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Abstract
Researchers can generate bootstrap confidence intervals for some statistics in SPSS using the BOOTSTRAP command. 
However, this command can only be applied to selected procedures, and only to selected statistics in these procedures. We 
developed an extension command and prepared some sample syntax files based on existing approaches from the Internet to 
illustrate how researchers can (a) generate a large number of nonparametric bootstrap samples, (b) do desired analysis on all 
these samples, and (c) form the bootstrap confidence intervals for selected statistics using the OMS commands. We developed 
these tools to help researchers apply nonparametric bootstrapping to any statistics for which this method is appropriate, 
including statistics derived from other statistics, such as standardized effect size measures computed from the t test results. 
We also discussed how researchers can extend the tools for other statistics and scenarios they encounter.
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Bootstrapping is a useful technique for making inferences 
about parameter estimates for which analytic solutions for 
confidence intervals may be difficult to derive or are not yet 
developed (Efron & Hastie, 2016). Bootstrapping is also use-
ful for making inferences on robust estimators for data with 
outliers and/or severely nonnormal data (Mair & Wilcox, 
2020). On some platforms, it is easy to do bootstrapping. For 
example, in R (R Core Team, 2021), researchers can use the 
boot package to do bootstrapping for any statistics, as long as 
they can write a function to compute these statistics (Canty 
& Ripley, 2021). SPSS, another popular statistical package, 
also has a bootstrapping function added. However, unlike R, 
at the time of writing, SPSS only supports selected statistics 
in selected procedures. Even though we use R in most of 
our work, migrating to R or other tools, or just using these 
tools for forming the confidence intervals of some statis-
tics, may not be a cost-effective solution for some research-
ers because they may use SPSS for some practical reasons, 

such as working with a team with SPSS integrated into the 
workflow. Helping researchers who use SPSS learn how to 
do bootstrapping on more statistics gives them more options 
in doing analysis. This can also help researchers learn more 
about the potential of the bootstrapping approach without the 
need to learn a new computing environment.

Approaches for doing bootstrapping using syntax com-
mands in SPSS have been around on the Internet for a long 
time (e.g., Nichols, 1996). To help researchers using SPSS 
have nearly the same flexibility as in R, we present below 
an extension command and a few sample syntax files to 
illustrate how researchers can form confidence intervals by 
bootstrapping for (nearly) any statistics they can get in SPSS. 
We selected several common scenarios for illustration, and 
described how the approach can be extended to other sce-
narios. Our goal is to empower researchers to do bootstrap-
ping in scenarios not covered in this paper and to develop 
tools for other statistics.

We need to stress that our goal is not to develop a gen-
eral tool for forming bootstrap confidence intervals easily 
for any statistics. This is impossible given the diversity 
of scenarios. If there are existing tools that can form the 
desired bootstrap confidence interval of an analysis (e.g., 
PROCESS, Hayes, 2018, a useful SPSS macro developed 
for testing mediation and moderation effects), there is no 
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reason to reinvent the wheel. Instead, our goal is to illus-
trate how forming bootstrap confidence intervals can be done 
using syntax commands. A certain level of understanding 
of SPSS syntax commands and defining macro is neces-
sary. Nevertheless, we believe researchers who decide to use 
mainly SPSS should possess this skill because syntax com-
mands also facilitate reproducible research. We believe our 
illustration can help researchers implement this approach in 
their situations when existing tools are not available and are 
not supported by the version of the BOOTSTRAP command 
they have access to, help them develop tools like PROCESS 
for other statistics and scenarios commonly found in their 
research areas.

In the following sections, we first briefly review the idea of 
bootstrapping. We then use standardized regression coefficients 
in multiple regression to illustrate how researchers can form 
the bootstrap confidence interval. We then illustrate how this 
approach can be applied to more complicated scenarios, such 
as forming the bootstrap confidence interval for a statistic that 
researchers need to compute from the results of an analysis 
themselves, for example, Hedges's g in t test.

A brief introduction to bootstrapping

Interval estimation

One common goal in data analysis is to estimate a parameter, 
such as a population correlation or a regression coefficient. 
In addition to using point estimation, which yields a value 
(the estimate) of this parameter, it is now common to report 
an interval estimate, which yields an interval enclosed by 
two values (Appelbaum et al., 2018; Pek & Flora, 2018). 
The popular intervals reported are the confidence intervals. 
For a 95% confidence interval, if we repeat a study many 
times, each with a new random sample from the population, 
we expect that 95% of the intervals computed from these 
samples will include the population value of the parameter 
being estimated. In addition to providing an interval estimate, 
a confidence interval can also be used for hypothesis testing 
(Greenland et al., 2016). For example, if we are testing a null 
hypothesis of zero correlation and the 95% confidence interval 
of a sample correlation does not include zero, we reject the 
null hypothesis at 100% − 95% or 5% level of significance 
(two-tailed). If the interval includes zero, we conclude that 
there is insufficient evidence to reject the null hypothesis.

Why bootstrapping

In some situations and for some statistics, closed-form for-
mulas are available to compute the confidence limits directly 

and common statistical packages can report them (e.g., the 
confidence interval of an unstandardized regression coef-
ficient, labeled B in SPSS). However, all such formulas 
are derived based on certain assumptions on the popula-
tion distribution of data and the data generation model. For 
example, one popular way to form the confidence interval 
for a Pearson's r is to use Fisher's z transformation (Hotel-
ling, 1953). This method assumes that the two variables have 
a bivariate normal distribution in the population (Gayen, 
1951; Hawkins, 1989). If the assumption of a method is not 
tenable, then the method can lead to biased estimates of 
the sampling variance and result in suboptimal confidence 
intervals, with coverage probability lower than (too con-
servative) or higher than the nominal level, that is, 95% for 
a 95% confidence interval (e.g., Bishara & Hittner, 2012). 
In these situations, nonparametric bootstrapping can be a 
viable alternative because it does not make any assump-
tions on the population distribution (Bishara & Hittner, 
2017; but note that nonparametric bootstrapping depends 
heavily on the distribution of data in a particular sample, as 
will be shown below; see also Efron & Hastie, 2016, Sec-
tion 10.6, on nonparametric bootstrapping as a "very highly 
parametrized" bootstrapping). There are also situations in 
which an analytic solution is possible but complicated. For 
example, one analytic solution for forming the confidence 
interval of an indirect effect in mediation uses the distribu-
tion of the product of two random variables (e.g., MacKin-
non et al., 2004). However, it assumes that the two variables 
are normally distributed, which is not a tenable assumption 
for standardized indirect effect (Craig, 1936). In these situ-
ations, bootstrapping is a common solution because it also 
does not require knowing the sampling distribution of the 
target statistic.

The common implementation

Bootstrapping, proposed over four decades ago (Efron, 1979; 
see Efron & Hastie, 2016, for an introduction), has many 
different variants. Unless stated otherwise, by bootstrap-
ping, we refer to nonparametric bootstrapping, a variant 
commonly used in behavioral research. The procedure is 
simple. Suppose a researcher has a sample of n cases. The 
following steps will be repeated for a large number of times, 
say, 5000 times:

1. Draw n cases from the sample, with replacement. That 
is, once a case is drawn, this case is "placed back" to the 
sample, available for the next draw. Therefore, a case can 
be drawn more than once. The resulting sample with n 
cases is a bootstrap sample.

2. The target statistic is computed on this bootstrap sample.
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3. The bootstrap estimate is stored, and the bootstrap sam-
ple is discarded. (This rarely mentioned step is included 
for reasons presented below.)

After repeating the steps 5000 times, there will be 5000 
bootstrap estimates of the target statistic. The distribution of 
these 5000 estimates is the empirical sampling distribution 
of the target statistic, which is used to form the bootstrap 
confidence intervals.

Common types of bootstrap confidence intervals

To form a confidence interval, a simple and popular method 
is the percentile confidence interval. For a 95% confidence 
interval, the 2.5th percentile and the 97.5th percentile are 
found from the distribution. This interval encloses the mid-
dle 95% of the distribution. In general, a 100(1 − α)% per-
centile confidence interval is formed by finding the 100(α/2)
th and 100(1 − α/2)th percentiles, where α = .05 for a 95% 
confidence interval.

Another type of bootstrap confidence interval is the nor-
mal theory (NT) bootstrap confidence interval (Padilla & 
Divers, 2015; also called standard confidence interval in 
Efron & Tibshirani, 1993). Instead of using percentiles, 
this method first computes the bootstrap estimate of the 
standard error of the target statistic, denoted as  SExb. This 
estimate is simply the standard deviation of the bootstrap 
estimates (5000 bootstrap estimates in the above example). 
The NT bootstrap confidence interval is then computed by 
[x − zα/2SExb, x + zα/2SExb], where x is the point estimate in 
the original sample, and  zα/2 is the 100(1 − α/2)th percentile 
in the standard normal distribution, that is, about 1.96 for 
α = .05. This is an approximate confidence interval (Efron & 
Tibshirani, 1993) but has been found to have more accurate 
coverage probability than the percentile confidence interval 
in some situations (e.g., Padilla et al., 2012, on Cronbach's 
alpha).

There are other types of bootstrap confidence interval, 
such as the bias-corrected-accelerated (BCa) confidence 
interval (Efron, 1987). Because the percentile confidence 
interval usually performs satisfactorily and is the default 
method in some existing tools (e.g., PROCESS, Hayes, 
2018), we will focus on percentile confidence intervals in 
this manuscript. We will also compute the NT bootstrap con-
fidence interval in examples where this method was found to 
work better in previous studies.

An alternative implementation

Though the idea of bootstrapping is simple, there are differ-
ent ways to implement it in a program. One common imple-
mentation of bootstrapping is as illustrated above: resample, 
estimate, store the statistic and discard the bootstrap sample, 

repeat. This ensures that the memory usage is small. If the 
number of bootstrap samples increases, only the storage of 
the bootstrap estimate increases, which is just a vector of 
numbers with its length equal to the number of bootstrap 
samples. This minimizes the memory usage of this comput-
ing intensive method.

However, bootstrapping can also be implemented this 
way:

1. Generate B bootstrap samples and store them in one 
dataset, with a grouping variable to indicate which boot-
strap samples a case belongs to.

2. Loop over the B bootstrap samples to compute the target 
statistic for each sample.

We call this approach the one-pass approach because 
the repetition occurs within each step, rather than across 
all steps. This approach is storage inefficient in both mem-
ory usage and hard disk storage. For example, for R, in the 
default installation, all objects are stored in the memory. 
Therefore, if 5000 bootstrap samples are pregenerated, the 
size of this object is about 5000 times the size of the source 
sample. However, this approach also has four advantages. 
First, the same set of bootstrap samples can be used for sev-
eral analyses, allowing for analysis that combines the results 
from several separate analyses conducted on the same sam-
ple, such as indirect effects or difference between independ-
ent R2s. Second, this approach allows researchers to share 
the source bootstrap samples for others to reproduce the 
results without the need to regenerate the bootstrap sam-
ples.1 Even with as many as 10,000 bootstrap samples, due 
to the duplication in information, the file size after compres-
sion is not large. Third, in some software packages, such as 
SPSS, it allows researchers to apply bootstrapping to analy-
sis that does not natively support bootstrapping because Step 
2 in this approach is just a multiple-group analysis, available 
in most software packages. Last, in SPSS, a dataset is not 
stored entirely in the memory and so memory inefficiency 
is not a major concern. Therefore, this is the approach we 
adopted in the present manuscript.2

1 Reproducibility can also be done by sharing the seed and exactly 
how the resampling is conducted. However, this may not be possible 
in some situations, e.g., when the random number generators changed 
in a platform. Researchers without relevant technical knowledge may 
have no way to be certain that the samples they generated are indeed 
the samples used in a study.
2 The original 3-step approach, though memory and storage efficient, 
can be slow in some software packages. For example, the OMS Boot-
strapping macro adopts this approach. The speed is slow because the 
overhead in repeating each loop is high.
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Bootstrapping in SPSS

Existing command and its limitations

Bootstrapping has been available in SPSS for several years 
as an add-on module. Since version 27, it is available in the 
base version. This function is easy to use and has options 
other than nonparametric bootstrapping (e.g., resampling 
residuals). It can generate bootstrap confidence intervals 
for some commonly reported statistics, such as correlation 
coefficients and unstandardized regression coefficients. 
However, there are cases in which researchers may need 
to form the bootstrap confidence intervals for statistics not 
yet supported, such as R2 and standardized regression coef-
ficients (labeled beta in SPSS), or statistics that are func-
tions of other statistics, such as indirect effects in mediation 
models and effect size measures in mean comparison. Some 
specialized tools are needed for this situation, such as the 
PROCESS macro for indirect effects (Hayes, 2018).

Combining existing methods in the Internet

Other methods have also been proposed to do bootstrapping 
in SPSS. For example, the macro commands at the website 
Ryan's SPSS Tools (Raynald, n.d.) illustrate how bootstrap 
confidence intervals can be formed for various statistics. 
The macro OMS Bootstrapping on that page also illustrates 
that bootstrapping can be done using randomly generated 
frequency weights to simulate resampling, and then using 
the OMS command to collect and export the results from a 
table to an SPSS data file. This approach can be extended 
to forming bootstrap confidence intervals for any statistics 
that are reported in an output table. The one-pass approach 
has also been proposed on the Internet for SPSS (e.g., Nich-
ols, 1996). This approach can be done using built-in SPSS 
syntax commands.

However, despite the existence of these methods, they 
were rarely used in published papers. Some of them are 
customized for a specific statistic and researchers may not 
know how to extend the method to other statistics. Some of 
them are also slow because they did not use the one-pass 
approach and so resampling is done for each statistic. In this 
manuscript, we developed an SPSS extension command to 
implement the resampling step of one-pass approach and 
presented sample syntax commands for the second step of 
this approach for some commonly reported statistics. We 
also demonstrated how to write simple macro commands 
to reduce the process to just a few lines of commands. 
Researchers can use the extension command and adapt the 
sample syntax commands to form the bootstrap confidence 
intervals for any statistics reported in SPSS, and even for 
statistics not reported in SPSS but can be computed from 

other reported results. Our goal is to empower researchers 
to apply this approach to their situations.

DIY bootstrapping in SPSS

We call this approach DIY bootstrapping because, except for 
the first step (generating B bootstrap samples), researchers do 
the remaining steps themselves using built-in SPSS commands. 
Once a researcher understands the approach, only a quick search 
of the documentation is needed to apply the approach to other 
statistics. We first illustrate how to implement this approach 
for standardized regression coefficients. We then illustrate this 
approach for selected statistics that are commonly reported in 
behavioral research. All files in the following sections are avail-
able from the OSF page (https:// osf. io/ 2twf5/).

A numerical example: Standardized regression 
coefficients

The dataset used in this example is 2iv_regression.
sav, which has 100 cases and three variables, dv, iv1, and 
iv2, and a case identification number, case_id. We will 
demonstrate how to find the bootstrap confidence interval for 
standardized regression coefficients, called betas in SPSS, 
in a multiple regression analysis. Although betas were fre-
quently reported in behavioral studies, finding the unbiased 
standard error and forming a confidence interval with the 
desired coverage probability is actually not simple (see Yuan 
& Chan, 2011, on why the formulas presented in some text-
books are incorrect). Several approaches have been proposed 
(e.g., Jones & Waller, 2013). In addition to using analytic 
solutions, bootstrapping is a possible solution, especially 
because the distributions of the two predictors in this exam-
ple deviate substantially from normal distributions (iv1 was 
generated from an exponential distribution, and iv2 was 
generated from a χ2 distribution [df = 3]). Multivariate nor-
mal distribution of predictors is not required for estimating 
the standard errors and forming the confidence intervals of 
the unstandardized regression coefficients in ordinary least 
squares (OLS) estimation (Fox, 2016). However, to form 
the confidence intervals of the standardized regression coef-
ficients, the distribution of the predictors needs to be taken 
into account (Yuan & Chan, 2011). Given the popularity of 
reporting standardized regression coefficients in behavioral 
research, we selected this statistic as the first scenario. If we 
do a multiple regression to predict dv by iv1 and iv2, the 
betas of iv1 and iv2 are .534 and .568, respectively. We 
will illustrate how to form the percentile bootstrap confi-
dence intervals for these two estimates in SPSS.3

3 The syntax file for this example is diy_approach_illustra-
tion.sps.
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Step 1: Generate B bootstrap samples

Because this step does not depend on what the target sta-
tistic is, we developed a simple extension command, gen-
erate nonpar bootsamples, to integrate the afore-
mentioned methods to conduct this step.4 This extension 
command can be downloaded from the aforementioned OSF 
page. Once downloaded, select Extension and then Install 
Local Extension Bundles …, and select the downloaded file 
to install this command.5 This command needs the Integra-
tion Plug-In for Python, which is installed by default along 

with SPSS.6 Although this step can also be conducted by 
built-in SPSS commands as in the macros mentioned above, 
we found it easier to implement the resampling step using 
Python functions, to make the whole process as automatic 
as possible. The command will automatically find the num-
ber of cases (sample size) in the active dataset, while other 
approaches require researchers to input this value manually. 
Therefore, users do not need to change the syntax even if the 
sample size changed. Once installed, a researcher only needs 
to open the dataset to be resampled, and run a command 
similar to the following one7:

Fig. 1  The generated bootstrap samples

4 A similar command, GSD (Harding & Cousineau, 2016), has been 
developed but for a different purpose. Moreover, our command uses 
Python functions to do the resampling, while GSD uses SPSS built-in 
commands.
5 A real time recording of installing the extension command and run-
ning the syntax commands in the file is available from the OSF page: 
https:// osf. io/ 95rhx/
6 We used only the standard libraries installed with Python 3.4, the 
version installed along with SPSS 26. Therefore, users of SPSS 26 
or later version do not need to do any additional steps once SPSS 
is installed. They also do not need administrative privileges to their 
computers, which usually are not available for computers managed by 
their institutions.

7 Although it is conventional to use uppercase for SPSS commands, 
we used lowercase in the syntax command examples and the syntax 
files due to better readability.
8 Watch the video on OSF on how to use the custom dialog: https:// 
osf. io/ 3bdmj/

This command has two required arguments, b is the num-
ber of bootstrap samples, B (5000 in the example), out-
file in the subcommand /options is the file name of 
the output data file to store the bootstrap samples ('H:/
temp/2iv_regression_bootsamples.sav' in 
the example). The optional argument seed in /OPTIONS 
is the seed for the random number generator (53243 in the 
example). This seed ensures that the same set of bootstrap 
samples will be generated every time the command is run. 

Users can also generate the command above using a cus-
tom dialog installed with the extension (located in the Data 
menu, titled "Generate Bootstrap Samples").8

After running this command with the source dataset 
opened and active, output similar to the following one will 
appear in the SPSS output file:

The command reports the locations of the active data 
file and the generated file. Users can open the latter file 
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and verify that the bootstrap samples are correctly gener-
ated (Fig. 1). In this file, boot_id, boot_case_id, 
and boot_case_id_i, are automatically generated. 
The bootstrap samples are identified by boot_id, rang-
ing from 1 to B (5000 in this example). Case identification 
number, boot_case_id, is automatically generated, 
unique for each case in the source data file. In this example, 
the cases with boot_case_id equal to 1, 2, and 3 were 
drawn once, five times, and thrice, respectively. The vari-
able boot_case_id is the unique identification number 
for each draw of each case (e.g., 1 to 5 for the five draws of 
the case with boot_case_id equal 2). In each bootstrap 
sample, there are 100 cases, the sample size of the source 
data file. The total number of cases in this dataset is 5000 × 
100 or 500,000 cases.

This step only needs to be conducted once. The file can 
be used for finding the bootstrap confidence intervals of any 
statistics to be computed on this sample. To facilitate data 
sharing, this file can be compressed and shared in a data 
repository (e.g., Open Science Framework). If file size is 
a concern, researchers can also just share a file with the 
bootstrap sample identification number (boot_id) and the 
case identification number in the source data file (case_id 
in this example), which are sufficient for other researchers 
to reproduce the bootstrap samples if the source data file is 
also shared.

Step 2: Do the analysis B times

With the dataset of B bootstrap samples generated above, 
it is easy to do a regression analysis B times in SPSS using 
split file by boot_id, boot_id being the variable 
that identifies each bootstrap sample. However, to efficiently 
store these B sets of results, we need to use the OMS com-
mand. This command can save the content of selected out-
put tables to an external file, such as regression coefficient 
tables. This is an example:

This is a typical block in the DIY approach. First, we 
turn on the split file mode. The line oms /destination 
viewer = no suppresses the results in the output window, 
such that SPSS will not print a large table with 5000 sets 
of results. The second OMS command direct the results of 
some output tables to an external SPSS data file. In /if, 
the commands option specifies the name of the procedure 
("Regression" in the example), and the subtypes 
option specifies the type of the table in this procedure. 
Because the betas are reported in the "Coefficients" table, the 
subtypes option is set to "Coefficients".9 The out-
file option in the destination subcommand specifies 
the name of the data file to store the results ("H:/temp/
regression_coefficients.sav" in the example). To 
store the results of each bootstrap result in one row, we need 
to specify the dimnames option in the /column subcom-
mand. This is the most complicated part for this command. 
However, the sample syntax commands we provided above 
and in the following sections should be sufficient for most 
typical scenarios. If the regression analysis to be conducted 
has only one model, then dimnames = ["Variable" 
"Statistics"] ensures that the resulting data file will 
have one row for each bootstrap sample. For researchers who 
prefer using the graphical user interface, a video demon-
stration is available on the OSF page to illustrate how to 
generate the aforementioned syntax commands using nearly 
only the pull-down menus and dialog boxes (https:// osf. io/ 
3bdmj/).

After setting up the OMS commands, users include analy-
sis commands as if the analysis is to be conducted in the 
original sample. For example, the command regres-
sion above is just a typical regression analysis with one 
model, predicting dv by iv1 and iv2. Users can also use 
the commands generated automatically by the dialog box 
in the SPSS graphical user interface. The only requirement 
is that these are the same commands used in the original 
sample to get the point estimate of the target statistics. With 

9 SPSS has an OMS Control Panel to find the command and subtype 
identifiers of SPSS procedures (https:// www. ibm. com/ docs/ en/ spss- 
stati stics/ 26.0. 0? topic= oms- comma nd- subty pe- ident ifiers- comma nd).
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split file on, this analysis will be repeated B times, once for 
each bootstrap sample. All results will be discarded, except 
that the tables selected by the previous OMS command (i.e., 
the table with the betas in this example) will be stored in the 
destination file.

After the commands for the analysis, omsend is used to 
end all active OMS commands, and split file off is used 
to turn off the split file mode. We recommend keeping the 
block of code for an analysis self-contained, starting with 
the split file command and OMS commands, and end-
ing with the omsend command and the split file off 
command. This makes the code easier to read and debug, 
especially if users run the code line-by-line interactively, or 
form the bootstrap confidence intervals for several different 
sets of analysis.

After running this block of command, SPSS will loop 
over the B bootstrap samples and run the regression analy-
sis once for each sample. The output window should have 
no results because all tables except for the selected tables 
(the tables with the regression coefficients) are discarded. 
This process may take 30 seconds to a few minutes on some 

computers, depending on the time to do the analysis in one 
sample. After the commands finished running, users can 
open the output data file ("H:/temp/regression_
coefficients.sav" in the example) and verify the results 
(Fig. 2).

A lot of variables are stored in this data file because the 
OMS command will store all the information in the selected 
tables. However, most of them can be ignored. Researchers 
only need to identify the columns with the target statistics. 
The variable names may be difficult to read but the vari-
ables are usually labeled clearly (Table 1). In this example, 
the standardized regression coefficients estimated in each 
sample are stored in iv1_Beta and iv2_Beta, labeled 
as iv1 Standardized Coefficients Beta and iv2 Standardized 
Coefficients Beta, respectively. The labels are usually gener-
ated based on the labels in the original output tables.

Step 3: Form the bootstrap confidence interval

Once we know which variables store the target statistics, 
the percentile confidence intervals can be easily formed by 

Fig. 2  The data file with the regression coefficients for each bootstrap sample

Table 1  The variable labels in the regression coefficients data file

Name Label

1 Command_
2 Subtype_
3 Label_
4 Var1
5 Var2
6 Constant_B (Constant) Unstandardized Coefficients B
7 Constant_Std.Error (Constant) Unstandardized Coefficients Std. Error
8 Constant_t (Constant) t
9 Constant_Sig (Constant) Sig.
10 ivl_B ivl Unstandardized Coefficients B
11 ivi_Std.Error ivl Unstandardized Coefficients Std. Error
12 ivi_Beta ivl Standardized Coefficients Beta
13 ivl_t
14 ivl_Sig ivl Sig.
15 iv2_B iv2 Unstandardized Coefficients B
16 iv2_Std.Error iv2 Unstandardized Coefficients Std. Error
17 iv2_Beta iv2 Standardized Coefficients Beta
18 iv2_t iv2 t
19 iv2_Sig iv2 Sig.
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built-in SPSS procedures. We recommend using the EXAM-
INE command (named Explore in the pull-down menu) to 
request the percentiles, basic descriptive statistics including 
skewness and kurtosis, histograms, and normal Q-Q plots 
because, in addition to getting the percentiles to form the 
interval, researchers should also examine the empirical dis-
tribution of the bootstrap estimates (Rousselet et al., 2021):

In this example, the 95% bootstrap percentile confidence 
intervals of the betas of iv1 (.534) and iv2 (.568) are 
.409 to .658 and .426 to .684, respectively. If the textbook 
formula (Yuan & Chan, 2011) is used, the 95% confidence 
intervals of the betas of iv1 and iv2 are .416 to .651 and 
.450 to .685, respectively. The two confidence intervals are 
similar for iv1, while the bootstrap percentile confidence 
interval for iv2 is wider than the textbook-formula confi-
dence interval.

The histograms and the normal Q-Q plots (requested by 
the subcommand /plot) can be used to examine the dis-
tributions of the bootstrap estimates. If the excess kurtosis 
is high, the distribution has heavy tail(s) (extreme values 
in one or both ends). This suggests that a larger number of 
bootstrap samples may be needed to have stable estimates of 
the confidence limits because these limits are located at the 
two tails of the distribution. The histograms and normal Q-Q 
plots in this example are shown in Fig. 3. The distributions 
of both betas are close to normal, although that of iv2 beta 
is slightly negatively skewed (skewness = −.271). The excess 
kurtosis values of bootstrap iv1 betas and iv2 betas are 
.030 and .072, respectively.

Other examples

In this section, we will illustrate how DIY bootstrapping 
can be used to form the bootstrap confidence intervals for 
other statistics. Some cases were selected to illustrate how 
DIY bootstrapping can be carried out in more complicated 
scenarios, such as forming the confidence interval for statis-
tics which are computed from other statistics (e.g., Hedges's 
g computed from t test results). These scenarios illustrate 
how readers can extend the approach to other scenarios not 
covered here. Many of the steps are similar to the previous 

Fig. 3  The histograms and normal Q-Q plots of 5000 bootstrap estimates of betas in the example (normal curves with the same means and SDs 
overlaid in the histograms)
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example. Therefore, we only highlight the differences from 
the previous example. The complete SPSS syntax files and 
data files for these examples can be found in the examples 
folder at the OSF page.

Adjusted R2

A commonly reported statistic in multiple regression is 
adjusted R2. Although there are formulas for forming the 
confidence interval for R2 or adjusted R2, they usually 
assume the predictors are multivariate normal and/or the 
sample size is large (Algina, 1999). However, nonnormal 
predictors are common in behavioral research, such as 
dichotomous variables (e.g., gender), skewed variables (e.g., 
age), or even dummy variables. Bootstrap confidence inter-
val is one possible solution for adjusted R2 (Ohtani, 2000).

In this example, we illustrate how to form the bootstrap 
confidence interval for the adjusted R2 in the previous exam-
ple. Because the bootstrap samples have already been gener-
ated in the previous example, we can go directly to Step 2. 
The syntax commands for this task are similar to those in 
the previous example:

Table 2). The adjusted R2s are stored in the column @1_
AdjustedRSquare in this example. The EXAMINE com-
mand can then be used to form the 95% bootstrap percentile 
confidence interval. The 95% bootstrap percentile confi-
dence of the adjusted R2 is .550 to .752. The distribution is 
slightly negatively skewed (skewness = −.317), with excess 
kurtosis .026.

If we know in advance that we want to form the boot-
strap confidence intervals for both the adjusted R2 and the 

Fig. 4  The data file with the model summary results for each bootstrap sample

Table 2  The variable labels in the model summary data file

Name Label

Command_
Subtype_
Label_
Var1
@1_R Model 1 R
@1_RSquare Model 1 R Square
@1_AdjustedRSquare Model 1 Adjusted R Square
@1_Std.ErroroftheEstimate Model 1 Std. Error of the 

Estimate

The only difference is the OMS command used to export 
the output. The commands argument is still "Regres-
sion" but the subtypes argument is "Model Sum-
mary", the table in which the adjusted R2 is reported. The 
argument dimnames is set to ["Model" "Statis-
tics"]. After running these commands, the bootstrap 
adjusted R2 are stored in the output data file (Fig. 4 and 

standardized regression coefficients, we can have two OMS 
commands, one after the other, and then the regression com-
mand, such that the regression only needs to be run once for 
each bootstrap sample. Alternatively, users can include sev-
eral OMS commands before the analysis command, to export 
all major tables in a regression analysis as shown below:
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The two OMS commands can be active at the same 
time because they process different tables. After running 
this block of commands, users can use one output data 
file to form the confidence intervals of standardized 
regression coefficients, and the other output data file 
to form the confidence intervals of adjusted R2, without 
the need to run the 5000 regression analyses twice. This 
technique can be used for other analyses in which the 
confidence intervals for statistics in different tables will 
be formed.

R2 Change

Another commonly reported statistic in behavioral research 
is R2 change, the difference in R2 between two regression 

models, one with one or more predictors added to the other 
model. For example, in the sample dataset 3iv_regres-
son.sav with 200 cases, there are three predictors (iv1, 
iv2, and iv3) and one dependent variable (dv). Suppose 
the first model, Model 1, has one predictor, iv1, and the 
second model, Model 2, has two predictors added, iv2 and 
iv3. The R2s of Models 1 and 2 are .062 and .224, respec-
tively. The R2 change is .224 − .062 or .162, significant (p 
< .001). Like the previous example, the predictors are not 
normal, making existing analytic solutions inappropriate. 
Algina et al. (2010) proposed using bootstrap percentile con-
fidence intervals to form interval estimates of R2 changes. 
We will illustrate how to do this using DIY bootstrapping.

Step 1 is similar to that in previous example, generating 
the bootstrap samples:

In Step 2, the bootstrap samples file is opened and the fol-
lowing commands are used to do the hierarchical regression 
analysis once for each bootstrap sample.
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For multiple regression in SPSS, if there are more than 
two models, the model summary table will have several 
rows, one for each model (Table 3). The OMS command 
in the previous example can be used again in hierarchical 
regression analysis because dimnames = ["Model" 
"Statistics"] will automatically spread the rows for 
models across columns (variables). As shown in Table 4, 
the results for each model are prefixed by "@#_", where # 
is the model number. In this example, we want to form the 
bootstrap confidence interval for the R2 change when add-
ing iv2 and iv3 to a model with iv1 only. Therefore, the 
statistic we need is @2_RSquareChange.

In Step 3, we simply use EXAMINE on @2_RSquare-
Change. Based on the 2.5th and 97.5th percentiles, the 95% 
percentile confidence interval of the R2 change is .083 to 

.269. The distribution of the bootstrap estimates is slightly 
positively skewed (skewness .279, excess kurtosis .040).

Note that R2 change will never be negative. This poses a 
problem for the percentile confidence interval because its 
lower limit can never be negative even if the population R2 
change is zero. Algina et al. (2010) proposed a modified per-
centile confidence interval for R2 change. If the R2 change is 
not significant at the corresponding level of significance (.05 
for 95% level of confidence), the lower limit is changed to 
zero. Therefore, if the R2 change is not significant, researchers 
can ignore the 2.5th percentile and set the lower limit to zero.

Mean difference: Hedges's g

When researchers compare two sample means, Hedges's g and 
Cohen's d are commonly reported effect sizes, the former being 
a less biased estimate of population standardized mean differ-
ence (Hedges, 1981). Cohen's d can be computed directly from 
the sample t in the t test of the two sample means:

where n1 and n2 are the sample sizes of the two samples. 
Hedges's g, the preferred statistic, can then be computed 
from Cohen's d:

d = t
√

1∕n1 + 1∕n2,

g = d
(

1 − 3∕
[

4
(

n1 + n2
)

− 9
])

Table 3  A sample model summary table with more than one model

a Predictions: (Constant). iv1
b Predictions: (Constant), iv1, iv2, iv3

Model Summary

Model R R Square Adjusted 
R 
Square

Change Statistics
R Square 

Change
Sig. F Change

1 .249a .062 .057 .062 .000
2 .473b .224 .212 .162 .000

Table 4  The variable labels in the model summary data file with more than one model

Name Label

1 Command_
2 Subtype_
3 Label_
4 @1_R Model 1 R
5 @1_RSquare Model 1 R Square
6 @1_AdjustedRSquare Model 1 Adjusted R Square
7 @1_Std.Errorofthe Estimat Model 1 Std. Error of the Estimate
8 @1_RSquareChange Model 1 Change Statistics R Square Change
9 @1_FChange Model 1 Change Statistics F Change
10 @l_df1 Model 1 Change Statistics df1
11 @1_df2 Model 1 Change Statistics df2
12 @1_Sig.FChange Model 1 Change Statistics Sig. F Change
13 @2_R Model 2 R
14 @2_RSquare Model 2 R Square
15 @2_AdjustedRSquare Model 2 Adjusted R Square
16 @2_Std.ErroroftheEstimate Model 2 Std. Error of the Estimate
17 @02_RSquareChange Model 2 Change Statistics R Square Change
18 @2_FChange Model 2 Change Statistics F Change
19 @2_df1 Model 2 Change Statistics df1
20 @2_df2 Model 2 Change Statistics df2
21 @2_Sig.FChange Model 2 Change Statistics Sig. F Change
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The dataset used in this example, mean_differ-
ence.sav, has a group variable, gp (1 = "Group A", 
2 = "Group B"), and a dependent variable, dv_gp. Each 
group has 50 cases. The means for Group A and Group B 
are 49.70 and 55.74, respectively, and significantly different, 
t(98) = 2.93910, p = .004. The Hedges's g is .588, a medium 
effect. Bootstrapping is a viable procedure to form the confi-
dence interval of Hedges's g, especially when the population 
distributions are suspected to be nonnormal (Algina et al., 
2006)11.

To do bootstrapping, resampling needs to be done within 
each group. Otherwise, each bootstrap sample may have a 
different number of cases from each group. In this example, 
we will illustrate how bootstrap samples can be generated 
for subsamples, and then combine them.

These are the syntax commands:

To generate bootstrap samples for each group, we use one 
block of command for each group. The command gener-
ate nonpar bootsamples takes into account pending 
transformation before generating the bootstrap samples. In 
each block, we use TEMPORARY  and SELECT IF such 
that the generate nonpar bootsamples command 
does the resampling only for the selected cases. Used alone, 
SELECT IF will delete cases not selected. However, with 
TEMPORARY  run right before SELECT IF, the selection 
is effective only for operations up to the next procedure that 
will read the data and do the analysis.12 Other than these 
two lines, the commands are similar to those used in pre-
vious examples. After running these blocks, the bootstrap 
samples file for Group A (gp = 1) is stored in "H:/temp/
mean_difference_gp1_bootsamples.sav", 
and that for Group B (gp = 2) is stored in "H:/temp/

mean_difference_gp2_bootsamples.sav". They 
can then be combined using the ADD FILES command:

12 Due to the implementation of the DataStep class in the SPSS 
Python module, the FILTER command cannot be used for this pur-
pose. We have to use TEMPORARY  and SELECT IF.

11 Note that Algina et al. (2006) found that the percentile confidence 
interval, though performed satisfactorily in many conditions they 
examined, could perform worse than other procedures in some situ-
ations. This issue will be discussed in the Final Remarks section of 
this manuscript.

10 We reversed the sign because SPSS computes the t by subtracting 
the second group (Group B) from the first group (Group A), and the 
mean difference by subtracting the mean of the second group (55.74) 
from the mean of the first group (49.70).
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We need to sort the cases by boot_id (sort cases 
by boot_id) such that cases in each pair of bootstrap 
samples (one for Group A and one for Group B) are grouped 
together to a bootstrap sample with 100 cases. The resulting 
file has 5000 bootstrap samples, each with 100 cases, 50 
cases from Group A and 50 cases from Group B.

Step 2 is similar to those in previous examples, except 
that T-TEST is used to test the difference in sample means:

Because the sample sizes are constant (n1 = n2 = 50), we 
only need the sample t. In the OMS command, the com-
mands option is "T-Test", the subtypes option is 
"Independent Samples Test". To instruct SPSS 
to have all values stored in one row, we set dimnames 
to "Dependent Variables" "Assumptions" 
"Statistics". The t-test command is just the usual 
t-test command for one single sample.

Table 5  The variable labels in the t test results data file

Name Label

Command_
Subtype_
Label_
Var1
dv_gp_Equalvariancesassumed_F dv_gp Equal variances assumed Levene's Test for Equality of Variances F
dv_gp_Equalvariancesassumed_Sig dv_gp Equal variances assumed Levene's Test for Equality of Variances Sig
dv_gp_Equalvariancesassumed_t dv_gp Equal variances assumed t-test for Equality of Means t
dv_gp_Equalvariancesassumed_df dv_gp Equal variances assumed t-test for Equality of Means df
o'v_gp_Equalvariancesassumed_Sig.2tailed dv_gp Equal variances assumed t-test for Equality of Means Sig. (2-tailed)
dv_gp_Equalvariancesassumed_MeanDifference dv_gp Equal variances assumed t-test for Equality of Means Mean Difference
dv_gp_Equalvariancesassumed_Std.ErrorDifference dv_gp Equal variances assumed t-test for Equality of Means Std. Error Difference
dv_gp_Equalvariancesassumed_Lower dv_gp Equal variances assumed t-test for Equality of Means 95% Confidence Inter-

val of the Difference Lower
dv_gp_Equalvariancesassumed_Upper dv_gp Equal variances assumed t-test for Equality of Means 95% Confidence Inter-

val of the Difference Upper
dv_gp_Equalvariancesnotassumed_t dv_gp Equal variances not assumed t-test for Equality of Means t
dv_gp_Equalvariancesnotassumed_df dv_gp Equal variances not assumed t-test for Equality of Means df
dv_gp_Equalvariancesnotassumed_Sig.2tailed dv_gp Equal variances not assumed t-test for Equality of Means Sig. (2-tailed)
dv_gp_Equalvariancesnotassumed_MeanDifference dv_gp Equal variances not assumed t-test for Equality of Means Mean Difference
dv_gp_Equalvariancesnotassumed_Std.ErrorDifference dv_gp Equal variances not assumed t-test for Equality of Means Std. Error Differ-

ence
dv_gp_Equalvariancesnotassumed_Lower dv_gp Equal variances not assumed t-test for Equality of Means 95% Confidence 

Interval of the Difference Lower
dv_gp_Equalvariancesnotassumed_Upper dv_gp Equal variances not assumed t-test for Equality of Means 95% Confidence 

Interval of the Difference Upper
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After running this block, the output can be found in the 
destination ("H:/temp/independent_samples_
test.sav" in this example). The sample ts are stored 
in dv_gp_Euqalvariancesassumed_t (Table 5). 
Unlike the previous examples, we need to compute boot-
strap estimates of Cohen's d and Hedges's g ourselves using 
the formulas above.13 This can be easily done because we 
already know the sample sizes for the two groups, and 5000 
bootstrap t statistics are stored as a variable in the data file:

Using the EXAMINE command, the 95% bootstrap per-
centile confidence interval is .212 to .989,14 suggesting that 
the effect size estimate of .588, though significant, has a 
moderately wide interval that spans the range from small 
effect to large effect as labeled by Cohen (1988).

This example illustrates how DIY bootstrapping can be 
used to form confidence intervals for statistics that are not 
readily available in SPSS output tables but need to be com-
puted from the results. This technique can be extended to 
other statistics, such as omega-square for ANOVA (Hays, 
1988).

Cronbach's alpha

The last example we selected is Cronbach's alpha. This 
statistic is reported in many behavioral studies that used 
psychological measurements. However, unlike other statis-
tics usually presented along with it, few studies reported 
the confidence intervals for Cronbach's alphas. Moreover, 

nonnormality is not uncommon for item-level data, making 
existing closed-form solutions inappropriate. In this exam-
ple, the data file is scale_items.sav. It has 100 cases 
and 10 variables (item1 to item10) that are used to form 
a 10-item scale. The factor scores used to generate that data 
were drawn from a χ2 distribution, to simulate situations in 
which the attribute being measured is naturally skewed in 
the population. The Cronbach's alpha for this 10-item scale 
is .736.

After generating 5000 bootstrap samples, these com-
mands will be used to compute the Cronbach's alpha 5000 
times:

The command to be used is RELIABILITY. There-
fore, the commands option in the OMS command is set to 
"Reliability". The table in which Cronbach's alpha is 
reported is "Reliability Statistics" and so the 
subtypes option is set to this value. This table only has 
one row and so the dimnames is just "Statistics".

This dataset is much easier to understand than those in the 
previous examples (Table 6). The bootstrap sample estimates 
of Cronbach's alpha are stored in the variable Cronbach-
sAlpha. The percentile confidence interval is .634 to .804. 
Padilla et al. (2012) recommended using the NT confidence 
interval for Cronbach's alpha. The bootstrap estimate of the 
standard error is the standard deviation of Cronbach-
sAlpha, which is .044. Therefore, the 95% NT confidence 
interval of the Cronbach's alpha is (.736 − 1.96 × .045) to 
(.736 + 1.96 × .045), or .650 to .822. Although its point esti-
mate passed the usual cutoff of .70, there is not sufficient 
evidence to conclude that the population Cronbach's alpha 
is higher than .70 (although also not sufficient evidence to 
conclude that it is lower than .70).

Simplifying the syntax files by using ad hoc 
macros

To make a syntax file doing DIY bootstrapping more com-
pact and readable, researchers can write simple ad hoc 
macros for their analyses. Examples can be found in the 
macros folder on OSF page. For example, the syntax com-
mands for Step 2 in the example for standardized regression 

Table 6  The variable labels in the reliability results data file

Name Label

Command_
Subtype_
Label_
Var1_
CronbachsAlpha Cronbach’s Alpha
NofItems N of Items

13 SPSS 27 and later can report Hedges's g directly. We did not have 
access to this version when we prepared the first draft of this manu-
script. We kept this example because there may be users who have 
no access to SPSS 27, and this example can also illustrate how to 
compute other desired statistics from the OMS output, such as other 
newly proposed effect size measures not yet supported in SPSS.
14 Note that the signs have been reversed as we did for the t statistics, 
for the same reason mentioned before.
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coefficients and adjusted R2 can be simplified to these four 
commands using macros:

The first two commands, bregrsq and bregcoef, 
are simple macros that accept one argument, the destination 
file. It is easy to write this kind of macros. For example, the 
SPSS syntax commands to define bregrsq are as follow:

The first command, define, sets the name of the 
macro (bregrsq) and the argument it accepts (out = 
!tokens(1)), which is one argument named out, with 
one element (!tokens(1)). The definition of this macro 
ends at !enddefine. The lines between these two com-
mands are the same commands used in previous examples, 
except that the name of the output file after outfile is 
replaced by !out. When bregrsq is run, it will replace 
!out by its value ("H:/temp/regression_model_
summary.sav" in the example), and then run the modi-
fied syntax commands. Macros for the OMS commands for 
other procedures and tables can be written similarly because 
usually the destination file is the only variable that may 
change across analysis. The last macro, bomsend, only 
has two commands:

It has no argument. Its purpose is to wrap up a block of 
the analysis. Researchers can use our templates in the file 
diybootstat_macros.sps at the macros folder of the 
OSF page to write macros for frequently used blocks of com-
mands for doing bootstrapping for other statistics.

Final remarks on using bootstrapping

Although nonparametric bootstrapping is a useful technique, 
there are several issues that researchers need to pay attention 
to. First, nonparametric bootstrapping, and bootstrapping in 
general, may yield suboptimal confidence intervals in some 
situations for some statistics. Therefore, the appropriate-
ness of bootstrapping for a particular statistic should not 
be taken for granted but should be based on empirical evi-
dence in previous statistical studies. For example, although 
nonparametric percentile bootstrap confidence interval per-
formed well for indirect effect (Cheung, 2009; MacKinnon 
et al., 2004) and is the default in PROCESS (Hayes, 2018), 
it has been found to have suboptimal coverage probabilities 
when applied to the difference between two independent 
R-square when both population R-squares are zero (Chan, 
2008). Although DIY bootstrapping can be used for virtually 
any statistics reported in SPSS, or statistics derived from 
them, researchers still need to consult simulation studies to 
decide whether bootstrap confidence intervals are likely to 
be appropriate for their target statistics. Researchers cannot 
assume that using bootstrapping can automatically make any 
statistics robust. There are situations in which, if robustness 
is a concern, the solution is to combine a robust estimator 
with bootstrapping, rather than to use bootstrapping on a 
non-robust estimator (Rousselet et al., 2021).

Second, as argued by Zou (2007), bootstrap confidence 
intervals should not be unconditionally used in place of ana-
lytic solutions. If the assumptions for an analytic solution are 
tenable, it can have better performance than nonparametric 
bootstrapping, even in small samples. Efron (1988) remarked 
that "bootstrap methods are intended to supplement rather 
than replace parametric analysis, particularly when paramet-
ric methods cannot be used because of model uncertain-
ties or theoretical intractability" (p. 296). Therefore, using 
bootstrap confidence statistics for a statistic should be an 
informed choice based on previous findings, rather than a 
default choice mechanically adopted. For example, even 
though an analytic solution for the confidence of Cohen's 
d is available (Cumming & Finch, 2001), a researcher may 
decide to use bootstrapping because substantial nonnormal-
ity in the population is suspected, and previous studies found 
that a particular variant of bootstrap confidence interval per-
formed satisfactorily in situations similar to theirs.

Third, it must be stressed that the performance of boot-
strapping is affected by sampling error, similar to parametric 
methods. If the sample size is too small, its performance 
can be adversely affected (Rousselet et al., 2021). Therefore, 
when using bootstrapping for a statistic, previous studies 
should be consulted to judge the probable performance of 
this approach in the situation at hand.
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Last, Rousselet et al. (2021) recommended researchers 
to report "the full bootstrap distribution (and the code) as it 
contains much more information than the confidence inter-
val" (p. 9), to which we agree. This is why we emphasized 
storing the bootstrap estimates and examining their distribu-
tions using EXAMINE, histograms, and normal Q-Q plots 
in our examples. The SPSS syntax files, and the bootstrap 
samples, if feasible, should be shared to make the results 
reproducible. Even if the graphs cannot be included in the 
main text due to space limits, they should be made available 
as supplementary materials such that readers can examine 
them.

Limitations and future development

The current version of the extension command can only do 
nonparametric bootstrapping. It has not yet implemented 
parametric bootstrapping. It does not yet do a more compli-
cated sampling scheme as the SPSS built-in BOOTSTRAP 
command does. However, our intention is not to develop 
a versatile tool. Instead, we illustrated how existing SPSS 
commands can already be used to do basic bootstrapping for 
many statistics, including those not readily available but can 
be computed from reported results (e.g., Hedges's g in SPSS 
26 or earlier versions). We hope our illustration can help 
researchers prepare syntax commands for other statistics and 
scenarios they encounter. We highlight some possible future 
directions below.

Inspection of the Python code of GENERATE NONPAR 
BOOTSAMPLES will show that most of the steps are 
actually implemented in SPSS syntax commands. It is the 
random resampling step that is conducted in Python native 
functions. This step can also be implemented in native 
SPSS commands (see Nichols, 1996, for an example). We 
used Python to show the possibility to use functions in 
Python packages to implement other sampling schemes. 
Interested readers can examine the source code, adapt it for 
other kinds of resampling schemes, and share with other 
researchers.

Though not the main focus of this manuscript, our exam-
ples above also illustrate the potential to write macro com-
mands that make use of OMS redirection to compute statistics 
based on reported results (e.g., Hedges's g). Researchers may 
develop and share macros for commonly reported statistics, 
such as omega-square in ANOVA (Hays, 1988) and com-
posite reliability (Raykov, 1997), using an approach similar 
to that in our examples. Other researchers not familiar with 
OMS commands can then conduct Step 2 using these macros, 
making DIY bootstrapping even simpler than the ad hoc 
macros approach we illustrated above.

Conclusion

Some researchers may find Step 2, doing the data analysis 
on each bootstrap sample, complicated. If researchers usu-
ally use the graphical user interface and the dialog boxes 
to do analysis, it may take some time to learn writing the 
syntax commands, especially the OMS commands for the 
main analysis, computing statistics not available in existing 
procedures, and the ad hoc macro commands. They may 
even think that it is easier to do this task in other computing 
environments, such as R. We are not advocating the use of 
any particular platforms or packages. Even though we our-
selves use R more in our work, we hope more methods are 
available in more platforms, such that researchers can spend 
their efforts on doing analysis on their preferred environ-
ments, instead of learning a new environment just to use a 
particular method.
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