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Abstract
People spontaneously divide everyday experience into smaller units (event segmentation). To measure event segmentation, 
studies typically ask participants to explicitly mark the boundaries between events as they watch a movie (segmentation task). 
Their data may then be used to infer how others are likely to segment the same movie. However, significant variability in 
performance across individuals could undermine the ability to generalize across groups, especially as more research moves 
online. To address this concern, we used several widely employed and novel measures to quantify segmentation agreement 
across different sized groups (n = 2–32) using data collected on different platforms and movie types (in-lab & commercial 
film vs. online & everyday activities). All measures captured nonrandom and video-specific boundaries, but with notable 
between-sample variability. Samples of 6–18 participants were required to reliably detect video-driven segmentation behavior 
within a single sample. As sample size increased, agreement values improved and eventually stabilized at comparable sam-
ple sizes for in-lab & commercial film data and online & everyday activities data. Stabilization occurred at smaller sample 
sizes when measures reflected (1) agreement between two groups versus agreement between an individual and group, and 
(2) boundary identification between small (fine-grained) rather than large (coarse-grained) events. These analyses inform 
the tailoring of sample sizes based on the comparison of interest, materials, and data collection platform. In addition to 
demonstrating the reliability of online and in-lab segmentation performance at moderate sample sizes, this study supports 
the use of segmentation data to infer when events are likely to be segmented.

Keywords Event segmentation · Segmentation agreement · Naturalistic perception · Event cognition · Online data 
collection

Introduction

Everyday perception involves segmenting experience into 
distinct units (events; Zacks et al., 2001a, b; Zacks et al., 
2007). This process, event segmentation, is typically studied 
by asking participants to watch a movie and simultaneously 
mark the boundaries between events with button presses 
(segmentation task; Newtson, 1973; Newtson & Engquist, 
1976). In healthy adults, segmentation task performance 
tracks measurable changes in brain activity (Speer et al., 
2007; Zacks, Braver, et al., 2001a), cortical representa-
tional states (Baldassano et al., 2017), and cognitive function 
(Faber et al., 2018; Swallow et al., 2009) during task-free 

video watching. The event segmentation task thus appears to 
reflect a cognitive process that helps shape everyday cogni-
tive function (Richmond et al., 2017). However, because the 
segmentation task is relatively unstructured, quantifying and 
interpreting performance in this task poses unique analytical 
challenges. In this paper, we examine the stability and sensi-
tivity of measures of segmentation task performance, focus-
ing on measures that capture the degree to which groups and 
individuals agree with each other on when event boundaries 
occur in naturalistic stimuli (segmentation agreement).

In a typical segmentation task, participants are asked 
to press a button whenever they believe that one natu-
ral and meaningful unit of activity has ended and another 
has begun (Newtson, 1973; Newtson & Engquist, 1976; 
Zacks et al., 2001a, b). By design, participants are given 
limited directions and are told to rely on their own judg-
ment when marking event boundaries. Despite the task’s 
ambiguity, participants tend to press the button at similar 
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times during the videos, resulting in moments that most 
people are likely to report an event boundary (normative 
boundaries), and other moments that people are unlikely 
to report an event boundary. Further, when instructed to 
identify event boundaries at multiple levels of granularity 
(Kurby & Zacks, 2011; Newtson, 1973), performance on 
the segmentation task reflects the hierarchical structure of 
goal-directed activities: smaller fine-grained units (e.g., 
grinding coffee beans, pouring hot water) are grouped 
within larger coarse-grained units (e.g., making coffee; 
Hard et al., 2006; Hard et al., 2011; Zacks et al., 2001a, 
b). In addition, the consistency of boundary identification 
within and across individuals (Newtson, 1973; Speer et al., 
2003) as well as its relationship to identifiable features of 
the videos (Hard et al., 2006; Magliano et al., 2001; Newt-
son et al., 1977; Swallow et al., 2018) supports the grow-
ing practice of using segmentation data from one group 
to examine the effects of event boundaries on cognitive 
and neural activity in another group (e.g., Ben-Yakov & 
Henson, 2018; Faber et al., 2018; Swallow et al., 2009).

However, performance on the segmentation task can dif-
fer markedly from one person to the next. Variability in task 
performance across individuals could reflect real differences 
in how individuals segment events (Bläsing, 2015; Kurby & 
Zacks, 2011; Levine et al., 2017; Newberry et al., 2021; Pap-
enmeier et al., 2019; Sargent et al., 2013; Swallow & Wang, 
2020). It could also reflect a variety of other factors, includ-
ing differing interpretations of ambiguous task instructions, 
attentional lapses, erroneous button presses, or accidental 
misses. Some of these factors may be exacerbated by online 
data collection, a practice that is increasing and which offers 
little control over either the context in which data collection 
occurs or the hardware that is being used. Factors influenc-
ing performance error may also play a larger role in the seg-
mentation of realistic depictions of everyday experiences 
(e.g., lab-produced videos of everyday activities) than of 
videos that have been structured by their creators (e.g., direc-
tors and editors of commercial film) to increase engagement 
and similarity in viewing patterns across individuals (Dorr 
et al., 2010; Hutson et al., 2017; Loschky et al., 2015).

Individual differences and errors in segmentation task 
performance should reduce the degree to which norma-
tive boundaries identified by small groups are predictive 
of individual task performance. Yet, studies that use one 
group’s segmentation behavior to infer event segmentation 
during task-free viewing have used groups that vary widely 
in sample size (N = 1–41) and expertise (Ben-Yakov & Hen-
son, 2018; Chen et al., 2017; Faber et al., 2018; Kosie & 
Baldwin, 2019; Levine et al., 2017; Swallow et al., 2009). 
These studies have provided a wealth of data pointing to 
the segmentation task’s effectiveness in capturing meaning-
ful behavior. However, the assumption that segmentation 
data from a small number of individuals is sensitive to the 

commonly perceived structure of naturalistic stimuli has 
received little formal attention.

Estimates of segmentation task performance may also 
be influenced by how it is quantified, and a variety of 
approaches appear in the literature. Most simply, group per-
formance can be quantified as the rate of boundary identifi-
cation (e.g., Bläsing, 2015; Jeunehomme & D’Argembeau, 
2018). However, because researchers are often interested in 
when those button presses occur, they typically generate a 
group time series by calculating the proportion of partici-
pants that identified a boundary within discrete time win-
dows, or bins (often 1–5 s in duration) that span the entirety 
of the video (e.g., Massad et al., 1979; Zacks et al., 2001a, 
b). The binned group time series can then be correlated with 
that from another group (as in, e.g., Hard et al., 2006) or 
with the button presses of individual participants (Kurby & 
Zacks, 2011; Newberry & Bailey, 2019; Swallow & Wang, 
2020; Zacks et al., 2006). Alternatively, the group time 
series has been used to identify intervals during which most 
participants press a button (normative boundaries; as in, e.g., 
Massad et al., 1979). One group’s normative boundaries can 
then be compared to another group’s (Massad et al., 1979) or 
to the boundaries identified by individuals from a separate 
group (Zalla et al., 2013).

Confidence in the methods used to quantify segmentation 
task agreement is justified by the repeated replication and 
validation of results that relied on them. However, there are 
several concerns that result from their use. Metrics that rely 
on correlations or signal detection theory may have require-
ments that may not necessarily be true of segmentation data, 
including that individual and group time series values are 
normally distributed, are linearly related, and have homo-
scedastic variance, that outliers are rare or not present, and 
that the range of values is not restricted. For example, quan-
tifying individual performance using d′ (e.g., Zalla et al., 
2013) assumes that normative boundaries capture true sig-
nal (i.e., the presence of a boundary in specific bins) and 
that individuals generate button presses based on signals 
embedded in normally distributed noise. In this paper we 
therefore introduce the surprise index (Katori et al., 2018) as 
an alternative way to measure segmentation agreement. This 
metric captures the degree to which the observed overlap 
between individual and group button presses exceeds expec-
tations (based on the Poisson distribution) without imposing 
assumptions about how individuals generate button presses.

Currently employed metrics also only assess relative 
agreement—whether two groups agree with each other or 
whether individuals agree with groups about when bounda-
ries occur—and therefore do not quantify segmentation 
agreement within a single group of participants. To address 
this gap, we introduce a new metric, peakiness, that meas-
ures within-group agreement by quantifying variability in 
the group time series over time.
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The standard practice of generating group time series by 
calculating the proportion of participants that pressed the 
button within time bins poses additional challenges. One 
major concern is that the selection of bin size can vary mark-
edly across studies (from 1 to 15 s; e.g., Swallow et al., 2018; 
Boggia & Ristic, 2015) and is not always explicitly moti-
vated in the literature. Bin size could have outsized effects 
on the results of an analysis: whereas small bin sizes run the 
risk of preserving variance from sources that do not operate 
at the group level (e.g., lapses in attention and motor speed), 
large bin sizes may obscure the effects of brief, but relevant 
sources of variation (e.g., changes in the movie content). 
The choice of bin size thus creates another, often overlooked 
source of variation in results across studies. A second major 
concern is that binning the data in this way distorts the con-
tinuous nature of events. It treats a boundary as a binary 
event that is either present or absent during a discrete inter-
val of time, rather than as an entity that could be probabilisti-
cally distributed over time. Even if boundaries are punctate, 
binning them potentially treats two button presses that are 
far from each other as the same and two button presses that 
are near each other as different, depending on whether or not 
they fall within the same bin.

Recognition that binning segmentation data may not ade-
quately capture segmentation task performance is evident in 
a growing number of studies that have characterized bound-
ary identification as probabilistic over time (Huff, Maurer, 
et al., 2017a; Huff, Papenmeier, et al., 2017b; Newberry 
et al., 2021; Smith et al., 2020). In these studies, group time 

series are created by aggregating the density of participants’ 
button presses over time. The density of button presses is 
estimated by centering a Gaussian kernel on each button 
press. These approaches preserve the continuity of perfor-
mance in a segmentation task, but, similar to approaches that 
bin the data, do not describe methods for determining the 
temporal resolution of the group time series (in this case set 
by the bandwidth of the Gaussian kernel). Like these more 
recent studies, we characterize group time series probabil-
istically, but estimate group button press density over time 
from pooled individual data. We also describe a method for 
systematically determining the bandwidth of the kernel used 
to generate the group time series, thereby avoiding the need 
for potentially arbitrary decisions about the unit of time in 
which boundaries can occur.

To address concerns surrounding the quantification of 
segmentation task performance, this paper systematically 
examines the efficacy of both new and existing measures of 
segmentation agreement (illustrated in Fig. 1). The meas-
ures we examined quantified agreement in boundary place-
ment within a group of individuals (peakiness), between two 
groups of individuals (peak-to-peak distance), and between 
an individual and a separate group (agreement index, Zacks 
et al., 2006; and surprise index, adapted from Katori et al., 
2018). In all but one case (agreement index), the measures 
are based on probabilistic, continuous group time series, 
with a clear basis for determining the bandwidth of the 
kernel used to generate them. We evaluated these measures 
according to three criteria: (1) the ability to distinguish 

Fig. 1  Illustration (A) and description (B) of group- and individual-
level agreement measures. Group time series are illustrated as the 
density of button presses over time (peakiness, peak-to-peak distance, 
and surprise index) or as the proportion of participants that pressed 
a button within a 1-s-long time bin (agreement index). Individual 

time series are represented as vertical lines marking button presses at 
every 1-s time bin (for agreement index) or continuously over time 
(for surprise index). Normative boundaries are defined as the times of 
the highest n-peaks, where n = mean number of button presses
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segmentation behavior from noise, (2) the ability to distin-
guish segmentation of one movie from another, and (3) the 
sample size needed for the measure to stabilize and show 
little improvement with the addition of more participants. 
The impact of sample size on these metrics is of particular 
interest because it influences the ability to measure segmen-
tation task performance in two ways: first, by contributing 
to the stability of the group time series across samples, and 
second, by influencing the power of statistical tests. There-
fore, to examine the influence of sample size on metrics 
of segmentation agreement, we first bootstrapped estimates 
of each agreement measure for samples of different sizes. 
This allowed us to characterize measures of segmentation 
agreement across samples. Characterizing agreement meas-
ures across samples is important because all measures of 
agreement reflect sample (group)-level behavior, not just 
the behavior of an individual (Fig. 1). For example, in the 
agreement index, individual performance is evaluated by ref-
erencing it to the group, making stable estimates of group 
segmentation behavior a central component of this metric. 
We therefore fit a linear mixed-effects model to the sample 
estimates to characterize how each measure differs when 
used on samples of real data, random data, and data with 
conflicting signals, as well as how the measure changes as 
sample size increases. Finally, we estimated the number of 
participants needed to distinguish segmentation data from 
noise or conflicting signals within a single sample.

We assessed the utility of segmentation agreement met-
rics across different modes of data collection and types of 
videos using two independent data sets collected for sepa-
rate projects. The first consisted of segmentation data col-
lected in the lab with commercially made movies (Sasmita 
& Swallow, in prep). The second consisted of segmenta-
tion data collected online with videos depicting everyday 
activities (Swallow & Wang, 2020). While lab-based experi-
ments offer a more controlled environment, online experi-
ments offer benefits such as the capacity to recruit from a 
more diverse population and efficiency in collecting data 
from a large number of participants (e.g., Birnbaum, 2004). 
Additionally, videos of everyday activities can be more 
realistic, but lack the structure and richness of commercial 
films (Cutting et al., 2011) that may influence segmenta-
tion by systematically guiding viewers’ attention over time 
(Dorr et al., 2010; Hutson et al., 2017; Loschky et al., 2015). 
Notably, the mode of data collection and the materials are 
confounded in our data such that those conditions expected 
to increase error in task performance (i.e., online segmenta-
tion of unedited videos) are combined. Rather than compar-
ing these data sets, we limit our investigation to whether 
segmentation agreement metrics can be reliably applied to 
segmentation data collected online using videos depicting 
everyday activities as well as to data collected in-lab with 
commercial movies.

Materials and methods

This paper evaluates the sensitivity of several segmentation 
agreement metrics to the presence of structure in group and 
individual data. Sampling distributions for each metric were 
created using a bootstrapping procedure. This procedure cre-
ated samples of different sizes by randomly drawing indi-
vidual data from data sets collected for two other projects 
(Sasmita & Swallow, in prep; Swallow & Wang, 2020). The 
projects differed in the type of video stimuli used, how the 
data were collected, and the sampled population. The first 
project (commercial-lab) examined segmentation of excerpts 
from commercially produced movies. These data were col-
lected in the lab with undergraduate participants. The second 
project (everyday-online) utilized unedited videos of actors 
performing everyday activities produced by the lab. Data 
were collected online with participants recruited through 
Amazon’s Mechanical Turk and CloudResearch (Swallow & 
Wang, 2020). Data reported in this paper and the code used 
for data processing and analyses are available on GitHub: 
https:// github. com/ ksasm ita/ esMet hods.

Participants

All participants provided informed consent and all procedures 
were approved by the Cornell Institutional Review Board.

Commercial‑lab

Participants were recruited from the Cornell University 
community. Analyses reported in this paper focused on 
data from 64 participants (27 male, 37 female) between 
the ages of 18 and 41 (M = 21.04, SD = 4.27). Participants 
were compensated with course credit or $15 for their time.

Everyday‑online

Participants were recruited through Amazon’s Mechani-
cal Turk using CloudResearch. Data were collected from 
participants in India and in the United States, but analyses 
in this paper only utilized data from participants in the 
United States (N = 72; 41 male, 31 female; 19–58 years 
old; M = 33.79, SD = 8.26). Participants were compensated 
$5 or $7.50 for their time.

Experimental design

Commercial‑lab

Video stimuli were constructed using excerpts from two 
commercial movies: 3 Iron (Kim, 2004) and Corn Island 
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(Ovashvili, 2015). These movies were selected because 
they depict distinct activities (e.g., cooking in the kitchen, 
sawing and hammering wood), have little to no dialogue, 
and are set in naturalistic settings.

For each movie, excerpts were created by extracting 
scenes defined by natural breakpoints created by an edi-
tor’s cut, scene or location changes, or breaks in the nar-
rative. Each scene depicted one or more activity (e.g., the 
actor picking up dirty clothes from the floor, then washing 
the clothes and hanging the clothes on a drying rack) and 
consisted of multiple shots. The extracted scenes were then 
joined together to form one continuous video (3 Iron = 9.82 
min; Corn Island = 9.43 min). Scenes in the final video were 
not necessarily contiguous in the original movie, but their 
order was preserved. The audio tracks for both videos were 
removed.

The videos were divided into ten 1-min-long clips (the 
last clip was shorter than 1 min). For half of the participants, 
the 10 clips from each movie were presented without inter-
ruption and in order (uninterrupted). For the other half of 
the participants, the clips were presented in order but with 
3 s of white noise interrupting the clips (interrupted). Data 
from a third group were collected for the original project 
but were not included in the analyses reported in this paper.

Everyday‑online

Stimuli were videos of actors performing everyday activities 
set in the United States: doing laundry (5.41 min), making 
coffee (5.73 min), doing the dishes (6.03 min), and making 
a bed (4.55 min). The original project also used recordings 
of the same four activities set in India; however, data from 
this condition were not included in the following analyses.

Videos were recorded using a GoPro HERO4 silver edi-
tion (1920 × 1080 pixels, 29.98 frames per second [fps], nar-
row field of view). The activities were performed by differ-
ent actors and were filmed from several feet away. Therefore, 
in each video, an actor can be seen performing one activity 
within one room, with no changes in camera angle or scene 
cuts. Videos were presented with the audio tracks removed.

Segmentation task

All participants segmented every video that they watched. 
They were instructed to press the spacebar every time they 
believed one natural and meaningful unit of activity had 
ended and another had begun. Participants were instructed to 
mark the smallest (fine grain) and largest (coarse grain) units 
of activity change. They were told to press the spacebar as 
many times as necessary to mark all of the units in the video.

All experiment sessions began with a practice segmenta-
tion task. For commercial-lab, a short practice video was 
constructed by extracting a 1.5-min clip from the movie 3 

Backyards (Mendelsohn, 2010). For everyday-online, a short 
practice video (1.65 min) was recorded depicting an actor 
sitting outside, eating snacks, looking through books, and 
using his phone. To increase similarity across participants 
and reduce overlap between fine and coarse conditions, prac-
tice was repeated until participants reached a performance 
criterion. The criterion was based on mean unit durations 
reported in earlier literature (e.g., Zacks et al., 2001a, b) 
or on pilot segmentation data with the practice video (as 
described in Swallow & Wang, 2020): commercial-lab, 
mean duration of coarse = 11.25–30 s (3–8 button presses), 
fine = 2.5–6 s (15–36 button presses); everyday-online, 
mean duration of coarse = 16.5–49.5 s (2–6 button presses), 
fine = 3.3–8.25 s (12–30 button presses).

Participants in commercial-lab performed coarse and fine 
segmentation on one movie before moving on to segmenting 
the next movie. In contrast, participants in everyday-online 
segmented all videos in one grain first before moving on to 
segmenting the videos again in the other grain. Video and 
grain orders were fully counterbalanced in commercial-lab. 
Although most participants in everyday-online started with 
coarse grain segmentation due to a programming error, seg-
mentation patterns between participants who started with 
fine segmentation and those who started with coarse seg-
mentation were similar (Swallow & Wang, 2020).

Following segmentation of each video, participants in 
commercial-lab performed a free recall task, typing eve-
rything they remember happening in the video into a docu-
ment, while participants in everyday-online completed some 
questionnaires. The following analyses examined only seg-
mentation task performance.

Data processing

Our analyses focused on four methods of quantifying group- 
and individual-level segmentation agreement. We examined 
a summary of group-level agreement (peakiness), a com-
parison of segmentation performance between two groups 
(peak-to-peak distance), and two measures that evaluate 
individual segmentation performance by comparing it to 
the group (agreement index and surprise index). Measures 
were selected based on their use in prior research or their 
potential to provide additional insight into the consistency 
of segmentation patterns across individuals.

For each participant, button presses that occurred within 
500 ms of the previous button press were excluded from 
the analysis. This removed button presses that were likely 
to reflect recording artifacts (e.g., holding down the key-
board button) rather than genuine button presses. Segmen-
tation data also were restricted to the length of the shortest 
videos to allow for comparison of segmentation perfor-
mance across different movies (commercial-lab = 566 s, 
everyday-online = 273 s).
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Creating data sets of different sample sizes

We used a bootstrapping procedure to estimate the distribu-
tion of each agreement measure when subsamples of differ-
ent sizes were used (Singh & Xie, 2010). For each sample, 
we randomly selected with replacement n individuals from 
the group of interest 1000 times, where n ranged from 2 
to 32, incremented by 2. We then obtained a sample-level 
estimate of agreement for each movie for use in subsequent 
analyses. This process was performed separately for each 
agreement measure. Resampling with replacement makes it 
likely that one or more individuals’ data will be replicated 
several times within a single subsample, particularly when 
the n is large. This could raise the concern that sampling 
with replacement could inflate measures of agreement1. 
However, at n = 32, the means of the bootstrapped agreement 
measures were not systematically greater than the values 
for our full samples (actual values; Appendix A), which fell 
within the 95% confidence interval of bootstrapped estimates 
in almost all cases. The bootstrapping approach employed in 
our analysis thus provides reasonable estimates of agreement 
for samples of different sizes.

Calculating measures of segmentation agreement

Group‑level agreement For measures of group-level agree-
ment, we characterized group segmentation performance as 
the observed probability density of a button press over time 
(group density). Using the density function in base R (stats 
package; R Core Team, 2018), the subsample of participants’ 
button press times were combined and every time point was 
smoothed using a Gaussian kernel. The kernel’s bandwidth 
was determined using a smoothing function that accounts for 
variations in the data and normalizes the density distribution 
so that it has an area under the curve equal to 1 (option “SJ” 
in the density function; Sheather & Jones, 1991). For each 
grain, the computed bandwidth was multiplied by a value that 
generated a group time series with visually distinctive peaks 
and valleys for all sample sizes (“adj” parameter: coarse = 0.1, 
fine = 0.05; Fig. 2a). Density was estimated for the duration 
of the movie, padded by a pre- and post-movie window to 
capture the probability function around button presses at the 
beginning and end of the movie. This also allowed the density 
estimate to approach zero at those times. The size of the win-
dow added to the beginning and end of the movie was twice 
the final bandwidth of the smoothing function, rounded to the 

nearest whole number. Normative boundaries were defined 
as the time points of the highest j peaks in the group density 
distribution, where j is the mean number of button presses 
generated by participants in the group. Whenever the num-
ber of observed peaks was lower than the average number of 
group button presses, j was defined as the maximum number 
of peaks identified in the group density estimate. This method 
provides clear criteria for generating probabilistic group time 
series and defining normative boundaries. It therefore avoids 
the need for what may be arbitrary decisions about the band-
width of the smoothing kernel or unit of time at which the 
data should be binned.

Peakiness To quantify agreement among individuals in a 
single group, we introduce a new measure that we refer to as 
peakiness. This measure reflects the expectation that greater 
amounts of within-group agreement will lead to group den-
sity functions with higher “peaks” and lower “valleys” (i.e., 
the group density time series are less flat). For every sub-
sample, we calculated the moment-to-moment change in 
amplitude of the group density function over the duration of 
the movie (rugosity) using the rugo function (seewave pack-
age; Sueur et al., 2008). This value was then scaled by divid-
ing the observed rugosity by the minimum possible rugosity 
value given the number of button presses and the density 
algorithm. The minimum was defined as rugosity when the 
combined participants’ button presses were uniformly dis-
tributed over time. A high peakiness value, therefore, sug-
gests high within-group agreement on boundary placement.

Peak‑to‑peak distance To measure the consistency of nor-
mative boundaries identified across groups, we calculated 
the peak-to-peak distance. This measure is defined as the 
mean distance between the normative boundaries defined by 
two groups, with a value of 0 indicating perfect agreement.

To calculate peak-to-peak distance, we first set the num-
ber of normative boundaries to examine as the minimum of 
the following three values: the number of peaks in the group 
density time series for group 1, the number of peaks in the 
group density time series for group 2, and the mean of the 
number of normative boundaries in group 1 and group 2 
(rounded to the nearest whole number). We then obtained 
a set of normative boundaries for each time series and cal-
culated the distance (in seconds) between the normative 
boundaries in one group to the normative boundaries in the 
other group (and vice versa). These distances were then aver-
aged to form the peak-to-peak distance metric.

Individual‑level agreement The next two measures quantify 
agreement between boundaries identified by an individual and 
those identified by an independent group of participants. The 
first measure, agreement index, has been commonly used in 
prior research (Kurby & Zacks, 2011). We applied the second 

1 This is unlikely: Repeated occurrences of an individual with idio-
syncratic patterns of segmentation may increase their agreement with 
the group, but it would decrease agreement for other group members. 
Repeated occurrences of an individual with typical segmentation pat-
terns should result in representative group time series.
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measure, the surprise index (Katori et al., 2018), to segmenta-
tion data for the first time to evaluate whether this measure of 
overlap between two time series (which makes fewer assump-
tions than the correlation coefficient) provides a more sensitive 
or more stable index of individual-group agreement.

Individual segmentation performance has also been quan-
tified as a measure of individual accuracy in identifying 

normative boundaries (e.g., Zalla et al., 2013). We briefly 
explored this approach and present our findings in Appendix B.

Agreement index This measure captures the similarity 
of segmentation patterns between an individual and an 
independent group of participants (Zacks et al., 2006). To 
calculate the agreement index, we transformed individual 

Fig. 2  (A) Example of density estimates with different bandwidth 
adjustments for small (n = 2; upper panel) and large (n = 32; lower 
panel) sample sizes. In all cases, the lower adjustment value (0.01) 
seems to capture individual button presses rather than the group’s 
consensus button presses. For the large sample size (lower panel), 
the middle and higher adjustment values do not strongly influence 
the shape of the peaks and valleys of the density estimate. However, 
for small sample size (upper panel), distinctive peaks and valleys are 
formed in the density estimate using the middle adjustment value (0.1 
for coarse, 0.05 for fine). The highest adjustment value (0.2 for coarse 

and 0.1 for fine) reduces the difference between the peaks and val-
leys, and even eliminates several peaks (arrows). Therefore, we chose 
the middle bandwidth adjustment (0.1 for coarse and 0.05 for fine) for 
our density estimation for all sample sizes. (B) Examples of growth 
(left) and decay (right) function fits. Small dots represent the average 
agreement estimate for individual bootstrap iteration. Large dots rep-
resent the average agreement estimate across all bootstrap iterations 
with each sample size. Functions with the lowest BIC value were 
selected as the best-fitting curve
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button press data into a time series indicating the presence 
or absence of a button press in 1-s-long bins (individual 
time series), as is standard for these measures. We corre-
lated every individual time series in a subsample with the 
group time series created by calculating the proportion of the 
remaining participants who pressed a button within each 1-s 
bin (obs. r). The correlation was then scaled with the mini-
mum and maximum possible correlations (min r and max 
r) for that individual using the following formula (Kurby 
& Zacks, 2011): ai = (obs. r − min r)/ (max r − min r). The 
agreement index therefore ranged from 0 to 1, with higher 
values indicating greater agreement. Individual agreement 
index values were then averaged to obtain the subsample’s 
mean agreement index value.

Surprise index This measure reflects the extent to which the 
expected overlap between individuals’ button presses and an 
independent group’s normative boundaries is exceeded. It 
is adapted from work that estimates the probability of spike 
co-occurrence across two neurons using the Poisson distri-
bution (Katori et al., 2018). We used the surprise index to 
capture the co-occurrence of an individual’s button presses 
with a group’s normative boundaries. For every participant, 
we first extracted the time points in the individual time series 
that contained button presses (individual boundaries). Next, 
we identified normative boundaries for the rest of the group 
using the group density time series. We then calculated k as 
the number of times the individual’s boundaries overlapped 
with a group normative boundary. For this analysis, overlap 
was defined as occurring when the individual boundary fell 
within a 1-s window centered on the normative boundary. 
This provided a resolution that was comparable to that of 
the agreement index (which used 1-s bins). The rarity of 
overlap was calculated as the summed probability of overlap 
occurring k to K number of times, where K is total num-
ber of possible overlaps for a given video. We define K as 
the total duration of each video in seconds, to match the 
resolution used for identifying overlap. Surprise index was 
then calculated by −log2 transforming rarity (Katori et al., 
2018). Individual surprise index values were then averaged 
to obtain the mean for the subsample.

Evaluating the sensitivity and specificity of segmentation 
agreement measures

To evaluate each measure’s sensitivity to the event bounda-
ries participants are likely to identify in a movie, we calcu-
lated agreement values for (1) segmentation data from one 
movie (same; as described above), (2) randomly generated 
segmentation data (random), and (3) segmentation data from 
different movies (cross-movie). Random data were generated 
for each participant by randomly sampling (without replace-
ment) l times from a continuous uniform distribution with 

a minimum value of 0 and a maximum value equal to the 
video duration (in seconds), where l was the number of times 
the participant pressed the button. Random agreement was 
then calculated using a group of random data (in the case 
of peakiness) or by comparing two random data sets (in the 
case of peak-to-peak distance, agreement index, and surprise 
index). Random agreement measures therefore represent 
agreement of completely random segmentation data. If a 
measure reliably captures information about how individuals 
or groups segment a video, then it should show better agree-
ment for same movie comparisons than for random data or 
cross-movie comparisons.

Statistical analyses

Our bootstrap approach estimates the sampling distribution 
of sample-level descriptive statistics (e.g., the sampling 
distribution of the mean agreement index) of segmentation 
of different movies at different granularities for samples of 
different sizes. To quantitatively and efficiently character-
ize how sample-level agreement estimates change with sam-
ple size and to better account for the effects of movies on 
these measures, we fit linear mixed-effects models to the 
bootstrapped agreement measures. Sample size (2 to 32, 
incremented by 2), segmentation grain (fine vs. coarse), and 
measurement condition (same, random data, or cross-movie) 
were included as fixed effects and movies were included as 
random effects using the lmer function from the lme4 pack-
age in R (Bates et al., 2015). Separate models were fit for the 
commercial-lab and everyday-online data sets. In addition to 
evaluating the fixed effects in these models, we characterize 
the models with planned contrasts that compared sample-
level estimates of same agreement values to sample-level 
estimates of agreement in random data and cross-movie 
agreement values. We refer to analyses based on the linear 
mixed-effects models as examining agreement across sub-
samples. Because they are performed on metrics that char-
acterize agreement for a subsample of data (i.e., the peaki-
ness of a group time series, or the mean agreement index 
for those within a subsample), these comparisons described 
whether, on average, studies that utilize a particular agree-
ment measure capture meaningful segmentation behavior.

We used 1000 bootstrap iterations to ensure that we 
adequately characterized the sampling distributions of the 
agreement measures when different sample sizes were used. 
Though this results in high statistical power to detect small 
effects, not all comparisons reached statistical significance 
in our analyses. This suggests that there was not sufficient 
power to classify any trivially small difference as significant. 
However, the large number of iterations that went into the 
models makes it even more important to characterize the dis-
tributions and the size of the effects at different sample sizes 
(Lakens, 2013). We therefore computed the standardized 
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difference between the means of same, random, and cross-
movie subsample statistics:

Subscripts “s” or “c” refer to values calculated using 
same data or the comparison data (random or cross-movie) 
respectively. To preserve the maximum amount of vari-
ance, we performed this calculation without aggregating 
the bootstrapped values. Thus, for every sample size and 
segmentation grain, ns and nc are defined as the number of 
bootstrapped values calculated on every movie for those data 
(i.e., ns = 2 for commercial-online and 4 for everyday-online 
* 1000 bootstrap iterations). This approach provides us with 
the most conservative test values. We list the test values in 
Appendix A along with descriptive statistics for the same, 
random, and cross-movie sampling distributions.

These standardized differences provide a basis for esti-
mating the sample size needed to detect a difference in 
agreement for same versus random data or cross-movie 
comparisons within a single study (within study). Because 
the standardized difference calculations are performed on 
the bootstrapped sampling distributions2, they approximate 
the t-statistic (test) for two independent samples, which are 
each of size n (e.g., a single same movie sample and a single 
random data sample). Therefore, the smallest sample size at 
which test exceeds the critical t-value of a one-sided test with 
α = .05 and degrees of freedom = n1+ n2 − 2, should be suf-
ficient for detecting differences between individual samples 
of same movie, random, and cross-movie agreement values 
in traditional null hypothesis testing. This additional analysis 
provides a practical basis for estimating the minimum sam-
ple size needed for a single study to capture population-level 
nonrandom and video-specific segmentation data. Alterna-
tively, one could evaluate whether the means of the ran-
dom and cross-movie data fall outside the 95% confidence 
interval around the mean of the same data. However, this 
does not take variance of both sampling distributions into 
account, and it typically (but not always) produces results 
that are identical or close to those based on test (see Appen-
dix A).

Fitting linear mixed-effects models to the subsample 
statistics also allowed us to investigate how segmentation 
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agreement changes with increases in sample size. To do this, 
we examined the polynomial trends of the linear mixed-
effects model estimates for the effect of sample size using 
emmeans (Lenth, 2021). Segmentation agreement should, 
on average, improve with the increase in sample size, since 
adding more participants to the group should improve esti-
mates of when individuals or groups are likely to segment 
the movie. Therefore, we expected a significant positive 
linear contrast for peakiness, agreement index, and surprise 
index, and a significant negative linear contrast for peak-to-
peak distance.

If segmentation agreement estimates stabilize with 
increasing sample size, there will be a point at which the 
rate of change in agreement values slows as sample size 
increases (the relationship will be nonlinear). Therefore, we 
expected significant negative quadratic effects for peakiness, 
agreement index, and surprise index (for which larger values 
are better) and a positive quadratic effect for peak-to-peak 
distance (for which smaller values are better). Whenever 
a quadratic effect in the linear mixed-effects model was 
significant, we estimated the sample size at which agree-
ment stabilized. To do this, we first fit each bootstrapped 
agreement measure to several growth and decay functions 
(Fig.  2b)—linear, exponential, logarithmic, asymptotic 
regression, power curve, and yield loss—using lm, nls (R 
Core Team, 2018), drm (drc package, Ritz et al., 2015), and 
aomisc (Onofri, 2020) in R. These functions were selected 
for their potential ability to fit the shape of the data and were 
not theoretically motivated. Next, we determined the best 
fitting curve as the fit with the lowest Akaike information 
criterion (AIC) and Bayesian information criterion (BIC) 
values. In all but one case (see Appendix C), the best-fitting 
curve was nonlinear. Finally, the elbow was defined as the 
point on the fitted curve that was farthest from a straight line 
connecting the start and end points of the curve. The elbow 
was then taken as the sample size at which the measure was 
stabilizing and where the inclusion of more participants 
would, on average, provide diminishing returns in estimat-
ing agreement.

Results

In this section, we report analyses for each agreement 
measure separately. For each measure, we first character-
ize its sensitivity to segmentation data that came from 
the same movie rather than from random noise (same vs. 
random comparison) or from a different movie (same vs. 
cross-movie comparison). We report the z-statistics and 
95% confidence intervals of model-based estimates of 
the effects of measurement condition across subsamples 
(obtained with emmeans). We also report estimates of the 
minimum sample size needed to detect differences between 

2 The independent-sample t-statistic is the difference between the 
mean of one group (e.g., same data) minus the mean of the other 
group (e.g., random data) divided by the estimated standard error of 
the mean difference. The numerator in (1) is an estimate of the mean 
difference between two groups. The denominator in (1) is the pooled 
standard deviation of the sampling distributions for the two groups, 
and therefore approximates the standard error of the mean difference 
(Hays, 1994).
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same data and random and cross-movie data within a sin-
gle study. Next, we describe how sample-level agreement 
values change as sample size increases. Should the meas-
ure of agreement stabilize, we report the sample size at 
which stabilization begins. Lastly, we report the presence 
of any differences between random and cross-movie agree-
ment values. For better visualization, we plotted a random 
selection of 10% of the bootstrapped estimates and the 
log-transformed values for peakiness and peak-to-peak 
distance. However, all analyses were performed on the 
untransformed agreement values. For all measures, prac-
tical evaluations of the sample sizes required to detect non-
random and video-specific segmentation patterns within 
one study, as well as the sample size needed to achieve 
stable segmentation agreement across subsamples, are 
summarized in Table 1.

Peakiness

Peakiness was sensitive to participants’ agreement about the 
timing of event boundaries (Fig. 3). The model indicated 
that same peakiness values were overall higher than random 
peakiness values in the commercial-lab data set, z = 251.78, 
p < .001, 95% CI [2.79, 2.83] for coarse, z = 405.43, p < 
.001, 95% CI [4.51, 4.55] for fine and in the everyday-
online data set, z = 49.43, p < .001, 95% CI [14.20, 15.38] 
for coarse, z = 18.40, p < .001, 95% CI [4.92, 6.09] for fine. 
Pairwise comparisons revealed that, across subsamples, 

peakiness began to differentiate real data from noise at a 
sample size of 6 for coarse and fine commercial-lab segmen-
tation, zs > 2.11, ps < .001, smallest 95% CI [0.0068, 0.18] 
and 4 for coarse and fine everyday-online segmentation, zs > 
2.14, ps < .001, smallest 95% CIs [0.22, 4.91]. This suggests 
that the average peakiness value of studies utilizing sam-
ples of 4–6 participants should reflect real agreement in the 
data, rather than only random behavior. However, to detect 
nonrandom peakiness within a single sample, a larger num-
ber of participants is required. The standardized differences 
(test) indicated that, for commercial-lab segmentation, the 
required within-study sample sizes were 14, test(26) = 2.05, 
95% CI = [1.96, 2.14] for coarse and 10, test(18) = 2.18, 95% 
CI = [2.09, 2.27] for fine segmentation. For everyday-online 
segmentation, they were 14, test(26) = 1.72, 95% CI = [1.66, 
1.78] for coarse and 14, test(26) = 1.89, 95% CI = [1.83, 1.95] 
for fine segmentation. Because peakiness provides a sum-
mary of segmentation agreement within one group and not a 
comparison between different groups, cross-movie peakiness 
values could not be calculated.

Our analysis showed that increasing sample size 
increased peakiness in most cases (Fig. 3). Significant 
linear contrasts indicated that across subsamples, same 
peakiness values increased with sample size in the com-
mercial-lab data, z = 195.27, p < .001, 95% CI [225.34, 
229.91] for coarse, z = 243.68 p < .001, 95% CI [281.77, 
286.34] for fine and in the everyday-online data, z = 5.92, 
p < .001, 95% CI [123.55, 245.87] for coarse and z = 4.09, 

Table 1  Practical characteristics of all agreement measures

Note: Detect = estimated sample size at which same movie comparisons may be distinguished from random data within a single study. Differen-
tiate = estimated sample size at which same movie comparisons may be distinguished from cross-movie comparisons within a single study (can-
not be calculated for peakiness). Stabilize = estimated sample size at which the mean across subsamples began to stabilize. Asymptote = asymp-
totic value of the mean across subsamples. For the asymptote, peak-to-peak distance is reported in seconds

Level Measure Characteristic Commercial-lab Everyday-online

Coarse Fine Coarse Fine

Within group Peakiness Detect 14 10 14 14
Stabilize - 16 - -
Asymptote - 20.21 - -

Between group Peak-to-peak distance Detect 8 6 18 14
Differentiate 6 6 8 10
Stabilize 10 10 10 10
Asymptote 2.61 0.93 4.35 0.70

Individual-group Agreement index Detect 6 6 6 8
Differentiate 6 6 6 6
Stabilize 14 14 18 18
Asymptote 0.47 0.62 0.53 0.69

Surprise index Detect 8 6 12 8
Differentiate 8 6 14 8
Stabilize 16 14 16 14
Asymptote 5.24 10.53 4.74 7.52
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p < .001, 95% CI [66.71, 189.03] for fine. There was 
minimal evidence that peakiness stabilized at larger sam-
ple sizes: the negative quadratic effect of sample size on 
same peakiness values was significant only for fine seg-
mentation in commercial-lab, z = 27.20, p < .001, 95% 
CI [−69.66, −60.30], stabilizing at sample size 16. How-
ever, we found no evidence for stabilization for coarse 
segmentation in commercial-lab, as peakiness continued 
to increase with the increase in sample size, resulting 
in a significant positive quadratic contrast, z = 7.90, p < 
.001, 95% CI [14.19, 23.56]. There was also no evidence 
for stabilization for segmentation in everyday-online 
data, as the quadratic effects of sample size on same 
peakiness were not significant z = 0.87, p = .39, 95% CI 
[−69.88, 180.81] for coarse and z = −0.99, p = .32, 95% 
CI [−188.65, 62.03] for fine.

Overall, these findings suggest that peakiness can be 
used to quantify within-group agreement about boundary 
placement. Across subsamples, this information may be, on 
average, captured with sample sizes as small as 4–6 partici-
pants. However, to capture meaningful segmentation pat-
terns within a study, 10–14 participants are needed. Further, 
peakiness did not appear to consistently stabilize as sample 
size increased. When it did, stabilization occurred with 16 
participants.

Peak‑to‑peak distance

Peak-to-peak distance was sensitive to boundaries identified 
in specific movies, distinguishing group boundaries from the 
same movie from group boundaries identified using random 
data and other movies (Fig. 4). Same peak-to-peak distance 

Fig. 3  Log10-transformed peakiness values over increasing sam-
ple sizes for:  (A) commercial-lab and (B) everyday-online data sets. 
Small shapes depict the values calculated from a single bootstrap iter-
ation (subsample; only a randomly selected 10% of the bootstrapped 
values are plotted). Larger shapes depict the average value across all 

bootstrapping iterations. One low peakiness value and seven high 
peakiness values for coarse everyday activity segmentation were 
excluded from the plot due to the y-axis limit. Error bars represent 
95% confidence interval and carets (^) represent the elbows
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across subsamples was overall lower than random peak-to-
peak distance in the commercial-lab data set, z = 413.31 p 
< .001, 95% CI [4.39, 4.43] for coarse, z = 107.70, p < .001, 
95% CI [1.13, 1.17] for fine, and in the everyday-online data 
set, z = 375.82, p < .001, 95% CI [6.87, 6.94] for coarse and 
z = 41.37, p < .001, 95% CI [0.72, 0.80] for fine. Across 
subsamples, same peak-to-peak distance was also overall 
lower than cross-movie comparisons in the commercial-lab 
data set, z = 458.33, p < .001, 95% CI [4.87, 4.92] for coarse, 
z = 103.42, p < .001, 95% CI [1.08, 1.13] for fine and in 
the everyday-online data set, z = 502.10, p < .001, 95% CI 
[9.19, 9.26] for coarse, z = 54.12, p < .001, 95% CI [0.96, 
1.03] for fine.

Model-based pairwise comparisons revealed that across 
subsamples, peak-to-peak distance differentiated same data 

from random and cross-movie data starting at sample size 
2 for all segmentation grains and experiment conditions, zs 
> 12.82, ps < .001, smallest 95% CIs [0.46, 0.63], for n = 2 
to 32 with coarse and fine commercial-lab segmentation, 
and zs > 68.00, ps < .001, smallest 95% CIs [0.42, 0.71], 
for n = 2 to 32 with coarse and fine everyday-online seg-
mentation. This suggests that the average of peak-to-peak 
distance values across studies utilizing samples of 2 par-
ticipants should reflect video-driven segmentation behav-
ior. However, a larger number of participants is required to 
detect such differences within a single study. Peak-to-peak 
distance was lower for same movie comparisons than for 
comparisons of random data starting at sample sizes of 8 
for coarse, test(14) = 2.13, 95% CI = [2.04, 2.22] and 6 for 
fine, test(10) = 2.41, 95% CI = [2.31, 2.51] commercial-lab 

Fig. 4  Log10-transformed peak-to-peak distance over increasing sam-
ple sizes for segmentation of: (A) commercial-lab and (B) everyday-
online. Small shapes depict values calculated from a single bootstrap 
iteration (subsample; only a randomly selected 10% of the boot-
strapped values are plotted). Larger shapes depict the average value 
across all bootstrapping iterations. The minimum and maximum val-
ues of the y-axis for each plot are adjusted between grains to better 

capture the degree of change in peak-to-peak distance values, but the 
ranges are kept consistent. Twelve high peak-to-peak distance values 
for coarse commercial-lab and five high peak-to-peak distance values 
for coarse everyday-online were excluded from the plot due to the 
limits set for the y-axes. Error bars represent 95% confidence intervals 
and carets (^) represent the elbows
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segmentation, and 18 for coarse, test(34) = 1.74, 95% 
CI = [1.68, 1.80], and 14 for fine, test(26) = 1.78, 95% 
CI = [1.72, 1.84] everyday-online segmentation. Same 
peak-to-peak distance was also lower than cross-movie 
peak-to-peak distance starting at sample sizes 6 for 
coarse, test(10) = 1.92, 95% CI = [1.83, 2.01] and 6 for fine, 
test(10) = 2.02, 95% CI = [1.93, 2.11] commercial-lab seg-
mentation, and 8 for coarse, test(14) = 2.11, 95% CI = [2.05, 
2.18] and 10 for fine, test(18) = 1.77, 95% CI = [1.71, 1.83] 
everyday-online segmentation.

Across subsamples, the difference between cross-movie 
and random peak-to-peak distance depended on segmentation 
grain and data set. In the commercial-lab data set, cross-movie 
peak-to-peak distance was higher than random peak-to-peak 
distance for coarse segmentation, z = 45.02, p < .001, 95% 
CI [0.46, 0.50]. The reverse was true for fine segmentation, 
in which cross-movie distances were lower than random dis-
tances, z = 4.28, p < .001, 95% CI [−0.067, −0.025]. In the 
everyday-online data set, cross-movie peak-to-peak distance 
was consistently higher than random distances for coarse, 
z = 126.27, p < .001, 95% CI [2.28, 2.36] and fine, z = 12.75, 
p < .001, 95% CI [0.20, 0.27] segmentation.

Peak-to-peak distance decreased as sample size increased 
and eventually stabilized (Fig. 4). Significant linear contrasts 
indicated that peak-to-peak distance decreased with increas-
ing sample size in the commercial-lab data set: z = 198.98, p 
< .001, 95% CI [−223.82, −219.45] for coarse, z = 64.65, p 
< .001, 95% CI [−74.20, −69.83] for fine, and in the every-
day-online data set: z = 112.32, p < .001 95% CI [−219.01, 
−211.49] for coarse, z = 22.86, p < .001, 95% CI [−47.56, 
−40.05] for fine. Significant positive quadratic fits in com-
mercial-lab coarse, z = 117.42, p < .001 95% CI [263.57, 
272.52] and fine z = 38.37, p <.001, 95% CI [83.10, 92.05] 
segmentation and in everyday-online coarse, z = 55.72 p < 
.001, 95% CI [211.14, 226.53] and fine, z = 13.36, p < .001, 
95% CI [44.79, 60.18] segmentation were consistent with 
stabilization in this measure. Subsequent analyses suggested 
that peak-to-peak distance started to stabilize at sample size 
10 for coarse and fine segmentation in the commercial-lab 
data set and in the everyday-online data set. Asymptotic val-
ues for peak-to-peak distance differed across grains but were 
consistent across data sets (Table 1 and Fig. 3).

These findings suggest that peak-to-peak distance can 
be used to quantify two groups’ agreement about bound-
ary placement within a specific movie. Across subsamples, 
information about normative group boundaries captured by 
peak-to-peak distance may be, on average, present in sam-
ples as small as 2 for all segmentation conditions. How-
ever, a minimum of 6–18 participants are needed to capture 
meaningful segmentation behavior within a single study, 
depending on the mode of data collection. Further, as sam-
ple size increased, peak-to-peak distance stabilized with 10 
participants.

Agreement index

As a measure of how well an individual agrees with a sepa-
rate group of observers, agreement index was sensitive to 
the specific movie being segmented (Fig. 5). Across sub-
samples, model-based comparisons indicated that it dis-
tinguished segmentation of the same movie from random 
button presses and segmentation of a different movie in 
both the commercial-lab data set and the everyday-online 
data set. The model indicated that same agreement index 
values were overall higher than those for random data in 
the commercial-lab data set, z = 344.57, p < .001, 95% CI 
[.116, .118] for coarse segmentation, z = 302.14, p < .001, 
95% CI [.102, .103] for fine segmentation, and in the eve-
ryday-online data set, z = 581.79, p < .001, 95% CI [.193, 
.195] for coarse segmentation, z = 482.46, p < .001, 95% CI 
[.160, .162] for fine segmentation. Same agreement index 
values were also higher than cross-movie agreement index 
values in the commercial-lab data set, z = 551.79, p < .001, 
95% CI [.187, .188] for coarse segmentation, z = 481.64, p 
< .001, 95% CI [.163, .164] for fine segmentation, and in the 
everyday-online data set, z = 674.93, p < .001, 95% CI [.224, 
.226] for coarse segmentation, z = 564.68, p < .001, 95% CI 
[.188, .189] for fine segmentation.

Model-based pairwise comparisons also revealed that 
across subsamples, the agreement index began to differenti-
ate same data from random and cross-movie data starting 
at sample size 2 for all segmentation grains and experiment 
conditions, zs > 14.96 ps < .001, smallest 95% CIs [.018, 
.023] for coarse and fine commercial-lab segmentation and 
zs > 45.72, ps < .001, smallest 95% CIs [.058, .064] for 
coarse and fine everyday-online segmentation. This suggests 
that the average of agreement index values across studies 
that utilize samples with as few as 2 participants should 
reflect nonrandom and video-specific segmentation behav-
ior. However, a larger number of participants is required 
to detect differences within a single sample. The standard-
ized differences indicated that the required sample sizes to 
detect differences between same and random agreement 
index within a single study were 6 for coarse, test(10) = 1.97, 
95% CI = [1.88, 2.06] and fine, test(10) = 1.88, 95% 
CI = [1.79, 1.96] commercial lab segmentation, and 6 for 
coarse, test(10) = 2.10, 95% CI = [2.04, 2.16] and 8 for fine, 
test(14) = 2.27, 95% CI = [2.20, 2.34] everyday online seg-
mentation. Sample sizes of 6 for coarse, test (10) = 2.25, 95% 
CI = [2.16, 2.34] and fine, test(10) = 2.25, 95% CI = [2.16, 
2.34] segmentation of commercial lab and 6 for coarse, 
test(10) = 2.11, 95% CI = [2.05, 2.17] and fine, test(10) = 2.30, 
95% CI = [2.23, 2.37] segmentation of everyday-online were 
required to detect differences between same and cross-movie 
agreement index within a single study.

Further, model-based comparisons revealed that, unlike 
the other segmentation agreement measures, agreement 
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index can differentiate cross-movie comparisons from 
random data. Across subsamples, cross-movie agreement 
index was overall lower than the random agreement index 
for all segmentation grains in the commercial-lab data set, 
z = 207.22, p < .001, 95% CI [0.070, 0.071] for coarse seg-
mentation, z = 179.50, p < .001, 95% CI [0.060, 0.062] 
for fine segmentation and in the everyday-online data set, 
z = 93.14 p < .001, 95% CI [0.030, 0.032] for coarse seg-
mentation, z = 82.12, p < .001, 95% CI [0.027, 0.028] for 
fine segmentation. Lower cross-movie agreement values 
could reflect incompatible event structures in different mov-
ies. Consistent with this possibility, the group time series 
from different movies on the original sample were weakly 
correlated (Appendix D).

Agreement index improved and eventually stabilized 
with increasing sample size. Positive, significant linear 
contrasts indicated that same agreement index increased 

with increasing sample size in the commercial-lab data 
set, z = 281.99, p < .001, 95% CI [9.92, 10.06] for coarse 
segmentation, z = 286.97, p < .001, 95% CI [10.10, 10.24] 
for fine segmentation and the everyday-online data set, 
z = 319.11, p < .001, 95% CI [11.03, 11.17] for coarse seg-
mentation, z = 229.63, p < .001, 95% CI [7.92, 8.06] for 
fine segmentation. This effect of increasing sample size on 
the agreement index decreased as sample size increased, 
as evidenced by the significant negative quadratic fit in 
the commercial-lab data set, z = 133.09, p < .001, 95% CI 
[−9.81, −9.52] for coarse segmentation, z = 164.91, p < 
.001, 95% CI [−12.12, −11.83] for fine segmentation, and 
in the everyday-online data set, z = 143.56, p < .001, 95% CI 
[−10.37, −10.09] for coarse segmentation, z = 138.77, p < 
.001, 95% CI [−10.03, −9.75] for fine segmentation. Subse-
quent analyses indicated that the agreement index started to 
stabilize at sample size 14 for coarse and fine segmentation 

Fig. 5  Agreement index over increasing sample size for segmentation 
in: (A) commercial-lab and (B) everyday-online. Small shapes depict 
values calculated from a single bootstrap iteration (subsample; only a 
randomly selected 10% of the bootstrapped values are plotted). Larger 

shapes depict the average value across all bootstrapping iterations. 
Error bars represent 95% confidence interval and carets (^) represent 
the elbows
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in the commercial-lab data set and 18 for coarse and fine 
segmentation in the everyday-online data set. Asymptotic 
values for the agreement index differed across grains but 
were comparable across data sets (Table 1 and Fig. 5). These 
values were also comparable to those reported in other work 
(e.g., Kurby & Zacks, 2011).

These findings suggest that the agreement index can 
be used to quantify how well the boundaries identified 
by an individual agree with those identified by a separate 
group. Across subsamples as small as two participants, the 
mean agreement index captured nonrandom, video-driven 
segmentation behavior on average for all segmentation 
conditions. However, for the agreement index to capture 
segmentation agreement that reliably differs from chance 
within a single study, a minimum of 6–8 participants are 
needed. Further, as sample size increased, the agreement 
index stabilized with 18 participants or fewer. Lastly, the 

agreement index also differentiated random segmentation 
data from segmentation of different movies. This property 
was not observed in the other agreement measures tested 
in this study.

Surprise index

Overall, surprise index was sensitive to whether individual 
segmentation was compared to normative boundaries from 
groups that were segmenting the same movie (Fig. 6). The 
linear mixed-effects model indicated that across subsamples, 
the surprise index distinguished segmentation of the same 
movie from random button presses and segmentation of a 
different movie in both the commercial-lab data set and the 
everyday-online data set. According to the model, same sur-
prise index was higher than random surprise index in the 
commercial-lab data sets, z =265.42, p < .001 95% CI [2.30, 

Fig. 6  Surprise index over increasing sample size for segmentation 
in: (A) commercial-lab and (B) everyday-online. Small shapes depict 
values calculated from a single bootstrap iteration (subsample; only a 
randomly selected 10% of the bootstrapped values are plotted). Larger 

shapes depict the average value across all bootstrapping iterations. 
Error bars represent 95% confidence intervals and carets (^) represent 
the elbow.
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2.34] for coarse segmentation, z = 673.31, p < .001, 95% 
CI [5.87, 5.90] for fine segmentation, and in the everyday-
online data sets, z = 311.05, p < .001, 95% CI [2.32, 2.35] 
for coarse segmentation, z = 665.78, p < .001, 95% CI [4.98, 
5.01] for fine segmentation. Surprise index was also overall 
higher for same than for cross-movie group comparisons in 
the commercial-lab data set, z = 266.51, p < .001, 95% CI 
[2.31, 2.35] for coarse segmentation, z = 670.52, p < .001, 
95% CI [5.84, 5.88] for fine segmentation, and in the eve-
ryday-online data set, z = 261.41, p < .001, 95% CI [1.94, 
1.97] for coarse segmentation, z = 669.09, p < .001, 95% CI 
[5.00, 5.03] for fine segmentation.

Model-based pairwise comparisons revealed that the 
average surprise index across subsamples differentiated 
same movie agreement from agreement in random noise 
and cross-movie agreement, starting at sample size 2 for 
all conditions, all zs > 17.25, ps < .001, smallest 95% CI 
[0.53, 0.67] for coarse and fine segmentation in commercial-
lab, and all zs > 27.78, ps < .001, smallest 95% CI [0.77, 
0.89] for coarse and fine segmentation in everyday-online. 
However, for the surprise index to reflect nonrandom and 
video-specific agreement within a single study, a larger num-
ber of participants is required. The standardized differences 
indicated that to detect a difference between same movie 
and random data, the surprise index requires a sample size 
of at least 8 for coarse, test(14) = 1.78, 95% CI = [1.70, 1.86] 
and 6 for fine, test(10) = 1.96, 95% CI = [1.87, 2.05] com-
mercial-lab segmentation, and 12 for coarse, test(22) = 1.91, 
95% CI = [1.85, 1.97] and 8 for fine, test(14) = 2.03, 95% 
CI = [1.97, 2.09] everyday-online segmentation. Sam-
ple size needed to be at least 8 for coarse, test(14) = 1.80, 
95% CI = [1.72, 1.88] and 6 for fine, test(10) = 1.96, 95% 
CI = [1.87, 2.05] segmentation in commercial lab, and 14 
for coarse, test(26) = 1.83, 95% CI = [1.77, 1.89] and 8 for 
fine, test(14) = 2.06, 95% CI = [2.00, 2.12] segmentation in 
everyday-online for surprise index to reflect differences 
between same and cross-movie agreement.

Across subsamples, surprise index did not consistently 
differ between cross-movie and random data. In commercial-
lab segmentation, the surprise index did not differ signifi-
cantly across cross-movie and random data, z = 1.09, p = .27, 
95 % CI [−0.0076, 0.027]. However, it did differ for fine seg-
mentation, z = −2.79, p = .0052, 95% CI = [0.0073, 0.042]. 
For everyday-online segmentation, the surprise index was 
greater for cross-movie data than random data for coarse, 
z = 49.64, p < .001, 95% CI = [0.36, 0.39], but not fine, 
z = 3.31, p = .00090, 95% CI = [0.010, 0.039] segmentation.

Surprise index improved and eventually stabilized with 
increasing sample size, as indicated by significant positive 
linear contrasts for the commercial-lab data set, z = 148.20 
p < .001, 95% CI [133.33, 136.90] for coarse, z = 340.33, 
p < .001, 95% CI [308.50, 312.07] for fine and the every-
day-online data set, z = 129.95, p < .001, 95% CI [100.08, 

103.14] for coarse, z = 220.28, p < .001, 95% CI [170.72, 
173.78] for fine. The positive effect of sample size on sur-
prise index grew smaller with larger sample sizes, as evi-
denced by the significant negative quadratic fit in the com-
mercial-lab data set, z = 30.52, p < .001, 95% CI [−60.69, 
−53.37] for coarse, z = 97.58, p < .001, 95% CI [−185.99, 
−178.67] for fine, as well as in the everyday-online data set, 
z = 22.95, p < .001, 95% CI [−39.92, −33.64] for coarse, 
z = 84.83, p < .001, 95% CI [−139.09, −132.80] for fine. 
Additional analyses indicated that surprise index began to 
stabilize at sample size 16 for coarse and 14 for fine segmen-
tation in commercial-lab and 16 for coarse and 14 for fine 
segmentation in everyday-online. Asymptotic surprise index 
values differed markedly across conditions (Table 1; Fig. 6).

These findings suggest that surprise index can be used 
to quantify agreement between an individual’s boundary 
placement and normative group boundaries within a specific 
movie. The results suggest that, across studies, the surprise 
index will capture nonrandom and video-specific segmenta-
tion agreement with sample sizes as small as 2 participants, 
on average. However, a minimum of 6–14 participants are 
needed, depending on the mode of data collection, to cap-
ture meaningful segmentation agreement within a single 
study. Further, the surprise index stabilized with 16 or fewer 
participants.

Discussion

This study systematically explored various segmentation 
agreement measures, each quantifying performance at the 
group (peakiness and peak-to-peak distance) or individual 
(agreement index and surprise index) level. The results 
confirmed previous findings on the segmentation task’s 
utility in measuring meaningful behavior. They demon-
strated that multiple agreement measures can capture 
group and individual segmentation patterns with rela-
tively few participants. This observation is true for data 
collected using structured commercial films in the lab and 
unedited videos of everyday activities online. The results 
also validated the use of group segmentation data to infer 
when other people are likely to segment, especially when 
large sample sizes are used. These results provide insight 
into potential limits to the amount of agreement that can 
be observed at the group level and inform the selection of 
sample sizes and measures for future research.

One advantage of using the segmentation task to study 
event perception is its use of naturalistic stimuli, such as 
movies, to approximate the complex and continuous nature 
of everyday experience. However, unlike presenting simple 
stimuli such as images or tones in a discrete and tempo-
rally controlled manner, the mapping between stimuli and 
responses in a segmentation task is undefined. Although 

443Behavior Research Methods  (2023) 55:428–447

1 3



boundary identification is associated with changes in the 
features of a movie (e.g., action or location changes; Hard 
et al., 2006; Magliano et al., 2001; Newtson et al., 1977; 
Swallow et al., 2018), events are fundamentally a mani-
festation of the mind. Therefore, establishing a ground 
truth to compare segmentation performance with is not 
only challenging but potentially misleading. This study 
showed that, despite no “correct” behavior in a segmenta-
tion task, segmentation performance is far from random 
and is not generalizable across different movies. In all 
cases, agreement calculated based on segmentation on the 
same movie (same) was better than agreement calculated 
based on randomly generated data (random) or segmenta-
tion on different movies (cross-movie). When evaluated 
across subsamples, nonrandom and video-specific seg-
mentation behavior appeared to be present with sample 
sizes as small as 2. Although larger samples are needed to 
detect signal-driven segmentation behavior within a sin-
gle sample, this finding highlights the efficacy of using 
the segmentation task to capture genuine and meaningful 
segmentation of naturalistic events. Because most studies 
use samples larger than this, it also increases confidence 
in the literature using naturalistic stimuli to study event 
perception, its cognitive implications, and its neural cor-
relates (Sonkusare et al., 2019).

Further, we found that the reliability of segmentation 
task measures extends beyond controlled laboratory set-
tings. Despite differences in the type of videos used, how the 
data were collected, and the sampled population, on aver-
age, group- and individual-level agreement measures were 
comparable across the commercial-lab and everyday-online 
data sets. This finding demonstrates that the segmentation 
task is a reliable method for assessing segmentation behavior 
with different types of materials, in diverse populations, and 
on a platform where there is minimal experimental control, 
and especially when moderate to large samples are used. 
This information is valuable considering the increased inter-
est in online data collection methods for studying human 
cognition (Stewart et al., 2017) and the heightened reliance 
on web-based alternatives due to global pressures (e.g., the 
COVID-19 pandemic).

Although, on average, sample-level measures of segmen-
tation agreement were sensitive to structured segmentation 
data, large amounts of variability across samples poses clear 
limits on the use of small sample sizes in future studies. 
For small sample sizes, normative boundaries could shift 
by several seconds (on average) from one sample to another 
(Table 1, Appendix A, and Fig. 4). Further, the minimum 
sample size needed to detect differences between same and 
random or cross-movie data in a single comparison was 
always higher than the sample size needed to detect differ-
ences across sample-level statistics. The minimum sample 
size was overall higher for online segmentation of everyday 

activities (up to 18 participants). These findings call for cau-
tion when using data from a small group of participants as 
a basis for inferring both whether normative boundaries are 
movie-specific and when individuals are likely to segment 
an event.

In addition to using large enough samples to capture 
meaningful segmentation patterns, future studies should 
consider the sample size needed to obtain stable segmen-
tation agreement. In this study, we found that agreement 
started to stabilize with moderately large sample sizes (18 
participants or fewer). However, although adding partici-
pants beyond this stabilization point resulted in diminishing 
gains in agreement, studies investigating potentially small 
differences in segmentation agreement may need to aim for 
larger sample sizes. This is particularly true in those cases 
where between-sample variability necessitated larger sample 
sizes to ensure the ability to detect video-driven segmenta-
tion data within a single study (e.g., peak-to-peak distance 
and surprise index for everyday-online segmentation). The 
sample sizes at which segmentation agreement started to 
stabilize differed between individual- and group-level agree-
ment measures, with smaller sample sizes needed for meas-
uring between-group agreement (Table 1). Thus, studies 
interested in estimating the similarity between individual 
and group performance would require larger sample sizes 
than studies interested in identifying normative boundaries 
(see Appendix A for values useful for power analyses). Of 
note, peakiness was the one measure that did not consist-
ently stabilize with increasing sample size, highlighting the 
impact that individual variability in segmentation task per-
formance can have on overall group agreement. Performance 
error and individual differences in segmentation task perfor-
mance also limit estimates of group and individual levels of 
agreement, though the precise limits are likely to depend on 
a variety of factors (e.g., materials, population, and instruc-
tions). Future studies should be cautious of this limit.

This study introduced new methods to quantify seg-
mentation task agreement. First, we describe a system-
atic and straightforward method for defining normative 
group boundaries that preserves the continuous nature of 
segmentation behavior and accounts for subtle variations 
in when participants report an event boundary. Though 
more recent studies also treat segmentation data probabil-
istically (Huff, Maurer, et al., 2017a; Huff, Papenmeier, 
et al., 2017b; Newberry et al., 2021; Smith et al., 2020), 
this study includes methods for avoiding arbitrary deci-
sions about kernel bandwidth, basing it on the data. We 
applied our probabilistic quantification of group segmenta-
tion to calculate between-group agreement (peak-to-peak 
distance) and introduced new ways to quantify individual 
and within-group agreement: the surprise index and peaki-
ness. Notably, the surprise index provides a probabilistic 
method to quantify whether the observed overlap between 
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individual button presses and normative boundaries is 
greater than expected based on their frequency. As a result, 
it avoids limitations that arise from correlating individual 
and group time series, as in the agreement index (e.g., 
assumptions regarding normality and restriction of range).

In addition to the type of agreement one needs to measure 
(within-group, between-group, or individual to group), sev-
eral factors should be considered when deciding which agree-
ment metric to use in future research. These include whether 
the entire group time series should be quantified (peakiness, 
agreement index) or just the normative boundaries (peak-to-
peak distance, surprise index), whether button presses should 
be treated discretely (agreement index) or probabilistically 
(peakiness, peak-to-peak distance, and surprise index), and 
whether assumptions underlying the metric are met. We also 
note that the agreement index was the only measure for which 
cross-movie agreement was significantly worse than random 
agreement in all segmentation grains and conditions. This 
finding could imply that the agreement index is sensitive to 
uncorrelated signals from different movies (correlations of the 
time series for each movie were all below .2, see Appendix D).

This study has several limitations. Although the overall 
patterns of results between commercial-lab and everyday-
online data sets were comparable, there were notable dif-
ferences. More variability was observed across the online 
data subsamples. These differences are difficult to inter-
pret. Greater variability in the everyday-online data could 
reflect common concerns with online task performance, 
such as differences in levels of attentional engagement, 
equipment used to perform the task, or in the sample popu-
lation. It could also reflect the use of lab-produced vid-
eos of everyday activities in the everyday-online data set. 
Unlike commercially produced movies, everyday activity 
videos do not include editing features (e.g., cuts and scene 
changes) that promote synchrony in gaze direction (Dorr 
et al., 2010; Hutson et al., 2017; Loschky et al., 2015) 
and that may systematically facilitate boundary identifi-
cation (Magliano et al., 2020; Magliano & Zacks, 2011). 
However, because everyday activity videos were seg-
mented online, we could not disentangle online perfor-
mance effects from video type. Future work is necessary 
to address this question.

Additionally, although our data sets were relatively large 
for this type of research (N = 64, and N = 72), our analyses 
and the conclusions that can be drawn from them are lim-
ited by sample size, the population that they were drawn 
from, and the degree to which participants in our data were 
representative of those populations (an assumption of boot-
strapping procedures for estimating sampling distributions). 
Finally, we have restricted this investigation to a narrow set 
of questions aimed at addressing whether segmentation task 
performance is stable across individuals and groups of dif-
ferent sizes. We have largely ignored questions about other 

aspects of event segmentation, including measures of hier-
archical alignment of event boundaries for different grains, 
the relationship between boundary identification and video 
features or other aspects of behavior (e.g., eye movements), 
the influence of individuals with atypical segmentation pat-
terns on these measures, and the various methods for creat-
ing group time series. These and other questions will need 
to be addressed in future research.

Conclusion

This study demonstrates that group-to-group or individual-
to-group segmentation agreement measures reflect behavior 
that is meaningful and sensitive to the structure of the movie, 
and that this is true for segmentation data collected online 
as well as in the lab. When estimating segmentation agree-
ment, large samples may not show large advantages over 
moderately sized samples, and even small samples may be 
sufficient to detect nonrandom task performance with some 
metrics. However, the inherent variability in segmentation 
performance across participants may limit the certainty with 
which normative boundaries can be identified. Thus, we pro-
pose that studies interested in investigating segmentation 
agreement should consider (1) the type of agreement under 
consideration (group or individual level), (2) the mode and 
medium in which data are collected (commercial vs. eve-
ryday movie and in-lab vs. online), and (3) the minimum 
sample size needed to reliably capture video-driven segmen-
tation patterns within a single sample (Table 1). Given the 
extensive influence of event segmentation on other cognitive 
processes such as attention and memory, this research can 
inform and supplement other studies on event segmentation 
and its cognitive implications.
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