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Abstract
Traditional item response theory (IRT) models assume a symmetric error distribution and rely on symmetric (logit or probit) 
link functions to model the response probabilities. As an alternative, we investigated the one-parameter complementary 
log-log model (CLLM), which is founded on an asymmetric error distribution and results in an asymmetric item response 
function with important psychometric properties. In a series of simulation studies, we demonstrate that the CLLM (a) is 
estimable in small sample sizes, (b) facilitates item-weighted scoring, and (c) accounts for the effect of guessing, despite the 
presence of a single parameter. We then provide further evidence for these claims by applying the CLLM to empirical data. 
Finally, we discuss how this work contributes to the growing psychometric literature on model complexity.
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Before the development of item response theory (IRT) as 
a formal modeling framework, the consensus among psy-
chometricians (e.g., Guilford, 1936; Lord, 1953; Tucker, 
1946) was that the probability of a correct response to an 
item followed a normal cumulative distribution (also known 
as a normal ogive). The natural units of the normal ogive 
are known as probits, and thus, early psychometric models 
relied on the probit link to transform the assumed underly-
ing normality of the latent trait to a more useful probability 
function. The choice of a probit link is logical, but it intro-
duces two potential problems. The first is that the normal 
ogive formula involves integration and can thus be difficult 
to compute. To address this issue, Birnbaum (1968) applied 
the logit link instead of the probit, thereby allowing for the 
logistic approximation to the normal ogive. This approach 
greatly simplified computation (as the logistic function does 
not rely on integration) while maintaining the association to 
the assumed underlying normality through the use of a sim-
ple scaling constant. Accordingly, the Rasch model (Rasch, 
1960) and Birnbaum’s two- and three-parameter logistic 
models (2PLM and 3PLM, respectively) have become the 

de facto models for the analysis of dichotomously scored 
data in educational and psychological assessment.

The second issue that arises from reliance on the probit 
link is that the normal ogive function is symmetric around 
an inflection point. This symmetry, which is also a prop-
erty of the logit link, has long been taken for granted in the 
psychometric literature. Two decades ago, Samejima (2000) 
questioned, “Is this long-lasting tradition justifiable?” and 
demonstrated through her logistic positive exponent fam-
ily (LPEF) of models that asymmetric response functions 
may be “more appropriate for modeling human behavior” (p. 
320). More recent research has followed Samejima’s (2000) 
call to action by presenting several asymmetric alternatives 
to standard IRT models (Bazán et al., 2006; Bolfarine & 
Bazán, 2010; Lee & Bolt, 2017, 2018; Molenaar, 2014). 
One compelling example comes from Molenaar (2014), who 
accounted for unequal error variance across the range of 
the latent trait by incorporating asymmetry in his hetero-
scedastic latent trait model (HLTM). Lee and Bolt (2017, 
2018) then showed that the HLTM offers several benefits 
and should be considered as a worthwhile alternative, not 
only to relatively uncommon models such as the LPEF or 
the ability-based guessing model (San Martín et al., 2006), 
but also to the traditional 3PLM.

The 3PLM encapsulates the problems of assumed nor-
mality. The lower asymptote parameter of the 3PLM is 
typically conceptualized as reflecting the probability that 
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“low-ability” examinees will select the correct answer by 
chance alone (de Ayala, 2009). However, the symmetry of 
the 3PLM implies that this guessing effect is constant for all 
examinees, regardless of their level of the latent trait (i.e., 
ability). Of course, examinees with higher ability levels will 
also guess on certain items, but they are better equipped 
than their lower-ability peers to make “educated guesses” 
(e.g., by using their knowledge to eliminate distractors on 
a multiple-choice item) as opposed to random guesses. In 
other words, it may not be reasonable to treat the 3PLM 
lower asymptote parameter as constant across the range of 
the latent trait. Moreover, Lee and Bolt (2018) found that 
their asymmetric IRT model (i.e., the 3PL-HLTM), with a 
lower asymptote close to zero, achieved better fit than the 
3PLM. These findings support the possibility of modeling 
the guessing process by allowing for asymmetry rather than 
directly estimating a “pseudo-guessing” parameter.

Although the various asymmetric models above have 
merit and offer valuable insights into educational and psy-
chological measurement, an important limitation is that 
each of these approaches adopts an additional “asymmetry” 
parameter. The HLTM, for instance, is just as parametri-
cally complex as the 3PLM, so estimation of its asymme-
try parameter requires a large sample size (e.g., N ≥ 1,000) 
(Lee & Bolt, 2017; Molenaar, 2014). Therefore, regardless 
of whether the HLTM fits well, there may be substantial 
bias in item-level estimation whenever the sample size is 
too small, and in fact, this problem would be expected with 
any model that relies on additional parameters to address 
deviations from symmetry. What is needed is a more parsi-
monious alternative that can account for asymmetry in an 
item characteristic curve.

One simple and powerful method for accommodating 
asymmetry in the response probability function is to iden-
tify and apply alternatives to the typical logit and probit 
link functions. In fact, a letter from IRT pioneer Fred Lord 
to Rasch modeling expert Ben Wright, dated June 20, 1967, 
finds Lord expressing the possible advantages of alternate 
link functions: "You asked about the relative merits of the 
normal-ogive and logistic models. ... The real answer to the 
dilemma is surely both models are wrong. Since they are so 
much alike, it seems futile to wonder whether one is slightly 
more wrong than the other. For this reason, I would use 
whichever is most convenient, until such time as we know a 
better model to use" (cited in Rasch Measurement Transac-
tions, 2010). Over 50 years later, atypical link functions in 
IRT modeling have rarely been considered in the psychomet-
ric literature. However, the usefulness of adapting alterna-
tive link functions has been demonstrated in the generalized 
linear modeling (GLM) framework with regard to binary 
outcome variables (Agresti, 2012).

The GLM framework extends ordinary linear regression 
to accommodate response variables with particular error 

distributions. The first step within this framework involves 
finding a suitable response distribution that best character-
izes the observed data (e.g., binomial, Gaussian, Poisson, 
or other GLM families). The second step is to specify a link 
function that connects the response variable to the explana-
tory variables in the model. A common recommendation is 
to fit different link functions – whether a canonical link or 
some alternative – to the observed data and select the one 
that yields the best fit (Thiele & Markussen, 2012). Careful 
consideration of the link function is especially important 
in IRT because the most widely used models make strict 
(and usually disregarded) assumptions about the error dis-
tribution (Reise et al., 2018). As discussed earlier, applica-
tions of IRT modeling overwhelmingly assume symmetric 
(normal-ogive or logistic) error distributions, but a variety 
of alternatives are available, including the log-logistic (or 
Fisk), and Cauchy (or Lorentz or Breit-Wigner) distribu-
tions, to name a few.

In this paper, we focus on the Gumbel (or log-Weibull) 
error distribution and its accompanying link function: the 
complementary log-log (CLL) link (Fisher, 1922). The CLL 
link has been well established in the GLM literature as a 
viable alternative to logit and probit links (Chambers & 
Cox, 1967; Chen et al., 1999; Cox, 1962; Czado & Santner, 
1992; Pregibon, 1980) and has also appeared in the domain 
of psychometrics. Goldstein (1980) illustrated asymmetric 
characteristics of the CLL link (as described in detail below) 
in the context of IRT, but his research did not explore the 
types of response data that benefit from application of this 
link. Moustaki (2003) listed the CLL alongside other link 
functions that could be applied in latent variable modeling 
of ordinal data and Woods (2015) mentioned the CLL speci-
fication in passing as a way to handle non-normality in the 
latent trait.

More recently, da Silva et al. (2019) investigated a bifac-
tor generalized partial credit (bifac-GPC) model and found 
empirical support for the CLL link over the usual logit and 
probit functions. These authors discussed the advantages 
of the CLL link and described the resulting item and per-
son parameters, but their research did not consider how the 
psychometric properties of their response data may have 
contributed to the superior fit of the CLL model. Rather, 
they included the CLL link primarily to showcase the 
capability of their bifac-GPC model to easily incorporate 
non-traditional link functions. The current study is most 
closely aligned with this latter publication, though da Silva 
et al. (2019) examined polytomous response data, a mul-
tidimensional structure, and Bayesian estimation methods 
and included the CLL link to demonstrate the flexibility 
of their model. The present work contributes to this body 
of research by (a) investigating the CLL link in a simpler 
context (i.e., a unidimensional structure with dichotomous 
data); (b) employing non-Bayesian IRT estimation methods 
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(an extension specifically recommended by da Silva et al., 
2019); and (c) providing a rationale for why certain types of 
educational and psychological item response data may be 
better represented by specifying a CLL link. We begin by 
detailing the mathematical foundations of the model.

Overview of the complementary log‑log link

The complementary log‑log link

Extreme value theory provides a statistical framework for 
drawing inferences about the probability of rare events. 
One particular extreme value distribution is the Gumbel 
distribution (also known as the log-Weibull, double expo-
nential, or generalized extreme value distribution type 
I), which is unimodal with probability density function 
f(x) = β−1 exp[− exp(−z) − z] and cumulative distribution 
function (CDF)

where z = (x − α)/β and x is some explanatory variable. 
When the location α and scale β parameters are 0 and 1, 
respectively, then z = x and the result is known as the 
standard Gumbel G(0,1) distribution, which has a mean 
of 0.577 (i.e., the Euler–Mascheroni constant), median of 
− ln[ln(2)] ≈ 0.367, and variance of π2/6 ≈ 1.645. As shown 
in Fig. 1, the shape of the standard Gumbel distribution 
resembles a right-skewed normal distribution.

The inverse of the Gumbel CDF in Eq. (1) yields the CLL 
link function (Fisher, 1922):

where P denotes the [0,1] probability function. Within 
the GLM framework, the inclusion of unknown regres-
sion parameters (denoted by βi) results in z = β0 + β1x, and 

(1)F(x) = exp
[
− exp (−z)

]
,

(2)P = 1 − exp
[
− exp(z)

]
,

rearrangement of terms (according to the properties of loga-
rithms) yields an alternate representation of the CLL link:

As shown in Fig. 2, the CLL link, like probit and logit 
links, produces a monotonically increasing, continuous 
probability function. That is, as the explanatory variable x 
approaches −∞ or +∞, the probability P approaches 0 or 
1, respectively. See Agresti (2012) for further details on the 
CLL link function.

To better understand the measurement utility of the CLL 
link, it is worthwhile to compare and contrast it with the 
commonly used logit link function. First, consider the shapes 
of their probability functions, as indicated by the bold and 
dashed curves in Fig. 2: For low P values (say, less than .20), 
the CLL link is closely aligned with the logit link. Unlike the 

(3)ln [− ln (1 − P)] = �0 + �1x.

Fig. 1  Histograms of the normal (left) and Gumbel (right) distributions from a hypothetical random sample (N = 1000). Note the extended 
x-axis to accommodate the long tail of the Gumbel distribution

Fig. 2  Comparison of probit, logit, and CLL link functions
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logit, however, the CLL function reflects the asymmetry of 
the underlying Gumbel distribution by increasing sharply as 
values of the explanatory variable increase.

More specifically, on the logit scale, the change in one 
standard unit is given by

where x2 > x1. Through exponentiation, Eq. (4) becomes

which implies that the change in logits is constant for all 
x values (specifically, for each 1-unit increase in x, the prob-
ability increases by e ≈ 2.718). On the CLL scale, however, 
the change in one standard unit is formulated as

where x2 > x1, or after simplification:

where

Equation (7) states that the probability of x2 is propor-
tional to the probability of x1 to the power of exp(β1). In 
other words, for each one-unit increase in the explanatory 
variable, the probability increases exponentially, meaning 
changes in the CLL function, unlike changes in the logit, 
are not constant (note that these models can be compared 
more directly via metric transformation onto the probit scale; 
see the Appendix for derivation of a CLL scaling constant).

IRT modeling with the complementary 
log‑log link

From an IRT modeling perspective, the CLL model (CLLM) 
can be formulated as

where xij = 1 denotes a correct response by examinee i to 
dichotomous item j, θi is the ability level of examinee i, and 
bj is the parameter of item j. Figure 3 presents the item char-
acteristic curves (ICCs), item information functions (IIFs), 
and conditional standard errors of measurement (CSEMs) 

(4)
ln
(
Px2

)
− ln

(
Px1

)
=
(
�0 + �1x2

)
−
(
�0 + �1x1

)
= �1

(
x2 − x1

)

(5)exp
(
�1
)
= exp

[
ln
(
Px2

)
− ln

(
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)
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)
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(
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) .

(9)P
(
xij = 1|�i;bj

)
= 1 − exp

[
− exp

(
�i − bj

)]
,

of the CLLM alongside the more familiar Rasch, 2PL, and 
3PL IRT models. The top panel depicts the relatively steep 
slope and asymmetry of the CLLM ICC.

The middle panel presents the CLLM expected (or Fisher; 
see Magis, 2015) item information function, as given by

As in traditional IRT models, the CLLM information 
function is proportional to the reciprocal of the standard 
error of the item parameter, and thereby reflects measure-
ment precision. Thus, the middle panel of Fig. 3 illustrates 
one of the primary advantages of the CLLM: Although 
the CLLM and Rasch models each estimate a single item 

(10)

Ij(�) =

(
P�j(�)

)2

Pj(�)
(
1 − Pj(�)

) =

[
1 − Pj(�)

Pj(�)

][
log(1 − Pj(�)

]
2.

Fig. 3  Item characteristics curves (top), item information functions 
(middle), and conditional standard errors of measurement (bottom) 
of the Rasch model, complementary log-log model (CLLM), two-
parameter logistic model (2PLM), and three-parameter logistic model 
(3PLM)
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parameter, the CLLM is always more informative than the 
Rasch model, except when respondents exhibit high levels 
of the latent trait. In other words, for low-to-moderate levels 
of the trait, the CLLM yields greater measurement precision 
than the Rasch model, but with no additional parametric 
complexity. Further, the peak of the CLLM IIF even sur-
passes the maximum information afforded by 2PL and 3PL 
models that would typically be appraised as highly discrimi-
nating (i.e., with slope  = 1.5).

Another psychometric property of the CLLM is shown in 
the bottom panel of Fig. 3, which displays the CSEM:

The CSEM is an indicator of the precision of an estimate, 
conditional on the underlying latent trait. The Rasch and 
2PLM CSEMs are symmetric about the item difficulty (i.e., 
b = 0), implying that this item offers precise measurement 
within the range of θ ≈ [−2.5,  2.5]. Conversely, the CSEMs 
of the CLLM and 3PLM are asymmetric, and their regions 
of optimal precision are located at opposite ends of the latent 
trait continuum. Specifically, the 3PLM offers the greatest 
precision within the range of θ ≈ [−1.5, 2.5], whereas the 
CLLM is most precise in the range of θ ≈ [−2.5, 1.5].

Weighted scoring of the CLLM

One of the primary advantages of the CLLM over tradi-
tional symmetric models relates to the estimation of person 
location parameters (i.e., “scoring”). We focus first on the 
peculiarities that may arise when applying common IRT 
models to score examinees. It has long been known that the 
choice of IRT model has strong implications for scoring. 
For example, proponents of the Rasch model (e.g., Wright, 
1992) criticize the 2PLM and other models for allowing 
the discrimination parameters to vary, in part because this 
enables paradoxical scoring. Consider as an example three 
dichotomously scored items of lower, moderate, and higher 
difficulty, b = {–.5, 0, .5}. When discrimination parameters 
also vary, e.g., a = {.5, .8, 2.0}, the expected a posteriori 
(EAP) score is �̂� = −0.021 for pattern 110 and �̂� = .355 for 
pattern 001. That is, the estimate of the person location in 
the latter case is higher, despite a raw score of 1 and failure 
to correctly answer the easier items. In contrast, the Rasch 
model applies an equal weight of a = 1.0 to all items; con-
sequently, the raw score is a sufficient statistic for estimat-
ing the person parameter, and a raw score of 1 will always 
yield a lower EAP than a raw score of 2. In our three-item 
example, Rasch scoring would result in EAPs of �̂� = 0.306 
for pattern 110 and �̂� = −.306 for pattern 001. That is, in the 
Rasch model, correctly responding to a more difficult item, 

(11)CSEMj(�) =
1

√
Ij(�)

.

while incorrectly responding to the easier items, does not 
induce a contradiction in terms of the EAPs.

Unlike the Rasch model, the CLLM allows for weighted 
scoring, despite the fact that it only estimates a single item 
parameter. To be more specific, the CLLM penalizes rela-
tively high-ability respondents for failing to correctly answer 
easier questions (which Samejima (2000) attributed to the 
respondent’s “lack of brightness”). Table 1 shows the esti-
mated EAP scores from a five-item test with equally spaced 
parameters b = {–3.0, –1.5, 0.0, 1.5, 3.0}. Person parameters 
were generated from the standard normal distribution (i.e., 
θ ~ N(0, 1)); Accordingly, of the 32 possible response pat-
terns, the 18 patterns that exhibited incorrect responses to 
easier items along with correct responses to difficult items 
did not appear in this example. Unlike the symmetric pro-
bit- or logit-based IRT models, counterintuitive rankings 
do not appear among the CLLM scores. For example, pat-
tern 10000 ( ̂𝜃 = −1.474 ) yielded a higher EAP than pattern 
01000 ( ̂𝜃 = −2.131 ), despite the fact that both patterns had 
the same raw score and only a single freely estimated param-
eter. Further, of the patterns with a raw score of 4, pattern 
11110 ( ̂𝜃 = .864 ) corresponded to a far higher EAP than pat-
tern 11011 ( ̂𝜃 = .712 ) because the CLLM imposed a heavy 
scoring penalty for missing an easier item even when more 
difficult items were answered correctly.

Interpretation of the CLLM item parameter

To understand the psychometric properties of the CLLM 
item parameter, it is useful to first review the inflection 

Table 1  Estimated EAP scores of the CLLM

Note. Item parameters were fixed at b = {– 3.0, – 1.5, 0.0, 1.5, 3.0}. 
Person parameters were drawn from a standard normal distribution, 
resulting in the observance of 14 of the 32 possible patterns. Bold 
type indicates the highest �̂�

EAP
 for each raw score.

Raw score Response pattern �̂�
EAP

1 0 00000 – 2.485
2 1 10000 – 1.474
3 01000 – 2.131
4 2 11000 – .595
5 10100 – 1.063
6 10010 – 1.113
7 01100 – 1.874
8 3 11100 .171
9 11010 – .116
10 11001 – .153
11 10110 – .744
12 4 11110 .864
13 11101 .712
14 5 11111 1.526
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points of common item responses functions. In traditional 
fixed asymptote IRT models (e.g., the Rasch and 2PL mod-
els), the item difficulty parameter is located at the x-coor-
dinate of the inflection point of the (symmetric) response 
function. The y-coordinate of this inflection point is always 
equal to P = 0.5. These are not arbitrary choices. Consider 
the Rasch model, given by P(x = 1| θ, b) = exp(z)/(1 + exp(z)). 
Here, the logit z = θ − b indicates that the correct response 
probability is a function of the difference between per-
son and item parameters. When the respondent’s abil-
ity perfectly matches the item’s difficulty, then θ = b and 
P(x = 1| θ, b) = exp(0)/(1 + exp(z0)) = 0.5; when ability > 
difficulty, P(x = 1| θ, b) > 0.5; and when ability < difficulty, 
P(x = 1| θ, b) < 0.5.

In models with freely estimated asymptotes (e.g., the 
3PLM and four-parameter logistic model (Barton & Lord, 
1981)), the inflection point depends on the height of the 
asymptote parameters. When the 3PLM g (pseudo-guessing) 
parameter is non-zero, then the y-coordinate of the inflection 
point will be greater than P = 0.5, and specifically, is given 
by (g + 1)/2 (where 1 is the value of the upper asymptote 
parameter). In other words, to account for respondent guess-
ing, the 3PLM does not simply raise the extreme low end 
of the response function; rather, it raises the entire function, 
including the inflection point.

We can use this same reasoning to characterize the CLLM 
response function. As in the other dichotomous IRT models, 
the CLLM item parameter is located at the x-coordinate of 
the inflection point. Setting θ = b on the right side of Equa-
tion (9) reveals the precise value of the response probability 
associated with the CLLM inflection point. Specifically, 
using simplified notation, the y-coordinate of the inflec-
tion point is P(θ) = 1 − exp[− exp(0)] = 1 − exp(−1) ≈ .632
1. Relative to symmetric IRT models with fixed asymptotes 
and inflection points at P = 0.5, the CLLM inflection point 
is substantially higher (26.42% higher to be exact). This 
raised inflection point leads to an important property of the 
CLLM: when ability < difficulty, P(θ) < 0.6321. In other 
words, the complexity of the CLLM holds that respondents 
can be located below the inflection point and still have a 
correct response probability close to .6321.

This interpretation sounds quite similar to explanations 
of the 3PLM g parameter, and in fact, the CLLM inflec-
tion point is equal to the inflection point of a 3PLM with 
g = 1 − 2 ∗ exp(−1) ≈ .2642, as shown in Fig. 4. In summary, 
the coordinates of the CLLM inflection point imply that its 
item parameter can be interpreted as a difficulty parameter 
with a heightened response probability of approximately 
.6321, which corresponds to a 3PLM with a sizeable pseudo-
guessing parameter. In fact, when modeling multiple-choice 
response data, it is not uncommon to account for guessing 
by fixing the lower asymptote at 1/k (where k is the num-
ber of response options), thereby enabling efficient, stable, 

and accurate parameter estimation, often without sacrificing 
goodness-of-fit (see Han, 2012). The inflection point of the 
CLLM is therefore similar to a fixed-guessing 3PLM with k 
= 4 options (i.e., a guessing probability of .25), which is a 
response scale widely encountered on multiple-choice cog-
nitive tests such as the GRE. Further relationships between 
the CLLM and other common IRT models will be explored 
in more depth in the simulation studies to follow.

Simulation studies

To investigate the CLLM in the context of item response 
data and identify its characteristics relative to existing 
dichotomous IRT models, we conducted three simulation 
studies. The goal of Study 1 was to investigate item param-
eter recovery and determine the required sample size for 
CLLM applications. Study 2 was designed to examine the 
person parameter estimates from the CLLM in contrast to 
those from more traditional IRT models. In Study 3, we 
investigated the CLLM in the context of guessing. The R 
packages sirt (Robitzsch, 2019) and mirt (Chalmers, 2012) 
were used to analyze the Rasch/CLL and 2PL/3PL models, 
respectively. Practitioners should note that CLLM estimation 
code is included on p. 450 of the sirt manual (Robitzsch, 
2019). All results are based on marginal maximum likeli-
hood (MML; Bock & Aitkin, 1981) estimation, which is 
widely used in IRT modeling; alternative methods such as 
joint maximum likelihood, conditional maximum likelihood, 
and Bayesian estimation are available and may yield differ-
ent results (see Robitzsch (2021) for an overview of these 
and other IRT estimation methods). Programming code and 

Fig. 4  Comparison of the complementary log-log model (CLLM) 
with b = 0 and the three-parameter logistic model (3PLM) with 
b = 0, a = 1, and g = 1 − 2 ∗ exp(−1) ≈ .2642. The horizontal line 
indicates the y-coordinate of the inflection point of both models at 
1 − exp(−1) ≈ .6321
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simulated data from each study can be found at https:// osf. 
io/ nwckd/.

Simulation Study 1

Study 1 design

Prior to a deeper investigation of the CLLM, it was nec-
essary to first consider whether the model is able to accu-
rately estimate the item parameter. Simulation Study 1 was 
therefore intended to assess CLLM item parameter recovery 
across various sample size conditions. As presented earlier, 
the CLLM estimates a single item parameter and is therefore 
equivalent to the Rasch model in terms of parametric parsi-
mony. According to Linacre (1994), under a well-designed 
test, the minimum sample size for stable item calibration 
in the Rasch model is just N = 30. Thus, CLLM estimation 
stability was tested under the same sample size conditions 
that Linacre considered in his analysis of the Rasch model, 
that is, N = {30, 50, 100, 250, 500}.

We generated a test consisting of nine dichotomous items 
with true item parameters ranging from – 2.0 to + 2.0 in 
intervals of 0.5. Person parameters were randomly generated 
from the standard Gumbel distribution (i.e., θ ~ G (0, 1)). 
To examine parameter recovery, we fitted the CLLM to the 
generated data using MML estimation, which assumes an 
underlying standard normal ~N(0,1) latent trait distribution 
in most, if not all, IRT software (though it should be noted 
that the sirt package does allow users to specify any other 

(semi-)non-parametric distribution via the xxirt() function). 
Consequently, we modified the MML estimator to account 
for the underlying Gumbel distribution and, as expected, 
obtained unbiased results. However, recognizing that most 
practitioners will accept the MMLE defaults, we also exam-
ined CLLM item parameter recovery by assuming normality 
in the latent trait (as did da Silva et al. (2019)). The results 
shown below are based on this default setting. Each condi-
tion was replicated 100 times.

Study 1 results

Parameter recovery was evaluated using the mean, stand-
ard deviation (SD), and bias of the estimated parameters 
across the 100 replications of each condition, as displayed 
in Table 2. Following the guidelines of Curran et al. (1996), 
bias < 5% was considered trivial, bias between 5 and 10% 
was considered indicative, and bias > 10% was considered 
significant. Across all conditions, overall recovery perfor-
mance was acceptable, and as expected, parameter recovery 
became more accurate as sample size increased. This ten-
dency was evident in the SDs, which narrowed from [0.35, 
0.60] in the N = 30 condition, to [0.26, 0.42], [0.17, 0.30], 
[0.10, 0.20], and [0.07, 0.13] when N = 50, 100, 250, and 
500, respectively.

Further, substantial parameter bias was only present when 
N = 30 and items were located at the higher end of the latent 
trait scale; whereas, when N = 500, the maximum bias was 
just 3.16%. Even though the results in the N = 30 condition 

Table 2  Means, standard deviations, and bias of the item parameter estimates across all sample size conditions

Note. Means, standard deviations, and parameter bias are averaged across 100 replications and estimated using marginal maximum likelihood 
with an assumed normal distribution. Bold font indicates bias > 10%. To avoid undefined situations, a rescaled denominator was used when the 
true item parameter value was zero (following Wiedermann & von Eye, 2020).

N True item parameter

– 2.0 – 1.5 – 1.0 – 0.5 0.0 0.5 1.0 1.5 2.0

30 M – 2.004 – 1.559 – 1.037 – .478 .066 .567 1.136 1.645 2.244
SD .459 .457 .458 .412 .346 .376 .405 .482 .600
Bias % 0.178 3.939 3.748 – 4.396 6.650 13.415 13.578 9.651 12.187

50 M – 2.037 – 1.550 – 1.031 – .542 .014 .491 1.081 1.500 2.098
SD .399 .357 .309 .265 .270 .261 .328 .325 .421
Bias % 1.829 3.335 3.103 8.363 1.442 – 1.775 8.054 – 0.020 4.904

100 M – 2.066 – 1.516 – 1.003 – .512 .011 .515 1.024 1.537 2.059
SD .298 .243 .218 .178 .193 .194 .203 .235 .274
Bias % 3.300 1.055 0.288 2.472 1.108 3.079 2.397 2.488 2.951

250 M – 2.056 – 1.541 – 1.024 – .531 – .015 .493 1.000 1.497 2.014
SD .204 .175 .131 .118 .099 .114 .128 .142 .169
Bias % 2.777 2.753 2.396 6.290 – 1.528 – 1.452 0.003 – 0.177 0.725

500 M – 2.025 – 1.500 – .991 – .496 .002 .516 1.011 1.515 2.004
SD .132 .103 .087 .083 .094 .073 .094 .099 .117
Bias % 1.265 – 0.007 – 0.889 – 0.875 0.228 3.164 1.113 1.032 0.197
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were relatively more biased, the average parameter estimates 
were very close to the true item parameter values when items 
were less difficult. These results demonstrate that, with 
regard to sample size, the CLLM is approximately as robust 
as the Rasch model (Linacre, 1994). In addition, they sup-
port reliance on the default MML estimation settings and 
give increased credibility to the results below.

Simulation Study 2

Study 2 design

Figure 3 illustrates a distinctive property of the CLLM 
ICC: While the 3PLM excels at measuring individuals with 
moderate-to-high levels of the latent trait, the CLLM offers 
greater measurement precision at low-to-moderate levels. 
This suggests that the two models may differ in terms of 
scoring examinees, particularly when the specified model 
does not align with the (unknown) data-generating mecha-
nism. Accordingly, our second simulation study investigated 
the accuracy of CLLM person parameter estimates when 
data were generated from the 3PLM (and vice versa).

To compare the estimated EAP scores, item and person 
parameters were generated from typical ranges reported by 
Baker and Kim (2017). Specifically, we generated a test con-
sisting of nine dichotomous items with difficulty parameters 
ranging from – 2.0 to + 2.0 in intervals of 0.5. Person param-
eters of N = 1000 simulated were randomly generated from 
the standard normal distribution (i.e., θ ~ N (0, 1)). When the 
data-generating model was the CLLM, only the item diffi-
culty parameters were considered; When the data-generating 
model was the 3PLM, item discrimination parameters were 
randomly generated from a uniform distribution, (i.e., a ~ 
U(1.0, 1.7)) as were the lower asymptote parameters (i.e., 
g ~ U(0.1, 0.3)). Each condition was replicated 100 times.

To thoroughly investigate scoring accuracy, the CLLM 
was fit to data generated from the 3PLM, the 3PLM was 
fit to data generated from the CLLM, and in both condi-
tions, the Rasch and 2PL models were also included for the 
purpose of comparison. Recovery of the true person param-
eters was evaluated using bias and root mean square error 
(RMSE) of the estimates from each of the fitted models. 
Higher accuracy was indexed by bias and RMSE values 
closer to zero.

Study 2 results

Table 3 presents the overall bias and RMSE, as well as cor-
relations between true and fitted models. Across all condi-
tions, estimation bias was essentially zero. When data were 
generated from the 3PLM, the RMSE of the 2PL model was 
below 0.2 and the RMSEs of the Rasch and CLL models 
were between 0.3 and 0.5. When data were generated from 
the CLLM, the RMSEs of the 2PL and 3PL models were 
below 0.2 and the RMSE of the Rasch model was between 
0.3 and 0.5. Finally, the latent trait estimates were extremely 
highly correlated (r > .95) for all models. In sum, Simula-
tion Study 2 demonstrates minimal detriments to latent trait 
recovery when fitting the CLLM to data that were generated 
from a 3PLM model (and vice versa). Importantly, these 
unbiased CLLM person parameter estimates were obtained 
with estimating only a single item parameter.

Simulation Study 3

Study 3 design

Relative to the traditional 3PLM, Lee and Bolt (2018) 
demonstrated that Molenaar’s (2014) asymmetric model fit 
better despite having a lower asymptote near zero, while 

Table 3  Bias, root mean square error, and correlations of latent trait estimates (EAP scores) when fitting Rasch, 2PL, 3PL, and CLL models to 
data generated by different mechanisms

Note. N = 1000. Results are based on 100 replications.

True model = 3PLM True model = CLLM

 Fitted Model M SE Fitted Model M SE

Bias Rasch .000 .000 Rasch – .006 .004
2PLM .000 .000 2PLM .000 .000
CLLM .000 .000 3PLM .000 .000

RMSE Rasch .246 .041 Rasch .434 .022
2PLM .123 .030 2PLM .088 .015
CLLM .368 .031 3PLM .101 .019

Correlations Rasch .957 .014 Rasch .989 .001
2PLM .986 .007 2PLM .995 .001
CLLM .977 .009 3PLM .994 .003
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Han (2012) showed that fixing the guessing parameter at 
1/k provided more stable and accurate parameter estimates. 
With those findings in mind, we conducted a third simula-
tion experiment to explore whether the CLLM also succeeds 
at capturing a guessing effect. To investigate this issue, data 
were generated from the 3PLM, which was developed by 
Birnbaum (1968) to allow for a non-zero probability of a 
correct response among persons located at extremely low 
levels of the latent trait (i.e., by guessing correctly). The 
design of the simulation study included moderate (N = 500) 
and large (N = 1000) sample sizes, and person parameters 
were randomly drawn from a standard normal distribution 
(i.e., θ ~ N(0, 1)). We generated a 20-item test with lower 
asymptote (g) parameters randomly sampled from a uni-
form distribution (i.e., g ~ U(0.1, 0.3)), thereby simulating 
a small-to-medium guessing effect for each item. Item dif-
ficulty and discrimination parameters were specified to rep-
resent several conditions. Item difficulty conditions included 
a match to the distribution of abilities (i.e., b ~ N(0, 1)), and 
distributions of easy (i.e., b ~ U(– 2.5, 0)) and difficult items 
(i.e., b ~ U(0, 2.5)). Item discrimination conditions included 
a distribution of typical parameters according to Baker and 
Kim’s (2017) guidelines (i.e., a ~ U(0.6, 1.7)) and distribu-
tions of small (i.e., a ~ U(0.6, 1.0)) and large (i.e., a ~ U(1.0, 
1.7)) parameters. In total, 2 sample sizes × 3 difficulty dis-
tributions × 3 discrimination distributions = 18 conditions 
were simulated. Each condition was replicated 100 times.

Rasch, 2PL, 3PL, and CLL models were then fitted to 
the generated data. The Rasch model was included in this 
study because it has the same number of parameters as the 
CLLM, but does not account for guessing. The 2PLM was 
included because, like the CLLM, it yields an item response 
function that can be steeper, i.e., more discriminating, than 
that of the Rasch model; unlike the CLLM, however, the 
symmetry of the 2PLM prohibits it from modeling a guess-
ing effect. The 3PLM was included in part because it was the 
data-generating model, but more relevantly, because it esti-
mates the lower asymptote parameter to explicitly address 
guessing, albeit with greater parametric complexity relative 
to the CLLM. To evaluate the performance of the four com-
peting IRT models, we inspected the Akaike Information 
Criterion (AIC; Akaike, 1974) and Bayesian Information 
Criterion (BIC; Schwarz, 1978), such that the relatively 
best-fitting model was indexed by the lowest AIC and BIC. 
Although we considered AIC and BIC, we emphasize the 
latter because it is known that when sample size is large, 
AIC tends to favor less parsimonious models (Dziak et al., 
2012). Regarding the aim of Study 3, if the CLLM is able 
to adequately capture the guessing effect, then it will yield 
the lowest BIC among the four models. More specifically, 
the BIC will favor the CLLM over both the 3PLM (which, 
despite being the data-generating model, will be penalized 

for its relative parametric complexity) and the Rasch model 
(which will be equally parsimonious, but less amenable to 
guessing effects).

Study 3 results

Figure 5 displays the percentage of replications in which 
each model was preferred by the AIC and BIC when item 
discrimination parameters fell within a typical range. Model 
selection differed by item difficulty: when N = 500 and the 
test was easy or moderate, AIC clearly preferred the 2PLM, 
but as test difficulty increased, AIC selected the 3PLM and 
the CLLM with greater frequency. A similar pattern was 
found for the N = 1000 condition, though in this case, the 
CLLM was never preferred. The general expectation would 
be that the 3PLM, as the data-generating model, would 
exhibit the best fit in all simulation conditions. However, 
the present results imply that the AIC penalty for paramet-
ric complexity only justifies application of the 3PLM when 
the sample size is relatively large (N = 1000) and the test 
is not easy. Previous research on IRT model selection also 
reported that even when data were generated from a 3PLM, 
AIC tended to favor the 2PLM across varying test difficulty 
and sample size conditions (Kang, 2006; Whittaker et al., 
2012).

Unlike the AIC, the BIC favored the CLLM in all three 
test difficulty conditions and both sample sizes, though 
this preference was particularly prevalent when N = 500. 
This finding also echoes the claims of previous research-
ers (Kang, 2006; Whittaker et al., 2012), who demonstrated 
that the BIC mostly favors simpler models, i.e., the Rasch 
model when N = 500 and the 2PLM when N = 1000, despite 
the data being generated from the 3PLM. The present study 
expands upon this previous work, however, by providing 
evidence that the CLLM was selected far more often than 
either the Rasch or 2PLM. Overall, both the AIC and BIC 
results revealed that as the test became more difficult, pref-
erence for models that accommodate guessing (3PLM and 
CLLM) increased, while preference for models that do not 
accommodate guessing (Rasch and 2PLM) decreased.

This tendency was also shown in the low discrimina-
tion condition, as presented in Fig. 6. One noticeable 
difference between the low discrimination condition 
and the typical discrimination condition discussed pre-
viously was that when N = 500, both the AIC and the 
BIC overwhelmingly preferred the CLLM regardless of 
test difficulty. In fact, the 2PLM and 3PLM were rarely 
selected in this case. When N = 1000, the AIC preferred 
the Rasch or 2PLM slightly more often than the CLLM in 
the context of easy or moderately difficult tests; yet even 
in these conditions, the CLLM was selected in a substan-
tial percentage of replications. Interestingly, in this low 
discrimination condition, the percentage of replications 
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in which the AIC selected the CLLM (which does not 
include a discrimination parameter) increased relative 
to the typical discrimination condition, while preference 
for the 2PLM and 3PLM (which directly model item dis-
crimination) decreased. The BIC results were even more 
definitive: Other than the easy test condition with N = 
1000 (in which case, the CLLM was selected almost as 
often as the Rasch model), the BIC clearly preferred the 
CLLM in all other conditions. Thus, the results displayed 
in Fig. 6 show that both AIC and BIC tended to prefer 
the guessing models over the non-guessing models, espe-
cially when all items were weakly discriminating.

Finally, Fig. 7 displays the AIC and BIC results from the 
high discrimination condition. Here, the AIC-based evidence 
was slightly less conclusive than in the previous findings, 
though in general, as test difficulty was increased, selection of 
the 3PLM and CLLM increased, whereas preference for the 
Rasch and 2PLM decreased. Relative to the typical discrimi-
nation condition presented in Fig. 5, the AIC results in Fig. 7 
illustrate that selection of the 2PLM (which, again, does not 
consider a guessing effect) decreased, while selection of the 
guessing models increased. Regarding the BIC results, the 
CLLM was selected as the best model in all conditions other 
than the easy test with N = 500 simulated respondents.

Fig. 5  Model selection percentages as a function of easy, medium, 
and hard tests (i.e., b parameters drawn from U(– 2.5, 0), N(0, 1), and 
U(0, 2.5), respectively) and a typical range of discrimination (i.e., a 

parameters drawn from U(0.6, 1.7)). Data with N = 500 (top row) 
and N = 1000 (bottom row) were generated from a 3PLM with lower 
asymptote parameters ranging from 0.1 to 0.3
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Discussion of simulation studies

Three simulation studies were conducted to investigate the 
estimation stability, scoring tendencies, and psychometric 
properties of the CLLM. In Study 1, the CLLM provided 
stable parameter estimates, even in extremely small sample 
sizes (N = 50), thereby supporting that the CLLM is approx-
imately as robust as the Rasch model. However, Chen et al. 
(2014) reported that in real data analysis with the Rasch 
model, smaller samples (N ≤ 50) were more likely than larger 
samples (N ≥ 100) to order items incorrectly. Accordingly, 
the appropriateness and usability of the CLLM in the context 

of small empirical samples (i.e., N = 30, 50, 100, or 250) will 
be discussed in the real data analysis section below.

Study 2 was motivated by the shape of the CSEMs in 
Fig.  3, which illustrates that the CLLM provides more 
precise measurement for persons located within the low-
to-moderate region of the latent trait continuum (e.g., 
θ ≈ [−2.5, 1.5]). This suggested that application of the 
CLLM may not be appropriate when the data-generating 
mechanism is more focused at the higher end of the con-
tinuum (e.g., the 3PLM). However, Study 2 revealed that, 
overall, the CLLM was able to accurately recover EAP 
scores that were generated from the 3PLM. The low bias of 

Fig. 6  Model selection percentages as a function of easy, medium, 
and hard tests (i.e., b parameters drawn from U(– 2.5, 0), N(0, 1), 
and U(0, 2.5), respectively) and a low degree of discrimination (i.e., 

a parameters drawn from U(0.6, 1.0)). Data with N = 500 (top row) 
and N = 1000 (bottom row) were generated from a 3PLM with lower 
asymptote parameters ranging from 0.1 to 0.3
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the CLLM estimates and their extremely high correlations 
with the estimates from competing models were achieved 
despite the restriction of a single estimated item parameter. 
Similarly, when data were generated from the CLLM, the 
2PL and 3PL models were able to precisely recover the true 
parameters, but at the expense of extra parameters (and thus 
higher required sample sizes).

Study 3 aimed to explore whether the CLLM was able to 
account for the guessing effect in data generated from the 
3PLM. The results of this simulation can be summarized 
into three main points:

1) Across discrimination conditions, the BIC tended to 
favor the CLLM, while the model selection behavior of 
the AIC was less consistent.

The AIC and BIC differ in how excess parameters are 
penalized; hence they are not always in agreement (Lin & 
Dayton, 1997; Lubke & Muthén, 2005). In particular, when 
the sample size is large, the penalty induced by the BIC 
becomes more severe, which leads it to favor simpler mod-
els. Based on this characteristic and previous literature on 
the use of information criteria in IRT model selection (Kang, 
2006; Kang & Cohen, 2007; Whittaker et al., 2012, 2013), 

Fig. 7  Model selection percentages as a function of easy, medium, 
and hard tests (i.e., b parameters drawn from U(– 2.5, 0), N(0, 1), and 
U(0, 2.5), respectively) and a high degree of discrimination (i.e., a 

parameters drawn from U(1.0, 1.7)). Data with N = 500 (top row) 
and N = 1000 (bottom row) were generated from a 3PLM with lower 
asymptote parameters ranging from 0.1 to 0.3
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we expected the BIC to prefer the more parsimonious Rasch 
or CLL models over the more complex 2PL and 3PL models. 
The fact that the BIC consistently preferred the CLLM over 
the Rasch model in most conditions leads us to conclude that 
the CLLM captures the guessing effect that we imposed by 
generating data from the 3PLM.

2) As sample size increased, the AIC favored the 3PLM 
over the CLLM in the typical and high discrimination 
conditions.

In large sample analysis of nested models, it is known 
that the AIC prefers a saturated model (Janssen & De 
Boeck, 1999). This explains why, in the present study, the 
AIC selected the 3PLM more often than the 2PLM as the 
sample size increased. However, this does not account for 
the behavior of the AIC in the comparison of unnested 
models (e.g., the 3PLM and CLLM). Hence, we propose 
a potential explanation: In a larger sample, there will be a 
nonignorable concentration of people at the extreme low 
end of the latent trait scale, so according to the AIC, a 
relatively complex model that considers such respondents 
will be more worthwhile than a parsimonious model that 
does not. More specifically, the 3PLM estimates the lower 
asymptote parameter with the express purpose of modeling 
correct response probabilities among examinees with the 
lowest levels of the latent trait; the CLLM, however, fixes 
the lower asymptote at zero and instead addresses guessing 
via a raised inflection point. When a sizeable number of 
“low-ability” examinees are present in a sample (i.e., due 
to a large N), the AIC will therefore consider the better fit 
of the more flexible model to be worth the expense in terms 
of parameters.

3) As test difficulty increased, models that accommodated 
guessing were selected more often.

This finding can be understood according to the same 
potential explanation mentioned above: As tests became 
more difficult, more examinees would be located at the lower 
extreme of the latent trait scale. For large sample sizes, the 
effect of increasing test difficulty led the AIC to favor the 
3PLM. Conversely, when the test was less difficult, the num-
ber of examinees located at the lower extreme decreased, 
such that the guessing effect became less pronounced in the 
generated 3PLM data. In other words, guessing was less 
necessary when a test was easy. According to Hitchcock and 
Sober (2004), if a simple model and a complex model fit the 
data equally well, then the AIC tends to prefer the simpler 
model. Accordingly, in the present study, the AIC tended to 
select the 2PLM rather than the 3PLM when test difficulty 
was low, despite the lack of a guessing parameter in the for-
mer model. However, the BIC exhibited an overwhelming 

preference for the CLLM over the 3PLM, across all test dif-
ficulty conditions. This result further supports the earlier 
finding that the CLLM is capable of accounting for guessing 
despite the presence of only one freely estimated parameter.

Empirical data analysis

Our fourth study was aimed at examining whether the 
reliable and interpretable simulation results would hold 
when applying the CLLM to real-world data. Specifically, 
the empirical study focused on two points: 1) whether the 
CLLM fits well to real-world data with small sample sizes, 
and 2) whether the CLLM can address guessing effects in 
real-world data. Annotated R code and data files are avail-
able at https:// osf. io/ nwckd/.

Data

Data for this study were taken from the publicly available 
responses of Grade 8 students to the 2003 Trends in Inter-
national Mathematics and Science Study (TIMSS) math-
ematics assessment. Data from Booklet 5 were used for 
this study because all items in this booklet were released, 
which indicates that they were deemed to be psychometri-
cally and contextually well-balanced. Booklet 5 consisted of 
43 items, comprising 28 multiple-choice (MC) items and 15 
constructed-response (CR) items. Since this study focuses 
on dichotomous response data, the polytomously scored CR 
items were dichotomized by treating partial credit responses 
as incorrect and full credit responses as correct. A total of 
740 U.S. students (female: 51.94%) were included in the 
sample.

To investigate whether the CLLM performs as well as the 
Rasch model in the context of real data, we considered random 
samples of 25, 50, 100, 250, and 500 respondents. Accord-
ing to our earlier simulation findings, Rasch and CLL models 
differ in their capacity to capture guessing effects in data. To 
focus on this difference, the MC and CR data were analyzed 
separately. In general, scores on MC tests are affected by both 
the intended problem-solving process and the random guess-
ing behavior of certain respondents (Hutchinson, 1991; Lee & 
Bolt, 2018; San Martín et al., 2006), while CR items typically 
disallow guessing. Thus, if the CLLM catches the guessing 
effect in real-world data as it did in the simulation studies, 
then it should fit well to the MC items, but not to the CR items.

We also expanded on the simulation results by consider-
ing two additional model selection indices beyond the stand-
ard AIC and BIC. The consistent AIC (CAIC; Bozdogan, 
1987) was included because it provides a stronger penalty 
than the AIC for overparameterization. The corrected AIC 
(AICc; Hurvich & Tsai, 1989) was included because in the 
presence of small sample sizes, it inflicts a stronger penalty 
than both AIC and BIC (Brewer et al., 2016). Like the more 
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common AIC and BIC, lower values of CAIC and AICc 
reflect a relatively better fitting model.

In addition to the relative fit criteria, we considered 
Vuong tests (Vuong, 1989), which compare the log-likeli-
hood of two non-nested models (e.g., the Rasch and CLL 
models) to determine whether the two models are signifi-
cantly different. Specifically, the non-nested likelihood ratio 
test compares the fit of the Rasch and CLL models, and P(L) 
< .05 indicates that the associated model fits better than the 
alternative. The variance test indexes whether the two mod-
els are distinguishable from one another, and P (Var) < .05 
provides evidence that the models are distinct. We used the 
R package nonnest2 (Merkle & You, 2018) to carry out the 
Vuong tests. Unfortunately, nonnest2 cannot be applied to 
the IRT model results from the sirt package; thus, following 

the guidelines of Wang et al. (2020), we obtained the Vuong 
tests by estimating the IRT models in a two-level structure 
within the lme4 R package (Bates et al., 2015).

Results

As shown in Table 4, all four relative fit criteria1 supported 
the CLLM as the best model for MC items, regardless of 
sample size. Conversely, the relative fit and Vuong test 

Table 4  Relative fit and Vuong tests of the Rasch and CLL models in the context of multiple-choice items and varying sample sizes

Note. LL = Log-likelihood; AIC = Akaike Information Criteria; BIC = Bayes Information Criteria; AICc = corrected AIC; CAIC = consistent 
AIC; P(L) = p value for non-nested likelihood ratio test; P(Var) = p value for variance test. Bold type indicates significant differences between 
the two models according to the Vuong tests.

Sample size Model LL Relative fit Vuong tests

AIC BIC AICc CAIC P(L) P(Var)

30 Rasch – 435.40 928.81 969.44 – 998.44 .896 .297
CLLM – 432.23 922.46 963.09 – 992.09 .104

50 Rasch – 751.46 1560.92 1616.37 1647.92 1645.37 .664 .125
CLLM – 750.47 1558.94 1614.39 1645.94 1643.39 .336

100 Rasch – 1530.44 3118.89 3194.44 3143.75 3223.44 .906 < .001
CLLM – 1524.83 3107.66 3183.21 3132.52 3212.21 .094

250 Rasch – 3878.38 7814.75 7916.87 7822.66 7945.87 .999 < .001
CLLM – 3861.67 7781.34 7883.46 7789.25 7912.46 < .01

500 Rasch – 7829.63 15,717.26 15,839.49 15720.97 15,868.49 .999 < .001
CLLM – 7805.40 15,668.80 15,791.02 15672.50 15,820.02 < .01

Table 5  Relative fit and Vuong tests of the Rasch and CLL models in the context of constructed-response items across varying sample sizes

Note. LL = Log-likelihood; AIC = Akaike Information Criteria; BIC = Bayes Information Criteria; AICc = corrected AIC; CAIC = consistent 
AIC; P(L) = p value for non-nested likelihood ratio tests; P(Var) = p value for variance tests. Bold type indicates significant differences between 
the two models according to the Vuong tests.

Sample size Model LL Relative fit Vuong tests

AIC BIC AICc CAIC P(L) P(Var)

30 Rasch – 191.68 415.37 437.78 457.21 453.78 < .05 .626
CLLM – 194.07 420.14 442.56 461.99 458.56 .982

50 Rasch – 351.74 735.48 766.07 751.97 782.07 < .01 .138
CLLM – 356.08 744.16 774.75 760.64 790.75 .999

100 Rasch – 714.91 1461.82 1503.51 1468.38 1519.51 < .001 <.01
CLLM – 722.58 1477.17 1518.85 1483.72 1534.85 .999

250 Rasch – 1380.13 2792.26 2845.04 2795.24 2861.04 < .001 <.001
CLLM – 1405.06 2842.12 2894.89 2845.09 2910.89 1

500 Rasch – 3531.26 7094.52 7161.95 7095.64 7177.95 < .001 <.001
CLLM – 3571.02 7174.04 7241.47 7175.16 7257.47 1

1 The penalty component of the AICc is 2 × p × (p + 1) / (N – p –1), 
where p is the number of estimated parameters and N is the number 
of respondents. For the MC data, 29 parameters were estimated, so in 
our smallest sample condition (N = 30), the denominator of the pen-
alty component became 0, and thus the AICc was undefined.
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results in Table 5 indicate that the Rasch model exhibited 
significantly better fit to the CR items in all sample size 
conditions (P(L) < .05). Further, the statistical difference 
between these two models became more pronounced as the 
sample size increased: According to the Vuong variance 
tests, the two models became easily distinguishable when 
N ≥ 100 (P(Var) < .01). In sum, Tables 4 and 5 support that 
the simulation results hold in the context of real data: the 
CLLM models the guessing effect that is inherent in MC 
data, whereas the Rasch model does not.

To check the robustness of the CLLM under small sample 
size conditions, we considered the mean, standard deviation, 
and range of the estimated item parameters and the correla-
tions between items in each sample. As shown in Table 6, 
the CLLM MC item statistics were highly similar and the 
average inter-item correlations across sample sizes ranged 
from r = 0.90 to 0.99; even the correlation between the 
smallest (N = 30) and largest (N = 500) sample size condi-
tions was fairly high (r = 0.90). Hence, Table 6 indicates that 
the CLLM is robust to small sample sizes with respect to the 
recovery of parameters in real data analysis.

Regarding IRT-scaled scoring, Fig. 8 includes the esti-
mated EAPs and their standard errors (SE) from the full 
sample (N = 740). This figure reveals two important 

findings. First, both models seemed to provide reasonable 
coverage of the EAPs. Second, as the plots on the left side of 
Fig. 8 illustrate, application of the CLLM resulted in lower 
EAPs for respondents who achieved high raw scores on the 
test (i.e., potentially by guessing correctly). Importantly, the 
EAP standard errors were consistently lower in the CLLM 
than in the Rasch model. Thus, relative to the Rasch model, 
the CLLM provided more precise estimates of the respond-
ents’ locations along the latent trait continuum.

Finally, to determine whether the item parameter in 
the CLLM can be directly compared to the parameters 
from other traditional IRT models, we applied the CLL, 
Rasch, 2PL and 3PL models to the MC item responses 
from the full TIMSS sample (N = 740). Table 7 displays 
the correlation between item location parameters in each 
of the models (i.e., without considering the discrimina-
tion and guessing parameters of the 2PLM and 3PLM, 
respectively). Correlations between the CLLM and the 
other models ranged from r = 0.91 to 0.99, which implies 
that the item parameter of the CLLM is highly related to 
the item difficulty parameters of traditional IRT models. 
This result provides further support for interpreting the 
CLLM parameter as a measure of item difficulty.

Table 6  CLLM item statistics for the multiple-choice TIMMS items

Correlations

N M SD Min Max 30 50 100 250 500

30 .362 .645 – 1.110 1.608 –
50 .392 .622 – .995 1.434 .951 –
100 .299 .601 – 1.071 1.454 .920 .975 –
250 .245 .596 – 1.067 1.346 .914 .974 .985 –
500 .311 .622 – .962 1.587 .897 .961 .971 .993 –

Fig. 8  N = 740. Estimated EAP (left panel) and corresponding standard errors (right panel) for the TIMMS multiple-choice item response data. 
Note that the presence of multiple EAPs for the same raw Rasch scores occurred because of missing data
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Discussion and Conclusions

Reise et  al. (2018) noted that, in addition to the usual 
assumptions of unidimensionality, local independence, and 
monotonicity, typical IRT models and corresponding esti-
mation methods assume that the underlying latent trait is 
normally distributed. However, the error distribution may 
not be symmetrically distributed, in which case an alterna-
tive link function should be applied (Raftery, 1996). Logit 
and probit IRT models, for example, assume an underlying 
normal latent trait distribution, but their errors are Bernoulli-
distributed (in logit models) and normal (in probit models), 
respectively. This paper investigated the CLLM, a parsi-
monious IRT model that addresses asymmetry in the error 
term, thereby relaxing the symmetric assumption of typical 
dichotomous response functions.

IRT modeling with the CLLM has three important sta-
tistical and psychometric benefits that improve upon the 
available alternatives. The first benefit of the CLLM is that 
the maximum of the item information function is greater in 
the CLLM than the Rasch model, even though both models 
estimate a single item parameter. By definition, a steeper 
item response function (traditionally reflected in a higher 
discrimination parameter) will yield more item information, 
and thus a lower standard error regarding the person param-
eter estimate. The asymmetric form of the CLLM imbues 
it with this property even though it includes only one free 
item parameter.

The second benefit is that the CLLM, unlike the Rasch 
model, takes varying response patterns into consideration 
when estimating respondent scores. The CLLM, however, 
allows for weighting each item in the pattern and impos-
ing a penalty for failing to respond correctly to easy items. 
Relative to traditional IRT models, scoring in the CLLM 
may be more sensitive to deviations from non-ideal response 
patterns (e.g., according to Guttman scaling), which some 
researchers may view as overly restrictive. However, we see 
this scoring characteristic as posing new research questions 
in psychological and educational measurement concerning, 
for example, the types of assessments that would be best 
suited for such a penalty-based scoring model.

The third, and perhaps most important, benefit of the 
CLLM is that it addresses guessing behaviors, despite hav-
ing just a single freely estimated parameter. This finding is 
in line with previous work by Lee and Bolt (2017, 2018), 
who demonstrated that the effect of guessing could be cap-
tured by an asymmetric item response function. MC items 
are inevitably associated with both random and ability-based 
guessing, which implies that models of MC data should 
account for artificially heightened probabilities of a correct 
response. Traditionally, guessing has been modeled by rais-
ing the lower asymptote, but the CLLM retains a zero lower 
asymptote and instead accommodates guessing by raising 
the middle of the response function. That is, the inherent 
asymmetry of the CLLM results in an elevated inflection 
point, and captures the effect of guessing, just as the 3PLM, 
but with only one free parameter. Further, existing IRT mod-
els that measure guessing effects, such as the 3PLM and 
heteroscedastic latent trait models, require large samples 
(e.g., N ≥ 1000) for stable parameter estimation. Although 
the 1PL ability-based guessing (1PL-AG; San Martín et al., 
2006) model is known to be applicable to relatively small 
samples (e.g., N = 100), its utility in even smaller samples 
(e.g., N = 30 or 50) has not yet been studied. The CLLM, 
however, makes it possible to deal with guessing in the type 
of small sample sizes that are possible to analyze with the 
Rasch model.

In sum, while multiple-choice tests allow lower abil-
ity examinees to make uninformed correct guesses, they 
also facilitate the use of solution-based response strategies 
(Schnipke & Scrams, 1997) among higher ability examinees 
(e.g., excluding some of the distractors to make an “edu-
cated guess”). Regardless of the rationale for guessing, a 
higher ICC is needed to account for the elevated correct 
responsibility inherent in multiple-choice items. The 3PLM 
model increases the correct answer probability by raising the 
lower asymptote parameter, but the CLLM handles it via an 
asymmetric ICC with an inflection point > .50. Both models 
achieve the same goal, but the former requires three item 
parameters and the latter just one. With regard to applica-
tion, our results support that when a researcher has access to 
a sample size of N < 1000 from a population characterized 
by low-to-medium levels of the latent trait, the CLLM could 
be a better option than the 3PLM.

Overall, the present simulation and real data analyses sup-
port the application of the Gumbel distribution as an alterna-
tive representation of the error distribution in IRT modeling. 
So far, the assumption of symmetrically distributed errors 
has been generally accepted unless the response data are 
known to be irregular (e.g., zero-inflated or highly skewed). 
However, this study suggests that researchers may wish to 
consider an asymmetric error distribution and corresponding 

Table 7  Correlations between difficulty parameters of the CLL, 
Rasch, 2PL, and 3PL models of the MC items

Note. N = 740.

CLLM Rasch 2PLM 3PLM

Rasch .997 -
2PL .908 .899 -
3PL .907 .906 .900 -
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link function when the response data are affected by guess-
ing, as in MC testing. Overall, the current work demonstrates 
that important insights may be gained by questioning the 
assumptions of psychometric models.

Limitations and future directions

In our investigation of the CLLM, we identified certain 
limitations that should be improved upon in future research. 
Simulation Study 3 allowed us to speculate on the propen-
sity for the CLLM to measure the guessing effect from 
3PLM-generated data. While the findings from this study 
(and the subsequent real data analysis) supported that the 
CLLM accounts for guessing, the simulation design did not 
allow us to clearly determine whether the guessing effects 
were random or based on ability. Accordingly, a future study 
could compare the CLLM to ability-based guessing models 
such as the 1PL-AG (San Martín et al., 2006) and HLTM 
(Molenaar, 2014).

In this study, we considered a particular one-parameter 
asymmetric model to investigate the relationship between 
examinee behavior (i.e., guessing) and the shape of the ICC. 
However, it is important to note that there exists a wide 
range of possible asymmetric link functions and associated 
measurement models. For example, the Stukel link function 
(Stukel, 1988) estimates shape parameters of the link func-
tion, effectively drawing the shape of the ICC. Other alterna-
tive asymmetric models that operate under distinct assump-
tions include general Rasch-type IRT models (Goldstein & 
Wood, 1989), isotonic ordinal probabilistic (IOSP) models 
(Scheiblechner, 1995), and additive conjoint isotonic prob-
abilistic (ADISOP) models (Scheiblechner, 1999). Future 
studies could contribute to the IRT literature by examin-
ing these and other link functions, potentially illuminating 
additional contexts in which practitioners should consider 
functions other than the default logit or probit links.

In addition, although it was not our intention to illustrate 
differences in model selection criteria, we found that lim-
ited efforts have been made to better understand why AIC 
and BIC favor certain models under given item parameter 
conditions. Previous research (Kang, 2006; Kang & Cohen, 
2007; Whittaker et al., 2012, 2013) on model selection indi-
ces in the context of IRT concluded that AIC and BIC may 
not be appropriate when the 3PLM is the data-generating 
model. By considering the CLLM alongside more traditional 
symmetric models, we uncovered some meaningful pat-
terns regarding the idiosyncrasies of AIC and BIC relative 
to item difficulty and discrimination. Future work on item-
level model selection should further explore the disagree-
ment that we observed between the AIC and BIC (perhaps 
by determining whether this counterintuitive result holds 

in extremely large samples), and thereby offer practitioners 
a better understanding of fit-based decision-making in the 
context of IRT modeling.

Finally, the results presented herein provide further 
evidence that complexity (meaning the ability to fit a 
wide range of data patterns) in IRT modeling is not 
simply based on counting parameters. Bonifay and Cai 
(2017) considered complexity in the context of different 
item factor structures to demonstrate that the particular 
arrangement of variables in one model may imbue it 
with a greater degree of complexity, relative to a com-
peting model with the same number of freely estimated 
parameters (echoing a similar result from Preacher 
(2006) in the context of structural equation modeling). 
This work builds on that research by suggesting that 
complexity may be contingent on the underlying link 
function as well as the number of item parameters. The 
lower information criteria and EAP standard errors 
from our simulation and real data analyses suggest that 
the CLLM may be more complex than the Rasch model 
(even though both models estimate a single parameter), 
and thus equipped to handle particular patterns of data. 
Future research is needed to establish how the choice 
of link function further contributes to the complexity 
of different IRT models.

Appendix

We acknowledge that some users may prefer to directly 
link the CLLM and the more traditional models; here, we 
offer one method of forming such correspondence between 
these models. This method takes the same approach that 
early psychometricians used to uncover the scaling con-
stant that allowed the logistic probability function to align 
with the normal ogive. Following the numerical analysis 
process provided by Haley (1952) and Camilli (1994), a 
similar scaling constant dCLL can be found by minimizing 
the absolute difference between the probability density 
function (PDF) of the probit and that of CLL links. The 
cumulative density functions (CDFs) of the two links are 
given by:

where dCLL denotes a linking constant, θ is the ability level 
of the examinee, and β is the item parameter. To align the 

(A.1)Probit ∶ �(�) = ∫
1

√
2�

exp
�
−
�
(� − �)2∕2

��
d�

(A.2)
CLL ∶ � (�) = 1 − exp

[
− exp

(
dCLL(� − �) − 0.577

)]
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CLL and probit links, the mean of the CLL link, i.e., 0.577, 
is subtracted, which offers an approximation to metric per-
son distribution on a scale centered about zero.

By taking the derivative of Eqs. (A.1) and (A.2) with 
respect to θ, the PDF of each function can be obtained. 
Let the difference between the two PDFs be F(θ, dCLL). 
Setting the derivative of F(θ, dCLL) to zero will iden-
tify the maximum value of the PDF differences, i.e., 
�

��
F
(
�, dCLL

)
= f�

(
�, dCLL

)
= 0 . This equation returns 

three roots: F(θ1, dCLL), F(θ2, dCLL), and F(θ3, dCLL). 
The minimax estimator can be defined as the value 
at which the sum of the three roots is equal to zero, 
i.e.,S

�
�1, �2, �3, dCLL

�
=
∑3

i=1
F
�
�i, dCLL

�
= 0 . By iterating 

between these last two steps, this root-finding algorithm 
will identify the scaling constant dCLL that maps the CLL 
onto the probit scale. The results of this numerical process 
are shown in Appendix Table 8 Setting the initial value 
of dCLL at π/ √ 6  = 1.28 (i.e., the standard deviation of 
the CLL link), the equation fθ(θ, dCLL) = 0 returned roots 
θ1 =  − 2.0, θ2 = 0.0, and θ3 = 1.4, and solving the equa-
tion 

∑3

i=1
F
�
�i, dCLL

�
= 0 returned an updated value of 

dCLL = 1.37. This root-finding procedure was then repeated 
using the updated dCLL value. After four iterations, the scal-
ing constant converged at dCLL = 1.35031. The minimum 
and maximum errors are shown in Appendix Table 8. The 

maximum error is 0.073, which occurs near the inflection 
point of the CLLM ICC. Appendix Fig. 9 superimposes the 
standardized CLL and logit functions on the probit scale, 
revealing a close alignment among the three functions.

Fig. 9  Approximate alignment of the probit scale with the rescaled 
logit and CLL functions (via scaling constants dlogit = 1.702 and 
dCLL = 1.350)

Table 8  Numerical analysis process for transforming the CLL link to the probit scale

Note. The initial value of dCLL was set to the standard deviation of the CLL link: �∕
√
6 = 1.28.

dCLL θ1 θ2 θ3 F(θ1, dCLL) F(θ2, dCLL) F(θ3, dCLL) S(θ1, θ2, θ3, dCLL)

0 1.280
1 1.367 – 2.000 .000 1.400 – .020 .070 – .045 .00505
2 1.351 – 2.019 – .049 1.394 – .014 .073 – .061 – .00092
3 1.350 – 2.153 – .155 1.276 – .015 .073 – .058 – .00003
4 1.350 – 2.127 – .137 1.296 – .015 .073 – .058 .00000

217Behavior Research Methods  (2023) 55:200–219

1 3



Funding The authors did not receive support from any funding 
organization.

Availability of data and materials All simulated and empirical data files 
are available at https:// osf. io/ nwckd/.

Code availability Annotated code for all analyses is available at https:// 
osf. io/ nwckd/.

Declarations 

Conflicts of interest/Competing interests The authors have no con-
flicts of interest or competing interests to declare.

Ethics approval Study 4 used publicly available data from the TIMMS 
project, which was performed in line with the principles of the Declara-
tion of Helsinki: https:// www. iea. nl/ data- tools/ repos itory/ timss

Consent to participate Study 4 used publicly available data from the 
TIMMS project, in which informed consent was obtained from all indi-
vidual participants (see link above).

Consent for publication Study 4 used publicly available data from the 
TIMMS project, which has been made freely available for secondary 
data analysis in published works (see link above).

References

Agresti, A. (2012). Categorical data analysis (3rd ed). Hoboken, 
NJ: Wiley and Sons.

Akaike, H. (1974). A new look at the statistical model identification. 
IEEE Transactions on Automatic Control, AC-19, 716–723.

Baker, F. B., & Kim, S.-H. (2017). The basics of item response the-
ory using R. New York, NY: Springer.

Barton, M. A., & Lord, F. M. (1981). An upper asymptote for the 
three-parameter logistic item-response model. ETS Research 
Report Series, 1981(1), i–8.

Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting 
linear mixed-effects models using lme4. Journal of Statistical 
Software, 67(1), 1–48. https:// doi. org/ 10. 18637/ jss. v067. i01

Bazán, J. L., Branco, M. D., & Bolfarine, H. (2006). A skew item 
response model. Bayesian. Analysis, 1.

Birnbaum, A. (1968). Some latent trait models and their use in 
inferring an examinee’s ability. In F. M. Lord & M. R. Novick 
(Eds.), Statistical theories of mental test scores (pp. 397–479). 
Addison-Wesley.

Bolfarine, H., & Bazán, J. L. (2010). Bayesian estimation of the 
logistic positive exponent IRT model. Journal of Educational 
and Behavioral Statistics, 35, 693–713.

Bock, R. D., & Aitkin, M. (1981). Marginal maximum likelihood 
estimation of item parameters: Application of an EM algorithm. 
Psychometrika, 46, 443–459.

Bonifay, W., & Cai, L. (2017). On the complexity of item response 
theory models. Multivariate Behavioral Research, 52(4), 
465–484.

Bozdogan, H. (1987). Model selection and Akaike's information cri-
terion (AIC): The general theory and its analytical extensions. 
Psychometrika, 52, 345–370.

Brewer, M. J., Butler, A., & Cooksley, S. L. (2016). The rela-
tive performance of AIC, AICc and BIC in the presence of 

unobserved heterogeneity. Methods in Ecology and Evolution, 
7(6), 679–692.

Camilli, G. (1994). Origin of the scaling constant d = 1.7 in Item 
Response Theory. Journal of Educational and Behavioral Statis-
tics, 19(3), 293–295.

Chambers, E. A., & Cox, D. R. (1967). Discrimination between alterna-
tive binary response models. Biometrika, 54, 573–578.

Chalmers, R. P. (2012). mirt: A multidimensional item response theory 
package for the R environment. Journal of Statistical Software, 
48(6), 1–29.

Chen, M. H., Dey, D. K., & Shao, Q. M. (1999). A new skewed link 
model for dichotomous quantal response data. Journal of the 
American Statistical Association, 94, 1172–1186.

Chen, W. H., Lenderking, W., Jin, Y., Wyrwich, K. W., Gelhorn, H., 
& Revicki, D. A. (2014). Is Rasch model analysis applicable in 
small sample size pilot studies for assessing item characteristics? 
An example using PROMIS pain behavior item bank data. Quality 
of Life Research, 23, 485–493.

Cox, D. R. (1962). Further results on tests of separate families of 
hypothesis. Journal of the Royal Statistical society. B, 24, 
406–424.

Curran, P. J., West, S. G., & Finch, J. F. (1996). The robustness of test 
statistics to nonnormality and specification error in confirmatory 
factor analysis. Psychological Methods, 1(1), 16–29.

Czado, C., & Santner, T. J. (1992). The effect of link misspecification 
on binary regression inference. Journal of Statistical Planning 
and Inference, 33, 213–231.

da Silva, M. A., Huggins-Manley, A. C., Mazzon, J. A., & Bazán, J. 
L. (2019). Bayesian estimation of a flexible bifactor generalized 
partial credit model to survey data. Journal of Applied Statistics, 
46(13), 2372–2387.

de Ayala, R. J. (2009). The theory and practice of item response theory. 
New York: Guilford Press.

Dziak, J. J., Coffman, D. L., Lanza, S. T., & Li, R. (2012). Sensitivity 
and specificity of information criteria, Technical Report Series 
No.12–119. University Park: The Methodology Center, Penn 
State. Accessed via https:// www. metho dology. psu. edu/ files/ 2019/ 
03/ 12- 119- 2e90h c6. pdf

Fisher, R. A. (1922). On the mathematical foundations of theoretical 
statistics. Philosophical Transactions of the Royal Society of Lon-
don. Series A, Containing Papers of a Mathematical or Physical 
Character, 222, 309–368.

Goldstein, H. (1980). Dimensionality, bias, independence and measure-
ment scale problems in latent trait test score models. British Jour-
nal of Mathematical and Statistical Psychology, 33(2), 234–246.

Goldstein, H., & Wood, R. (1989). Five decades of item response mod-
elling. British Journal of mathematical and statistical psychology, 
42(2), 139–167.

Guilford, J. P. (1936). Psychometric methods. New York: McGraw Hill.
Haley, D. C. (1952). Estimation of the dosage mortality relationship 

when the dose is subject to error, Technical Report No. 15 (Office 
of Naval Research Contract No. 25140, NR-342-022). Stanford 
University: Applied Mathematics and Statistics Laboratory.

Han, T. K. (2012). Fixing the c parameter in the three-parameter logis-
tic model. Practical Assessment, Research & Evaluation, 17(1).

Hitchcock, C., & Sober, E. (2004). Predicting versus accommodation 
and the risk of overfitting. The British Journal for the Philoso-
phy of Science, 55, 1–34.

Hurvich, C. G., & Tsai, C.-L. (1989). Regression and time series 
model selection in small samples. Biometrika, 76, 297–307.

Hutchinson, T. P. (1991). Ability, partial information, and guessing: 
Statistical modelling applied to multiple-choice tests. Rundle 
Mall, Australia: Rumsby Scientific Publishing.

Janssen, R., & De Boeck, P. (1999). Confirmatory analyses of com-
ponential test structure using multidimensional item response 
theory. Multivariate Behavioral Research, 34(2), 245–268.

218 Behavior Research Methods  (2023) 55:200–219

1 3

https://osf.io/nwckd/
https://osf.io/nwckd/
https://osf.io/nwckd/
https://www.iea.nl/data-tools/repository/timss
https://doi.org/10.18637/jss.v067.i01
https://www.methodology.psu.edu/files/2019/03/12-119-2e90hc6.pdf
https://www.methodology.psu.edu/files/2019/03/12-119-2e90hc6.pdf


Kang, T. (2006). Model selection methods for unidimensional and 
multidimensional IRT models (Unpublished doctoral disserta-
tion). University of Wisconsin-Madison, Madison, WI.

Kang, T., & Cohen, A. S. (2007). IRT model selection methods for 
dichotomous items. Applied Psychological Measurement, 31(4), 
331–358.

Lee, S., & Bolt, D. M. (2017). Asymmetric item characteristic curves 
and item complexity: Insights from simulation and real data 
analyses. Psychometrika, 83, 453–475.

Lee, S., & Bolt, D. M. (2018). An alternative to the 3PL: Using 
asymmetric item characteristic curves to address guessing 
effects. Journal of Educational Measurement, 55(1), 90–111.

Lin, T. H., & Dayton, C. M. (1997). Model selection information cri-
teria for non-nested latent class models. Journal of Educational 
and Behavioral Statistics, 22(3), 249–264.

Linacre, J. M. (1994). Sample size and item calibration stability. 
Rasch Measurement Transactions, 7(4), 328.

Lord, F. M. (1953). An application of confidence intervals and of 
maximum likelihood to the estimation of an examinee’s ability. 
Psychometrika, 18(1), 57–76.

Lubke, G. H., & Muthén, B. O. (2005). Investigating population het-
erogeneity with factor mixture models. Psychological Methods, 
10, 21–39.

Magis, D. (2015). A note on the equivalence between observed and 
expected information functions with polytomous IRT models. 
Journal of Educational & Behavioral Statistics, 40, 96–105.

Merkle, E. C., & You, D. (2018). nonnest2: Tests of non-nested 
models [Computer software manual]. Retrieved from https:// 
cran.r- proje ct. org/ packa ge= nonne st2 (R package version 0.5- 2)

Molenaar, D. (2014). Heteroscedastic latent trait models for dichoto-
mous data. Psychometrika, 80, 625–644.

Moustaki, I. (2003). A general class of latent variable models for 
ordinal manifest variables with covariate effects on the mani-
fest and latent variables. British Journal of Mathematical and 
Statistical Psychology, 56, 337–357.

Preacher, K. J. (2006). Testing complex correlational hypotheses 
using structural equation modeling. Structural Equation Mod-
eling, 13, 520–543.

Pregibon, D. (1980). Goodness of link tests for generalized linear 
models. Journal of Applied Statistics, 29, 15–24.

Raftery, A. E. (1996). Approximate Bayes factors and accounting 
for model uncertainty in generalized linear models. Biometrika, 
83(2), 251–266.

Rasch, G. (1960). Probabilistic models for some intelligence and 
attainment tests. Copenhagen: Danish Institute for Educational 
Research.

Rasch Measurement Transactions (2010). Fred Lord and Ben Wright 
discuss Rasch and IRT models. Rasch Measurement Transac-
tions, 24(3), 1289–1290. Accessed via https:// www. rasch. org/ 
rmt/ rmt243. pdf

Reise, S. P., Rodriguez, A., Spritzer, K. L., & Hays, R. D. (2018). 
Alternative approaches to addressing non-normal distributions 

in the application of IRT models to personality measures. Jour-
nal of personality assessment, 100, 363–374.

Robitzsch, A. (2019). sirt: Supplementary Item Response Theory Mod-
els. R package version 3.7-40.

Robitzsch, A. (2021). A comprehensive simulation study of estimation 
methods for the Rasch model. Stats, 4(4), 814–836.

Samejima, F. (2000). Logistic positive exponent family of models: 
Virtue of asymmetric item characteristic curves. Psychometrika, 
65, 319–335.

San Martín, E., Del Pino, G., & De Boeck, P. (2006). IRT models 
for ability-based guessing. Applied Psychological Measurement, 
30(3), 183–203.

Scheiblechner, H. (1995). Isotonic ordinal probabilistic models (ISOP). 
Psychometrika, 60, 281–304.

Scheiblechner, H. (1999). Additive conjoint isotonic probabilistic mod-
els (ADISOP). Psychometrika, 64, 295–316.

Schnipke, D. L., & Scrams, D. J. (1997). Modeling item response 
times with a two-state mixture model: A new method of meas-
uring speededness. Journal of Educational Measurement, 34(3), 
213–232.

Schwarz, G. (1978). Estimating the dimension of a model. Annals of 
Statistics, 6, 461–464.

Stukel, T. A. (1988). Generalized logistic models. Journal of the Amer-
ican Statistical Association, 83, 426–431.

Thiele, J., & Markussen, B. (2012). Potential of GLMM in modelling 
invasive spread. CAB Reviews, 7(016), 1–10.

Tucker, L. R. (1946). Maximum validity of a test with equivalent items. 
Psychometrika, 11, 1–13.

Vuong, Q. H. (1989). Likelihood ratio tests for model selection and 
non-nested hypotheses. Econometrica, 57(2), 307–333.

Wang, T., Graves, B., Rosseel, Y., & Merkle, E.C. (2020). Com-
putation and application of generalized linear mixed model 
derivatives using lme4. Psychometrika. https:// doi. org/ 10. 1007/ 
s11336- 022- 09840-2

Whittaker, T. A., Chang, W., & Dodd, B. G. (2012). The performance 
of IRT model selection methods with mixed-format test. Applied 
Psychological Measurement, 36(3), 159–180.

Whittaker, T. A., Chang, W., & Dodd, B. G. (2013). The impact of 
varied discrimination parameters on mixed-format item response 
theory model selection. Educational and Psychological Measure-
ment, 73(3), 471–490.

Wiedermann, W., & von Eye, A. (2020). Reciprocal relations in cat-
egorical variables. Psychological Methods, 25(6), 708–725.

Woods, C. M. (2015). Estimating the latent density in unidimensional 
IRT to permit non-normality. In S. P. Reise & D. A. Revicki 
(Eds.), Handbook of item response theory modeling: Applica-
tions to typical performance assessment (pp. 60–84). Routledge.

Wright, B. D. (1992). IRT in the 1990s: Which models work best? 
3PL or Rasch? Rasch Measurement Transactions, 6(1), 196–200.

Publisher’s note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

219Behavior Research Methods  (2023) 55:200–219

1 3

https://cran.r-project.org/package=nonnest2
https://cran.r-project.org/package=nonnest2
https://www.rasch.org/rmt/rmt243.pdf
https://www.rasch.org/rmt/rmt243.pdf
https://doi.org/10.1007/s11336-022-09840-2
https://doi.org/10.1007/s11336-022-09840-2

	Parsimonious asymmetric item response theory modeling with the complementary log-log link
	Abstract
	Overview of the complementary log-log link
	The complementary log-log link

	IRT modeling with the complementary log-log link
	Weighted scoring of the CLLM
	Interpretation of the CLLM item parameter
	Simulation studies
	Simulation Study 1
	Study 1 design
	Study 1 results

	Simulation Study 2
	Study 2 design
	Study 2 results

	Simulation Study 3
	Study 3 design
	Study 3 results

	Discussion of simulation studies
	Empirical data analysis
	Data
	Results
	Discussion and Conclusions
	Limitations and future directions

	References


