether the computed 
value is big enough—although, as noted earlier, I think the 
better question is whether observers are accurate enough, 
not whether kappa is big enough, that is does the value 
of kappa indicate adequate observer agreement? Observer 

2nd observer’s codes                                               2nd observer’s ra�ngs                                     
A B C D E 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

A 0 1 1 1 1 1 0 1 2 3 4 1 0 0 1 1 1 1 0 0 1 2 3
B 1 0 1 1 1 2 1 0 1 2 3 2 0 0 0 1 1 2 0 0 0 1 2
C 1 1 0 1 1 3 2 1 0 1 2 3 1 0 0 0 1 3 1 0 0 0 1
D 1 1 1 0 1 4 3 2 1 0 1 4 1 1 0 0 0 4 2 1 0 0 0
E 1 1 1 1 0 5 4 3 2 1 0 5 1 1 1 0 0 5 3 2 1 0 0  1

st
 o

bs
er

ve
r  

standard linear w/1 standard w/1 linear

Fig. 1  Standard weight matrix for five codes and three possible 
weight matrices for 1 to 5 ratings. Note. In addition to the standard 
weight matrix for kappa, three other possibilities—potentially use-
ful when rating instead of coding—are (a) the linear matrix, which 
weights more extreme disagreements more highly (e.g., weighting a 
1–3 disagreement 2 but a 1–5 disagreement 4); (b) the w/1 standard 

matrix, which regards disagreements within one scale point as agree-
ments and weights them 0, weighting other disagreements 1; and (c) 
the w/1 linear matrix, which likewise regards disagreements within 
one scale point as agreements but weights more extreme disagree-
ments more highly. Agreements (weighted 0) are shaded
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accuracy provides a reasoned way for determining whether 
a particular value of kappa is adequate. Unfortunately, its 
computation requires that we know the “true” state of 
affairs, whereas in the real world the true value of observer 
accuracy is unknowable. But in an ideal world of simulated 
observers, we can specify the true state of affairs, specifi-
cally: (a) the number of codes or ratings, (b) their simple 
probabilities, and (c) observer accuracy (the conditional 
probability that an observer will assign code A when the 
event is truly an A). KappaAcc assumes this ideal world.

Gardner (1995) has shown us how to model observer deci-
sion making in the ideal world. His equations let us deter-
mine the value of kappa that would result if two observers of 
specified accuracy were asked to assign K codes or ratings 
to events of specified probability (see also Bakeman et al., 
1997; Bakeman & Quera, 2011). The inference is, if simu-
lated observers of known accuracy achieve a value of kappa 
as big as the value achieved by observers in the real world, it 
is reasonable to assume that the actual observers are as accu-
rate as the simulated ones. This is the fundamental assump-
tion of the KappaAcc program. Using Gardner’s model, it 
determines the percentage accuracy required of simulated 
observers to achieve the magnitude of the kappa observed by 
the actual observers. See the Appendix for details concerning 
Gardner’s equations for computing estimated accuracy.

Circumstances affecting the value of kappa

Bakeman and Quera (2011) listed five circumstances that 
affect the value of kappa. First is observer accuracy, as just 
discussed. Second is the number of (mutually exclusive and 
exhaustive) codes or ratings. Third is the prevalence for 
individual codes or ratings (i.e., their simple probabilities); 
these could be equiprobable, moderately variable, or highly 
variable. Fourth is observer bias (i.e., the difference in 
prevalence between observers); its lack is evidenced when 
observers report similar probabilities for corresponding 
codes or ratings. And fifth is observer independence (as 
every researcher knows, when assessing observer agreement, 
observers must code or rate “blind,” without knowledge of 
how the other observer did so). As detailed by Bakeman 
et al., (1997; also Bakeman & Quera, 2011), when K is less 
than five, especially when prevalence is highly variable, 
similar values for observer accuracy result in lower values of 
kappa. However, when K is greater than five, a larger number 
of codes or ratings and prevalence variability matter little.

Based on Gardner’s (1995) model and corresponding 
equations, Bakeman and Quera (2011) provided tables 
showing values of kappa that would be achieved if observers 
were 80, 85, 90, and 95% accurate for various values of K, 
assuming that both observers’ prevalence was equiprobable, 

moderately variable, or highly variable. This was somewhat 
limiting and required interpolation. In contrast, KappaAcc 
uses information extracted from the kappa table the user 
provides to find a value of observer accuracy for simulated 
observers that would result in a value for kappa that is as 
large as the value obtained by the real observers. As noted 
earlier, our assumption is that the real observers must have 
been at least this accurate.

Here is how KappaAcc deals with the five circumstances 
affecting the value of kappa:

1. The accuracy for simulated observers is what KappaAcc 
produces. KappaAcc assumes that both observers are 
equally accurate. Gardner’s model allows that accuracy 
for the observers be set separately, and even separately 
for the different codes. But doing so seems needlessly 
complicated and rationalizing different accuracies for 
different codes seems somewhere between challenging 
to impossible. The single percentage KappaAcc pro-
duces indicates that both simulated observers were at 
least that accurate for all codes or ratings.

2. KappaAcc extracts the value for K, the number of codes, 
from the kappa table the user provides.

3. KappaAcc sets prevalence as the means for the two 
observers’ corresponding probabilities, based on the 
kappa table the user provides,. Thus, unlike the tables in 
Bakeman and Quera (2011), which reflect only four lev-
els of variability, the simple probabilities used by Kap-
paAcc reflect the observers’ actual variability. Gardner’s 
model requires a single set of probabilities—the “true” 
probabilities from the ideal world—which is why they 
are estimated with means for KappaAcc’s computations.

4. For this reason, bias is not reflected in Gardner’s model. 
Normally, we expect the row and column probabilities 
for a kappa table to be roughly similar. If not, we would 
have expected that discrepancies would have occasioned 
discussion with the observers and possibly retraining.

5. KappaAcc assumes that the two observers coded or rated 
the same session independently; this is simply standard 
practice.

The KappaAcc program

KappaAcc is an extension of the ComKappa program 
(Robinson & Bakeman, 1998). Most notably, it has the 
additional capability to compute estimated observer 
accuracy. Figure 2 shows the main KappaAcc window after 
entering tallies for 120 paired observer judgements for a 
scheme containing five codes.

Selecting the table icon  (or Run > Define a new table) 
lets you define the number of codes or ratings and provide 
labels for them. You can then enter the values for the kappa 
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table directly in the window or copy-and-paste the values 
from a spread sheet. If you want other than the standard 
weights, select the weight icon  (or Run > Specify weights) 
to select the weights you want. Finally check the statistics 
you want computed and select the compute icon  (or 
Run > Compute stats). The possible statistics are:

1. Cohen’s omnibus kappa: Kappa as described earlier 
using standard weights.

2. Individual code kappas: As noted earlier, kappa is an 
omnibus statistic; it summarizes agreement for a set of 
mutually exclusive and exhaustive codes. Computing a 
separate kappa for each code (forming a 2 × 2 table for 
each code and computing its kappa) can be informative 
because it identifies particularly problematic codes.

3. Kappa maximum: In theory, values of kappa can vary 
from –1 to + 1, where 1 represents perfect agreement. 
Negative values are rare and indicate greater than chance 
disagreement, but kappa can equal 1 only when the tal-
lies for the corresponding rows and columns are the 
same—that is, when the simple probabilities for each 
code are the same for both observers. If not, the value 
of kappa can be no higher than kappa maximum.

4. Kappa standard error: For completeness, KappaAcc 
computes kappa’s standard error, although its useful-
ness is limited. Statistical significance for kappa is rarely 
reported; as Bakeman and Gottman (1997) wrote, even 
relatively low values of kappa can still be significantly 
different from zero, but not of sufficient magnitude to 
satisfy investigators.

5. Weighted kappa: If you specified other than standard 
weights, check this box so that the value of weighted 
kappa will be displayed.

6. Percent agreement: The agreement observed—PO in the 
standard kappa formula.

7. Percent by chance. Agreement expected by chance—PC 
in the standard kappa formula.

8. Estimated accuracy. If checked, weighted kappa is also 
displayed; it will have the same value as omnibus kappa 
if standard weights are used.

For the example data in Fig. 2, the standard or omnibus 
kappa was .61 (69% agreement, uncorrected for chance). 
Standard weights were used so the value of weighted kappa 
was the same. KappaAcc determined that simulated observ-
ers would need to be 82% accurate to achieve a kappa of 
.61. Often journal articles give just a value of kappa for 
each mutually exclusive and exhaustive scheme. I recom-
mend that researchers who gauge observer agreement using 
kappa also give—and that editors and reviewers ask for—not 
just estimated observer accuracy, but also the number of 
sessions (if results from several sessions are pooled), the 
number of codes, and the number of tallies in the kappa 
table—information that provides necessary context. Moreo-
ver, for all the reasons noted here, a lone value of kappa is 
almost impossible to interpret, whereas observer accuracy 
admits to intuitive understanding.

For the example just given, results could be stated as fol-
lows: Using five codes, two observers coded one session and 
independently made 120 judgments. The value of kappa was 
.61 (69% agreement uncorrected for chance). To produce a 
kappa of this magnitude simulated observers would need to be 
82% accurate, which was somewhat below our target of 85%.

Program details

KappaAcc is programmed in Pascal and compiled using 
Embarcadero® Delphi 10 Seattle. It will run on Windows 
computers or on Apple computers with a Windows simula-
tor. It is contained in a single executable file, KappaAcc.
exe. Once placed in a folder on your computer it can be 
invoked, like any other program, with a double click; you 
could also create a shortcut and place it on your desktop. 

Fig. 2  KappaAcc main window showing tallies for a five-code kappa table
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If your computer’s security measures block running of 
“unknown” executable files, you may need help from your 
local IT people. This write-up as a PDF file and the Kap-
paAcc.exe file are contained in a file (KappaAcc.zip) that 
can be downloaded at no charge from http:// bakem an. gsucr 
eate. org /kappa.

Appendix

Gardner (1995) modeled the decision making of the observ-
ers with two matrices of conditional probabilities, labeled 
rho (ρ) for the first observer and sigma (σ) for the second. 
Rows represent the observers’ decision—the code or rat-
ing they assigned—and columns represent the true state of 
affairs. Thus cells on the diagonal (upper-left to lower-right) 
indicate the probability that an observer will code or rate 
an event accurately. If we assume that both observers are 
equally accurate, then the ρ and σ conditional probability 
matrices are the same.

For example, if we assume that observers are 82% accu-
rate for each of five codes, then the diagonal cells of the ρ 
and σ matrices contain .82. And if we further assume that 
observers are equally inaccurate, then the off-diagonal cells 
of the ρ and σ matrices all contain .045: (1 − .82) divided 
by (K – 1). These example ρ and σ matrices are shown in 
Fig. 3 Panel A.

In addition to the ρ and σ matrices, the simple probabili-
ties for each code or rating constitute a third array—a vector 
labeled pi (π). For example, if we estimate the true simple 
probabilities with the average simple probabilities for the 
example data given in Fig. 2, we would get the values for π 
shown in Fig. 3 Panel B.

As detailed in Bakeman et al. (1997), we can now com-
pute the expected unconditional probabilities for the cells of 
the agreement matrix given fallible observers. This matrix, 
symbolized u, represents the decisions of simulated observ-
ers of the accuracy specified and is the basis for computing 
kappa. The formula is

where uij represents a cell in the K × K agreement matrix. 
Each uij is the sum of K terms, where each term represents 
the probability that the first observer will code an event Ci 
and the second observer will code it Cj given a  Ck event. Per 
basic probability theory, the probability of the joint event 
that constitutes each term is a product (AND), whereas 
the probability of any of these joint events occurring is a 
sum (OR). The terms in each series exhaust the possible 
ways the first observer might code an event Ci when the 
second observer codes it Cj. Applying Gardner’s formula 

uij =

K∑

k=1

�i|k�j|k�k

for expected unconditional probabilities to the arrays for rho, 
sigma, and pi that assume 82% observer accuracy produces 
the values shown in Fig. 3 Panel C.

Acknowledgements Support for the development of Kap-
paAcc was provided by the National Institutes of Health, NICHD 
(R01-HD035612).

A.  Condi�onal probabili�es (ρ and σ)
True state of affairs

A B C D E
A .820 .045 .045 .045 .045
B .045 .820 .045 .045 .045
C .045 .045 .820 .045 .045
D .045 .045 .045 .820 .045

Ob
se

rv
er

 co
de

d

E .045 .045 .045 .045 .820

B.  Simple probabili�es (π)
A B C D E

.204 .242 .158 .221 .175

C.  Uncondi�onal probabili�es (u)
2nd observer

A B C D E
A .1389 .0176 .0147 .0168 .0152
B .0176 .1640 .0160 .0182 .0166
C .0147 .0160 .1082 .0152 .0137
D .0168 .0182 .0152 .1501 .01581st

 o
bs

er
ve

r

E .0152 .0166 .0137 .0158 .1193

Fig. 3  Conditional, simple, and unconditional probabilities for 
simulated coders. Note. The conditional probabilities reflect accura-
cies (i.e., the probability that a simulated observer will code a given 
event correctly or incorrectly). KappaAcc assumes both observers are 
equally accurate, thus the single array given in the figure represents 
both the ρ matrix for the first observer and the σ matrix for the sec-
ond observer. The simple probabilities (the π vector) are the estimated 
true probabilities for the five codes. The unconditional probabilities 
are the expected probabilities for the agreement matrix, based on the 
accuracy of simulated observers for five codes
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