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Abstract
A common observation in ability assessment is that the probability of an examinee giving a correct response drops for end-
of-test items due to low motivation, time limits or other factors. On the test-takers’ side, this change can be considered per-
formance decline (PD), which can strongly affect test validity and bias respondents’ ability estimators. Currently, there is an 
increasing interest in the detection of PD among researchers and practitioners. Researchers and practitioners found that PD 
detection fails to achieve acceptable power, which is typically below 0.55. Change-point analysis (CPA), a well-developed 
statistical method, can be applied to item response sequences to identify whether an abrupt change exists. Existing CPA 
methods cannot be directly used to detect PD because they are appropriate for two-sided alternative hypotheses. To address 
these issues, this research firstly develops a CPA method based on Jensen-Shannon divergence to detect PD. Additionally, 
existing CPA statistics were converted into one-sided statistics to accommodate PD detection. Then, a simulation study 
was conducted to investigate the performance of the proposed method and compare it with modified CPA statistics. Results 
show that the proposed CPA method can detect PD with higher power while generating a well-controlled Type‐I error rate. 
Compared against modified CPA statistics, the proposed method exhibits an augmentation in power from 1.0% to 8.2%, 
with average of 5.7% and higher accuracy in locating the change point. Finally, the proposed method was applied to two 
real datasets to demonstrate its utility.
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Introduction

In the field of psychological and educational measurement, 
different tests have been developed to measure test-takers’ 
latent traits. In addition to the intended latent trait being 
measured, many confounding factors, such as personal fac-
tors (e.g., motivation and physical condition of test-takers) 
and environmental factors (e.g., time limit and testing condi-
tions), may also influence test performance. If these “nui-
sance” factors seriously affect test-takers’ performance, 
failing to consider their effect would result in biased abil-
ity estimations and thus threaten test validity. Biased abil-
ity estimators may lead to incorrect interpretations of test 

scores and subsequent inappropriate decisions (e.g., aca-
demic admission) (Shao et al., 2015; Jin & Wang, 2014).

A primary purpose of large-scale educational assessments 
(e.g., the Program for International Student Assessment, or 
PISA) is to supply information on examinees’ proficiency 
to policymakers. With no personal consequences, they have 
low stakes for examinees (Baumert & Demmrich, 2001; 
DeMars, 2000; Penk et al., 2014; Wise & DeMars, 2005); 
thus, for certain test-takers, the effort they make to answer 
items is likely lower than when they are exposed to high-
stakes tests. (DeMars, 2000; Wise & DeMars, 2005; Wolf 
& Smith, 1995; Wolf, Smith & Birnbaum, 1995). Aberrant 
response behaviors, such as random guessing, rapid respond-
ing and omitting a mass of items, are often observed and 
are most salient at the end of a test (van Barneveld, 2007; 
Wise, 1996). In the field of psychometrical intelligence tests, 
similar problems also arise. In such situations, test results 
carry little or no meaning for the respondents themselves. 
Consequently, certain respondents may lose motivation or 
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effort gradually as the test progresses, responding with more 
guesses and blanks on end-of-test items.

Test time limits also strongly affect examinees’ perfor-
mance on end-of-test items (Bolt, Cohen & Wollack, 2002; 
Glas & Pimentel, 2008; Goegebeur, De Boeck, Molen-
berghs & del Pino, 2006; Goegebeur, De Boeck, Wollack 
& Cohen, 2008). Unlike speeded tests, test time in power 
tests, which purports to measure and only measure cogni-
tive ability of certain domains, should ideally be adequate to 
allow all respondents to try all items with maximum effort. 
In practice, most power tests are administered with time lim-
its. Responses given in haste are thus frequently observed, 
particularly in high-stakes tests (Jin & Wang, 2014). Exami-
nees under time pressure are inclined to respond to questions 
more rapidly or guess randomly on multiple-choice items 
and leave blanks on items that they could not reach before 
the end of the test (Lu & Sireci, 2007).

Such testing behaviors can lead to a decline in the prob-
ability that a test-taker answers a question correctly towards 
the end of a test. From the test-taker’s perspective, this can 
be considered a performance decline (PD), which is viewed 
as a type of aberrant response behavior (Cao & Stokes, 2008; 
Schnipke & Scrams, 1997; Suh et al., 2012). PD is more 
likely to attribute to test speededness during high-stakes 
tests (Bolt et al., 2002), while PD in low-stakes tests is often 
associated with a decrease in motivation or effort (Wise & 
Kong, 2005). List et al. (2017) noted that if PD is present 
but not identified, measurement error increases and inference 
accuracy may suffer.

There are three approaches that are currently used to 
identify PD (Schüttpelz-Brauns et al., 2018). The first is 
to measure response time to items based on the assump-
tion that respondents with less test-taking effort would take 
less time to complete items. Measuring response time is 
convenient in computer-based assessment but fails to dis-
tinguish between low test-taking effort and test-takers with 
high expertise, who can identify key words in items and 
decide in seconds whether they can answer them or not 
(Schüttpelz-Brauns et al., 2018). The second widely used 
method is the administration of self-report questionnaires 
after an assessment. This method does not require sophisti-
cated statistical skills but may not yield adequate accuracy or 
validity (Wise & DeMars, 2005); less motivated respondents 
may respond more carelessly and untruthfully (Debeer et al., 
2014). A third method is an appropriateness measurement, 
which evaluates the fit of a test-taker’s response pattern to 
a chosen item response theory (IRT) model. Inferences are 
limited by model fit; thus, before conducting the person-fit 
test, the optimal IRT model should be identified based on 
the test-level model fit (Tendeiro & Meijer, 2012); if the 
model is misspecified, the inference may be invalid. More 
importantly, de la Torre and Deng (2008) used IRT person-
fit statistics (lz) to detect speeding and lack of motivation and 

found that they achieved limited power; the largest power 
was 0.125 and 0.524, respectively.

As a statistical process control (SPC) method, change-
point analysis (CPA) can detect abrupt changes in a sequence 
of data. Recently, CPA has been used by psychometricians 
to detect aberrant response behaviors (Shao, 2016; Shao, 
Li & Cheng, 2015; Sinharay, 2016, 2017a, 2017b, 2017c; 
Yu & Cheng, 2019). An advantage of CPA is that it can 
detect aberrant response behavior and locate the change 
point (i.e., the item after which a respondent shows an aber-
rant response), which makes deletion of responses after the 
change point possible for data cleaning (Embretson & Reise, 
2000; Shao et al., 2015). Another advantage of the CPA 
method is its flexibility: it does not need to know the distri-
bution parameter before and after the change point, or fit a 
specific model that explicitly considers aberrant response 
behavior. Sinharay (2016) developed three CPA procedures 
to detect performance changes for computerized adaptive 
testing systems (CATs), which are more appropriate for the 
two-sided alternative hypothesis. PD can lead to a decline in 
the ability of the subtest after the change point; thus, those 
who perform worse on items after the change point are 
exactly what the proposed PD aims to detect. Consequently, 
these CPA methods are inappropriate for detecting PD. Sin-
haray (2016) also found that each CPA method had higher 
power in detecting performance change that have consider-
able differences in ability before and after the change point 
(−2 or 2). However, the success of detecting performance 
changes with fewer differences in ability (−1 or 1) was lim-
ited, achieving power of approximately 0.53 or even lower.

Compared to traditional outlier detection methods, CPA 
can estimate the change point, and this inference does not 
depend on the optimal IRT model. Thus, we use CPA to 
detect PD. In CPA, the problem in detecting aberrancy 
is recognizing whether performance on subtests before 
and after the change point changes significantly. Given 
the responses of a respondent, each subtest is character-
ized by the corresponding posterior distributions or point 
estimates of ability. Existing CPA methods, such as the 
method based on the Wald test, for detecting PD by iden-
tifying differences in the mean can be considered. In gen-
eral, statistics based on the estimated moments fail to cap-
ture the difference between posterior entirely. Additionally, 
a difference between point estimates can be particularly 
unstable with an insufficient number of items in one of 
the subtests. For these issues, a common solution is to use 
Bayesian statistics and consider the respondent’s ability 
as a distribution. Measuring the difference between pos-
terior ability distributions of two subtests directly may be 
more stable and accurate. Consequently, a CPA method for 
detecting PD based on the Jensen-Shannon divergence is 
proposed in this study.
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The remainder of the article is presented as follows. First, 
the CPA methods for PD are briefly introduced. Second, the 
proposed CPA method based on Jensen-Shannon divergence 
is introduced. Third, the performance of the proposed CPA 
method in detecting PD is evaluated and compared against 
modified CPA methods through a simulation study. Then, 
the proposed model is applied to two real-data examples. 
Finally, the strengths, limitations, and future directions of 
this research are discussed.

Method

Change‑point analysis

For a process or variable, when a certain type of statistical 
property (e.g., model parameter) changes at a specific point 
under the influence of systematic factors, two subsequences 
before and after that point present different patterns. That 
point is considered to be the change point. As the name 
implies, CPA detects whether the statistical properties of a 
sequence change and estimates where a change occurs. CPA 
has been used in many fields, such as economics, statistics 
and medicine (e.g., Andrews, 1993; Barry & Hartigan, 1993; 
Robinson, Wager & Lindquist, 2010). Although it has a wide 
range of application in many fields, only a handful studies 
have applied CPA to detect aberrancy in the testing process. 
For example, a real-time continuous item monitoring pro-
gram based on CPA was proposed to detect whether and 
when an item becomes compromised (Zhang, 2014). When 
test-takers’ responses to item strings are considered to be of 
interest, CPA can be used to detect aberrant response behav-
iors within a test. Shao et al. (2015) were the first to apply 
CPA to individuals’ item response data to detect whether and 
when each test-taker had speeded responses within the test 
process. Yu and Cheng (2019) proposed a CPA procedure 
based on weighted residuals to detect random responses in 
the context of low-stakes psychological assessment.

The CPA methods for PD

We denote the latent trait of a test to be measured (e.g., read-
ing literacy or depression) as θ. Without a change point, it is 
assumed that response data that examinees provided in the 
order of presentation of items fit the 2-parameter logistic 
IRT model (2PL), one of the widely used IRT models for 
0–1-scored data. The formula of 2PL is presented as follows:

(1)Pi(�) =
exp

[
Dai

(
� − bi

)]

1 + exp
[
Dai

(
� − bi

)] ,

where Pi(θ) is the probability that the examinee with the 
latent trait θ correctly answered the i-th item; D is a scaling 
constant of 1.7; ai and bi are the discrimination parameter 
and difficulty /location parameter of item i, respectively.

With dichotomous items, Shao et al. (2015) and Sin-
haray (2016, 2017a, 2017b, 2017c) proposed three statis-
tics for CPA: Lmax based on the likelihood ratio test, Wmax 
based on the Wald test, and Smax based on the score test. 
For all three statistics, their rationale was that the test can 
be divided into two subtests if a change in the latent trait 
occurs immediately after item j.

Before introducing these three statistics, we define the 
following notations. It is assumed that item j is the change 
point with J test items. And let S1 containing item 1 to item 
j and S2 including item j+1 to item J represent the subtest 
before the change point and the subtest after the change 
point, respectively. Let define the latent trait estimator 
from the scores on the entire test as 𝜃̂0 , that for the scores 
on S1 as �1j , and that for the scores on S2 as 𝜃̂2j.

CPA statistic based on likelihood ratio test  The LRT statis-
tics (Rao, 1973) for testing the null hypothesis of equality of 
the respondent latent trait over S1 and S2 is given by:

where, for example

where Y1, Y2, …, YJ is a sequence of item responses, 
L
(
𝜃̂1j;Y1, Y2,… , Yj

)
 is denoted as an examinee’s log likeli-

hood of Y1, Y2, …, Yj at 𝜃̂1j.
The statistics Lj are appropriate for two-sized alternative 

hypotheses (i.e., Lj could test the equality of the respondent 
latent trait over S1 and S2). For PD, we intend to identify 
those who perform worse on S2 and not those who perform 
worse on S1 (i.e., 𝜃̂1j ≥ 𝜃̂2j ). Consequently, the alternative 
hypothesis in PD cases is one-sized. For one-sized alterna-
tives, studies (Cox, 2006; Cox & Hinkley, 1974; Biehler, 
Holling & Doebler, 2014) have suggested the use of the 
signed likelihood ratio statistic, which, for PD, is given by:

Therefore, Lsj is positive if the respondent’s estimated 
latent trait based on S1 is greater than that based on S2 and 
otherwise. (Sinharay, 2017a).

(2)Lj = −2

[
L
(
𝜃̂0;Y1, Y2,… , YJ

)
− L

(
𝜃̂1j;Y1, Y2,… , Yj

)
− L

(
𝜃̂2j;Yj+1, Yj+2,… , YJ

)
]
,

(3)

L
(
�̂1j;Y1, Y2,… , Yj

)
=

j∑
i=1

[
Yi logPi

(
�̂1j

)
+
(
1 − Yi

)
log

{
1 − Pi

(
�̂1j

)}]
,

(4)Lsj =

� √
Lj, if 𝜃̂1j ≥ 𝜃̂2j

−
√
Lj, if 𝜃̂1j < 𝜃̂2j

.
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CPA statistic based on Wald test  The Wald statistics (Rao, 
1973) for testing the null hypothesis of equality of the 
respondent latent trait over S1 and S2 is given by:

where I1
(
𝜃̂0
) and I2

(
𝜃̂0
) are the estimated test information 

based on S1 and S2, respectively, at 𝜃̂0 . Because the alterna-
tive hypothesis in the proposed case is one-sided, it is more 
suitable to use the signed Wald statistics, which, for PD, is 
given by:

When a respondent is affected by PD, his or her 𝜃̂1j is 
greater than 𝜃̂2j , and then Wsj is positive. For a respond-
ent with a non-PD aberrant response pattern (e.g., warm-up 
effect, the short-term effect of poor performance at the early 
stage of a test due to anxiety, tension), his or her 𝜃̂1j is below 
𝜃̂2j ; thus, Wsj is negative.

CPA statistic based on the Score test  The Score statistic 
(Rao, 1973) for testing the null hypothesis of equality of the 
respondent latent trait over S1 and S2 is given by:

where ∇
(
𝜃̂0;Y1, Y2,… , Yj

)
 and ∇

(
𝜃̂0;Yj+1, Yj+2,… , YJ

)
 are 

the first-order derivatives of the log likelihood of S1 and S2, 
respectively, at 𝜃 = 𝜃̂0 . For the same reason as mentioned 
earlier, it is modified to the signed score statistic (Cox, 
2006), which for PD is given by:

In general, larger Lsj, Wsj and Ssj lead to a higher prob-
ability that the null hypothesis is incorrect, providing 
stronger evidence that there is a change point j in the 
response sequence. Sinharay (2017a) noted that Lsj  and Ssj 
both asymptotically follow standard normal distribution; 
thus, Lsj  and Ssj of examinee n can be compared to critical 
values obtained from standard normal distribution. If they 
are above the critical value, we can deduce that the change 
occurs immediately after item j in the response sequence of 
examinee n. However, in real practice, J − 1 possible change 
points exist between item 1 and item J − 1. Thus, all pos-
sible change points are investigated, and the maximum of 

(5)Wj =

(
�̂1j − �̂2j

)2

1

I1

(
�̂0

) +
1

I2

(
�̂0

)
,

(6)Wsj =

(
𝜃̂1j − 𝜃̂2j

)
√

1

I1(𝜃̂0)
+

1

I2(𝜃̂0)

⋅

(7)

Sj =

[
∇
(
𝜃̂0;Y1, Y2,… , Yj

)]2

I1
(
𝜃̂0
) +

[
∇
(
𝜃̂0;Yj+1, Yj+2,… , YJ

)]2

I2
(
𝜃̂0
)

(8)Ssj =

� √
Sj, if 𝜃̂1j ≥ 𝜃̂2j

−
√
Sj, if 𝜃̂1j < 𝜃̂2j

.

all possible change points is considered the ultimate test 
statistic:

Despite the analytical distributions of Lmax, Wmax and 
Smax is obtainable, considering the difficulty of calculation, 
or the poor approximation of the asymptotic distribution in 
short test lengths, we adopted the Monte Carlo simulation 
approach as done in Shao and Cheng (2017) and Yu and 
Cheng (2019) to establish the null distribution of the afore-
mentioned three CPA statistics. One could infer whether a 
response sequence exists as a change point by comparing 
individuals’ Lmax, Wmax and Smax with the corresponding null 
distribution. If true, the point that has maximum values of 
Lmax, Wmax and Smax is the change point estimated through 
CPA procedures.

Proposed CPA based on Jensen‑Shannon divergence  A 
CPA procedure based on Jensen-Shannon divergence (JS; 
Lin, 1991), which is called JS, is proposed to detect PD in 
this study. The JS is a symmetric measure of the difference 
between two probability distributions P and Q. In this study, 
JS is used to measure the difference between two posterior 
ability distributions estimated by S1 and S2.

To describe the rationality of JS, we simulated two 
respondents and plotted their posterior ability distribu-
tions. The responses to a 20-item test of respondent 1 with-
out PD were simulated by the 2PL. For respondent 2 with 
PD, his or her responses to the first 10 items were gener-
ated similarly; however, the responses to the last 10 items 
were generated following the mixture performance decline 
model (MPDM; Jin & Wang, 2014) that is introduced in 
Eq. 24. The item parameters were simulated as described by 
Shao et al. (2015). For item i (i = 1, 2 ….20), the difficulty 
parameter bi was randomly generated from standardnormal 
distribution. The discrimination parameter ai was generated 
randomly from logN (0, 0.5). Figure 1a shows two posterior 
ability distributions computed from S1 and S2 for respond-
ent 1, a non-aberrant respondent. Figure 1b shows the same 
for respondent 2 with a change point in the middle of the 
response sequence. For respondent 1, the two estimated pos-
terior ability distributions overlap considerably. However, 
for respondent 2, the posterior distribution based on S1 is 
located far on the right side of that based on S2.

Figure 1 shows that normal responses can generate two 
similar posterior distributions, while aberrant responses 
generate two posterior distributions that exhibit marked 
differences. Following this logic, the CPA based on the 

(9)Lmax = max1≤j≤J−1Lsj⋅

(10)Wmax = max1≤j≤J−1Wsj⋅

(11)S
max

= max
1≤j≤J−1Ssj.
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Jensen-Shannon divergence statistic was proposed here to 
measure the difference between posterior ability distribu-
tions. The JSj between two posterior ability distributions is 
computed by the following formula:

where S1j(θ) and S2j(θ) refer to the estimated posterior abil-
ity distribution based on S1 and S2, respectively. The values 
of JS are between 0 and 1, and when JSj is equal to 0, S1j(θ) 
and S2j(θ) are identical. The larger the values of JSj are, the 
greater the difference between S1j(θ) and S2j(θ); thus, a rela-
tively larger JSj indicates that the change occurs in the given 
response sequence.

Bayes’ theorem expressed in terms of a probability den-
sity function is stated as:

where f(θ| X) is the posterior distribution for parameter θ, 
f(X| θ) is the sampling density for the data X, and f(θ) is the 
prior probability of θ. f(X) refers to the marginal probability 
of the data X. When fitting Eq. 13 to the IRT, the f(X| θ) is 

(12)

JSj

[
S1j(�)

‖‖‖S2j(�)
]
=

1

2
∫ +∞

−∞
S1j(�) log

{
S1j(�)

S1j (�)+S2j (�)

2

}
d(�)

+
1

2
∫ +∞

−∞
S2j(�) log

{
S2j(�)

S1j (�)+S2j(�)

2

}
d(�),

(13)f (�|X) = f (X|�)f (�)
f (X)

=
f (X|�)f (�)

∫ f (X|�)f (�)d� ,

expressed as the relative likelihood of the item response data 
given all of the model parameters. To simplify the calcula-
tion, a finite set m = {θ1,θ2,…,θl} of ability values equally 
spaced in the interval [−4, 4] was used to approximate the 
numerical value of Eq. 13, where l = 27. In the standard 
Bayesian method, prior information is fixed before response 
data are collected. The prior probability is obtained from the 
data within the empirical Bayesian method, obtaining more 
information for a parameter (Robbins, 1985). To accurately 
estimate the posterior ability distributions, the current study 
adopt this method. An initial standard normal prior is used. 
The prior for θ1j and θ2j is given in the following form:

where W(θk) refers to the weight of θk, obtained from N (0,1), 
and m is the finite set for ability quadrature points. Once the 
prior is obtained, Bayesian posteriors are computed based on 
the response data. The formula for the posterior probabilities 
for S1 is given as follows:

(14)X
�
�m

�
=

∑J

i=1

�
P
�
Yi
���m

�
W
�
�m

��
∑l

k=1

∑J

i=1

�
P
�
Yi
���k

�
W
�
�k
�� ,

(15)S1j
�
�m

�
=

∑j

i=1

�
P
�
Yi
���m

�
X
�
�m

��
∑l

k=1

∑j

i=1

�
P
�
Yi
���k

�
X
�
�k
�� ,m = 1,… , l,

(a) Responder 1 without PD (b) Responder 2 with PD

Fig. 1   The estimated posterior ability distributions based on S1 and S2 for the respondent with PD and without PD. Note. S1j(θ) is the posterior 
ability distribution based on S1, and S2j(θ) is the posterior ability distribution based on S2.
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where S1j(θm) refers to the posterior probability of the quad-
rature points θm, and X(θm) is the prior calculated from 
Eq. 14. Similarly, the posterior distribution based on S2 is:

There is one issue, however, when JSj is used directly to 
detect PD. Individuals whose posterior ability distribution 
based on S2 is located far to the right side of that based on 
S1 might be flagged by JSj. However, they do not experience 
PD and are not the objects that we aim to detect. Fortunately, 
this issue can be solved by fixing the JSj of someone who 
outperforms S2 on S1 to zero (i.e., only those whose perfor-
mance on S1 is better than that on S2 might be flagged by 
JSj). Finally, JSj between S1j(θ) and S2j(θ) is calculated by 
the following equation:

Thus, JSj[S1j(θ)||S2j(θ)] is equal to 0 for those who outper-
form S2 on S1. Because both posterior distributions in Eq. 17 
are estimable, the values of JSj could provide an index of 
similarity or difference for S1j(θ) and S2j(θ). Thus, test-takers 
with large values of JSj might experience PD.

In fact, the actual change point is unknown, so all possible 
change points would be tested. The point with the maximum 
JSj value is the change point estimated by the CPA proce-
dure as:

This step is similar to the other aforementioned CPA sta-
tistics. As with the aforementioned three CPA statistics, the 
null distribution for JSmax is also obtained using the Monte 
Carlo method. The details of the simulation are shown in the 
following section. Once the null distributions are obtained, 
sample statistics can be compared to the critical values for 
all four CPA statistics to detect whether PD occurs, given a 
significance level.

Simulation study

A simulation study was conducted to investigate the per-
formance of the proposed CPA procedure and three other 
modified CPA procedures. Normal response patterns were 
simulated using the 2PL model. Response patterns with 

(16)

S2j
�
�m

�
=

∑J

i=j+1

�
P
�
Yi
���m

�
X
�
�m

��
∑l

k=1

∑J

i=j+1

�
P
�
Yi
���k

�
X
�
�k
�� ,m = 1,… , l.

(17)JSj

�
S1j(𝜃)

���S2j(𝜃)
�
=

⎧⎪⎨⎪⎩

1

2

∑l

m=1
S1j

�
𝜃m

�
log

�
S1j(𝜃m)

S1j(𝜃m)+S2j(𝜃m)

2

�
+

1

2

∑l

m=1
S2j

�
𝜃m

�
log

�
S2j(𝜃m)

S1j(𝜃m)+S2j(𝜃m)

2

�
if 𝜃̂1j ≥ 𝜃̂2j

0, if 𝜃̂1j < 𝜃̂2j

(18)JS
max

= max
1≤j≤J−1JSj.

PD were simulated using MPDM (Jin & Wang, 2014). 
The performance of the proposed method and three modi-
fied CPA methods was evaluated in two aspects. First, the 
power (the proportion of respondents with PD who are 
successfully detected) and the Type-I error rate (the pro-
portion of normal respondents who are falsely specified 
as PD) were calculated. Second, the accuracy of four CPA 
statistics in locating the change point was evaluated. The 
difference between the estimated change point and true 
change point is denoted as lag, which is calculated in two 
ways. For respondents affected by PD who are success-
fully detected, the lag is the difference between the esti-
mated change point and true change point. For respondents 
affected by PD who are incorrectly labeled as without PD, 
the lag is the difference between the length of the test and 
the true change point, in which the CPA statistic considers 
that there is no change point in their response sequence. 
Since the lag can be positive or negative, and can be offset 
if the average is taken, the absolute value of the lag was 

used and then mean was calculated.

Simulating response data with PD

Jin and Wang (2014) proposed a mixture IRT model for 
PD. The assumption of the MPDM is that examinees exert 
their utmost effort to attempt items until a certain item 
and then start to attempt items with less effort, which is 
consistent with the premise of CPA. Thus, the MPMD was 
adopted to simulate response with PD in this study.

The MPDM takes the following form:

where ci is the guessing parameter of item i; ωi(ωi ≥ 0) is the 
attenuation parameter at item position i and is used to adjust 
the PD due to a decline in test-taking effort, speededness, 
or any factor.

where δ is the change point, an integer with a value ranging 
from [1, J]. When δ = i, PD will start after item i. If δ = J, 
PD will not occur throughout the test; γδ(γδ ≥ 0) is the decre-
ment when the change point is δ:

(19)P
(
Yi = 1

)
= ci +

(
1 − ci

)
exp

[
ai
(
� − bi − �i

)]

exp
[
ai
(
� − bi − �i

)]
+ 1

,

(20)𝜔i

{
0, if i ≤ δ

𝛾𝛿 , if i > δ
,
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where k (k > 0) is the slope of the line formed by connecting 
the decrement of change points. Jin and Wang (2014) also 
proposed a quadratic function for γδ. However, they found 
that the linear function for γδ (Eq. 21) fits empirical data well 
and the value of k2 approaches 0, which indicates that the 
quadratic term is not essential.

Thus, the new MPDM for 2PL takes the following 
formula:

The following example helps interpret the new MPDP 
for 2PL. Let there be a four-item test (J = 4) and k = 0.1. 
Therefore, respondents consist of four groups, namely δ = 1, 
δ = 2, δ = 3 and δ = 4. According to Eq. 23, the decrements 
are γ1 = k(J − δ) = 0.3, γ2 = k(J − δ) = 0.2, γ3 = k(J − δ) = 0.1 
and γ4 = k(J − δ) = 0 for the four groups, respectively. If a 
respondent is categorized into group 1, θ is engaged in item 
1, while θ − 0.3 is engaged in items 2 to 4; if categorized 
into group 2, θ is engaged in items 1 to 2, while θ − 0.2 is 
engaged in items 3 to 4; if categorized into group 3, θ is 
engaged in items 1 to 3, while θ − 0.1 is engaged in item 4; 
if categorized into group 4, θ is engaged in items 1 to 4. In 
summary, the closer that the location of the change point is 
to the end of the test, the greater the ability decrement.

In Jin et al.’s simulation study, k was set to 0.1 and 0.2 
when PD occurred. In a long test (e.g., 40-item), suppose k 
is set to 0.2 and a respondent experiences PD after the fifth 
item. Based on Eq. 23, γδ is equal to 7, while the difference 
between the upper (3) and lower (−3) bounds of θ is usually 
6. Therefore, we set k to 0.1. Jin and Wang (2014) used a 
complex method to simulate the respondent change points. 
For simplicity, a method that is similar to those used by 
Wollack and Cohen (2004), Shao et al. (2015) and Yu and 
Cheng (2019) was used to simulate the change point in this 
study. The change point of examinee n is thus assumed to be 
at 100ηn%(0 < ηn < 1) of a test, which indicates that for item 
i, if i

J
≤ �n , ωni = 0; otherwise ωni = k(J–δn). We can express 

this fact with the following formula:

The values of ηn for examinees are different. Finally, 
Eq. 24 was used to generate response patterns with PD.

(21)�� = k(J − �),

(22)�� = k1(J − �) + k2(J − �)2

(23)Pi(𝜃) =

⎧
⎪⎨⎪⎩

exp [Dai(𝜃−bi)]
1+exp [Dai(𝜃−bi)]

, i ≤ 𝛿

exp [Dai{𝜃−bi−k(J−𝛿)}]
1+exp [Dai{𝜃−bi−k(J−𝛿)}]

, i > 𝛿
,

(24)Pni(𝜃) =

⎧⎪⎨⎪⎩

exp [Dai(𝜃n−bi)]
exp [Dai(𝜃n−bi)]+1

, if
i

J
≤ 𝜂n

exp [Dai{𝜃n−bi−k(J−𝛿n)}]
exp [Dai{𝜃n−bi−k(J−𝛿n)}]+1

, if
i

J
> 𝜂n

⋅

Simulation design

Two tests of different lengths (40 and 60 items) were 
included in the simulation study. Item parameters were sim-
ulated in the same way as in Shao et al. (2015). Threshold 
parameters were generated randomly from N (0, 1). Discrim-
ination parameters were generated from logN (0, 0.5). Then, 
1,000 responders whose true abilities were generated from N 
(0, 1) were simulated. To retain more information and keep 
consistent with previous studies (Shao et al., 2015; Sinharay, 
2016; Yu & Cheng, 2019), different levels of prevalence of 
PD were considered. However, it should be noted that the PD 
prevalence should not affect person-level detection, because 
the true item parameters were used here. List et al. (2017) 
found that the percentage of respondents affected by PD for 
three mixture PD models was 9%, 18% and 32% in empirical 
research; thus, three levels of prevalence were simulated in 
this study by m = 10%, 20% and 30%.

Examinees with PD may be affected to varying degrees; 
some may have more responses affected by PD than others. 
To simulate different PD severity levels, the method used by 
Shao et al. (2015) was used to generate η, which refers to the 
change point and follows a beta distribution. We generated 
four beta distributions with different medians and variances 
to depict different severities of PD. Figure 2 shows the den-
sity curve of η and indicates that as the median increases, the 
change point moves closer to the end of the test. Also, as the 
variance increases, the change point between respondents 
exhibits more variability. Two levels of the median (0.5 and 
0.6) and the variation (0.001 and 0.01) of η were coupled, 
resulting in four conditions.

An overview of the data generation scheme is shown in 
Table 1. There are 2 (test lengths) × 3 (PD prevalence)× 4 
(PD severities) = 24 simulation conditions, and each condi-
tion was replicated 50 times.

To determine whether PD occurs in a given examination, 
sample statistics were computed and compared to respective 
critical values. The same methods used by Yu and Cheng 
(2019) and Worsley (1979) were used to obtain the criti-
cal values after simulating response data of 10,000 normal 
examinees (no PD) with test lengths of 40 and 60 items. The 
true abilities of the examinees were generated from N (0, 
1). A total of 10,000 sample values of JSmax, Lmax, Wmax and 
Smax constitute the null distributions of each test statistic at 
each test length. The critical value was obtained at the cutoff 
of the 95th quantile. Sinharay (2017a) and Shao et al. (2015) 
used maximum likelihood estimation (MLE) to estimate the 
latent traits. When estimating a change point that is late or 
early, which indicates that one subtest may have an insuffi-
cient number of items, the MLE can be unstable for all 1 or 
0 responses. Similar to Yu and Cheng (2019), the expected a 
posteriori (EAP) with a prior of N (0,1) was used to estimate 
the latent trait. Figure 3 shows a null distribution of four 
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CPA statistics, and the null distributions of JSmax, Lmax, Wmax 
and Smax are positively skewed.

The critical value of the four CPA statistics is obtained 
from the top 500 values, given the 10,000 sample values for 
JSmax, Lmax, Wmax and Smax, and a significance level of 0.05. 
After 50 replications at each test length condition, the aver-
age of 50 times was considered to be the final critical value 
for each CPA statistic. Table 2 reports the critical value for 

the four CPA statistics, along with the standard deviations 
(SD), across the 50 replications. Table 2 shows that as the 
length of the test increases, the critical value of each test 
statistic increases. Additionally, the standard deviation of 
the critical value for JSmax, Lmax, Wmax and Smax is small, 
indicating that the critical value is rather stable. For each 
sample value of JSmax, Lmax, Wmax and Smax, if it is above the 
respective critical value of the corresponding test length, 

Fig. 2   Density curve of the 4 η distributions. Note. 0.5 is median of density curve, 0.001 is variance of density curve.

Table 1   Summary of simulation conditions

Type Parameter Condition Median Variance

MPDP  parameters η(Beta distribution) C1 0.5 0.001
C2 0.5 0.010
C3 0.6 0.001
C4 0.6 0.010

Item parameters a Lognormal (0, 0.5)
b Normal (0, 1)

Latent trait θ Normal (0, 1)
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then the null hypothesis is rejected, a personal misfit infer-
ence is concluded, and the estimated change point by the 
CPA procedures is the value of j, where Lmax = Lsj, Wmax = 
Wsj, Smax = Ssj JSmax = JSj.

Fig. 3   Histogram of four CPA statistics.

Table 2   The average (and SD) of critical values for the four CPA sta-
tistics

Statistic Test length

40 60

Lmax 2.496 (0.016) 2.600 (0.014)
Wmax 2.293 (0.018) 2.669 (0.018)
Smax 2.753 (0.026) 2.922 (0.035)
JSmax 0.289 (0.003) 0.311 (0.002)
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Results

Table 3 shows the Type-I error rate and power averaged over 
50 replications of the proposed statistic under each condi-
tion. The Type-I error rate under all experimental condi-
tions is approximately 0.05, which implies that the Jensen-
Shannon divergence-based CPA method can generate a 
well-controlled Type-I error rate when detecting PD under 
various conditions. For a 40-item test, the power ranges 
between 0.730 and 0.849, regardless of the severity of PD. 
For a 60-item test, the power is between the low .90s and 
the middle .90s. Thus, longer tests typically result in higher 
power compared to shorter tests.

With a decline in the median of η (i.e., more PD responses 
are present), power increases, as expected. Thus, conditions 
C1–C2 could generate higher power than conditions C3–C4. 
To understand this trend, we provide an analogy between 
a greater number of PD responses and a larger effect size. 
Larger effect sizes are more likely to be discovered and 
more likely to be detected statistically. When the variance 
of η declines—that is, when the starting point of PD has 
small variabilities—the power also increases. This increase 
occurs because it has more difficulty in correctly detecting 
PD for respondents with few responses (e.g., 10 or 5% of 
the items) affected by PD, or with many items affected by 
PD (e.g., 80% of the items, in which case respondents are 
more likely to be miscategorized as low-ability examinees). 

As the variance of η declines, change points become more 
concentrated at 50% or 60% of the test, which implies that 
fewer respondents have change points at the beginning or 
end of the test. Thus, a greater number of respondents with 
PD are diagnosed correctly.

By comparing the three PD prevalence results, we found 
that conditions with 10%, 20% and 30% PD respondents gen-
erated similar power, which implies that the PD prevalence 
has little effect on power.

Results based on Lmax are shown in Table 4, which reveal 
patterns similar to those shown in Table 3. By comparing 
Tables 3 and 4, JSmax is shown to perform better than Lmax 
in detecting PD with the same test length. When the test 
length is 40 items, the power of the former is approximately 
2.2–3.9% higher. When the test length increases to 60, test-
takers’ responses affected by PD increase to 24 or 30 items, 
so that less sensitive CPA methods could also successfully 
detect them. Consequently, the gap in power between the 
methods is narrowing. However, JSmax remains higher than 
the latter by 1.0–2.1%. Both JSmax and Lmax resulted in Type-
I error rates near 0.05. Therefore, JSmax is generally prefer-
able for detecting PD.

The results based on the Wald test statistics Wmax and 
Score test statistic Smax are shown in Tables 5 and 6, respec-
tively. Both statistics generated a well-controlled Type-I 
error rate, but lower powers compared to the proposed 
method JSmax; Smax generated the lowest power.

To facilitate comparison of the performance of the 
four statistics, Table 7 summarizes the average power and 

Table 3   Power and Type-I error rates for PD detection based on the 
proposed JSmax

Note. TIE refers to Type-I error; C1–C4 are the four conditions of PD 
severity, where C1 refers to PD starting position with median =  0.5, 
variance = 0.001.

Prevalence Severity 40 60

Power TIE Power TIE

10% C1 0.845 0.052 0.957 0.052
C2 0.821 0.049 0.952 0.053
C3 0.795 0.052 0.952 0.052
C4 0.730 0.049 0.912 0.052
Average 0.798 0.051 0.943 0.052

20% C1 0.849 0.049 0.960 0.052
C2 0.812 0.050 0.952 0.050
C3 0.798 0.050 0.948 0.051
C4 0.741 0.050 0.911 0.053
Average 0.800 0.050 0.943 0.052

30% C1 0.845 0.051 0.962 0.050
C2 0.815 0.050 0.951 0.050
C3 0.790 0.050 0.947 0.051
C4 0.731 0.048 0.912 0.052
Average 0.795 0.050 0.943 0.051

Table 4   Power and Type-I error rates for PD detection based on Lmax

Note. TIE refers to Type-I error; C1–C4 are the four conditions of PD 
severity, where C1 refers to PD starting position with median =  0.5, 
variance = 0.001.

Prevalence Severity 40 60

Power TIE Power TIE

10% C1 0.822 0.051 0.939 0.051
C2 0.796 0.049 0.931 0.052
C3 0.756 0.051 0.936 0.052
C4 0.704 0.050 0.900 0.052
Average 0.770 0.050 0.927 0.052

20% C1 0.824 0.048 0.945 0.050
C2 0.790 0.049 0.936 0.051
C3 0.764 0.050 0.930 0.050
C4 0.712 0.050 0.901 0.052
Average 0.773 0.049 0.928 0.051

30% C1 0.818 0.051 0.948 0.051
C2 0.789 0.051 0.935 0.051
C3 0.757 0.051 0.931 0.050
C4 0.706 0.048 0.902 0.051
Average 0.768 0.050 0.929 0.051
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average Type-I error rate for the four CPA procedures. 
We can conclude that (1) as the test length increases, the 
power of all four statistics increases; (2) all four statistics 
generate a well-controlled Type-I error rate in detecting 

PD under various conditions; and (3) based on power, 
JSmax performs best in detecting PD, followed by Lmax, 
Wmax and Smax. It results in power typically ranging from 
the low .70s to the middle .90s. Compared to Lmax, Wmax 
and Smax, JSmax resulted in comparable Type-I error and an 
increase in power of between 1.0% and 8.2%.

Table 8 presents the information for the mean absolute 
lag. Comparing the 40-item and 60-item conditions, one 
can find that the latter has a relatively small mean lag due 
to the decreased number of respondents affected by PD 
who are incorrectly labeled as without PD. In addition, 
as the variance of η declines, the mean lag also declines. 
In the 40-item test, there is a clear pattern that the mean 
lag increases with the median η. In contrast, this pattern 
is not observed in the 60-item test. Comparing the condi-
tions with 10%, 20% and 30% respondents with PD, there 
is little difference in the mean of the absolute lag. Similar 
to the results for the power, JSmax has the best accuracy in 
locating the change point, followed by Lmax, then Wmax and 
Smax has the worst performance.

Table 5   Power and Type-I error rates for PD detection based on Wmax

Note. TIE refers to Type-I error; C1–C4 are the four conditions of PD 
severity, where C1 refers to PD starting position with median = 0.5, 
variance = 0.001.

Prevalence Severity 40 60

Power TIE Power TIE

10% C1 0.811 0.051 0.922 0.049
C2 0.780 0.052 0.913 0.052
C3 0.743 0.051 0.919 0.050
C4 0.676 0.050 0.882 0.051
Average 0.753 0.051 0.909 0.051

20% C1 0.813 0.049 0.928 0.049
C2 0.769 0.050 0.916 0.051
C3 0.750 0.050 0.910 0.050
C4 0.683 0.049 0.882 0.052
Average 0.754 0.050 0.909 0.051

30% C1 0.807 0.051 0.932 0.049
C2 0.774 0.052 0.917 0.052
C3 0.741 0.050 0.913 0.050
C4 0.679 0.048 0.885 0.052
Average 0.750 0.050 0.912 0.051

Table 6   Power and Type-I error rates for PD detection based on Smax

Note. TIE refers to Type-I error; C1–C4 are the four conditions of PD 
severity, where C1 refers to PD starting position with median = 0.5, 
variance = 0.001.

Prevalence Severity 40 60

Power TIE Power TIE

10% C1 0.789 0.051 0.921 0.051
C2 0.773 0.052 0.905 0.051
C3 0.713 0.051 0.910 0.050
C4 0.670 0.051 0.861 0.050
Average 0.736 0.051 0.899 0.051

20% C1 0.794 0.049 0.927 0.051
C2 0.759 0.049 0.911 0.049
C3 0.723 0.050 0.902 0.050
C4 0.676 0.051 0.859 0.051
Average 0.738 0.050 0.899 0.050

30% C1 0.790 0.050 0.930 0.050
C2 0.761 0.049 0.914 0.053
C3 0.717 0.050 0.905 0.050
C4 0.672 0.050 0.865 0.051
Average 0.735 0.050 0.904 0.051

Table 7   Average power and Type-I error for PD detection based on 
four CPA statistics

Index Prevalence Statistic Test length

40 60

Average power 10% JSmax 0.798 0.943
Lmax 0.770 0.927
Wmax 0.753 0.909
Smax 0.736 0.899

20% JSmax 0.800 0.943
Lmax 0.773 0.928
Wmax 0.754 0.909
Smax 0.738 0.899

30% JSmax 0.795 0.943
Lmax 0.768 0.929
Wmax 0.750 0.912
Smax 0.735 0.904

Average Type-I error 10% JSmax 0.051 0.052
Lmax 0.050 0.052
Wmax 0.051 0.051
Smax 0.051 0.051

20% JSmax 0.050 0.052
Lmax 0.049 0.051
Wmax 0.050 0.051
Smax 0.050 0.050

30% JSmax 0.050 0.051
Lmax 0.050 0.051
Wmax 0.050 0.051
Smax 0.050 0.051
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Real data application

To evaluate the utility of the proposed CPA procedures, we 
applied CPA to two empirical datasets, one from the PISA 
data and the other from the Raven Advanced Progressive 
Matrices test (see “Real data application 1” and “Real data 
application 2,” respectively). This section is used to dem-
onstrate the proposed model; thus, we suggest caution in 
over-interpreting the results.

Real data application 1: Detection of PD in PISA

The PISA, which is an age-based survey designed to assess 
the performance of 15-year-old students in three primary 
fields of mathematics, reading and science, is typically a 
low-stakes testing program (List et al., 2017); thus, cer-
tain examinees may not apply their full effort throughout 
the test. Additionally, examinees are required to complete 
the test within a certain time, which might lead to speeded 
responses. As a result, PD was expected in these test results. 
We used data from the sixth booklet of PISA 2009, which 
exclusively covers reading items. Fifty-eight items were 
dichotomous, and one polytomous item was excluded from 
the analysis.

We used the listwise deletion method (Adams & Wu, 
2002) to remove 6,202 examinees with missing data, leav-
ing 17,101 examinees, from which we randomly sampled 
5,000 respondents for further analysis. R and Mplus were 
used to perform all analyses in this section. First, to explore 
the structure of the data, we randomly divided it into two 

subsamples: one for exploratory factor analysis (EFA), and 
the other for confirmatory factor analysis (CFA). In EFA, 
the fitting indices of the one-factor model were as fol-
lows: CFI = 0.974, TLI = 0.973 and RMSEA = 0.021; those 
of the two-factor model were CFI = 0.984, TLI = 0.982 
and RMSEA = 0.017. Given that the fitting indices of the 
one-factor model are above the critical value (0.9), and 
for simplicity, we conducted one-factor CFA based on the 
second subsample, where CFI = 0.973, TLI = 0.973 and 
RMSEA = 0.022. These results show that the data fit well 
with the one-factor model. Second, CPA procedures were 
used to detect PD with estimated item and ability param-
eters. Specifically, the item parameters of 58 items were 
estimated using marginal maximum likelihood estimation 
(MMLE) in the MIRT package (Chalmers, 2012). Based on 
these item parameter estimators, the ability estimation of 
each test-taker was obtained through EAP estimation. Given 
the item parameter and ability estimations, CPA statistics 
were computed for each test-taker.

A total of 314 examinees were flagged by JSmax as exhib-
iting PD. Of the 314 JSmax flagged cases, 251 were also 
flagged by Lmax, 260 were also flagged by Wmax, and 181 
were also flagged by Smax. Figure 4 plots the sample sta-
tistic values for JSmax and Lmax. The red line perpendicular 
to the x-axis is the critical value of JSmax, while the gray 
line perpendicular to the y-axis is the critical value of Lmax. 
Hence, the dots on the lower left indicate respondents who 
are labeled as without PD by both statistics, and those in the 
upper right refer to respondents who are calibrated as with 
PD by both procedures. Fleiss kappa coefficient is suitable 

Table 8   Absolute lag of change-point detection for four CPA statistics

Note. C1–C4 are the four conditions of PD severity, where C1 refers to PD starting position with median = 0.5, variance = 0.001.

Prevalence Severity 40 60

JSmax Lmax Wmax Smax JSmax Lmax Wmax Smax

10% C1 5.523 6.262 6.395 8.247 3.352 3.920 4.517 5.217
C2 6.153 6.920 7.086 8.433 3.805 4.522 5.286 6.104
C3 6.782 7.760 7.825 9.487 3.715 3.979 4.614 5.549
C4 7.592 8.388 8.641 9.960 4.912 5.055 5.866 6.659
Average 6.513 7.333 7.487 9.032 3.946 4.369 5.071 5.882

20% C1 5.436 6.205 6.356 7.998 3.333 3.938 4.805 5.306
C2 6.199 7.044 7.254 8.749 3.762 4.340 5.175 5.927
C3 6.561 7.605 7.545 9.443 3.884 4.200 4.918 5.770
C4 7.264 8.116 8.440 10.014 5.016 5.248 5.947 6.688
Average 6.365 7.243 7.399 9.051 3.999 4.432 5.211 5.923

30% C1 5.508 6.374 6.484 8.085 3.309 3.842 4.484 5.144
C2 6.170 6.908 7.139 8.557 3.796 4.345 5.086 5.801
C3 6.745 7.775 7.803 9.545 3.907 4.228 4.851 5.718
C4 7.482 8.291 8.543 12.911 4.949 4.988 5.712 6.559
Average 6.476 7.337 7.492 9.775 3.990 4.351 5.033 5.806
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for the consistency test of the analysis when repeated three 
or more times. Because there are four CPA methods, Fleiss 
kappa coefficient was calculated to evaluate the consistency 
of the PD detection results by the four methods. The Fleiss 
kappa coefficient was 0.671 (P < .001). A Fleiss kappa coef-
ficient between 0.61 and 0.80 indicates that the detection 

results of multiple analyses are highly consistent (An et al., 
2020); thus, the detection results regarding PD by the four 
CPA methods have high consistency in the PISA dataset.

Figures 5 and 6 compare the posterior ability distributions 
for two flagged respondents and two normal respondents as 
identified by the JSmax method, respectively. With regard to 
flagged respondents, we found that the posterior distribu-
tions based on S1 are located far to the right of those based 
on S2. For normal respondents, the posterior distributions 
based on S1 and S2 overlap considerably. These results imply 
that the proposed method JSmax can identify respondents 
affected by PD in a real dataset.

Real data application 2: Detection of PD in Raven’s 
Advanced Progressive Matrices test

Raven’s Advanced Progressive Matrices test (APM) is a 
psychological assessment that measures inductive reasoning 
and analogical ability. The results carry little or no meaning 
for the respondents themselves. Therefore, certain respond-
ents might gradually lose motivation as the test progresses. 
Additionally, this test is administered with time constraints; 
thus, certain test-takers might respond rapidly to end-of-test 
items. PD was therefore expected.

We recruited a total of 1,008 students from 10 Chinese 
colleges. After removing 111 respondents with missing 
data, 897 respondents (61.3% female) were included in the 
analysis. First, many studies have confirmed that APM has a 

Fig. 4   The sample statistic values for JSmax and Lmax. Note. The red 
dots in the figure indicate the same determination of the respondent 
for JSmax and Lmax, while the gray dots indicate different determina-
tions for the respondent.

Fig. 5   Posterior distributions for two test-takers detected as having PD by JSmax.
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unidimensional structure; therefore, we conducted a one-fac-
tor CFA model on the data, where CFI = 0.895, TLI = 0.888 
and RMSEA = 0.034. The results clearly showed that the 
data share one common factor. Second, we computed a sam-
ple statistic with estimated item and ability parameters. Spe-
cifically, we used the same method as in “Real data applica-
tion 1” to obtain item and ability parameters.

A total of 98 examinees were flagged as PD by JSmax. Of 
the 98 JSmax flagged cases, 85 were also flagged by Lmax, 
77 were also flagged by Wmax, and 55 were also flagged by 
Smax. Similarly, the Fleiss kappa coefficient was calculated. 
The Fleiss kappa coefficient was 0.721 (P < .001), which 
again confirms that the PD detection results by the four CPA 
methods in real data are highly consistent.

Figure 7a and b compare the instantaneous ability esti-
mators of the two flagged subjects and two normal subjects 
by the JSmax method, respectively. By observing the instant 
ability estimators for flagged subjects, we discovered that 
most instant ability estimators fluctuated considerably and 
that there was a clear downward trend as the test progressed. 
For normal respondents, their instant ability estimators fluc-
tuated marginally at the beginning of the assessment, which 
may have occurred because few items were responded to at 
the beginning of the test, resulting in unstable instant abil-
ity estimates. As the number of items answered increased, 
their instant ability estimator tended to stabilize, which again 
verified that the proposed method JSmax can identify subjects 
affected by PD in a real dataset.

Discussion

Given that the traditional approaches of identifying PD 
have their respective flaws and that existing CPA methods 
are inappropriate for PD detection, this study first modified 
three existing CPA statistics to accommodate PD detection. 
Then, we proposed the Jensen-Shannon divergence-based 
CPA method, investigated its performance and compared 
it with modified CPA methods through a simulation study, 
and finally elaborated its effectiveness in two real datasets. 
Results show that the power and accuracy in locating the 
change point of the Jensen- Shannon divergence-based CPA 
statistic was superior to that of the three modified CPA sta-
tistics, while retaining a Type-I error rate near the nominal 
level. Two empirical studies also show that the statistic is 
capable of identifying respondents whose response pattern 
is affected by PD, and the four CPA methods for detecting 
PD have high consistency.

The primary advantages of the proposed method and 
the contributions of this article include the following: (1) 
The proposed method and three modified CPA methods are 
specialized for PD detection with higher power. Many IRT-
based person-fit statistics, such as lz, are applicable for PD 
detection. However, the maximum power of such a broad-
spectrum method is below 0.55 for speededness and lack 
of motivation detection (de la Torre & Deng, 2008). Given 
the prevalence of PD, a targeted detection method (e.g., the 
method proposed in this study) must be developed. (2) Exist-
ing CPA methods determine whether a change point exists 
in a given response sequence by examining whether there is 

Fig. 6   Posterior distributions for two test-takers detected as not having PD by JSmax.
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a significant difference between two ability point estimates 
before and after the change point. The proposed method 
detects aberrancy by quantifying the difference between the 
posterior ability distributions before and after the change 
point. A difference between point estimates might be par-
ticularly unstable with an insufficient number of items in 
one of the subtests. Measuring the difference between the 
posterior distributions directly can provide greater stabil-
ity and accuracy, resulting in higher power for JSmax. The 
proposed method obtains the prior distributions from the 
entire response sequence and thus uses more information 
to obtain more accurate estimated posterior ability distribu-
tions. Thus, the proposed method captures the performance 
change before and after the change point more accurately 
and sensitively than other CPA methods. (3) Compared to 
the other three modified CPA methods, the proposed method 
yields a comparable Type-I error and a gain in power of 
between 1.0% to 8.2%, which implies that the proposed 
method is more accurate in detecting PD.

Despite many advantages, there are certain limitations 
of this study. First, this article generates ability from N(0, 
1) to construct the null distribution of four CPA statistics as 
done in Worsley (1979) and Shao and Cheng (2017). How-
ever, the critical value may not be the same among different 
ability levels; using N(0,1) to simulate the null responses is 
equivalent to calculating the average critical value across 
different ability levels. In empirical studies, the ability dis-
tribution of a group may be completely different from the 
standard normal distribution. In that scenario, using N(0,1) 

to construct the null distribution may not be the optimal 
choice. Hence, when constructing the null distribution in 
an empirical study, we can consider using the existing prior 
information about the respondents’ ability or the distribu-
tion of the composition of ability estimator based on the 
response data to construct the null distribution. Second, in 
practice, respondents may answer items randomly, and not 
in sequence; thus, the effect of PD may be shown on all 
items, as all items could possibly appear at the beginning or 
end of a test. How this possibility may affect the detection 
of respondents with PD is interesting and should be inves-
tigated in future research. Third, the proposed method does 
not consider situations where respondent responses have 
multiple change points. For example, a response pattern 
would be affected by the warm-up effect at the beginning of 
a test and PD at the end of a test, which may be a more com-
mon phenomenon in practice. Our procedure can be easily 
extended to adapt to multiple change points. The first change 
point should be searched first, and then the second change 
point is determined given the first change point. Each search 
attempts to maximize the JSmax. To examine whether these 
change points are statistically significant, the Monte Carlo 
simulation is still used to obtain the critical value of JSmax 
for the first and second change points. Fourth, in practice, 
more difficult items are typically placed at the end of a test 
to avoid frustrating respondents at the beginning of a test. In 
such cases, it is completely reasonable to obtain lower scores 
on end-of-test items. However, it is difficult to differentiate 

(a) Subjects detected of PD by (b) Subjects detected of without PD by 

Fig. 7   Instant ability estimators for subjects. a Subjects detected as being affected PD by JSmax, b subjects detected as not being affected by PD 
by JSmax
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between this reasonable response pattern and the response 
pattern with PD for the proposed method.

Considering the relative newness of CPA in psychomet-
rics, future research should be informed by this study. First, 
the proposed method was used to detect PD based on the 
2PL model. However, an educational and psychological test 
typically examines multiple underlying factors. A multidi-
mensional extension is important and necessary (e.g., replac-
ing 2PL with multidimensional 2PL). Once the model is 
confirmed, the posterior distribution can be computed and 
JSmax can be used to detect PD directly. Second, the pro-
posed method requires known item parameters or parameters 
estimated from the response data. The presence of substan-
tial proportions of aberrant responses (e.g., PD) can result in 
biased estimators of item parameters. Thus, outliers may fail 
to be successfully flagged, as the proposed method depends 
on item parameter estimators; this phenomenon is proverbi-
ally called the “masking effect” in the field of model-based 
outlier detection (Fung, 1993). Thus, certain outliers might 
be “masked” in that when structural parameters have been 
distorted by those outliers, they no longer appear to be 
outlying observations. Any model-based outlier detection 
method would be affected by the masking effect; thus, the 
problem of masking is not exclusive to the proposed method, 
or even CPA methods in general. Consequently, the degree 
of prevalence and severity at which the approaches fail to 
perform effectively should be studied. In addition, we re-
preformed the simulation study to investigate the power of 
four CPA statistics when using the estimated item parameter. 
The results showed that although the powers of four CPA 
statistics all declined somewhat when using the estimated 
item parameter, the ranking of the power of the four CPA 
statistics was same as that using the true item parameters. 
For example, when using the estimated item parameter, the 
power of JSmax, Lmax, Wmax and Smax are 0.762, 0.733, 0.726 
and 0.702, respectively, with the 40-item condition and the 
median and variance setting 0.6 and 0.001, respectively. 
Future studies can use estimated item parameters to investi-
gate the performance of each CPA method, but should jus-
tify why the estimated parameters are chosen over the true 
parameters. However, the estimated item parameters may 
be contaminated with aberrant responses, thus affecting the 
performance of the CPA statistics. In this context, we sug-
gest that future studies might consider selecting a subset of 
seemingly normal responses from the dataset to estimate 
item parameters, and then detect aberrant responses using 
the estimated item parameters.

Third, two similar median levels of 0.5 and 0.6 were set in 
the simulation of PD severity η. Considering that PD often 
happens at the end of the test, we added a simulation with a 
median and variance of 0.9 and 0.001 for η and 10% preva-
lence of PD within the 40-item test. The results showed that 
the power of JSmax, Lmax, Wmax, and Smax was 0.386, 0.373, 

0.351 and 0.341, the Type-I error rate was 0.054, 0.055, 
0.053 and 0.051, and the mean absolute lag of change-point 
detection was 13.095, 13.406, 13.160 and 14.143, which 
indicates that future research should seek to further improve 
the power of CPA methods in detecting those who respond 
randomly at the end of a test. Based on these supplemen-
tary results, we can conclude that the superiority of JSmax 
diminishes when the change point approaches the end of a 
test, and the power of the four CPA statistics examined is 
extremely close. This phenomenon may be because fewer 
items are involved in the calculation of parameters (i.e., 𝜃̂2j , 
S2j(θ)) for CPA statistics before the change point, and thus 
those parameters will be less informative.
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