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Abstract
With continued advancements in portable eye-tracker technology liberating experimenters from the restraints of artificial 
laboratory designs, research can now collect gaze data from real-world, natural navigation. However, the field lacks a robust 
method for achieving this, as past approaches relied upon the time-consuming manual annotation of eye-tracking data, while 
previous attempts at automation lack the necessary versatility for in-the-wild navigation trials consisting of complex and 
dynamic scenes. Here, we propose a system capable of informing researchers of where and what a user’s gaze is focused 
upon at any one time. The system achieves this by first running footage recorded on a head-mounted camera through a deep-
learning-based object detection algorithm called Masked Region-based Convolutional Neural Network (Mask R-CNN). The 
algorithm’s output is combined with frame-by-frame gaze coordinates measured by an eye-tracking device synchronized with 
the head-mounted camera to detect and annotate, without any manual intervention, what a user looked at for each frame of 
the provided footage. The effectiveness of the presented methodology was legitimized by a comparison between the system 
output and that of manual coders. High levels of agreement between the two validated the system as a preferable data col-
lection technique as it was capable of processing data at a significantly faster rate than its human counterpart. Support for 
the system’s practicality was then further demonstrated via a case study exploring the mediatory effects of gaze behaviors 
on an environment-driven attentional bias.

Keywords  Gaze tracking · Portable eye-tracker · Object detection · Deep learning · Masked region-based convolutional 
neural network

Introduction

With visual acuity diminishing in the eye’s periphery, adap-
tive eye movements ensure that the high-resolution fovea 
prioritizes visually informative regions of any presented 
scene (Findlay & Gilchrist, 2003). As such, one’s ability to 
understand the visual world is heavily dependent on these 
eye movements sampling a scene and guiding visual atten-
tion towards worthy targets for perception. A vast body of 
research is committed to determining how this gaze distribu-
tion occurs during natural navigation and locomotion, as any 

contribution to addressing the issue has significant implica-
tions across disciplines (e.g., Davoudian & Raynham, 2012; 
Kretch & Adolph, 2015; Trefzger et al., 2018).

While previous studies investigating gaze behaviors relied 
mainly on artificial laboratory designs, recent advances in 
minimally intrusive, portable eye-tracking glasses with for-
ward-facing scene cameras have legitimized the option of 
collecting data from entirely naturalistic experimental con-
ditions. The benefits of high ecological validity and gen-
eralizability suggest that these mobile alternatives should 
be utilized when exploring in-the-wild gaze behaviors. This 
proposition is supported by studies reporting behavioral dis-
crepancies between gaze data collected in the lab using static 
trackers to that obtained in real-world trials with portable 
alternatives (Foulsham et al., 2011; Foulsham & Under-
wood, 2008; Hayhoe et al., 2003; Marius't Hart et al., 2009).

However, the advanced mobility offered by portable 
trackers introduces new impediments regarding data anno-
tation and analysis. Without the benefit of predetermined 
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visual stimuli appearing in a fixed two-dimensional screen, 
and with the added complexity of participants encountering 
uncontrolled, spontaneous, and dynamic visual experiences, 
identifying which stimuli and regions are gazed upon at each 
point of time poses a significant challenge when using port-
able devices. A conventional solution for this relies on a 
manual coding approach: a human encoder compares, frame-
by-frame, the eye-tracking data and the corresponding video 
image recorded in the scene camera. By comparing these 
two sets of information, the human encoder then analyzes 
where and on what object the participant's gaze fell during 
navigation (Foulsham et al., 2011; Trefzger et al., 2018; Zult 
et al., 2019). While thorough, this approach is not scalable 
and only applicable to short video footages (up to 30 seconds 
in the case of Foulsham et al., 2011) since dealing with large 
data sets is unfeasibly time-consuming.

Several solutions have been proposed for automating 
annotation, thus reducing workload and maximizing data set 
size. For example, Olsen (Olsen, 2012) proposed a system 
combining a mobile eye-tracker and infrared markers. These 
markers are physically placed in navigation environments 
and act as reference points allowing gaze localization. By 
placing objects in fixed, preregistered locations with respect 
to the markers, their proposed system can estimate which 
objects were gazed upon in much the same way as original 
screen-based designs (Evans et al., 2012). However, such 
methods only work on the premise that markers are deployed 
in environments and objects stay in predefined locations at 
all times, and therefore their application scope is limited to 
highly controlled navigation scenarios.

In addition, studies have proposed systems incorporat-
ing conventional object recognition algorithms (ORAs) 
for automatic data annotation (De Beugher et al., 2012; 
Toyama et al., 2012). For frame-by-frame images captured 
by a scene camera, these systems automatically extract 
the region around the gaze location and compare its con-
tents to the images of the preregistered object shapes using 
conventional feature-matching algorithms such as scale-
invariant feature transform (SIFT) (Lowe, 1999). This 
approach can automatically inform when relevant objects 
are gazed upon without requiring designated markers or 
prescribed object positions. However, while effective on 
an ad hoc basis when exploring gaze behaviors towards 
specific preregistered objects such as museum exhibits 
(Toyama et al., 2012), these systems lack flexibility as 
conventional ORAs are essentially shape-matching algo-
rithms that work only for preregistered objects with fixed 
shapes. Since the recognizable objects must exactly match 
their pre-specified shapes, these systems cannot handle 
object types with inter-object (e.g., cars and buildings) or 
intra-object variances (e.g., humans and animals). Notably, 
efforts have been made to include variable shapes such as 
human faces and bodies (De Beugher et al., 2014) but the 

flexibility of such a system is not easily generalizable since 
it requires a set of designated ORAs, each tailored for a 
specific object type.

Markedly, these limitations are mainly due to (1) 
restraints in available computing power and (2) an absence 
of sufficiently robust computer vision algorithms for object 
detection and recognition. Advancements in computing 
power, fueled by developments in accessible graphics pro-
cessing units (GPUs), together with the recent revolution 
in deep learning (DL) that has seen the introduction of 
increasingly robust and efficient object detection networks, 
have provided a means to overcome these bottlenecks. 
While recent studies have applied DL-based computer 
vision algorithms for psychological experiments includ-
ing, for example, human-to-human interactions (Callemein 
et al., 2018), no study, to the best of our knowledge, has 
deployed this technology to explore the automation of in-
the-wild gaze data annotation. Indeed, the lack of a gen-
eral-purpose annotation tool for in-the-wild scenarios is 
evidenced by the fact that recent papers exploring natural 
navigation remain reliant on the manual coding process 
outlined earlier in this introduction (Trefzger et al., 2018; 
Zult et al., 2019). Therefore, the current study attempts to 
fill this gap by proposing a general-purpose data analysis 
tool that harnesses the current state-of-the-art in DL net-
works to capably automate the annotation process for gaze 
footage recorded in real-world conditions.

The proposed method combines eye-tracking data with 
the output of an object detection and instance segmenta-
tion algorithm: the Masked Region-based Convolutional 
Neural Network (Mask R-CNN) (He et al., 2017). For 
each scene image, the Mask R-CNN automatically rec-
ognizes and labels objects, and outputs the corresponding 
“masks” segmenting regions in pixels that are occupied 
by each object (see “The masked regional convolutional 
neural network” and Fig. 1). By feeding it the scene video 
recorded by a head-mounted camera and combining its 
output with frame-by-frame gaze coordinates captured by 
the eye-tracking glasses, the proposed system offers accu-
rate frame-by-frame information on what objects in which 
locations were gazed upon during navigation.

For the rest of this paper, we describe the technical 
details of the proposed framework in “Methods: System 
development” and provide results from a performance 
evaluation comparing the output of the system to that of 
manual coders in “System evaluation”. In “Case study”, 
we present an exploratory case study where our system 
was integrated into an existing experimental paradigm 
investigating the environmental effect on attentional bias. 
We will demonstrate how the result of the experiment can 
be reinterpreted or reinforced based on the richer informa-
tion and analytical power offered by the proposed system. 
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Discussions on limitations and future directions will be 
presented in “Conclusion and discussion”.

Methods: System development

As mentioned above, the proposed system integrates two 
methods: (1) portable binocular eye-tracking glasses with 
a built-in scene camera (Kassner et al., 2014) and (2) Mask 
R-CNN: a DL-based video image processing algorithm 
capable of automatically recognizing and locating objects 
(He et al., 2017). By integrating the output of the two for 
each frame of the video recorded by the scene camera, 
the system can obtain combined information of location 
and the type of object the subject is gazing at without any 
manual coding.

Eye‑tracking device

We used commercially available portable binocular eye-
tracker glasses with a built-in scene camera (Pupil Core, 
Pupil Labs GmbH). During navigation, a scene video 
(100° diagonal field of view) was recorded at 30 Hz, and 
the position and shape of pupils were tracked at 200 Hz 
using two near-infrared eye cameras, with accuracy and 
precision of 0.60° and 0.02, respectively. Combining 
these, the gaze position in screen coordinates was esti-
mated using a built-in algorithm based on a nine-point 
calibration method (see “Case Study Methods” for details) 
and automatic drift compensation.

The masked regional convolutional neural network

The Mask R-CNN is the current state-of-the-art DL-based 
computer vision algorithm for instance segmentation. Put 
simply, Mask R-CNN can recognize objects in a scene, and 
with the recognized type and the location of the object, the 
network performs instance segmentation, a procedure of 
computing a binary mask that outlines the object’s shape 
in space (Fig. 1). The framework deploys a traditional con-
volutional neural network, a prevalent DL architecture for 
object recognition, and combines this with a “Region-of-
Interest Align” module which permits the computation 
of regional information of the recognized objects. The 
proposed system imported an open-source Mask R-CNN 
developed by Abdulla (2017), which was pre-trained with 
the Microsoft Common Objects in Context (MS COCO) 
data set (Lin et al., 2014) and able to detect and segment 
91 different object types. Importantly, the network is 
highly robust and flexible in recognizing objects in the 
same category but in different shapes, mainly because such 
DL-based object recognition methods are generally based 
on massive data sets. For instance, the 91 object categories 

recognizable in our Mask R-CNN network were trained 
based on 200,000 labeled images and 1.5 million object 
instances, including 250,000 human images, provided by 
the MS COCO data set (Lin et al., 2014), which indicates 
that the network can deal with huge intra-categorical vari-
abilities. The network was run on an NVIDIA Tesla K80 
GPU via Google Colaboratory.

The complete gaze detection system

After calibration (see “Case study methods” for details), 
the gaze detection process begins with users navigating a 
route while wearing the eye-tracker device. Upon comple-
tion, the video footage obtained by the scene camera is split 
into frames, and each frame is registered with accompa-
nying gaze information represented in screen coordinates 
(1280-by-720 from the upper-left corner). Video frames 
are then fed to the Mask R-CNN for object recognition and 
masking. Network output for each frame consists of a set of 
mask–label pairs, where the number of pairs corresponds to 
the number of objects recognized. Each pair consists of a 
mask, 1280-by-720 binary matrix indicating whether each 
pixel is occupied by that object or not, and a label specify-
ing object type.

These localization outputs for each object were then 
sequentially compared to the captured gaze location repre-
sented in the screen coordinates, abbreviated as “gaze coor-
dinate.” If a gaze coordinate overlaps with a mask, then the 
corresponding object was regarded as being gazed upon and 
was added to a “gazed upon” list (GU-list). Note that a gaze 
point is considered to be on an object when it falls upon its 
masked pixel, rather than within its bounding box in order 
to ensure precise estimates. As such, the completed GU-list 

Fig. 1   Example of object recognition and segmentation using Mask 
R-CNN. For each recognized object, the network outputs a bounding 
box (a colored box surrounding objects), object type (texts on the top 
left corner of the bounding box), and a binary mask (a colored region 
overlaying the object) indicating pixels within the bounding box that 
are occupied by the object
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would outline which object was being looked at for every 
frame of input footage, as illustrated in Fig. 2.

In addition to the object-based detection by Mask R-CNN, 
the proposed system is also able to include non-object-based 
masking algorithms. As an example, for the case study pre-
sented in “Conclusion and discussion”, which explores the 
psychological effect of being in a natural green environment, 
our system incorporates a color-based masking algorithm 
since the capability of Mask R-CNN is relatively limited 
in recognizing various natural features, e.g., grassy areas, 
bushes, trees. To achieve this, each frame is first converted 
from RGB format to hue-saturation-value (HSV) color space 
(Sural et al., 2002) where hue (H) value defines pixel color 
mapped from red (0) to purple (360). Based on this, a group 
of pixels whose H values are between 121 and 180 was 
defined as a “Greenery” mask. As was done for object-based 
masks, if gaze overlaps with this mask, a Greenery label was 
appended to the GU-list. To ensure that artificial objects, 
such as green cars or green clothes, were not unintentionally 
labeled as Greenery, this check was only conducted when 
no identified object was being gazed at. Importantly, when 
deployed during real experiments, lighting conditions will 
vary substantially across different input videos. This would 
be particularly evident in the case of footage captured during 
outside, in-the-wild navigation. As a result, fixed greenery 
threshold values would result in significant levels of green-
ery detection errors. To counter this, the system provides an 
option whereby users can observe the greenery output (i.e., a 
processed image containing the greenery overlay) for a ran-
dom subsample of video frames before processing the entire 
video. These sample frames would be initially processed 
with default greenery values—the HSV values that define 
the color threshold used by the detector to classify areas of 
the image as greenery or not. Having observed the output, 
users can then fine-tune this value until the greenery detector 
is identifying green areas with optimal accuracy.

Together with the GU-list, the system delivers a series 
of behavioral parameters, named scene variables, that 

summarize objects that appeared and the corresponding 
gaze behavior. The first, which we term saliency, presents 
the percentage of frames where a gaze fell upon each object. 
The second, frequency, concerns the percentage of frames, 
out of all frames, where an object appeared during naviga-
tion, irrespective of whether the item was gazed upon by the 
participant. For the Greenery feature, these frequency scores 
are obtained by taking the average percentage of greenery 
pixels, out of the total number of pixels, in each frame. A 
final persistency parameter captures temporal information, 
reporting the length of fixations when individual objects 
were gazed upon. Only persistency upon discernable objects 
was computed, while frames with a Background, Other, or 
Greenery label were discarded. In addition, to prevent acci-
dental detections, persistency is only computed when the 
dwell time of gaze is longer than 200 ms (this corresponds to 
six consecutive frames in 30 Hz videos), which is the gener-
ally accepted minimal duration for gaze fixations (Salvucci 
& Goldberg, 2000).

Regarding the computation of the persistency, it should 
be noted that Mask R-CNN is not capable of object track-
ing, and therefore it does not provide any information on 
whether two objects of the same type shown in two adjacent 
frames are the same object or not. While the persistency can 
be easily computed when the gaze is switching among dif-
ferent objects with different labels, the absence of tracking 
makes it challenging to compute the persistency when the 
gaze is switching among multiple objects of the same label 
(e.g., looking at different people in a crowd). To deal with 
this, the proposed system uses the following simple heuris-
tic algorithm determining, in between two adjacent frames, 
whether the gaze is fixated on the same object or is moved 
to a different object of the same type: A fixation on an object 
is deemed to have ended when the gaze coordinates of the 
current frame deviated more than 5.2° from that of the previ-
ous. This threshold value of 5.2° is the mean saccade magni-
tude for scene perception measured by Rayner et al. (2007). 
As the study was based on a small screen (19-inch screen 

Fig. 2   A visualization of the system’s final output that outlines what is looked at for each frame of footage
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located 60 centimeters away), the mean magnitude reported 
in their study was used as the minimum saccade magnitude 
in our system. The accuracy of this heuristic algorithm, 
compared to human coders, will be analyzed in “Evalua-
tion results”, and its limitations and future solutions will be 
discussed in “Limitations and future work”.

To enable the visualization of the above processes, the 
system wrote all frames to a final video at the same frame 
rate as the input video (30 fps). This contained the out-
put of the Mask R-CNN (complete with bounding boxes, 
binary masks, and corresponding object labels), as well as 
the computed greenery mask. The system also overlaid a 
circle representing gaze location and a label at the top of the 
screen that depicted what was currently being gazed upon 
(Fig. 3). When the gaze fell upon neither a recognizable 
item nor a greenery area, the corresponding label was set 
to Background.

System evaluation

The performance of the proposed system was evaluated 
through comparison with naïve human coders. Both human 
coders and the proposed system annotated all frames in short 
video clips randomly taken from the entire video footage 
recorded for the case study to be presented in “Case study”. 
Based on the assumption that the annotation statistics of the 
recruited human coders are representative of human base-
line performance, the analysis was focused on assessing the 
similarities and differences of the automatic annotation of 
the proposed system compared to the human performance.

Evaluation methods

Participants

A total of seven participants (three female) were recruited 
via volunteer sampling. All were aged between 18 and 28 

years and reported having normal or corrected-to-normal 
vision. In addition, all participants had at least a low-level 
understanding of the software used for manual annotations 
(Microsoft Excel). Each participant gave full informed con-
sent to take part in the study. The experiment consisted of a 
single online session.

Materials

Frames were presented to participants via a PDF file con-
taining still images of all frames within a given piece of 
footage. Each image was overlaid with both the gaze cursor, 
shown as a red circular mark, and the corresponding frame 
number (Fig. 4). Responses for each frame were contained 
within an Excel worksheet that followed a predefined tem-
plate provided by researchers.

Procedure

Participants were divided into two groups (Group 1 with four 
coders and Group 2 with three) and each group was asked 
to annotate the same three 20-second video clips that are 
randomly sampled from the entire set of videos. The order 
in which videos were coded was counterbalanced across 
participants with the same group. Before commencing the 
coding process, each coder first partook in a 15-minute video 
call in which a member of the research team briefed them 
on the methodology to follow. They were then sent the nec-
essary resources (PDF and Excel files for each of the three 
videos) to complete the coding process in their own time. 
The instructions presented to participants were as follows: 
They were first asked to open the Excel template file and the 
PDF document of their first video clip. Participants were 
instructed to open files in such a way that both Excel and 
PDF files were visible simultaneously.

The provided Excel file contained four columns: “Frame 
Index,” “Object Gazed Upon,” “Not sure?” and “New 
Item?”. The first column was filled with frame indices from 

Fig. 3   Screenshots of the system’s output video complete with greenery masks (blue), labeled objects, gaze overlay, and “gazed upon” object 
label. An example of video footage can be found in Yeo (2020)
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1 to the total number of frames of the video clip, and, for 
each frame, participants were instructed to fill in the remain-
ing three columns. Within the “Object Gazed Upon” col-
umn, participants were instructed to write down the object 
being viewed upon in the given frame; thus, this column 
corresponds to the GU-list produced by the proposed sys-
tem. Importantly, while the object labels recognizable by the 
proposed system are limited to 91 labels from the training 
data set (MS COCO data set), no specific guidelines were 
provided which could limit the object categories and specific 
names participants could use for annotation. Instead, they 
were explicitly asked to assign an appropriate label on their 
own judgment, except for an instruction to use Greenery 
labels for all greeneries. This is to ensure a more efficient 
coding procedure, and to allow a fair assessment of the sys-
tem’s output quality by comparing it with unprocessed out-
puts from human coders.

If participants recognize that the gaze cursor was not 
on any discernible object, they were asked to write “Back-
ground.” Within the “Not Sure?” column, participants were 
asked to insert 1 (or leave it empty otherwise) when they 
find it difficult to tell which object was gazed upon. Finally, 
to annotate events where the gaze was switched to a differ-
ent object of the same label, participants were instructed 
to insert 1 in the “New Item?” column (or leave it empty 
otherwise). This will be later compared with the result of the 
heuristic algorithm used by the proposed system to annotate 
these events.

Once comfortable with the procedure, participants coded 
the first frame, completing all three of the required fields, 
before clicking the right arrow key to progress to the next 
page of the PDF file displaying the second frame of the foot-
age, and again completing the required fields for the cor-
responding row. Following this procedure, each participant 
produced a completed Excel spreadsheet, i.e., the four col-
umns of annotation data for all frames, for each of three 
video clips assigned to them. These were then compared 
with the output of the proposed system.

Data processing and analysis

Since no constraint was put to the labels the human coders 
can use, comparisons across human coders, and between 
human coders and the system, require the following manual 
preprocessing: Labels that are different but are apparently 
referring to the same object type were grouped together. 
For example, labels such as “Sign” and “Road Sign” were 
merged into the “Sign Post” label. Labels referring to objects 
listed in the training data set used the data set’s term, while 
the remainder were assigned the most commonly used label 
amongst the combined coder output. All cases of preproc-
essed labels and their numbers of occurrence are summa-
rized in “Evaluation results”.

After the preprocessing, the similarity of human annota-
tions was assessed via cross-coder similarity scores com-
puted among the GU-lists produced by human coders on the 
same video clip. The cross-coder similarity was evaluated 
using Fleiss’ Kappa (Fleiss & Cohen, 1973), a widely used 
measure for agreement on categorical ratings of more than 
two coders.

After analyzing the cross-coder similarity, the main 
analysis was focused on assessing the similarity between 
the GU-lists produced by each human coder and that by the 
proposed system. The similarity between the two GU-lists 
was measured by a weighted average F1-score, a common 
metric for evaluating classification performance. The weight 
for averaging is determined by each label’s support, i.e., the 
actual occurrence of the label in the data set (similar to the 
frequency in the proposed system). These weighted averages 
were used to adequately evaluate the system’s classification 
performance by considering the class imbalance normally 
observed in the data set, where Background accounted for 
48.44% of all labeled frames and Greenery for 13.64%. For 
a fair comparison, care was taken to assess the impact of 
limiting labels to those recognizable by the system: For the 
human-coded labels that are not included in the set of labels 
recognizable by the system, similarity scores before and 
after their exclusion were both reported, in which the unrec-
ognizable labels were all relabeled to Other after exclusion.

Evaluation results

First, it was found that all participants annotated with low 
uncertainty, as indicated by the overall low occurrence 
(4.44%) of the “Not Sure” flag. The outcome of the pre-
processing described in the previous section (“Evaluation 
methods”) is presented in Table 1. The first (Table 1) sum-
marizes the labels in human coders’ annotations that are 
grouped together by preprocessing. As can be seen in the 
list of original labels, the ambiguity among human coders 
in using different labels was low and ordinary. Table 1 lists 
labels that are not included in the list of labels recognizable 

Fig. 4   Example of an image provided to human coders for annotation, 
consisting of a video frame, frame number (top center), and gaze cur-
sor overlay (red circle)
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by the proposed system (and therefore relabeled as “Other”), 
with their number of instances in all GU-lists. Compared 
to the total number of frames, it was found that all these 
instances occupy small portions of the data (4.37%). These 
altogether suggest that experimental uncertainties—either by 
participant’s inexperience or by ambiguity in the provided 
instructions and images—and the corresponding preprocess-
ing procedure had minimal effects on the main results.

After preprocessing, analysis was focused on the cross-
coder similarity using Fleiss’ Kappa. The result shows that 
annotations by different participants were highly similar, as 
indicated by high cross-coder similarity scores for all videos: 
Fleiss’ Kappa averaged across videos was 0.881 with SD = 
0.053. This observed strong agreement among human cod-
ers suggests that the effect of cross-coder variability on the 
results is limited.

As the main result, comparisons between human coders 
and the proposed system are presented in Table 2. Overall 
high weighted average F1-scores across all videos and also 
low variabilities (as indicated by small SD) across human 
coders suggest that there is a strong agreement between the 
proposed system and human coders. Frame-by-frame com-
parisons of the output of the proposed system to that of a 
single human coder are illustrated in Fig. 5 for four different 
video samples.

Among the frames in which outputs from the two coding 
methods disagreed, a proportion was due to a gaze falling 
upon items not included in the set of objects recognizable 
by the system (i.e., object labels not included in the data set 
that the system was trained on). This is highlighted by the 
higher average F1-scores apparent when the analysis only 
considered frames in which the human-reported gaze fell 
upon a trained object (0.851 for constrained labels compared 
to 0.809 for unconstrained labels). This is most apparent 
in video 2, where the system’s inability to recognize two 
salient objects (sign post and advertising board) hindered 
performance.

Further analysis was focused on evaluating the validity of 
the fixation detection algorithm used in the proposed system. 
As will be discussed later in “Conclusion and discussion”, 
the current algorithm lacks sophistication, relying upon 
basic heuristics mostly derived from eye-tracking studies 
using head-fixed desktop setups on static objects, and there-
fore could produce errors in our setup using head-mounted 
eye-tracking during free navigation in the natural environ-
ment with dynamic objects. A particular concern was on 
the threshold value of 5.2° used to recognize whether, com-
pared to the previous frame, the gaze is staying on the same 
object or has been shifted to a “different object of the same 
label” (DOSL hereafter), and how errors arising from these 
heuristics would affect the persistency value. To this end, a 
comparison between human coders and the system was done 

for frames where human coders marked “New Item?” and 
the frame where the system detected DOSL events.

First, it can be seen that the DOSL event is rare; DOSL 
occurred 34 times out of the total 3543 frames processed 
by the system. Of these times, the proposed algorithm suc-
cessfully identified the end of fixation 16 times (47.06%). 
The remaining 18, termed false-negative fixation termina-
tions, occurred because gaze moved to another instance of 
the same object class and deviated less than 5.2° from that 
observed in the previous frame. Notably, such errors com-
monly (86%) occurred when these objects were located close 
to each other in space (e.g., vehicles parked side-by-side), or, 
more rarely (14%), in response to objects being located far 
away from the eye-tracking device; in such cases, saccade 
size between object fixations was less than the 5.2° thresh-
old. In addition, the algorithm also caused 15 false-positive 
fixation termination errors, i.e., the gaze moved beyond the 
5.2° threshold while remaining on the same object. This sug-
gests that the suggested heuristic algorithm is only margin-
ally effective in detecting DOSL events.

Even though the accuracy of the proposed algorithm is 
found to be insufficient to capture all DOSL events, these 
errors had minimal impact on overall persistency scores 
due to the rarity of these events. The persistency scores 
for three representative labels, i.e., Person, Truck, and 
Car, before and after the correction of the errors (both 
false-negative and false-positive) for all videos are sum-
marized in Table 3. Therefore, we conclude that, while 
future work should explore more sophisticated approaches 
(for possible future implementations, see  “Conclusion and 
discussion”), this simple heuristic was sufficient for such 
investigations as that presented in this paper.

As described before, the proposed system determines 
whether the object is fixated or not by using a dwell time 
threshold of 200 ms. Below that threshold, the gaze is con-
sidered to be momentarily overlapping with the object, 
rather than actually fixated on it. Although the 200 ms 
threshold was adopted from a well-known study by Salvucci 
and Goldberg (2000), it should also be noted that the mini-
mum dwell time for fixation varies significantly between 100 
ms or more, depending on the scenario (Lappi, 2016). For 
this reason, additional verification was conducted to check 
how much the above-obtained scene variables, especially 
the saliency, vary depending on the choice of the fixation 
time threshold. Figure 6 summarizes the verification result. 
The first plot (Fig. 6 top) shows the cumulative distribution 
of the frames by different threshold values. Out of a total 
of 3543 frames (six videos of 20 seconds each recorded in 
30 Hz) used for evaluation, a gaze was on a recognizable 
object for 1314 frames. Among those frames, 23.1% (304) 
were discarded by the 100 ms threshold, and 41.1% (540) 
were discarded by the 200 ms threshold. This indicates 
that there is a substantial number of frames (18%) whose 

1378 Behavior Research Methods  (2023) 55:1372–1391

1 3



dwell time was between 100 and 200 ms. However, the 
second plot (Fig. 6 bottom) suggests that, although there 

were expected increases in the number of fixations when 
the threshold changes to 100 ms, the overall trend of the 

Table 1   Preprocessing result.  (A) The original labels assigned by 
human coders, with the number of times they appeared in the coder 
output totaled across coders, and the label assigned according to the 
most common term used by all coders. Labels in bold font are those 

recognizable by the proposed system. (B) The total number of object 
labels that did not appear in the recognizable labels of the proposed 
system, and therefore were relabeled to “Other”

A)
Original label Total number of instances

(out of total 10,629 labeled frames)
Assigned label

Lorry 66 Truck
Motorbike 5 Motorcycle
Van 485 Car
Human 9 Person
a-board 5 Advertising board
advert board 6 Advertising board
Sign 104 Sign post
Road sign 45 Sign post
Pole 21 Lamp post
Lamppost 68 Lamp post
Post 4 Lamp post
- Total occurrences: 818 (7.70%) -
B)
Grouped label Total number of instances

(out of total 10,629 labeled frames)
Assigned label

Sign post 150

Other

Bridge 91
Lamp post 48
Bin 54
Bag 18
Advertising board 55
Bollard 9
Square planter 5
Vegetable stand 17
Curb 17
- Total occurrences: 464 (4.37%) -

Table 2   The agreement scores, as measured by weighted average 
F1-scores, between human coder and system output. Scores for each 
of Groups 1 and 2 are averaged across outputs and human coders, 
respectively. Results from the unconstrained condition are presented 

in the middle column, and the right column shows scores following 
the exclusion of objects not included in the recognizable labels of the 
system

Video number Weighted average F1-scores (unconstrained 
labels)

Weighted average 
F1-scores (constrained 
labels)

Group 1 (n=4) 1 0.779 (SD = 0.021) 0.827 (SD =0.014)
2 0.700 (SD = 0.023) 0.815 (SD =0.012)
3 0.884 (SD = 0.015) 0.901 (SD =0.003)

Group 2 (n=3) 4 0.859 (SD = 0.031) 0.860 (SD =0.015)
5 0.850 (SD = 0.044) 0.906 (SD =0.018)
6 0.782 (SD = 0.021) 0.816 (SD = 0.025)

Mean - 0.809 (SD = 0.068) 0.854 (SD = 0.041)
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saliency distribution is preserved. This suggests that the 
observed saliency scores may not be significantly affected 
by the choice of the fixation threshold.

In addition, it should be noted that, although the system 
evaluation was conducted by asking the human coders and 
the proposed system to annotate every frame of the 30 
Hz scene video, the results of annotating the entire scene 
videos presented in the case study are based on analysis of 
one in every three frames (i.e., 10 Hz) due to limitations in 
computing power. This could potentially affect the scene 
variables that are reported later in the case study (Fig. 10). 

Therefore, additional analysis was conducted on video clips 
used for evaluation to check how much the gaze-related 
scene variables, i.e., persistency and saliency, are affected 
by down-sampling from 30 to 10 Hz. As can be seen from 
Fig. 7, it was found that both variables are barely affected 
by the down-sampling: the differences in persistency and 
saliency were all less than 50 ms and 1.5% respectively. 
Based on these results, it was concluded that the effect of 
down-sampling on the scene variables of the entire video 
footage was not substantial.

Background: 65.88%

Person: 1.46%

Greenery: 11.86%

Vehicle: 20.62%

Other: 0.18%

Vehicle: 12.98%

Greenery: 3.29%
Person: 1.74%OOB: 0.58%

Background: 81.40%

Vehicle: 40.75%

Greenery: 1.60%
Person: 1.42%Other: 0.89%

OOB: 0.18%

Background: 55.16%

Vehicle: 46.17%

Greenery: 0.17%

Person: 5.17%Other: 0.52%

Background: 48.97%

Saliency
%

Saliency
%

Saliency
%

Saliency
%

Fig. 5   Left: comparison of the analysis results of the proposed sys-
tem and one naïve human coder (selected at random) for four of the 
six sampled footages (Samples 1 to 4). Each row represents the type 
of object gazed at, where the “out of bound” (OOB) label indicates 
the frame where the gaze is out of the measurable region of the eye-
tracker. Semi-transparent grey vertical lines highlight discrepan-
cies between the two coders. The corresponding weighted average 

F1-score is displayed at the top of each sample. Right: pie charts dis-
playing a breakdown of the percentage of frames in which each fea-
ture was gazed upon, analyzed by our system. For the sake of clar-
ity, any instance of a Truck, Car, Bus, or Motorcycle was reassigned 
a Vehicle label for this latter visualization, while rare objects were 
given a general label Other
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Lastly, as a major advantage of the proposed system, we 
also compare the amount of time spent in video processing 
for both human coders and the proposed system. The pro-
posed system took an average of 274.16 seconds (4 minutes 
and 34 seconds) to annotate each 20-second video clip con-
sisting of around 600 frames. Note that the Mask R-CNN 
was run on a free GPU provided by Google Colaboratory, 
which can be considered as a baseline performance platform 
for running deep neural nets. The processing speed will be 
significantly improved when high-performance GPUs are 
used. Nevertheless, the processing time was considerably 

faster than those reported for manual coders: On average, 
manual coders took 42 minutes to annotate a 20-second 
sample. It also should be noted that the time taken by the 
human coders would not linearly scale; annotating the entire 

30-minute video with 18,000 frames would be virtually 
impossible for human coders.

Case study

To assess the practicality of the proposed system, this case 
study focused on how applying our system to an existing 
study can lead to an improvement in the quality of the exper-
imental method and the specificity of data analysis, com-
pared to the conventional framework screen-based settings 
with no or manual annotation. Note that the purpose of the 
case study is purely to show such potential, not to propose 
a new scientific finding, which would require a much more 
rigorous experimental design with a substantially greater 
number of participants.

We applied the proposed system to a recent study by Toth 
et al. (2020) on attentional bias induced by prior exposure 
to different environments. In their original study, Toth et al. 
(2020) suggested that participants being previously exposed 
to an urban environment have greater difficulty in inhibiting 
the innate attentional shift towards emotional—specifically 
fearful—faces, while prior exposure to a natural environ-
ment does not have any effect. They explained that the multi-
tude of distractions apparent in urban environments consume 
central cognitive resources, and therefore disrupt top-down 
inhibitory control (Pourtois et al., 2013), especially when 
inhibiting a stronger attentional shift towards fearful faces 
(Horstmann et al., 2006; Pourtois et al., 2004).

Table 3   The change in average persistency scores before and after 
the correction procedure. Note that persistency is measured according 
to the number of consecutive frames in which each object was gazed 
upon

Object Persistency score before cor-
rection (frames)

Persistency score 
after correction 
(frames)

Person 8.813 (SD = 1.075) 8.250 (SD = 0.829)
Truck 14.14 (SD = 0.532) 14.07 (SD = 0.440)
Car 15.508 (SD = 1.448) 14.016 (SD = 1.110)

Fig. 6   Top: Cumulative distribution of frames that belong to different fixation durations. Red and blue dotted lines indicate the 100 and 200 ms 
threshold respectively. Bottom: Number of fixations for object labels when different thresholds for fixation are applied
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Importantly, Toth et al.’s (2020) study was based on the 
conventional lab-based experimental paradigm without eye-
tracking and therefore, despite the convincing result, pos-
sesses several drawbacks in their experimental and analysis 
methods. First, the experiment required participants to pas-
sively observe a screen depicting a first-person video of a 
confederate navigating a route. As shown in previous stud-
ies, such as Kort et al. (2003), the psychological effect of 
in vivo versus virtual environmental exposure can be very 
different, even when highly immersive virtual reality devices 
are used. Therefore, switching to an in vivo environment 
would improve ecological validity and would reduce the 
probability of a type II error. Secondly, while exposure to a 
certain environment involves exposures to many elements 
constituting the environment and the behavioral effects 
which they induce, such as the number of attention-getting 
objects or resultant changes in gaze distributions, the study 
limits its investigation to a single factor, i.e., urban or nature. 
As with other studies with the conventional paradigm, these 
limitations are mainly due to the lack of tools for meas-
urement and automatic analysis, and therefore incorporat-
ing mobile eye-trackers and the object detection and gaze 
annotation algorithms proposed by our system is expected 
to significantly improve the veridicality and specificity of 
the analysis.

For the above reasons, we incorporated the proposed sys-
tem by having participants physically navigate two routes, 
one urban and one in nature, while wearing the mobile eye-
tracking device. After initially assessing for the existence 
of the city-induced attentional bias towards fearful faces, 
we use the system’s output statistics to determine how the 
strength of the bias was influenced by gaze behaviors during 
navigation under different environments, exploring whether 
different types of objects being focused during navigation 
impact the strength of the attentional bias.

Case study methods

Experimental design

Six naïve participants, aged between 18 and 30, completed 
two sessions, navigating one environment (nature or urban) 
in each. Due to technical difficulties with the eye-tracking 
device resulting in multiple frames of footage without 
gaze data readings, one participant’s data was not used 
in subsequent data analysis. In each session, participants 
were instructed to navigate one of the two environments 
via a prescribed route before completing a cognitive task 
designed to capture any environment-induced attentional 
bias. Routes were 1.25 miles long and took 25 minutes 
to complete with walking speed (3 mph) being dictated 
by an experimenter who accompanied the participant on 
their right-hand side. The urban course took participants 
to a city street mixed with driveways and sidewalks, while 
the nature route was within a parkland at the center of 
the university campus (Fig. 8). Sessions were separated 
by 1-week intervals and the order of the environmental 
exposures was counterbalanced across participants. Note 
that video samples taken from these trials were used for 
evaluation in “System evaluation”.

Before trials, participants completed a pre-trial calibra-
tion procedure. While keeping the head stationary, their 
gaze followed a target circle held by an experimenter stand-
ing two meters away. The experimenter moved this marker 
around while staying within the participant’s visual field 
and stopped at nine junctions to allow the eye-tracker’s cali-
bration software to locate the marker and adjust calibration 
accordingly. Upon completion, the accuracy of tracking was 
ensured by instructing participants to fixate on various phys-
ical targets within the environment while the experimenter 
observed the screen to check for accurate gaze tracking.

Fig. 7   Comparison of gaze analysis results using 30 vs. 10 Hz sampling rate. Persistency and saliency of four representative object labels were 
computed for six video clips used for evaluation. Top: Average persistency scores. Bottom: Average saliency scores
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Once completed, the laptop was packed into a backpack 
held on the participant’s back and the navigation began. The 
first five minutes of the trial were not recorded to give par-
ticipants a chance to grow accustomed to the headset, thus 
ensuring natural gaze behaviors during the later (recorded) 
part of the trial. Once the remaining 20 minutes were com-
plete, the calibration test was repeated to ensure that no 
mid-trial slippage had occurred. Notably, on occasion, the 
experimenter retested calibration during navigation when 
they believed that gaze tracking accuracy may have fallen, 
for example in response to significant changes in lighting 
conditions or when the device had been jogged. On all occa-
sions, the experimenter judged the calibration accuracy to 
be sufficient for navigation to continue.

Immediately following route completion, participants 
were seated in front of a computer screen and carried out 
a screen-based experiment adopted from Toth et al. (2020). 
The experiment was designed to measure the reaction time 
(RT) of recognizing the gender of a target facial image on 
the previously cued side paired with a distractor facial image 
portraying various emotions on the opposite side. For each 
trial, participants were first asked to fixate on a central cross 
for 400 ms. After that, a cue arrow, pointing either left or 
right, was displayed for 100 ms and then changed back to the 
fixation cross for another 1000–1500 ms. Up to this point, 
participants were instructed to maintain their fixation on the 
central markers. After that, images appeared on both sides of 
the screen for 75 ms. The image on the side that was previ-
ously cued by the arrow was always a neutral face, but the 
distractor image on the opposite side was either a neutral, 
happy, or fearful face, or a scrambled image. After that, all 
images disappeared except the fixation cross, and the par-
ticipants were instructed to report as quickly as possible via 
keypress the gender of the face on the cued side with 1500 

ms timeout. The human facial images were selected from the 
Karolinska Directed Emotional Faces data set (Lundqvist 
et al., 1998) and the experiment was programmed in MAT-
LAB Psychtoolbox 3 (Brainard, 1997; Kleiner et al., 2007; 
Pelli, 1997). Figure 9 illustrates the overall experimental 
procedure.

The experiment consisted of 12 blocks of 48 trials, and 
the response time and accuracy for each trial were recorded 
for analysis. Attentional bias is reflected by the degree to 
which each type of distractor image (neutral, happy, fearful, 
and scrambled) interferes with task performance (reporting 
the gender of the target face), with slower RTs indicating 
greater interference (Fox et al., 2000; Hansen & Hansen, 
1988). To measure bias, average RTs for each of the distrac-
tor types were compared to those of scrambled-face controls. 
As previous findings registered a bias towards fearful-face 
stimuli following exposure to urban environments, these tri-
als were of particular interest: prolonged response times for 
trials with fearful-face distractors would indicate the exist-
ence of an attentional bias towards fearful stimuli.

Data processing and analysis

First, we compare scene and gaze statistics provided by the 
proposed system (i.e., saliency, frequency, and persistency). 
For simplicity, the analysis focused only on the three major 
features that typified the respective environments: Vehicles, 
Greenery, and Persons. Thus, system output was edited to only 
include these features; all occurrences of Car, Bus, Motorcy-
cle, or Truck labels within the system’s GU-list were grouped 
into a common Vehicle label. All other recognized objects 
were given the general Other label. Frames in which no recog-
nizable object was gazed upon were assigned the Background 
label, and frames with no associated gaze position (due to 

Fig. 8   Screenshots from the urban (top) and nature (bottom) routes
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either intermittent eye-tracker failure or gaze moving beyond 
the bounds of the forward-facing camera) were tagged with 
an Out Of Bounds (OOB) label.

With this reduced GU-list, the system provides scene 
variables for each key feature. Saliency scores first present 
the percentage of frames in which gaze fell upon Vehicles, 
Persons, and Greenery. Frequencies for Vehicles and Person 
features compute the average number of vehicles and peo-
ple appearing in the scene per frame. Note that Greenery 
frequency scores take the percentage of greenery pixels per 
frame averaged across all frames. Persistency scores then 
captured the average fixation length for all features using the 
heuristic algorithm outlined in “The complete gaze detec-
tion system”. These scene variables were computed for each 
participant and used for comparison between the two envi-
ronments. In addition, since it is reasonable to assume that 
the frequency has a major effect on the saliency (i.e., objects 
that are more frequent in the environment are gazed at more 
often), we introduced an extra variable, adjusted-saliency, 
a Bayesian-like measure of saliency favoring objects that 
appeared less frequently, defined as saliency divided by fre-
quency. This adjusted-saliency is expected to provide a rough 
estimation of which object, regardless of how frequently it 
appeared, drew more attention to the participants than others.

After scene and gaze characteristics were analyzed for 
nature and urban conditions respectively, they were then 
compared to the attentional bias measures, i.e., the reaction 
times of the cognitive task. Since the case study involved a 
limited number of participants and, more importantly, its 
goal is to show how the various analytical capabilities of the 
proposed system can provide insights into the exploration 
of various effects, the analyses only focused on providing 
descriptive statistics capturing overall trends observed in the 
data. The analysis was first focused on the main question of 

the original study by Toth et al. (2020) of whether naviga-
tions in nature versus urban environments had differential 
effects on attentional bias. Subsequent analyses were focused 
on exploring trends of how the major experimental variable 
related to attentional bias, i.e. RTs to fearful-face distractors, 
is affected by individual scene variables (frequency, sali-
ency, and persistency) obtained by the system.

Case study results

Scene and gaze characteristics

Figure  10 summarizes the output scene variables. The 
frequency computed for Greenery, Person, and Vehicle 
(Fig. 10, top-left) indicate that, as expected, participants 
encountered greenery objects more frequently in nature 
compared to urban environments. Rather unexpectedly, the 
frequency for Person class shows that the average number 
of people encountered during nature navigation was higher 
than that of urban navigation. Possible reasons for this and 
its potential impact on the result will be discussed later in 
“Conclusion and discussion”.

Persistency analysis (Fig. 10, top-right) showed that aver-
age fixation durations for people (Person label) were similar 
for both conditions (mean ± SD: 770.2 ± 137.8 ms for urban 
vs. 826.1 ± 286.4 ms for nature), while low frequency for the 
Vehicle in the nature condition rendered any corresponding 
persistency comparison uninformative.

The result of saliency analysis (Fig. 10, bottom) revealed 
expected trends: participants’ gazes were attracted more 
often by Vehicle objects during the urban condition (urban: 
25.7% vs. nature: 0.34%) whereas they were attracted more 
often to Greenery objects during the nature condition 
(urban: 1.01% vs. nature: 39.9%). The following analysis on 

Fig. 9   Experimental procedure for the cognitive task. Images on the upper-right corner show example stimuli: the target neutral-expression face 
(left), happy-face distractor (middle left), fearful-face distractor (middle right), and scrambled distractor (right)
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adjusted-saliency revealed that people (Person label) were 
gazed upon at a higher rate in nature (4.378) compared to the 
urban (2.559) environment. Similarly, green objects (Green-
ery label) were also gazed upon at a higher rate in the nature 
(1.773) than in the urban (0.135) condition. This suggests that 
participants paid greater attention to both people and greenery 
objects in nature compared to the urban environment.

Attentional bias analyses

To replicate the main analysis in the Toth et al. (2020) study, 
we compared RTs for fearful distractors after exposure to 
two different environments. Interestingly, this data does 
not seem to demonstrate evidence of the attentional bias 
observed in the original study: the mean reaction times for 
fearful faces do not seem greater following urban exposure 
(mean ± SD: 603.9 ± 98.7 ms) compared to nature exposure 
(599.8 ± 100.5 ms). As stated earlier, since the goal of this 
case study was solely to test and illustrate the capabilities of 

the proposed system, this case study focused only on specu-
lating trends in the results without attempting quantitative 
comparisons, since proper confirmation of the trend may 
require a substantially greater number of samples.

Subsequent analyses explored how the scene variables, 
namely saliency, frequency, and persistency, are related to 
the attentional bias—specifically, the RTs for fearful-face 
distractor trials. Figure 11 presents a series of plots that 
visualize such relationships. There seems to be a positive 
relationship between the frequency of Person labels and RTs 
with fearful distractors for the nature condition, although it 
needs to be checked with a greater number of participants 
whether the relationship is just a coincidence or not. This 
could indicate that participants who encountered more peo-
ple while navigating the natural environment were more 
distracted by fearful distractors in the follow-up experiment. 
Since the frequency of Persons was unexpectedly higher in 
the nature versus urban condition, it can be speculated that 
the absence of the effect of environmental exposure on the 

Fig. 10   Scene variables computed. Top left: Bar charts presenting the 
frequency: greenery per frame (top), the number of people per frame 
(middle), and vehicles per frame (bottom) for city and nature trials. 
Top right: The persistency when a person (left) or vehicle (right) 

object was gazed upon. Bottom: A pie chart summarizing the sali-
ency, i.e., the percentage of frames where each feature was gazed at, 
averaged across comparison samples for each environment
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attentional bias may be explained by this subsequent analy-
sis indicating a sensitivity of RT to the humans. Further 
discussion can be found in “Conclusion and discussion”.

Conclusion and discussion

In this paper, we have proposed a novel solution to the 
analysis of mobile eye-tracking data. The proposed method 
combines gaze behavior measured by mobile eye-tracking 
glasses with the output of a recent DL-based object rec-
ognition and segmentation algorithm (Mask R-CNN) and 
enables fully automatic annotations of regions and objects 
gazed upon during in-the-wild navigation trials.

Conclusion of system evaluation

The proposed method offers several important advantages 
over existing solutions. Compared to the conventional 
computer vision algorithms adopted by previous studies, 
the DL-based algorithm incorporated in our system, Mask 
R-CNN, is capable of recognizing objects in a more flexible, 
human-like way. This flexible recognition includes recogniz-
ing objects in different types, in the same type but different 
shapes, and also with a dynamically variable shape such as 
humans and animals. In addition, whereas previous object 
detection algorithms only output a bounding box fitting to 
the object, potentially including many non-object pixels 
when detecting thin or highly concave objects (e.g., traffic 
light poles consisting of horizontal and vertical bars), Mask 
R-CNN outputs a mask outlining the exact region in the 
pixel space occupied by the object. This makes it an ideal 
choice for an algorithm for the accurate detection of whether 
an object is being gazed upon or not. Finally, the proposed 
method also provides freedom to define masks in different 
modalities, such as color-based masks (Greenery masks used 
in our case study), tailored to specific research questions.

In order to closely capture the characteristics of objects 
appearing in scenes, and that of the subject's gaze behavior, 
the proposed system computes three scene variables—fre-
quency, saliency, and persistency—for each label recognized 
in the scenes. As exemplified in the case study, this allows 
for a more in-depth analysis scrutinizing potential latent 
interactions among scenes, gaze, and psychological effects. 
Running such analyses manually with human coders would 
be intractably time-consuming, especially when analyzing 
long and rich-in-objects video footage.

The evaluation of the proposed system focused on assess-
ing the performance of the proposed system compared to 
human coders. First, we performed a thorough sanity check 
of a range of measures representing the annotation char-
acteristics of human coders and of the proposed system: 
the variability among human coders, the commonalities of 
labels freely annotated by human coders, and the extent to 
which the recognizable labels of the proposed system cover 
the labels used by the human coders. As a result of this prior 
analysis, we found that the way human coders recognize and 
label objects is consistent with each other and also similar 
to the recognition ability of the proposed system. Although 
there were labels that are not recognizable by the proposed 
system, it was concluded that these labels had a minimal 
impact on the analysis since they occupy a small fraction 
of the data.

In the main analysis, the accuracy of the proposed method 
was verified by comparing the output of the proposed system 
with that of human coders. The similarity between the list of 
labels produced by human coders and the GU-list generated 
by the proposed system was measured using a standardized 
similarity measure, weighted average F1-scores. As indi-
cated by overall high scores, the result suggested that the 
performance of the proposed system is comparable to that 
of human coders.

The post hoc analysis was particularly focused on the 
detection of DOSL events, of which the detection is done 
using a relatively crude heuristic algorithm based on 

Fig. 11   Visualizations of the relationships between RTs for fearful-face distractor trials and each of the three Scene variables. Each data point 
represents an individual participant
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eye-in-head movement. First of all, the analysis showed that 
the DOSL event occurs rarely, suggesting that the scene vari-
ables acquired from the navigation scenarios of the study, 
especially the persistency, are not heavily affected by the 
choice of the detection algorithm for DOSL. The compari-
son of DOSL events detected by human coders and those 
detected by the proposed system suggests that the perfor-
mance of the heuristic algorithm of detecting the true-pos-
itive event is roughly on par with false positives and false 
negatives, indicating that the performance of the heuristic 
algorithm is rather limited. However, it is believed that the 
algorithm is still worthy of inclusion in the system since it 
can effectively prevent extreme false negatives when gaze 
highly deviates from one object to another. More fundamen-
tal solutions for DOSL detection that may be considered for 
future work will be discussed in “Limitations and future 
work”.

To ensure that the outputs of the system, especially the 
scene variables, are not significantly affected by the choice 
of data processing parameters, additional analyses compared 
the results based on the different choices of two parameters: 
fixation threshold (100 vs. 200 ms) and sampling rate (10 
vs. 30 Hz). The results of both analyses suggest that, while 
some differences are observed, either persistency or saliency 
score, and their trends over different object labels were not 
sensitive to the choice of the processing parameters.

The performance difference between human coders and 
the proposed system becomes obvious when comparing 
the processing time and the scope of variables that can be 
extracted from each scene. This highlights the main advan-
tage of the proposed method that, whereas the capacity of 
analysis is bottlenecked by the manual annotation procedure, 
our automatic recognition and annotation offers a scalable 
solution, both in terms of the feasibility of processing a large 
volume of data and also the diversity and specificity of anal-
ysis with a wide range of variables extracted from scenes.

Conclusion of case study

The advantage of the proposed system in real research 
scenarios was exemplified by the presented exploratory 
case study replicating a previous screen-based experiment 
in a real navigation setup using the proposed system. We 
focused on a recent study by Toth et al. (2020) investigating 
the effect of exposure to a certain environment, urban or 
nature, to attentional bias toward threatening stimuli meas-
ured by the delay of RT induced by distraction from fearful 
faces. We replaced the video-based sessions used in Toth 
et al.’s (2020) study with de facto environmental exposures 
by asking participants to physically walk in urban or natu-
ral environments. The result of our analysis indicates that, 
unlike Toth et al.’s (2020) result, there is no obvious effect 
of exposure to different environments on the amount of 

distraction by fearful faces. Instead, further analyses looking 
for a relationship between the extracted scene variables and 
the RTs suggested that there could be a correlation between 
the amount of distraction to fearful faces and the number of 
people that participants encountered during their navigation 
in the natural environment.

The purpose of the exploratory case study was to exem-
plify the system’s potential, demonstrating how the method 
can be integrated into the existing study framework and can 
unlock new insights, and therefore we leave further verifica-
tions of the result to future work. However, our result sug-
gests several points that warrant further investigation. First, 
an important difference between Toth et al.’s (2020) study 
and ours, apart from the video versus real navigation setup, 
was that participants encountered people during navigation 
in the nature environment in our setup, whereas the “nature” 
video used by Toth et al. (2020) did not include any persons 
in the view. In fact, since the nature environment chosen 
in our study was a park area in the university campus, the 
actual number of people encountered during the navigation 
was greater than that in the urban environment. Therefore, 
the most convincing explanation about the contradicting 
results between Toth et al.’s (2020) and our study would be 
that the attentional bias is primarily affected by the num-
ber of people encountered. This is also discussed by Toth 
et al. (2020), in that exposure to people in close proximity 
may have activated brain regions associated with threat-
related attentional bias (Kennedy et al., 2009). The reason 
why such an effect was not observed in the urban condition 
is not clear; it may indicate a complex interaction between 
the cognitive effect and the types and frequencies of objects 
seen during navigation (Killgore & Yurgelun-Todd, 2005), 
which can only be explored further with a large amount of 
data with automatic scene analysis enabled by annotation 
systems such as ours.

As exemplified in the case study, the proposed method 
opens new possibilities in the field of gaze research by 
eliminating the time of manual annotation, which was one 
of the main limiting factors on the quantity of data such 
studies could handle. We expect that our method will per-
mit so-called “big data” approaches (e.g., Wu et al., 2013) 
in gaze research in naturalistic scenarios, aiming to learn 
statistical relationships from a large volume of uncontrolled 
data, collected over hours and days. This is in sharp contrast 
with the conventional lab-based approaches using precisely 
controlled stimuli and accurately measured gaze profiles, 
but with a cost of highly limited data size. Considering 
the intrinsic uncertainty of the “gaze-in-wild” that is often 
affected by a host of extraneous variables and anomalous 
events, it is likely that the cognitive principles underlying 
complex coordination among gaze, environment, and motor 
control can be better elucidated by enough statistical power 
achieved by big data.
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Limitations and future work

Due to the nature of the data-intensive, machine-learning 
approach, the object recognition capability of the proposed 
model is mainly constrained by the database used for train-
ing. This contrasts with the traditional framework of feature-
based algorithms, in which the capacity of the system is 
mainly constrained by the performance of the incorporated 
algorithm in flexibly detecting objects with various shapes 
and kinds. As described earlier, the Mask R-CNN used in 
this study was trained using the MS COCO data set consist-
ing of images with 91 object labels, which covers objects 
generally appearing in everyday scenes including both 
indoor and outdoor objects (Lin et al., 2014). This indicates 
that the proposed system is generally applicable to every-
day scenarios but may not be sufficient for scenarios that 
are either unusual or are very specific, which will therefore 
require the inclusion of a specific data set tailored to the 
target scenario. For instance, there exist databases specifi-
cally targeted at indoor objects (Bashiri et al., 2018; Damen 
et al., 2018; Ismail et al., 2020; Samani et al., 2021), which 
contain a wider variety of object types and a greater number 
of images for each object. Also, depending on the analysis 
scenarios, training can be tailored to specific situations or 
specific types of objects using open image databases widely 
available at present, such as groceries (Klasson et al., 2019), 
documents (Antonacopoulos et al., 2009), or objects in low 
lighting conditions (Loh & Chan, 2019). Although incor-
porating such databases for additional training is straight-
forward in the proposed framework, it should also be noted 
that only a few such data sets provide instance segmenta-
tion information required for the masking. Depending on the 
given annotation scenario, the system can possibly compro-
mise with non-masking object detection networks that only 
output bounding boxes (Carion et al., 2020; Redmon et al., 
2016; Ren et al., 2015).

As mentioned earlier, the Mask R-CNN's inability to rec-
ognize whether an instance of an object is the same as the 
one detected in the previous frame, i.e., the absence of track-
ing function, works as the main limitation of the system. In 
particular, such inability may affect the system’s estimation 
of persistency, i.e., the average amount of time each type of 
object was gazed upon, since it cannot detect DOSL events. 
Based on the comparison with human coders, it was found 
that the absence of tracking function only has a small effect 
on the persistency computation and, at least for our scenar-
ios, a simple heuristic algorithm incorporated in the system 
was sufficient for our scenario in preventing obvious misde-
tections due to DOSL events. However, improvements in the 
following directions should be sought through future studies:

First, integration with a head-tracking function to the sys-
tem can be considered to better classify the gaze behavior. 
It is important to point out that the proposed system records 

“eye-in-head” using a head-mounted scene camera and eye-
tracker. During navigation scenarios, this is different from 
the “eye-in-space” that gaze behavioral studies are generally 
interested in since the participants can freely make body 
and head movements. Due to this inherent discrepancy, it is 
generally accepted that eye movement classification meth-
ods used in laboratory-based eye-tracking studies, where 
chin rests or bite bars are used to ensure no head move-
ment, could cause ambiguities and misinterpretations when 
applied to free navigation scenarios (Lappi, 2016). For this 
reason, studies have shown that integrating a head-tracking 
function to the head-mounted system helps estimate the 
eye-in-space from eye-in-head movement. As a method for 
head tracking, conventional motion tracking devices includ-
ing inertial measurement units (Kothari et al., 2020; Lanata 
et al., 2015; Larsson et al., 2014; Tomasi et al., 2016) can be 
integrated into the existing system. Alternatively, the algo-
rithmic implementation of head movement estimation based 
on optic flow (Kinsman et al., 2012) can be also considered 
in future works, although such methods will have limita-
tions in robustness and flexibility when processing dynamic 
scenes and varying shapes, compared to DL-based methods. 
The estimated eye-in-space movement will not only provide 
a more normative way to detect fixations without suffering 
from situations such as DOSL, but also will inform how the 
gaze interacts with the dynamic environment during natural 
navigation (Lappi, 2016).

Secondly, additional networks that enable tracking and 
other scene understandings can be integrated into the current 
Mask R-CNN network. Although relatively primitive, there 
have been continued efforts of implementing visual object 
tracking in R-CNN architecture (Voigtlaender et al., 2019; 
Voigtlaender et al., 2020), or non-object-based tracking 
based on image similarities (Steil et al., 2018). Incorporating 
such functionalities into the current system will provide a 
fundamental solution to spatiotemporally consistent annota-
tion, such as correct detection of DOSL events.

In addition, another interesting direction for future devel-
opment would be to integrate a monocular depth estimation 
network (see Ming et al., 2021 for a review). This will enable 
depth estimation for every pixel in the scene camera without 
requiring any additional sensors. Knowing the depth infor-
mation of objects detected in the scene camera will bring 
an important advantage of more geometry-aware processing 
of gaze behavior into the analysis, such as the inclusion of 
distance or physical size of objects gazed upon.

Among object labels detected by the proposed system, the 
greatest portion was Background labels, which means that 
the gaze was not on any recognizable object. There are two 
possible cases that may have resulted in this labeling: (1) the 
gaze was actually on an object but the system was not able to 
recognize that object, and (2) the gaze was really not on any 
object. Based on the comparison of the system output with 
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human coders, it can be confirmed that the occurrence of the 
first case is rare. As shown in the result, the performance of 
the proposed system in detecting objects in the scene was 
on par with that of average human coders, except for a few 
objects that are not included as object labels in the training 
data set. The second case is related to a rather philosophical 
view of defining what “objects” are. For example, one can 
premise that a visual scene consists of a seamless connection 
of objects, in which case everything, including sky, ground, 
and buildings, has to be included as objects. Alternatively, 
one can have a narrower view of the concept of an object and 
argue that a scene consists of objects sparsely located on a 
background defined as a broad term aggregating sky, ground, 
buildings, etc. The proposed system takes the latter point of 
view, and it can be seen through comparison with human cod-
ers that it is similar to the way humans recognize objects and 
the background. If the former view is required in future work, 
the system can alternatively implement semantic segmenta-
tion networks (see Asgari Taghanaki et al., 2021 for a review), 
which aims to partition a scene into semantic regions.

In addition, it should be noted that the recognition and 
annotation can be potentially affected by ambiguities arising 
from inherent hierarchies in object categories. For example, 
a vehicle contains different objects in its lower hierarchy, 
such as tires, windscreen, and side mirrors. Based on the 
scope of the annotation task or also the coder’s understand-
ing, there can be variabilities in which object hierarchies 
are chosen and recognized. In our scenario, such ambigu-
ity was not noticeable as shown by observed consistencies 
across human coders and also between human coders and 
the system. In fact, this observed similarity between humans 
and the system is rather expected since the data set used for 
training was also created by human coders. However, fur-
ther consideration on the choice of training data set would 
be required when applying the system to special scenarios 
which demand recognition within specific object hierarchies.

As is evident in the presented results, while system output 
aligned well with that of human coders, there is also a degree 
of disagreement between the two. While additional system 
features and improvements in both object detection quality 
and fixation detection techniques would address this to a 
point, additional future work should explore the potential 
for a human-computer collaboration project. In such a case, 
the system output would act as preliminary results which 
the human can refine and correct. This mirrors similar work 
in the field of interactive machine learning, whereby model 
predictions generated with greater uncertainty are assessed 
and corrected by a human collaborator (Berg et al., 2019). 
Promising results in this field may generalize to similar 
objectives in eye-tracking research.

During our evaluation, care was taken to check whether 
the output of the proposed system was affected by the low 

spatiotemporal resolution of the system, especially the lower 
sampling frequency used for the entire scene video process-
ing for computational efficiency. However, like all other eye-
tracking studies, it is evident that the accuracy and precision 
of the presented system are reliant on the high spatiotem-
poral resolution of the eye-tracking device and the scene 
video, especially when processing objects that are far away 
and thus have small visual angles. Additionally, processing 
videos taken for hours and days, which is the ultimate usage 
scenario of the proposed system, would require significantly 
higher computational power compared to the one used in the 
current study. Therefore, future improvement of the system 
includes incorporating systems with higher spatiotemporal 
resolution head-mounted eye-tracking systems and higher 
computing power for video processing.

Summary

In summary, we have proposed a system for automatic gaze 
annotation from eye-tracking data. The accuracy and the 
efficiency of the proposed system were validated by com-
parison with manual coders, and the potential of the system 
replacing conventional screen-based experiments was exem-
plified by the presented case study. The proposed system is 
expected to engender various future studies that combine the 
latest results of DL-based computer vision algorithms into 
the existing methods of experimental psychology, to enable 
a fully automatic and computationally intensive analysis of 
human behaviors.
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