
1 3

Behavior Research Methods (2023) 55:570–582
https://doi.org/10.3758/s13428-022-01831-6

vexptoolbox: A software toolbox for human behavior studies using 
the Vizard virtual reality platform

Immo Schuetz1,2 · Harun Karimpur1,2 · Katja Fiehler1,2

Accepted: 9 March 2022 
© The Author(s) 2022

Abstract
Virtual reality (VR) is a powerful tool for researchers due to its potential to study dynamic human behavior in highly natu-
ralistic environments while retaining full control over the presented stimuli. Due to advancements in consumer hardware, 
VR devices are now very affordable and have also started to include technologies such as eye tracking, further extending 
potential research applications. Rendering engines such as Unity, Unreal, or Vizard now enable researchers to easily create 
complex VR environments. However, implementing the experimental design can still pose a challenge, and these packages 
do not provide out-of-the-box support for trial-based behavioral experiments. Here, we present a Python toolbox, designed 
to facilitate common tasks when developing experiments using the Vizard VR platform. It includes functionality for com-
mon tasks like creating, randomizing, and presenting trial-based experimental designs or saving results to standardized file 
formats. Moreover, the toolbox greatly simplifies continuous recording of eye and body movements using any hardware 
supported in Vizard. We further implement and describe a simple goal-directed reaching task in VR and show sample data 
recorded from five volunteers. The toolbox, example code, and data are all available on GitHub under an open-source license. 
We hope that our toolbox can simplify VR experiment development, reduce code duplication, and aid reproducibility and 
open-science efforts.

Keywords Virtual reality · Virtual environments · Behavioral study · Experiment development · Vizard programming

Introduction

In traditional lab-based behavioral studies, participants typi-
cally sit motionless in front of a screen while viewing stimuli 
that are highly controlled in position and timing. Participant 
behavior is often measured using stereotypical responses 
such as goal-directed reaching movements or simple button 
presses. In contrast, virtual (VR) and mixed reality (MR) 
setups can create a much closer approximation of the real 
world and allow researchers to study dynamic human behav-
ior (often described as an “active observer”, e.g., Wexler 
& van Boxtel, 2005) in highly naturalistic environments 
(Clay et al., 2019; Fox et al., 2009; Scarfe & Glennerster, 

2015; Wexler & van Boxtel, 2005). VR and MR setups fur-
ther allow to track the observer’s movement in space and 
to present real-time visual and auditory input that closely 
matches the spatial layout expected from a real environment 
(Scarfe & Glennerster, 2019; Slater, 2009; Troje, 2019). At 
the same time, the experimenter retains full stimulus control 
and reproducibility (Fox et al., 2009), rendering VR and MR 
powerful research tools in themselves even when not striving 
for a faithful reproduction of reality (de Gelder et al., 2018). 
Over the past decade, the use of VR and MR for human 
behavior research has steadily grown in popularity, aided by 
the increasing availability of high fidelity, affordable con-
sumer hardware (Fox et al., 2009; Pan & Hamilton, 2018; 
Slater, 2018; Troje, 2019). In the past, optimal use of these 
technologies often required professional software develop-
ment skills. However, the accessibility of 3D rendering plat-
forms has made great strides with the rise of consumer VR, 
and research-specific toolkits to aid in experimental design 
and analysis have recently started to gain momentum. Here 
we present vexptoolbox, a novel open-source toolbox that 

 * Immo Schuetz 
 immo.schuetz@psychol.uni-giessen.de

1 Experimental Psychology, Justus Liebig University, 
Otto-Behaghel-Str. 10 F, 35394 Giessen, Germany

2 Center for Mind, Brain and Behavior (CMBB), University 
of Marburg and Justus Liebig University Giessen, Giessen, 
Germany

/ Published online: 23 March 2022

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-022-01831-6&domain=pdf


1 3

Behavior Research Methods (2023) 55:570–582

facilitates the implementation of behavioral VR experiments 
using the Vizard platform.

Various software packages to aid in designing and imple-
menting a virtual environment (VE) are now readily avail-
able to researchers. The most commonly used include Unity 
(Unity Technologies, San Francisco, CA, USA) and Unreal 
Engine (Epic Games, Cary, NC, USA), originally created as 
game engines and now used in countless games and interac-
tive experiences (both 2D and 3D), as well as Vizard (World-
Viz, Santa Barbara, CA, USA), a development environment 
and rendering engine specifically designed for academic 
and industry research and development. Unity and Unreal 
are free to use for non-commercial research purposes, while 
Vizard requires a commercial license but includes a time-
limited free license option. All platforms require a certain 
amount of software development expertise to use to their full 
potential: Vizard is based on the Python programming lan-
guage, while Unity and Unreal are programmed (“scripted”) 
in C# and C++ , respectively. To enable researchers to eas-
ily build complex environments, all software packages also 
offer a built-in 3D scene editor and provide a number of 
geometric shapes and freely usable 3D objects (“assets”) that 
can be used when arranging a virtual scene. With careful 
selection of the right software and hardware components, 
almost any experimental scenario can now be implemented 
as a virtual environment.

In contrast to the creation of the virtual scene, the imple-
mentation of experimental designs and data collection code 
still poses a challenge to researchers. None of the cited ren-
derers provide capabilities out of the box to solve typical 
research study tasks, such as controlled stimulus presenta-
tion and precise recording of time-stamped behavioral data 
(i.e., discrete button press responses or continuous body or 
eye movements). Behavioral studies are typically structured 
around a collection of individual stimulus–response presen-
tations or trials. Individual trials are often generated based 
on one or multiple factors that are systematically varied by 
the experimenter (Independent Variables or IVs), and in each 
trial one or more behavioral outcomes are measured (termed 
Dependent Variables or DVs). Trials are usually presented in 
pseudo-random order to reduce or eliminate effects based on 
the order of specific manipulations, and multiple repetitions 
of individual trials may be used to achieve a better estimate 
of a noisy behavioral outcome. To give an example: If par-
ticipants are asked to perform repeated reaching movements 
to a visual target in VR using a handheld controller, the posi-
tion of the target could be manipulated systematically as an 
IV, the controller’s movement trajectory could be considered 
a DV, and individual movements would form individual tri-
als. While this type of structure is easy to implement with 
some programming experience, standardized frameworks for 
behavioral experiments can help researchers avoid “reinvent-
ing the wheel” by providing code for common tasks, and 

boost reproducibility and open science efforts by making it 
easier to share and compare experiment code.

In addition to discrete (per-trial) measures such as reac-
tion times or button press responses, VR allows to continu-
ously track and record participant behavior while interacting 
with the environment. Examples of continuous behavioral 
measures include body posture, head and hand kinematics, 
and dynamic eye movement behavior. All current VR sys-
tems track the observer’s head using sensors on the head-
mounted display (HMD) to allow for perspective-correct 
stereoscopic rendering, and often also provide hand posi-
tion and even finger tracking through the use of hand-held 
controllers, often at millimeter-scale resolution (Bauer et al., 
2021; Shum et al., 2019; but see also Bauer et al., 2021; 
Niehorster et al., 2017; Peer et al., 2018 for systematic errors 
that can arise with these systems). Some labs further uti-
lize professional motion tracking solutions like OptiTrack 
(NaturalPoint, Inc., Corvallis, OR, USA) or VICON (Vicon 
Motion Systems Ltd, Oxford, UK), which can capture and 
record full-body motion data. Body kinematics are useful to 
study, e.g., human spatial perception and navigation abilities 
(Karimpur et al., 2020; Klinghammer et al., 2016; Pastel 
et al., 2021), and full-body animated avatars are an important 
tool in research areas such as presence (e.g., Slater & Steed, 
2000; Slater & Usoh, 1993) and embodiment (e.g., Kilteni 
et al., 2012; Pan & Steed, 2019). Another type of continu-
ous behavior of interest to researchers is eye movement data 
(Clay et al., 2019), which is becoming more widely acces-
sible through increasingly available eye tracking solutions 
for VR, such as in the FOVE (FOVE Ltd., Torrance, CA, 
USA) or HTC Vive Pro Eye HMDs (HTC Corp., Xindian, 
New Taipei, Taiwan). VR eye tracking allows to capture an 
observer’s gaze behavior during exploration of highly realis-
tic and complex environments (Clay et al., 2019; Hayhoe & 
Rothkopf, 2011; Rothkopf et al., 2007), visual search (Hel-
bing et al., 2020; Kit et al., 2014; Marek & Pollmann, 2020) 
or visual working memory tasks in VR (Draschkow et al., 
2021, 2022), or to directly compare the deployment of gaze 
while walking in a real building versus navigating its virtual 
twin (Drewes et al., 2021). Other continuous measures might 
come from mobile physiological sensors or EEG devices 
(e.g., Banaei et al., 2017; Gramann et al., 2014). None of the 
rendering engines listed above provide recording facilities 
for this type of continuous data out of the box. Therefore, an 
experimenter is often left to write their own background rou-
tine to sample the desired data (for example, whenever the 
HMD display is refreshed), perform additional processing 
or filtering, and then stream the data to disk or record it in 
memory until the end of a trial. Providing this functionality 
in the form of a programming toolkit or framework can not 
only speed up the implementation of a given experiment, 
but could also provide a common, documented format for 
continuous data across different labs and projects.

571



1 3

Behavior Research Methods (2023) 55:570–582

Experiment frameworks for traditional screen-based 
paradigms have been available for decades, although they 
differ in goals and functionality. Written in MATLAB and 
often considered the gold standard for visual psychophysics, 
the Psychophysics Toolbox (Brainard, 1997; Kleiner et al., 
2007) is aimed at easy creation and highly accurate pres-
entation of visual and auditory stimuli, but also includes 
functionality for common experimental tasks such as 
response recording. PsychoPy (Peirce, 2007) and OpenS-
esame (Mathôt et al., 2012) are both written in the Python 
programming language and aim to be complete experimen-
tation platforms that provide functionality for experiment 
design, stimulus delivery and data acquisition through a 
growing library of backends and plugins. Finally, commer-
cial solutions to experiment frameworks exist as well, such 
as Presentation (Neurobehavioral Systems, Inc., Berkeley, 
CA, USA) or E-Prime (Psychology Software Tools, Inc., 
Pittsburgh, PA, USA). An extensive review of currently 
available frameworks with a focus on timing accuracy was 
recently published by Bridges et al. (2020). Only a few of 
these packages currently have some support for VR at all 
(Psychtoolbox and PsychoPy at the time of writing), but 
various frameworks to facilitate the implementation of VR 
behavioral studies on top of the major rendering engines 
have recently emerged as well. Some of these packages do 
not aim to be a comprehensive solution for building experi-
ments, but are instead designed as add-ons to solve specific 
recurring tasks. An example is the Toggle Toolkit (Ugwitz 
et al., 2021) to quickly implement scene changes based on 
user behavior. Others are designed as full experiment frame-
works geared towards a specific type of paradigm or research 
question, such as the Landmarks toolkit for spatial naviga-
tion experiments (Starrett et al., 2020). Finally, a number 
of recent packages aim to provide a general purpose frame-
work for behavioral experiments using the Unity engine. 
The Unity experiment framework (UXF; Brookes et al., 
2019) contains an extensive set of C# classes for trial-based 
experiment flow control and behavioral data collection. It 
supports both VR and traditional screen-based scenarios, 
including in a web browser. Providing similar functionality, 
bmlTUX (Bebko & Troje, 2020) also includes a graphical 
user interface (GUI) to set up complex factorial experimen-
tal designs and was specifically built for easy integration 
with VR experiments.

While a growing number of packages for behavioral 
experimentation are now available for the Unity platform, 
no such toolkits exist for WorldViz’s Vizard environment at 
the time of writing. At the same time, Vizard is being used 
in our and many other behavioral research labs around the 
world (WorldViz Inc., 2020), and its use of Python as script-
ing language makes it particularly accessible due to Python’s 
pervasiveness and focus on being easy to learn. Inspired by 
the list of software tools described above, as well as built on 

experience from creating virtual reality paradigms in our 
lab at Justus-Liebig University Giessen, we here present a 
Python toolbox to facilitate the implementation of behavio-
ral VR paradigms using the Vizard platform. Additionally, 
we are making our code freely available on GitHub under an 
open-source license and hope that our toolbox can help other 
researchers in implementing common elements of behavio-
ral experiments, reducing code reuse, and improving study 
reproducibility.

In the following sections of this manuscript, we will first 
outline the design decisions behind and the features of our 
toolbox. We will then describe a simple visuo-motor VR 
experiment that was built using our software components 
and can serve as example code for prospective users, fol-
lowed by summarizing some of the behavioral data and 
measures from a small-scale (N = 5) example data collection 
performed in our lab. The paradigm and recorded example 
data are made available as a separate GitHub repository1 
that provides a starting point to other researchers interested 
in using our toolbox.

Experiment toolbox

A main goal of the software described here is to help 
researchers in developing experimental code while still 
retaining the full flexibility of Python and the Vizard script-
ing environment. We aim for the toolbox to be easy to use, 
which is reflected in some of the design decisions made. 
First, our code does not depend on external Python librar-
ies beyond those bundled with Vizard, as those may not be 
available or easily installable on a lab computer with limited 
network connectivity. Second, it can be quickly added to any 
project by copying a folder and adding an import statement 
to the main Python script file. And third, we chose to rely on 
Vizard’s general interface methods for sensor objects instead 
of integrating device-specific SDKs, meaning that any hard-
ware that is supported by Vizard can be used by features 
such as position and orientation recording.

Installation

The toolbox is available from a public GitHub repository2 
and licensed under the MIT license. It can be added to a 
project by cloning or downloading the latest release from 
GitHub and copying the vexptoolbox subfolder into the 
folder where the user’s main experimental script is stored. 
Alternatively, direct download and installation is also 

1 https:// github. com/ ischtz/ proan tirea ch- vizard
2 https:// github. com/ ischtz/ vizard- exper iment- toolb ox

572

https://github.com/ischtz/proantireach-vizard
https://github.com/ischtz/vizard-experiment-toolbox


1 3

Behavior Research Methods (2023) 55:570–582

supported via Python’s pip installer and Vizard’s built-in 
package manager, which can install the toolbox to be glob-
ally accessible by all Vizard scripts and centrally updated if 
necessary. It can then be imported into the experiment script 
by adding import vexptoolbox near the top of the script. 
Published releases are regularly tested using both Vizard 
6 (which is based on Python 2.7) and Vizard 7 (based on 
Python 3.8 +).

Trial‑based experimental design

A main goal of our toolbox is to provide functionality for 
common tasks in a behavioral experiment, such as load-
ing or generating an experimental design, looping through 
trials, collecting trial results, and saving all data in well-
defined file formats that can be easily analyzed further. We 
chose an object-oriented approach to encapsulate the typi-
cal components of a behavioral study and thus implemented 
Python classes for the experiment as well as individual trials. 
Figure 1 illustrates the high-level structure of these Python 
objects and the information stored in each class.

A top-level Experiment object combines all information 
that is specific to an entire experimental session. Currently, 
this includes participant information such as a participant 
code and demographic data, results from calibration and 
validation procedures, and a config data structure that can 
hold parameters that apply to the entire session, such as 
global stimulus or timing information. Participant metadata 
can be stored manually or requested from the experimenter 
via a form built on Vizard’s vizinfo UI functionality. Addi-
tionally, the Experiment object holds a Python list of Trial 
objects for the current experiment and offers class methods 
to add, randomize, start, and stop trials. Trial objects are 
created by importing a tabular text file of trial parameters, or 
generated via Python code such as by specifying the number 
of factors and levels of a full-factorial design. Randomi-
zation is also available, either by shuffling all trials before 
presenting or by shuffling only within ordered experimental 
blocks using an optional block attribute. The block number 
is implemented as a property of each trial (rather than a 
separate loop over experimental blocks, cf. Brookes et al., 
2019), and a column of the input file can be used to specify 
block numbers. Each Trial object contains all data pertaining 
to a specific experimental trial, most importantly a params 
attribute for trial-specific stimulus parameters that is initial-
ized on trial creation or read from a CSV file, and an initially 
empty results attribute that the experimenter can use to store 
collected result data for this trial, simply by assigning key-
value pairs akin to a Python dictionary. Most of these data 
structures are implemented using a custom data structure 
(ParamSet) which can be used identically to a Python dic-
tionary, but which adds functionality such as easy import 
and export of parameters from CSV and JavaScript object 

notation (JSON) file formats. In some cases, Trial objects 
can contain additional data, such as timestamped position 
and orientation data if the SampleRecorder component (see 
below) is used to record continuous participant behavior. 
Experiment data can be saved to different output file formats, 
either individually after a trial is finished or after all trials in 
the trial list have been run. The entire Experiment structure 
including all trial data and parameters can be saved as JSON 
format, which yields a compact, single-file data structure 
that is ideal for Python-based data analysis. Additionally, 
trial params and results can be combined into a CSV file 
containing one row per trial, and continuous sample and 
event data can be exported to a CSV file in which each line 
represents a single data sample at display frame rate (cf. 
Figure 1). Trial result data can be written to disk at the end 
of an experimental session or as separate files immediately 
after each trial, which can limit data loss in case of script or 
data recording errors.

Fig. 1  Overview of the Python classes used in vexptoolbox to encap-
sulate the experimental design. Labels set in italics indicate data 
structures stored as attributes of the corresponding object. Colored 
text describes the general data format (i.e., what is represented by a 
single row of output data) and supported output file types

573



1 3

Behavior Research Methods (2023) 55:570–582

The toolbox provides two main ways for experimenters 
to run the individual trials in order. First, they can write a 
Python loop, iterating over the Experiment.trials argument 
and calling the corresponding functions to start and end each 
trial directly. This method is well suited for relatively sim-
ple experiments and when converting existing experimental 
code to vexptoolbox. Second, they can use the built-in run() 
method and provide at least one task function3 that will be 
run for each trial while being passed the corresponding Trial 
object for easy access to parameters and result data. Cur-
rently, trials can be split into a main as well as a pre- and 
post-trial task function, which are automatically called in 
the correct order. Pre- and post-trial tasks can for example 
be used to set up specific stimulus properties or communi-
cate with external hardware such as EEG amplifiers without 
cluttering the main trial implementation. Our example study 
described below includes examples of a main and a pre-trial 
task.

Recording continuous behavior

Besides storing discrete result data like a “yes” or “no” 
response, which usually occurs once per trial, our tool-
box also includes a SampleRecorder class that can record 
continuous behavioral measures such as movement in the 
environment over the course of a trial. A major use for this 
type of recording is to collect participants’ eye movement 
behavior. Various VR and MR HMDs now include eye track-
ing, and gaze placement in a virtual environment can be 
informative about a participant’s cognitive and perceptual 
processes (Clay et al., 2019). If a Vizard-compatible eye 
tracker is specified when the SampleRecorder component 
is instantiated, gaze vectors output by the eye tracker are 
automatically included in the recorded data. Eye-tracking 
data requires further processing compared to e.g., control-
ler movement data, because the gaze vectors are usually 
reported relative to the tracking device’s frame of reference 
and need to be converted to world space coordinates. There-
fore, the recorder component automatically computes and 
logs the gaze origin and direction vector in world space. 
Additionally, an intersection test of the resulting world gaze 
vectors with the scene is performed automatically on each 
frame (often referred to as raycasting). If the current gaze 
direction intersects with an object, the coordinates of the 
closest point of intersection together with the identity of the 
object hit by the gaze ray are logged as well. The most recent 
gaze direction, position, and fixated object are also made 
accessible as attributes of the SampleRecorder object, which 

enables the experimenter to easily detect participant fixa-
tions on different scene elements or confirm that an observer 
is holding their gaze where they were instructed to fixate. 
Finally, the spatial accuracy and precision of an eye tracker 
are important measures in determining how well different 
fixated objects can be distinguished (Holmqvist et al., 2012), 
but not all eye tracker manufacturers report real-world per-
formance metrics in addition to their technical specifica-
tions. Additionally, for some devices such as the Vive Pro 
Eye, the calibration routine available in Vizard only reports 
success or failure, but does not report metrics of data quality. 
To be able to assess the eye tracker’s spatial accuracy and 
precision in a session (i.e., how well a given participant was 
calibrated), the sample recorder component also includes 
code to display visual targets at predefined positions and 
record gaze data while the participant is instructed to fixate 
on each “validation” target. Data quality metrics such as 
absolute error, standard deviation (SD) and root mean square 
error of gaze position are then computed from the deviation 
between the actual gaze vector and the true target position, 
a standard approach that has recently been implemented as a 
Unity package as well (Adhanom et al., 2020). An example 
of eye-tracking accuracy data for targets at ± 5° from our 
example experiment is shown in Fig. 2.

Fig. 2  Eye-tracking accuracy measured using our validation proce-
dure in the example experiment. Black crosses indicate target posi-
tions (central and ± 5° relative to the point in between the partici-
pant’s eyes). Colored markers indicate average angular gaze position 
for each target and participant, error bars the standard deviation of 
gaze samples during fixation. Numbers in parentheses denote each 
participant’s average gaze accuracy across all five targets

3 See Vizard documentation for details on Vizard’s task scheduling 
system.

574



1 3

Behavior Research Methods (2023) 55:570–582

SteamVR debug overlay

Some VR experiments can be run anywhere a SteamVR 
capable computer and HMD can be set up, including on 
participants’ own VR setups if distributed appropriately. 
However, many paradigms require the precise measurement 
and alignment of the virtual environment with the real-world 
lab space, for example when displaying a virtual table in the 
same place as a physical one to provide passive haptic feed-
back. Additionally, the SteamVR coordinate system tends to 
change especially after a brief loss of tracking (Niehorster 
et al., 2017), the indexing of tracked devices such as control-
lers or Vive trackers can depend on the order in which they 
are paired and/or powered on, and the local coordinate sys-
tem of Vive trackers can change depending on their config-
ured “tracker role”. To be able to quickly visualize the cur-
rent state of the SteamVR system and take measurements, 
we created a SteamVRDebugOverlay component, which can 
be added directly to an existing Experiment object or used 
as a standalone component in any Vizard script. The overlay 
is hidden by default and its visibility can be toggled using a 
hotkey (F12 by default).

All overlay components are created using Vizard built-in 
object primitives. The debug overlay consists of a) a depic-
tion of the global coordinate system by means of coordinate 
axes, colored lines, and a grid aligned with the global ori-
gin, b) a model representation of each connected SteamVR 
device (controllers, trackers, base stations) together with its 
device index, local coordinate system, and current position 
and orientation data, and c) a UI panel displaying position 
and orientation data of all nodes tracked by the debugger. An 
example scene with the overlay enabled is shown in Fig. 3 
(middle panel). Other nodes or sensor objects, such as from 
an external motion tracking system, can be added and visu-
alized as part of the overlay as well. Finally, position and 
orientation measurements can be marked in 3D space using a 
controller, and the list of stored measurements as well as the 
full overlay scene can be exported to a file. These resources 
can be helpful during experiment development and aid in 
the design of virtual environments aligned with a real-world 
lab space.

Utility functions

Finally, based on frequently reimplemented functionality in 
our lab, the experiment toolbox also includes a growing list 
of utility classes and functions. One example is the Object-
Collection class, which groups 3D objects (Vizard nodes) 
in a way similar to the “tag” feature of Unity: An object 
collection allows to easily show, hide, and change proper-
ties of one or multiple objects, which previously had to be 
implemented by iterating over a list of node objects. Each 
object’s visibility, position, orientation, and scale can also 

be manipulated using a single line of code, keeping stimu-
lus presentation code more compact and readable, which is 
especially useful in paradigms that present different com-
binations of task-relevant objects (e.g., the breakfast table 
items used as reach targets in Klinghammer et al., 2016). 
Other utility functionality includes the aforementioned 

Fig. 3  Screen captures of our example VR environment and illus-
tration of the trial sequence. Top: Screenshot from the case study 
pro-/anti-reach task described in Sect.  3. The displayed stimulus 
arrangement instructs the participant to reach opposite (red fixation 
sphere = anti-reach) of the presented target position (gray cube). 
Middle: Example scene with the SteamVR debug overlay enabled. 
Coordinate axes, alignment lines, and white grid visualize Vizard’s 
world coordinate system. Dark gray numbers indicate HMD posi-
tion (shown as heads-up display to the user). Two Vive controllers 
are shown with their index in Vizard’s controller list, current position 
and Euler angle data, and axes denoting their local coordinate sys-
tem. Bottom: Trial sequence in the example paradigm, corresponding 
to the scene shown in the top panel. A white fixation sphere (sphere 
icon) is shown for 1 s, then changes color to red to indicate an anti-
reach. Simultaneously with the color change, a target cube (cube 
icon) is displayed for 1 s. After both cube and sphere disappear, the 
participant performs a reach movement with the controller (gray; con-
troller icon). Icons by Ben Davis from NounProject.com

575



1 3

Behavior Research Methods (2023) 55:570–582

ParamSet class, which extends a Python dictionary by file 
export and import features as well as object.attribute nota-
tion in addition to dictionary access, and a collection of 
functions to e.g., present instruction or feedback text to the 
participant within the virtual environment.

Example experiment: Pro‑/anti‑reach task

To illustrate some of the features of our toolbox in more 
detail, such as the trial-based programming structure, gaze 
and controller motion recording, and storing of trial result 
data, we implemented a simple VR experiment using Viz-
ard 6.3, SteamVR, and the current version of vexptoolbox 
at the time of writing (version 0.1.1). The Python code for 
this experiment and the analysis described below, as well 
as example data recorded from volunteers in our lab, are 
available as a separate GitHub repository, which can serve 
as an introduction or template for researchers interested 
in implementing their own paradigm (https:// github. com/ 
ischtz/ proan tirea ch- vizard). Additionally, the code available 
on GitHub runs on any SteamVR-compatible computer and 
HMD with no modifications required, making this also a 
good demonstration task for students interested in learning 
experiment programming with Python and Vizard.

Experimental paradigm

We implemented a pro-/anti-reach task in VR. In this para-
digm, participants perform manual reaching movements 
towards a visually presented target (pro-reach) or to a loca-
tion in the visual hemifield opposite to the visual target (anti-
reach). A similar paradigm was first described for eye move-
ments (pro- / anti-saccade task; Medendorp et al., 2005; 
Muñoz & Everling, 2004). By independently manipulating 
visual target information and the motor action required for 
a correct response, spatial processing in visual and motor 
areas of the brain can be disentangled. This approach has 
previously been used to investigate the spatial coding of both 
visual target and motor goal using methods such as fMRI 
(Gertz & Fiehler, 2015; Gertz et al., 2017), MEG (Blohm 
et al., 2019), or primate electrophysiology (Westendorff 
et al., 2010). We chose this task here for its relatively simple 
experimental design and because it is well suited to demon-
strate the eye- and controller motion-tracking components 
of our framework.

Participants of our example data collection (N = 5; two 
female, three male; mean age 31.2 years, range 22–38 years) 
were researchers or student assistants in our lab, including 
two of the authors (IS and HK). All were right-handed as 
determined using the Edinburgh Handedness Inventory 
(EHI; Oldfield, 1971) with a mean handedness score of 82.2 
(range 11–100), gave written informed consent and received 

no compensation for their participation. The experiment was 
approved by the research ethics board at Justus Liebig Uni-
versity Giessen and was run in accordance with the Decla-
ration of Helsinki (2008). In contrast to a real study, where 
the experimenter would generally ensure that a participant 
adhered to the task instructions, participants here were 
encouraged to also generate a variety of “mistakes”, such 
as starting their movement before being cued to do so or 
looking at the target despite being asked to fixate centrally. 
Example data for these “mistakes” are shown below (nega-
tive movement latency in Fig. 4 and horizontal eye move-
ments in Fig. 6) and highlight typical sources of data error 
in continuous behavior recording.

The experiment was run on a Dell Workstation PC (using 
an Intel Xeon W2135 CPU at 3.7 GHz, 32 GB RAM, 2 GB 
NVidia Quadro P2200 GPU; Dell Inc., Round Rock, TX, 
USA). During the task, participants wore an HTC Vive Pro 
Eye VR HMD (resolution 1440 × 1600 pixels per eye, 90-Hz 
refresh rate; HTC Corp., Xindian, New Taipei, Taiwan) 
and held a Valve Index controller (Valve Corp., Bellevue, 
WA, USA) in their right hand, which was used to perform 
and record the reaching movements. The eye tracker was 

Fig. 4  Example behavioral parameters (dependent variables), aver-
aged across all participants with valid trials. Error bars indicate ± 1 
standard error. Condition labels indicate the visual target position and 
direction cue. Hor. Error refers to horizontal (X) reaching error rela-
tive to the target

576

https://github.com/ischtz/proantireach-vizard
https://github.com/ischtz/proantireach-vizard


1 3

Behavior Research Methods (2023) 55:570–582

calibrated using its built-in calibration routine at the start 
of the experiment. Additionally, five validation targets were 
presented (central and at ± 5° in a cross formation, see also 
Fig. 2) to determine the accuracy of the eye-tracking cali-
bration. Average calibration accuracy across targets ranged 
from 0.40° to 0.63° (mean, 0.51°), which is well in line with 
the manufacturer supplied range of 0.5–1.1° (HTC Corpora-
tion, 2021).

Each trial started with the presentation of a white fixa-
tion sphere (diameter 5 cm, distance to observer 50 cm), 
which participants had to fixate for 1 s to begin the trial 
(see also Fig. 3, bottom panel, for a visualization of the 
trial sequence). Upon fixation, the sphere changed color to 
indicate the reach direction (blue: towards the target, red: 
opposite of the target) and a white target cube additionally 
appeared for 1 s at the same size and distance as the fixa-
tion sphere, randomly positioned 30 cm left or right of the 
participant’s body midline. Participants were instructed to 
wait for the sphere and target cube to disappear, then reach 
to the correct target location while keeping their gaze at the 
remembered location of the fixation sphere. Reaching move-
ments were therefore performed in an empty scene with only 
the floor visible to avoid any spatial biases. Trials ended 
when the right controller crossed a distance threshold of 
45 cm along the depth (Z) axis, followed by a text instruction 
to start the next trial by button press.

The study design systematically manipulated the factors 
target position (left or right hemifield) and direction cue (pro 
or anti). Additionally, in any given trial the controller could 
either be visible, providing visual feedback of the reach 
movement, or hidden (this manipulation of controller visibil-
ity was included to illustrate how stimulus properties can be 
changed on a trial-by-trial basis in the code). Together, these 
factors yielded a 2 (target position) × 2 (direction cue) × 2 
(visual feedback) design. Every combination was repeated 
ten times, leading to a total of 80 trials per participant that 
took around 5 min including setup and calibration. Because 
the experiment only serves as a case study to illustrate the 
code and recorded data, we here focus on the implementa-
tion and extraction of common experimental variables and 
chose not to include any statistical analysis of the data.

Implementation

The sample experiment is implemented as a single script file 
(pro_anti_reach.py) that only depends on Python modules 
bundled with the default Vizard 6 installation. Initialization 
of SteamVR components closely follows the examples pro-
vided with Vizard. In the following section, we therefore 
focus on the experimental paradigm and refer the reader to 
the Vizard documentation and bundled tutorials for specific 
guidance about setting up Vizard for VR paradigms.

When first instantiating an Experiment object to hold trial 
and participant information, global configuration parameters 
are imported from a JSON file (config.json). These values 
can also be added and modified via the object’s config attrib-
ute using Python dictionary syntax at any time. Likewise, the 
basic experimental design is read from a comma-separated 
value (CSV) text file (trials.csv). This separation of study 
parameters and experiment code is usually good practice, 
as it allows to use the same code to rapidly pilot different 
stimulus parameters or run multiple sessions with different 
experimental conditions by providing a different trial file 
each time.4 The design is then multiplied by the number 
of repetitions specified in the config file and the resulting 
trial list (8 factor combinations × 10 repetitions = 80 trials) 
is randomized. After building the trial design, we construct a 
simple virtual scene containing a ground plane and geomet-
ric primitives as fixation and target stimuli (Fig. 3, top) using 
only resources bundled with Vizard. The fixation sphere and 
target cubes are added to an ObjectCollection to demon-
strate the functionality to concisely show and hide different 
stimuli. Because we are interested in recording eye move-
ments relative to the target and fixation objects, an invis-
ible, fronto-parallel plane is placed at target distance from 
the observer before adding the SampleRecorder component 
to the experiment. When using an eye tracker, the sample 
recording task automatically performs an intersection test 
between the observer’s gaze direction vector and objects in 
the scene. This test is run on each display refresh, and the 
resulting 3D gaze position and currently fixated object can 
be stored in the log file. To ensure that we only record 3D 
gaze points within the target plane, we here disable intersec-
tion tests for all other stimulus objects. To also record the 
participant’s hand movements, we add the controller node to 
the sample recording task. Finally, we implement a virtual 
proximity sensor using Vizard’s vizproximity module that 
will later be used to detect the participant’s reach movement 
and end the trial.

As is typical for Vizard scripts, the main experiment 
functionality is contained in a task function (implemented 
as a Python “generator”, meaning a function that contains 
at least one yield statement), which is passed to the Vizard 
scheduler to run. This enables interactive functionality such 
as the participant metadata UI while not interrupting the 
Vizard rendering loop, and is similar to the use of coroutines 
in Unity (Bebko & Troje, 2020; Brookes et al., 2019). At 
the beginning of the experiment, we collect standard par-
ticipant metadata, calibrate and validate the eye tracker if 
present, and set the visual stimuli to always appear at the 
participant’s eye height. Individual trials are implemented 

4 Note: Calling addTrialsFromCSV without a file name will show a 
file dialog for easy selection.

577



1 3

Behavior Research Methods (2023) 55:570–582

using trial preparation (TrialSetup) and main trial (Trial-
Task) task functions in combination with the Experiment.
run() method. Although the trials here are fairly simple and 
could be implemented in a single task function, we chose 
to include a trial preparation task to show how functional-
ity can be divided for code readability. In preparation for 
each trial, all stimuli are hidden and controller visibility is 
set according to the current trial’s feedback parameter. The 
code then presents a message to the participant and waits for 
controller button press to continue into the main trial task. 
The main task implements the paradigm as described above, 
using general stimulus information from the experiment’s 
config as well as the params of the currently running trial 
to set up the behavioral conditions. Result data are written 
to the current trial object’s results structure. After all trials 
have been run, experimental data is saved to a JSON file con-
taining all data stored in the current experiment as well as 
to individual tabular text files. This serves to illustrate both 
data formats in the example dataset provided. Note that as 
the text file format (e.g., one table row per trial for trial result 
data) is likely familiar to many researchers, our analysis code 
in the GitHub repository focuses on extracting specific data 
from the JSON format. In addition to the scenario described 
above, we also provide a standalone version of the same 
experiment (pro_anti_reach_standalone.py) that illustrates 
how the same result can be achieved by specifying informa-
tion such as stimulus parameters and trial design directly in 
the Vizard script, without relying on external files.

Results and example dataset

We used Python (version 3.7) for data processing. Data were 
imported from the JSON files created after each experimen-
tal session. Trials with a movement latency or movement 
duration (see below for definitions) above or below three 
standard deviations from the respective mean were removed 
as outliers. No other data processing or selection was per-
formed in this example analysis.

As a first step, we calculated the rate of correct responses 
as the proportion of trials in which participants reached 
towards the correct hemifield based on target location 
and reach cue. Except for one trial of one participant, all 
responses fell into the correct hemifield, which is not sur-
prising given the relatively low difficulty of the task. Move-
ment onsets were then extracted from the sample data using 
a velocity criterion. Controller velocity in the X, Y, and Z 
axes was calculated by differentiating the recorded position 
data, and movement onset time was defined as the sam-
ple where positive Z velocity (away from the participant) 
exceeded a threshold value. Using the movement onset time, 
movement latency was then defined as the time between the 
go cue (disappearance of the fixation and target stimuli) 
and movement onset, and movement duration was defined 

as the time between movement onset until the controller first 
crossed the proximity sensor at 45-cm distance, ending the 
trial (see Fig. 4). Finally, horizontal endpoint error is defined 
as the absolute distance along the X direction between the 
point where the controller first reached the distance thresh-
old and the current trial’s target position. Individual and 
group averages of all three measures are displayed in Fig. 4, 
split by each combination of target position and reach cue. 
One participant (#5) was asked to start their movements 
“early”, i.e., before the visual cue. Figure 4 clearly shows 
that this resulted in negative movement latencies, as well as 
unrealistically long movement durations due to the fact that 
the proximity sensor was crossed on their way back to the 
starting position. These results emphasize the importance of 
running pilot experiments before the actual data collection, 
which is greatly facilitated in our solution by separating the 
code and experimental design.

A VR experiment enables researchers to investigate con-
tinuous behavior in addition to individual trial results, in 
this case by recording controller movements at each display 
refresh. Movement data for one example participant (#2) is 
plotted in Fig. 5. Thin lines show movement trajectories in 
individual trials, split by target and reach cue combinations. 
Thick lines illustrate averaged trajectories per condition for 
the first 750 ms of movement after the go cue (dotted vertical 
line). While we did not perform any kinematic analysis here, 
the movement data is very systematic and shows the viability 
of controller position data recorded at a 90-Hz sampling 
rate in studying dynamic behavior. In addition to controller 
movement, we also recorded participants’ gaze position on 
a virtual fronto-parallel plane and found average eye track-
ing accuracy to be around 0.5° (Fig. 2). To exemplify how 
gaze data can be valuable even in fairly simple experiments, 
the horizontal and vertical gaze position in the target plane 
of another example participant (#1) are shown in Fig. 6. 
Despite the instruction to fixate centrally throughout each 
trial, this participant was asked to perform eye movements 
towards the target in the horizontal (X) direction on a large 
number of trials, but did not shift their gaze much in the ver-
tical (Y) direction. In an experiment where the stimulus and/
or reach goal location relative to the participant’s visual field 
is of importance, such as when studying lateralization using 
EEG, such eye tracking data can aid in detecting and remov-
ing invalid trials during analysis or even detect improper 
fixation during a trial, allowing the experiment to repeat the 
trial if necessary.

Discussion

In the present manuscript, we have outlined the major fea-
tures of our open-source software vexptoolbox for behavio-
ral studies on the Vizard platform. To our knowledge, this 

578



1 3

Behavior Research Methods (2023) 55:570–582

is the first such framework for Vizard, complementing a 
wide range of software tools already available for Unity. A 
researcher’s choice in rendering engine can be influenced 
by different factors, such as their experience with the cor-
responding programming language and support for specific 
hardware components. Unity and Unreal often receive early 
support and official Software Development Kits (SDKs) 
from manufacturers of new consumer hardware, such as 
new head-mounted displays (HMDs), controllers etc., due to 
their large market share. At the same time, Vizard includes 
built-in support for a large range of research-focused hard-
ware that can be complicated to integrate with Unity or 
Unreal, such as force-feedback devices, haptic displays, and 
physiological data acquisition tools. We provide our toolbox 
for Vizard as open-source to facilitate the creation of VR 

experiments for researchers working on this platform, help 
avoid frequent re-implementations of common functionality 
and make experiment code easier to understand and share.

Some of the design decisions we made when implement-
ing the current version of our toolbox also come with pos-
sible limitations. One example is the decision to run the 
sample recording task locked to the display frame rate (typi-
cally 90 Hz) and leave the updating of sensor information to 
the Vizard runtime. A major advantage of this approach is 
that any sensor device that can supply 3D data to Vizard is 
automatically supported by our code and no device-specific 
software development kit (SDK) needs to be included. How-
ever, hardware such as eye trackers already support faster 
sampling rates (i.e., 120 Hz for the built-in eye tracker in 
the Vive Pro Eye HMD), meaning that the eye tracking data 

Fig. 5  Example movement data for the individual conditions from all 
trials performed by one participant (#2). Panels show the right con-
troller position over time, relative to the disappearance of target and 
fixation stimuli (go cue—dotted vertical line)

Fig. 6  Example horizontal and vertical gaze position in the VR envi-
ronment during individual trials in one participant (#1), plotted rela-
tive to the disappearance of target and fixation stimuli (go cue—ver-
tical dotted line)

579



1 3

Behavior Research Methods (2023) 55:570–582

may be artificially reduced in fidelity and/or introduce tem-
poral jitter (Andersson et al., 2010; Schuetz et al., 2020). 
The same is true for SteamVR controllers and other motion 
tracking systems. This can be problematic with paradigms 
that require high temporal accuracy, such as studies employ-
ing gaze-contingent stimuli, on-line movement velocity 
calculations, or highly accurate reaction times. Such timing 
problems could be solved by e.g. using an external synchro-
nization device (Watson et al., 2019) or by recording data 
in a background process separate from the rendering engine 
(Wiesing et al., 2020). We chose not to take this approach 
here in the interest of compatibility and ease of use, but 
researchers should be aware of the limitations of display-
synced data recording when planning a VR experiment.

During the preparation of this manuscript, WorldViz 
released a first-party extension to Vizard (“SightLab VR”), 
which is specifically geared towards creating eye tracking 
experiments and available as a separate purchase. While 
there may be some superficial similarities between our 
toolbox and this commercial extension, given that both are 
meant to create experimental studies and include eye track-
ing as a behavioral measure, the two packages pursue dif-
ferent goals. The commercial package promises a “simple 
yet powerful tool for setting up eye tracking experiments 
in VR” (WorldViz website) and thus appears focused on 
ease of use for a specific type of study, while our toolbox 
is meant to aid in implementing any behavioral paradigm 
using Python code and is not specifically geared towards eye 
tracking studies. It is also important to note that none of the 
authors of the presented manuscript or toolbox have licensed 
or used the SightLab extension. Based on the publicly avail-
able brochure, the two approaches target different problem 
spaces but can be complementary depending on the planned 
research project.

We plan to support and extend our toolbox in the future 
and encourage feedback and bug reports using the GitHub 
issue tracking features. Some features already planned for 
future releases include event detection for movement data 
(such as a detection of saccades and fixations for eye move-
ments or inclusion of a velocity-based movement onset cri-
terion as used in the example analysis) and a user interface 
for the experimenter to view the current trial parameters 
while the experiment is running. Nonetheless, we hope that 
our first release will already prove useful to other researchers 
in using virtual and mixed reality as a behavioral research 
method.

Funding Open Access funding enabled and organized by Projekt 
DEAL. This work was supported by the German Research Foundation 
(DFG) grant FI 1567/6–1 TAO (“The active observer”), “The Adaptive 
Mind,” funded by the Excellence Program of the Hessian Ministry for 
Science and the Arts, and the DFG Collaborative Research Centre SFB/
TRR 135 (project A4, Grant Number 222641018).

Data Availability Experiment code, anonymized data, and analysis 
code for the example study are available in a GitHub repository: https:// 
github. com/ ischtz/ proan tirea ch- vizard

Code availability The software toolbox is available at: https:// github. 
com/ ischtz/ vizard- exper iment- toolb ox

Declarations 

Ethics approval The experiment was approved by the research ethics 
board at Justus Liebig University Giessen, and was run in accordance 
with the Declaration of Helsinki (2008).

Consent to participate Informed consent was obtained from all indi-
vidual participants included in the study.

Consent for publication All individual participants consent to publica-
tion of their anonymized data.

Conflicts of interest/Competing interests The authors have no relevant 
financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Adhanom, I. B., Lee, S. C., Folmer, E., & MacNeilage, P. (2020). Gaz-
emetrics: An open-source tool for measuring the data quality of 
HMD-based eye trackers. In: ACM Symposium on Eye Tracking 
Research and Applications, 1–5.

Andersson, R., Nyström, M., & Holmqvist, K. (2010). Sampling fre-
quency and eye-tracking measures: how speed affects durations, 
latencies, and more. Journal of Eye Movement Research, 3(3), 
1–12. 6.

Banaei, M., Hatami, J., Yazdanfar, A., & Gramann, K. (2017). Walk-
ing through architectural spaces: The impact of interior forms on 
human brain dynamics. Frontiers in Human Neuroscience, 11, 
477.

Bauer, P., Lienhart, W., & Jost, S. (2021). Accuracy investigation of 
the pose determination of a VR system. Sensors, 21(5), 1622.

Bebko, AO., & Troje, NF. (2020) bmlTUX: Design and control of 
experiments in virtual reality and beyond. I-Perception 11 (4), 
2041669520938400

Blohm, G., Alikhanian, H., Gaetz, W., Goltz, H. C., DeSouza, J. F. X., 
Cheyne, D. O., & Crawford, J. D. (2019). Neuromagnetic signa-
tures of the spatiotemporal transformation for manual pointing. 
NeuroImage, 197, 306–319.

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 
10(4), 433–436.

580

https://github.com/ischtz/proantireach-vizard
https://github.com/ischtz/proantireach-vizard
https://github.com/ischtz/vizard-experiment-toolbox
https://github.com/ischtz/vizard-experiment-toolbox
http://creativecommons.org/licenses/by/4.0/


1 3

Behavior Research Methods (2023) 55:570–582

Bridges, D., Pitiot, A., MacAskill, M. R., & Peirce, J. W. (2020). The 
Timing Mega-Study: Comparing a range of experiment genera-
tors, both lab-based and online. PeerJ, 8, e9414.

Brookes, J., Warburton, M., Alghadier, M., Mon-Williams, M., & 
Mushtaq, F. (2019). Studying human behavior with virtual reality: 
The Unity Experiment Framework. Behavior Research Methods, 
52(2), 455–463.

Clay, V., König, P., & König, S. (2019). Eye tracking in virtual reality. 
Journal of Eye Movement Research, 12 (1).

Draschkow, D., Kallmayer, M., & Nobre, A. C. (2021). When natu-
ral behavior engages working memory. Current Biology, 31(4), 
869–874. https:// doi. org/ 10. 1016/j. cub. 2020. 11. 013

Draschkow, D., Nobre, A. C., & van Ede, F. (2022). Multiple spatial 
frames for immersive working memory. Nature Human Behav-
iour. https:// doi. org/ 10. 1038/ s41562- 021- 01245-y

Drewes, J., Feder, S., & Einhäuser, W. (2021). Gaze during locomotion 
in virtual reality and the real world. Frontiers in Neuroscience, 15, 
596. https:// doi. org/ 10. 3389/ fnins. 2021. 656913

Fox, J., Arena, D., & Bailenson, J. N. (2009). Virtual reality: A sur-
vival guide for the social scientist. Journal of Media Psychology, 
21(3), 95–113.

de Gelder, B., Kätsyri, J., & de Borst, A. W. (2018). Virtual reality and 
the new psychophysics. British Journal of Psychology, 109(3), 
421–426.

Gertz, H., & Fiehler, K. (2015). Human posterior parietal cortex 
encodes the movement goal in a pro-/anti-reach task. Journal of 
Neurophysiology, 114(1), 170–183.

Gertz, H., Lingnau, A., & Fiehler, K. (2017). Decoding movement 
goals from the fronto-parietal reach network. Frontiers in Human 
Neuroscience, 11, 84.

Gramann, K., Ferris, D. P., Gwin, J., & Makeig, S. (2014). Imaging 
natural cognition in action. International Journal of Psychophysi-
ology, 91(1), 22–29.

Hayhoe, M. M., & Rothkopf, C. A. (2011). Vision in the natural world. 
Wires Cognitive Science, 2(2), 158–166. https:// doi. org/ 10. 1002/ 
wcs. 113

Helbing, J., Draschkow, D., & Võ, M.L.-H. (2020). Search superi-
ority: Goal-directed attentional allocation creates more reliable 
incidental identity and location memory than explicit encoding in 
naturalistic virtual environments. Cognition, 196, 104147.

Holmqvist, K., Nyström, M., & Mulvey, F. (2012). Eye tracker data 
quality: What it is and how to measure it. In: Proceedings of the 
Symposium on Eye Tracking Research and Applications, 45–52.

HTC Corporation. (2021). VIVE Pro Eye Specs & User Guide. 
Retrieved from https:// devel oper. vive. com/ resou rces/ hardw are- 
guides/ vive- pro- eye- specs- user- guide/

Karimpur, H., Kurz, J., & Fiehler, K. (2020). The role of perception and 
action on the use of allocentric information in a large-scale virtual 
environment. Experimental Brain Research, 238(9), 1813–1826.

Kilteni, K., Groten, R., & Slater, M. (2012). The sense of embodiment 
in virtual reality. Presence: Teleoperators and Virtual Environ-
ments, 21(4), 373–387.

Kit, D., Katz, L., Sullivan, B., Snyder, K., Ballard, D., & Hayhoe, M. 
(2014). eye movements, visual search and scene memory, in an 
immersive virtual environment. PLoS ONE, 9(4), e94362.

Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Brous-
sard, C. (2007). What’s new in psychtoolbox-3. Perception, 
36(14), 1–16.

Klinghammer, M., Schütz, I., Blohm, G., & Fiehler, K. (2016). Allo-
centric information is used for memory-guided reaching in depth: 
A virtual reality study. Vision Research, 129, 13–24.

Marek, N., & Pollmann, S. (2020). Contextual-cueing beyond the initial 
field of view—A virtual reality experiment. Brain Sciences, 10(7), 
446. https:// doi. org/ 10. 3390/ brain sci10 070446

Mathôt, S., Schreij, D., & Theeuwes, J. (2012). OpenSesame: An 
open-source, graphical experiment builder for the social sciences. 
Behavior Research Methods, 44(2), 314–324.

Medendorp, W. P., Goltz, H. C., & Vilis, T. (2005). Remapping the 
remembered target location for anti-saccades in human posterior 
parietal cortex. Journal of Neurophysiology, 94(1), 734–740.

Muñoz, D. P., & Everling, S. (2004). Look away: The anti-saccade 
task and the voluntary control of eye movement. Nature Reviews 
Neuroscience, 5(3), 218–228.

Niehorster, DC., Li L., & Lappe, M (2017) the accuracy and pre-
cision of position and orientation tracking in the HTC Vive 
virtual reality system for scientific research. I-Perception, 8 (3), 
2041669517708205

Oldfield, R. C. (1971). The assessment and analysis of handedness: 
The Edinburgh Inventory. Neuropsychologia, 9(1), 97–113.

Pan, X., & Hamilton, A. F. D. C. (2018). Why and how to use vir-
tual reality to study human social interaction: The challenges of 
exploring a new research landscape. British Journal of Psychol-
ogy, 109(3), 395–417.

Pan, Y., & Steed, A. (2019). How foot tracking matters: The impact 
of an animated self-avatar on interaction, embodiment and pres-
ence in shared virtual environments. Frontiers in Robotics and 
AI, 6, 104.

Pastel, S., Bürger, D., Chen, C. H., Petri, K., & Witte, K. (2021). 
Comparison of spatial orientation skill between real and vir-
tual environment. Virtual Reality, 1–14https:// doi. org/ 10. 1007/ 
s10055- 021- 00539-w

Peer, A., Ullich, P., & Ponto, K. (2018). Vive tracking alignment 
and correction made easy. In: 2018 IEEE Conference on Virtual 
Reality and 3d User Interfaces (VR), 653–54. IEEE.

Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. 
Journal of Neuroscience Methods, 162(1–2), 8–13.

Rothkopf, C. A., Ballard, D. H., & Hayhoe, M. M. (2007). Task and 
context determine where you look. Journal of Vision, 7(14), 
16–16. https:// doi. org/ 10. 1167/7. 14. 16

Scarfe, P., & Glennerster, A. (2015). Using high-fidelity virtual real-
ity to study perception in freely moving observers. Journal of 
Vision, 15(9), 3–3.

Scarfe, P., & Glennerster, A. (2019). The science behind virtual real-
ity displays. Annual Review of Vision Science, 5, 529–547.

Schuetz, I., Murdison, T. S., & Zannoli, M. (2020). A Psychophys-
ics-inspired Model of Gaze Selection Performance. ACM Sym-
posium on Eye Tracking Research and Applications, 25, 1–5. 
https:// doi. org/ 10. 1145/ 33791 56. 33913 36

Shum, L. C., Valdés, B. A., & van der Loos, H. F. M. (2019). deter-
mining the accuracy of oculus touch controllers for motor reha-
bilitation applications using quantifiable upper limb kinematics: 
Validation study. JMIR Biomedical Engineering, 4(1), e12291.

Slater, M. (2009). Place illusion and plausibility can lead to realis-
tic behaviour in immersive virtual environments. Philosophi-
cal Transactions of the Royal Society b: Biological Sciences, 
364(1535), 3549–3557.

Slater, M. (2018). Immersion and the illusion of presence in virtual 
reality. British Journal of Psychology, 109(3), 431–433.

Slater, M., & Steed, A. (2000). A Virtual Presence Counter. Pres-
ence, 9(5), 413–434.

Slater, M., & Usoh, M. (1993). The influence of a virtual body on 
presence in immersive virtual environments. In: VR 93, Virtual 
Reality International, Proceedings of the Third Annual Confer-
ence on Virtual Reality, 34–42.

Starrett, M. J., McAvan, A. S., Huffman, D. J., Stokes, J. D., Kyle, 
C. T., Smuda, D. N., … , & Ekstrom, A. D. (2020). Landmarks: 
A solution for spatial navigation and memory experiments in 
virtual reality. Behavior Research Methods, 1–14.

581

https://doi.org/10.1016/j.cub.2020.11.013
https://doi.org/10.1038/s41562-021-01245-y
https://doi.org/10.3389/fnins.2021.656913
https://doi.org/10.1002/wcs.113
https://doi.org/10.1002/wcs.113
https://developer.vive.com/resources/hardware-guides/vive-pro-eye-specs-user-guide/
https://developer.vive.com/resources/hardware-guides/vive-pro-eye-specs-user-guide/
https://doi.org/10.3390/brainsci10070446
https://doi.org/10.1007/s10055-021-00539-w
https://doi.org/10.1007/s10055-021-00539-w
https://doi.org/10.1167/7.14.16
https://doi.org/10.1145/3379156.3391336


1 3

Behavior Research Methods (2023) 55:570–582

Troje, N. F. (2019). Reality check. Perception, 48(11), 1033–1038. 
https:// doi. org/ 10. 1177/ 03010 06619 879062

Ugwitz, P., Šašinková, A., Šašinka, Č, Stachoň, Z., & Juřı́k V,. 
(2021). Toggle Toolkit: A tool for conducting experiments in 
unity virtual environments. Behavior Research Methods, 53(4), 
1581–1591. https:// doi. org/ 10. 3758/ s13428- 020- 01510-4

Watson, M. R., Voloh, B., Thomas, C., Hasan, A., & Womelsdorf, T. 
(2019). USE: An integrative suite for temporally-precise psy-
chophysical experiments in virtual environments for human, 
nonhuman, and artificially intelligent agents. Journal of Neu-
roscience Methods, 326, 108374.

Westendorff, S., Klaes, C., & Gail, A. (2010). The cortical timeline for 
deciding on reach motor goals. Journal of Neuroscience, 30(15), 
5426–5436.

Wexler, M., & van Boxtel, J. J. A. (2005). Depth perception by the 
active observer. Trends in Cognitive Sciences, 9(9), 431–438.

Wiesing, M., Fink, G. R., & Weidner, R. (2020). Accuracy and preci-
sion of stimulus timing and reaction times with Unreal Engine and 
SteamVR. PLoS ONE, 15(4), e0231152.

WorldViz Inc. (2020). New published research studies using WorldViz 
VR solutions explore VR training. Retrieved from: https:// www. 
world viz. com/ world viz- partn ers- in- scien ce- repor ts

Publisher’s Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

582

https://doi.org/10.1177/0301006619879062
https://doi.org/10.3758/s13428-020-01510-4
https://www.worldviz.com/worldviz-partners-in-science-reports
https://www.worldviz.com/worldviz-partners-in-science-reports

	vexptoolbox: A software toolbox for human behavior studies using the Vizard virtual reality platform
	Abstract
	Introduction
	Experiment toolbox
	Installation
	Trial-based experimental design
	Recording continuous behavior
	SteamVR debug overlay
	Utility functions

	Example experiment: Pro-anti-reach task
	Experimental paradigm
	Implementation
	Results and example dataset

	Discussion
	References


