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Abstract
In a simulation study, Stafford et al. (Behavior Research Methods, 52, 2142–2155, 2020) explored the effect of sample
size on detecting group differences in ability in the presence of speed–accuracy trade-offs using the Drift Diffusion Model
(DDM) and introduced an online tool to perform a power analysis. They found that the DDM approach was superior to
analyzing the observed response times and response accuracies alone. In their simulation, they applied the EZ method to
estimate the model parameters. In this article, we demonstrate that the EZ method, which cannot estimate the response bias
parameter of the DDM, causes severe estimation bias for all parameters if the true response bias is not 0.5. Moreover, the
bias patterns differ between EZ and the equivalent maximum likelihood estimation with z fixed at 0.5. This should be taken
into consideration when using the otherwise excellent power analysis tool for experimental designs, in which z �= 0.5 cannot
be ruled out or even stipulate it.
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Introduction

When asked for a decision, we have to choose whether
to respond rather fast or rather accurate. This speed–
accuracy trade-off (SATO; see Heitz, 2014; Henmon,
1911) is a well-established phenomenon in decision-
making experiments. Generally, both response time (RT)
and response accuracy (i. e., proportion correct) decrease
when participants emphasize speed over accuracy. However,
evaluating just one of these two outcome variables will
not fully exhaust the available information. One way to
overcome this limitation is to create an index combining
both RT and accuracy (e. g., Bruyer & Brysbaert 2011;
Liesefeld & Janczyk 2019; Townsend & Ashby 1978;
Vandierendonck 2017, 2018, 2021; Woltz & Was 2006).
Another way is to apply a model accounting for both
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measures. One such model is the Drift Diffusion Model
(DDM; Ratcliff, 1978). It was successfully applied to RTs
allowing for simultaneously considering RT and response
accuracy and thus obtain a deeper understanding of the
processes underlying the outcome (Voss, Rothermund, &
Voss, 2004).

Basically, the DDM assumes in a two alternative forced
choice (2AFC) situation the respondent to accumulate
evidence in favor of either response option. Two thresholds
indicate boundaries eventually hit after sufficient evidence
has been collected for the respective decision, inducing
a manifest reaction. This process is modeled with four
main parameters: (i) The threshold distance (or separation)
a indicates the amount of evidence required to issue a
reaction. (ii) The drift rate (or drift parameter) ν is the
average rate of evidence accumulation per time unit. (iii)
The response bias parameter z covers the respondent’s
initial expectation, which decision is likely to be taken
next (e. g., by instructing participants that 80% of the
stimuli will require a positive response). (iv) Additionally,
all time components not related to forming the decision
(i. e., encoding the stimulus and executing the response) are
aggregated in the encoding and response time parameter
tER. These four parameters were later supplemented by
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three more parameters covering also inter-trial variability
of z, ν, and tER (Ratcliff & Rouder, 1998). Additionally,
the intra-trial variability parameter of ν (frequently termed
s2) is set (usually to a value of 1 or 0.1) to make
the model identified. From these parameters, the drift
parameter ν has proven to reflect the efficiency of
stimulus processing and the threshold separation a the
speed–accuracy response settings. Alexandrowicz (2020)
presented the DMV (Diffusion Model Visualizer), an
interactive graphical tool, which helps understanding how
these model parameters form the RT distributions at either
boundary and the response probabilities at either boundary.
By means of sliders for all eight model parameters1,
the user can interactively change each parameter and
instantaneously see how this impacts the resulting RT
densities and response probabilities. The tool is especially
helpful for understanding SATO and the role the two core
parameters a and ν play therein.

The model parameters are estimated by evaluating
the response-time distributions and proportions of hits at
either threshold. A variety of estimation methods has been
developed and compared (e. g., Alexandrowicz and Gula
(2020), Arnold et al. (2015), Dutilh et al. (2019), Lerche and
Voss (2018), and Ratcliff and Tuerlinckx (2002)).

In a simulation study, Stafford, Pirrone, Croucher,
and Krystalli (2020) explored the superiority of a DDM
approach over analyzing response time and accuracy
separately. They simulated RT and accuracy data with a
DDM by assuming two groups in a no-difference condition
and a SATO-condition, the latter realized by varying both
the boundary separation parameter a and the drift parameter
ν. They analyzed the differences of speed and accuracy
conditions using (a) only RTs, (b) only accuracy, and (c)
the combined evaluation with a DDM. Moreover, they
compared the effect the number of participants (n) had
on the results of these three approaches, assuming 40
trials per person. The results of the DDM (i. e., the drift
parameter), which takes into account both RTs and response
accuracy, outperformed the separate evaluation of the two
measures. This was particularly the case in the presence
of SATOs. The authors found that only the drift rate
was robust in the presence of SATOs, whereas response
speed and accuracy alone produced a large number of
false positives. They emphasized the gain in power in
detecting group differences with the DDM and introduced

1Note that in combination with this article, a new version of the DMV
is made available at www.dmvis.at, now also supporting a slider for
s2. The author RWA wishes to thank Heinrich René Liesefeld for
encouraging to implement this extension.

the “decision poser” (Krystalli & Stafford, 2019), an online
tool allowing for performing an a priori power analysis
for determining the optimal sample size required to detect
relevant differences in drift between two groups.

Problem

Stafford et al. (2020) used in their simulation the EZ
method (Wagenmakers, van der Maas, & Grasman, 2007)
to estimate the model parameters for its advantage in
computational speed. In contrast to all other estimation
methods, EZ is a closed form algorithm, employing the
mean, the variance and the proportion of responses at the
upper threshold, which makes it extremely fast in contrast
to ML-based methods. However, it has one drawback as it
does not allow for estimating the response bias z but rather
fixes this parameter at a/2 (i. e., assumes that there is no
response bias).

In a comprehensive simulation study, Alexandrowicz and
Gula (2020) compared eight methods for estimating the
parameters of the DDM with respect to parameter recovery.
These were the EZ algorithm, several maximum likelihood
methods, and an implementation following the Bayesian
principle. One core result was that all methods performed
fairly equally in recovering the original parameters used for
simulating the data sets. However, aside of EZ’s inability to
estimate the response bias, it also caused severe estimation
bias and larger RMSE of a, ν, and tER in several settings.

Stafford et al. (2020) reported that they checked their
results they obtained with EZ against the hierarchical
HDDM method (Wiecki, Sofer, & Frank, 2013) and fast-
dm (Voss & Voss, 2007). However, they do not go
into details regarding this comparison, especially, which
parameter constraints were applied in the HDDM and fast-
dm estimations: These methods support a broader approach,
allowing for estimating not only the response bias parameter
z, but also three additional parameters covering the inter-
trial-variability of ν, z, and tER. If they set these variability
parameters to zero (as is implicitly done in the EZ-
routine), the similarity is expectable. But if these additional
parameters were also estimated freely with HDDM, it would
seem unlikely to obtain similar results. Unfortunately, the
authors only state “We also confirm that the basic pattern
of results holds for [. . . ] the HDDM [. . . ] and fast-dm”
(Stafford et al., 2020, p. 2145), which is too vague for a clear
statement on this issue.

The biases associated with the EZ method found by
Alexandrowicz and Gula (2020) along with the somewhat
unclear presentation of Stafford et al. (2020) raise the
question, whether EZ is an appropriate method to perform
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the power analysis as proposed by Krystalli and Stafford
(2019). This aspect is explored below.

The consequences of fixing the response
bias parameter z

For that purpose, we performed a simulation study, in which
we generated data sets in line with the DDM applying a full
grid search across a wide range of model parameter values.
We estimated the four model parameters (a, z, ν, and tER) for
each simulated data set with (a) the unrestricted ML-method,
(b) the ML-method with zrel fixed at 0.5, and (c) the EZ-
method. The Supplement provides details regarding the simula-
tion technique, the chosen simulation parameters, and the
results. The core results will be presented and discussed here.

Comparing parameter recovery across methods

Figure 1 shows the parameter recovery of a, ν, and tER
broken down for the chosen levels of a, ν, and zrel.

Considering the core parameter z, the middle column of
Fig. 1 shows the estimates of a, ν, and tER for zrel = 0.5. All
three methods provide unbiased parameter estimates, but
EZ exhibits large positive outliers for a and large negative
outliers for tER (the latter even falling below zero for true
tER ≤ 0.5).

In contrast, we face estimation problems when switching
to zrel �= 0.5. In the first column (zrel = 0.3), fixed
ML and EZ underestimate both ν and tER. A detailed
analysis revealed that this was the case for large |ν|, which
caused the process to hit only the upper or the lower
boundary (depending on the sign of ν). In the third column

Fig. 1 Boxplots of parameter estimates â, ν̂, and t̂0 split by z and estimation method (ML: green, restricted ML: blue, EZ: red). The horizontal
red lines indicate the original values of each parameter
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(zrel = 0.7), the fixed ML method shows a tendency to
underestimate a and to overestimate ν. The EZ method
overestimates ν and underestimates tER, with the latter even
yielding invalid estimates of tER < 0.

The free ML Parameter estimationmethod

Generally, the free MLmethod (colored green) did not show
any bias across any level of zrel in Fig. 1 except for some
outliers for large values of a, which is analyzed below.
Figure 2 reveals an interesting interaction effect of â, ν̂, and
ẑ.

The horizontal spread of the elliptical clusters shows
the random fluctuations of the sample estimates ẑ (see
also Fig. 9 in the Supplement). These together with larger
absolute values of ν (indicated by squares for ν = +2 and
circles for ν = −2) cause the upwards biased estimates â.
The effect even increases with a. As a rough approximation,
a fourth-degree polynomial was fitted for each a indicating
a noticeable agreement to the upwardly biased estimates â

for extreme ẑ. Figure 3 illustrates the mechanism behind this
bias

The bias of â appears only for data sets, in which one
of the two boundaries is (almost) never hit (left diagram
of Fig. 3), which occurs for extreme values of ẑrel (middle
diagram), which, in turn, is related to extreme values of
|ν| (right diagram). For applications, we should, therefore,
keep in mind that data sets with no or almost no hits at
one of the two boundaries may be slightly affected by the
bias described here. However, because such data sets arise
under rather uncommon parameter constellations and would
be easily detected in empirical data, we conclude that the
ML free method is entirely unproblematic.

Fig. 2 Estimates â (vertical axis) for random fluctuations of ẑ

(horizontal axis). The colors and the horizontal dashed lines indicate
the true values of a (blue: a = 1, red: a = 2, green: a = 3), the vertical
dotted lines indicate the true values of z and the shapes indicate the
true values of ν (see legend); the solid lines indicate a fourth-degree
polynomial approximation

Fixing z at 0.5

Figure 1 shows some severe biases for both methods
fixing z at 0.5 (i. e., ML fix and EZ). However, this
figure does not yet reveal the entire complexity of the
structure of these biases. Rather, we have to inspect the
estimates per subgroup formed by the various parameter
combinations. The Supplement provides a full breakdown,
the core results of which are summarized here followed by
certain additional analyses. We found that

• both ML fix and EZ

– severely underestimate ν for z < 0.5 and
severely overestimate it for z > 0.5 (see Fig. 1
here / Fig. 12 in the Supplement);

– severely underestimate tER for z �= 0.5, EZ
even yielding estimates below zero (see Fig. 1
here / Fig. 12 in the Supplement);

• further, ML fix

– severely underestimates a, the more the larger
a and increasingly for ν < 0/z < 0.5 and ν >

0/z > 0.5 (see Figure 14 in the Supplement);
– severely underestimates ν̂ for z < 0.5 and

overestimates it for z > 0.5 (see Figure 17 in
the Supplement);

– underestimates tER for z �= 0.5 the more the
larger a and the smaller |ν| (see Figure 20 in
the Supplement);

• and EZ

– severely misestimates a, increasingly for larger
a. The direction depends on the combination
of z and ν, as the following table illustrates:

EZ ν < 0 ν > 0

z < 0 a overestimated a underestimated
z > 0 a underestimated a overestimated

(see Fig. 15 in the Supplement);
– severely underestimates ν̂ for z < 0.5 and

overestimates it for z > 0.5 but the more the
smaller a (see Fig. 18 in the Supplement);

– misestimates tER for z �= 0.5 entirely and the
more the larger a. The bias has the following
pattern:

EZ ν < 0 ν > 0

z < 0 tER underestimated tER overestimated
z > 0 tER overestimated tER underestimated
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Fig. 3 Left diagram: relating the bias of â to the proportion of upper
boundary hits (colors indicate the levels of a, see Fig. 2); middle dia-
gram: relating the bias of â to the estimates ẑrel (colors indicate the
levels of a, see Fig. 2); right diagram: relating the proportion of upper

boundary hits to the drift parameter estimates ν̂ (colors indicate the
levels of z: light green: z = 0.3, medium green: z = 0.5, dark green:
z = 0.7)

(see Figure 21 in the Supplement);

To exemplify the specific problems of EZ, Fig. 4
juxtaposes the estimates â for ML fix and EZ.

Clearly, the two estimation methods show an opposite
structure of bias, with ML fix following a reversed U-shape
and EZ a U-shape. Diverging structures for ML fix vs. EZ
also emerged for ν̂ (see Figs. 17 and 18 in the Supplement)
and t̂ER (Figs. 20 and 21). This indicates that the problem
is not only the fixing of z = 0.5 as such, but that more
subtleties are in effect, with EZ performing inferior (or even
erratic) in all instances.

Practical implications

The simulation results relate to the two-group setting of
Stafford et al. (2020) as follows: Suppose the two groups
differed in response bias and drift rates were positive.
Estimates from EZ and ML fixed would both lead not only
to different but also wrong conclusions about SATOs: EZ
estimates would imply that participants in the group with
the larger bias were more cautious than those in the group
with the relatively smaller bias (see Fig. 4/right panel and
Fig. 14 in the Supplement). In contrast, the ML fix estimates
would imply that the latter participants were more cautious

Fig. 4 Estimates âML fix (left diagram) and âEZ by z × a × ν; (Figs. 14 and 15 from the Supplement, see there for details)
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(see Fig. 4/left panel and Fig. 14 in the Supplement).
Additionally, both estimation methods would incorrectly
“translate” a true between-group difference in bias into an
effect in drift rate (see Section 5.2 in the Supplement).
Hence, the potential of the DDM to isolate SATOs from true
between-group effects comes at the price of an increased
likelihood for false-positive conclusions about the presence
of SATOs if response bias is neglected.

Discussion

With the present simulation study, we demonstrated that
tampering with z when estimating the parameters of a DDM
has a strong and detrimental impact on the other parameters’
estimates. Stafford and colleagues fixed z at a/2 in their
simulations in order to prevent estimation bias due to model
misspecification. However, we could show that any procedure
fixing z implicitly (EZ) or explicitly (ML fix) will most
likely result in biased estimates of a, ν, and tER.

This is of practical relevance because we have to expect
z to differ in many experiments: On the one hand, response
bias has been shown to be sensitive to manipulations
affecting the expectation which response is better, such as
proportion of stimuli, pay-offs, or features of preceding
stimuli (Diederich & Busemeyer, 2006; Simen et al.,
2009; Burnham, 2018). On the other hand, z may also be
particularly important from a theoretical point of view, such
as in memory (Starns et al., 2012; White & Poldrack, 2014)
or stereotype research (Johnson, Cesario, & Pleskac, 2018;
Mayerl, Alexandrowicz, & Gula, 2019). And, as we could
show in our simulation, purely random fluctuations of z,
that we can never rule out, may also result in an estimation
bias, especially for large a and ν. In an experiment targeting
the SATO, this will be the case in an accuracy condition
(i. e., large a) when presenting “easy” stimuli (i. e., large
|ν|). In contrast, it will not happen in a speed condition or
when using “difficult” stimuli. Hence, the EZ method used
by Stafford and colleagues may not always control well for
speed–accuracy trade-offs.

In their study, Stafford et al. (2020) demonstrate
convincingly the advantages of a model-based approach
to analyze response time and response accuracy in a
two-alternatives forced-choice experiment over analyses
of either measure alone. Moreover, they explore the
important question of how many participants are required
to detect group differences in speed and accuracy with a
given probability of errors of the first and second kind
and introduce a handy online tool to perform such a
power analysis. Their choice of EZ to estimate the DDM
parameters was a comprehensible decision, for any other
method would have been prohibitive for their endeavor.

However, this study again demonstrated the weaknesses of
the EZ method. First and foremost, it is only applicable if no
response bias is present. Wagenmakers et al. (2007) already
noted that “When such a bias exists, the “vanilla” version
of the EZ-diffusion model presented here is inappropriate.”
(p. 8). Also, Grasman, Wagenmakers, and van der Maas
(2009) pointed out that certain experimental designs cannot
be covered by the assumptions made when applying the EZ
method (e. g., in a lexical decision paradigm with conditions
and correctness intertwined; p. 55). Ratcliff (2008) used
the term “misspecification” (p. 1224) and Wagenmakers,
van der Maas, Dolan, and Grasman (2008) conceded that
the z = a/2 assumption “may be overly restrictive”
(p. 1230). Further, Liesefeld and Janczyk (2019) showed
that limiting the response time (either by experimental
design through a response deadline or by trimming RTs
considered as outliers) may result in over-estimating tER in
cases, in which a is large (p. 55). We therefore argue that
the systematic over- or underestimation of the boundary
separation parameter a and drift rate ν renders EZ not an
adequate method for SATO research, even less for designs
stipulating z �= a/2.

One approach to check the plausibility of the assumption
that z = 0.5 would be to examine the mean RTs at
each boundary, and, if they differ, to estimate z instead
(see Wagenmakers et al., 2007, for further checks for
misspecification). Moreover, we showed that even if there
is no response bias, fixing z will in certain cases result
in biased estimates of ν and (to an even larger extent)
of tER. Therefore, even in studies not explicitly triggering
response bias it seems advisable to estimate z. Nevertheless,
and despite the shortcomings discussed here, the “decision
power” tool (Krystalli & Stafford, 2019; Stafford et al.,
2020) fills a gap in current research methods.

Interestingly, van Ravenzwaaij and Oberauer (2009)
found in their simulation study EZ outperforming the fast-
dm (i. e., ML-based) estimation method, which seems to
contradict the present results. However, their simulation
design was benevolent with respect to EZ in that they
assumed z = a/2 (p. 465) and only considered a
selected set of true parameters mirroring estimates from
one specific experiment (even further adjusted by hand;
p. 466). Similarly, van Ravenzwaaij et al. (2017) found EZ
to perform well and comparable to the DDM. However,
they focused (explicitly) on the power of detecting group
differences rather than obtaining exact parameter estimates
and either fixed z = 0.5 in three of their simulations or
sampled it from an N(0.5,0.04), which yields z outside
the interval (0.4,0.6) with a probability of less than 1.3%.
Hence, their conclusions also refer to designs with (almost)
no bias (what they also point out in Footnote 3 on p. 551).
In contrast, our grid-search approach is much wider and
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allows for identifying the structural weaknesses of EZ
reported here. This applies especially – but not limited
to – the negative t̂ER, which, to our knowledge, have not
been addressed before, thus casting severe doubts on the
adequacy of this model at all.

We therefore consider EZ as generally problematic,
which is also in line with Alexandrowicz and Gula (2020),
who recommend EZ preferably “for quickly obtaining
suitable starting values”, not considering it “an equivalent
alternative” for estimating the parameters of the DDM
(p. 17). Maybe, we should take Wagenmakers et al. (2007)
literally and consider EZ a model of its own rather than just
another estimation method for the DDM parameters.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.3758/s13428-021-01786-0.
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