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Abstract
Detecting eye movements in raw eye tracking data is a well-established research area by itself, as well as a common pre-
processing step before any subsequent analysis. As in any field, however, progress and successful collaboration can only
be achieved provided a shared understanding of the pursued goal. This is often formalised via defining metrics that express
the quality of an approach to solving the posed problem. Both the big-picture intuition behind the evaluation strategies
and seemingly small implementation details influence the resulting measures, making even studies with outwardly similar
procedures essentially incomparable, impeding a common understanding. In this review, we systematically describe and
analyse evaluation methods and measures employed in the eye movement event detection field to date. While recently
developed evaluation strategies tend to quantify the detector’s mistakes at the level of whole eye movement events rather
than individual gaze samples, they typically do not separate establishing correspondences between true and predicted events
from the quantification of the discovered errors. In our analysis we separate these two steps where possible, enabling their
almost arbitrary combinations in an evaluation pipeline. We also present the first large-scale empirical analysis of event
matching strategies in the literature, examining these various combinations both in practice and theoretically. We examine
the particular benefits and downsides of the evaluation methods, providing recommendations towards more intuitive and
informative assessment. We implemented the evaluation strategies on which this work focuses in a single publicly available
library: https://github.com/r-zemblys/EM-event-detection-evaluation.
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Introduction

Most of the eye movement research to date relies heav-
ily on eye movement event detection – parsing the raw
gaze data into various eye movement types, including fix-
ations, saccades, post-saccadic oscillations (PSOs), smooth
pursuits (SPs), optokinetic nystagmus (OKNs), etc1. Ever
since computers were first employed for eye movement

1For definitions of these and other events we refer the readers to
dedicated literature, e.g. (Lappi, 2016; Hessels et al., 2018). Here it
suffices to say that various event types correspond to characteristic
patterns in the eye tracking signal, and these differences can be
exploited to automatically detect events of the different types.
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data analysis, researchers as well as eye-tracker manufactur-
ers developed a vast number of event detection algorithms
(Nyström & Holmqvist, 2010; Komogortsev & Karpov,
2013; Larsson et al., 2013; Anantrasirichai et al., 2016;
Hessels et al., 2017; Houpt et al., 2018; Zemblys et al.,
2018; Bellet et al., 2019; Startsev et al., 2019a; Zemblys
et al., 2019b; Dar et al., 2020; Kothari et al., 2020, to
name a few). These algorithms employ different techniques
for detecting events, such as thresholding the velocity,
spatial gaze sample distribution, or other hand-crafted fea-
tures, use various statistical methods or machine learning
approaches. Naturally, a question then arises: Which algo-
rithm performs better and which one to use? However,
interpreting or comparing the reported performance figures
for the algorithms can often prove challenging even for
the experts in the field: Even if one disregards the differ-
ences between various datasets and only focuses on the
strategies for evaluating the algorithms, the diversity is very
high.
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Currently, there is neither a standard “go-to” performance
metric for eye movement event detectors, nor a standard
way of choosing one. When considering how to approach
designing or assessing an evaluation pipeline in any
particular case, the purpose of deriving quantitative
measures describing a set of eye movement event labels
naturally has a bearing on the applicable evaluation
strategies: For example, one would likely use different
measures to report on a comparison between a dozen of
eye movement detectors (a concise set of measures of
the overall performance that could be easily compared
e.g. in the form of a table or a plot), and to present an
in-detail description of the labelling patterns in two sets
of experts’ labels (a set of highly descriptive statistics
that would facilitate the discussion of the differences
in expert annotations). Ideally, of course, a set of
computed performance measures would be suitable for all
applications: It would be both concise and descriptive,
enabling easy comparison of competing algorithms as
well as a clear understanding of the differences in the
annotations.

Above all and in the context of any use case, however,
the evaluation should be fair, i.e., insofar as possible,
not over- or underestimate the performance of evaluated
algorithms. To more clearly specify this concept, we provide
two important examples of what fairness entails in this
context:

– When comparing several algorithms to one another,
it is especially important that the evaluation is not
biased in favor of a subset of these, either by-design
(e.g. overfitting - for instance when the parameters
of the newly developed algorithm are tuned on data
extremely similar to the one used for the comparative
evaluation, while the other similar algorithms are
untuned) or because the evaluation pipeline implicitly
“prefers” certain patterns (e.g. completely failing to
register certain kinds of labelling errors, for instance
event fragmentation). The latter is as important when
examining the performance of a single algorithm in
isolation, so as not to induce a false sense of very good
performance.

– Meaningful results should be produced for any sets
of compared entities. This includes, for instance, not
producing reassuringly good evaluation results for
intentionally unreasonable predictions (e.g. randomly
assigned labels (Startsev et al., 2019)). This robustness
enables the researchers to trust the results of the
evaluation without having to keep in mind the situations
where one or the other evaluation method is known to
be unreliable.

Evaluation pipeline and paper structure

The motivation outlined above forms the basis of our
assessment of all evaluation approaches we review in this
paper. With this in mind, we argue that certain choices
made already well ahead of actually computing some metric
of the algorithm’s performance can affect the fairness and
descriptiveness of the evaluation as a whole. Therefore, the
evaluation pipeline as it is discussed here (see the diagram
in Fig. 1) starts already at the stage of selecting or acquiring
the eye tracking data to be used (corresponding to “Data
source”). The green parallelograms in the figure denote
the different choices that the researchers can make in this
context. At this stage e.g. selecting a dataset that does not
contain annotated eye movement events may either severely
limit the scope – and the descriptiveness – of potentially
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Fig. 1 Diagram of the steps (blue blocks) and respectively available
options (green parallelograms) involved in the complete evaluation
process, up to the quantitative outcomes of the evaluation (denoted
in orange). In order to put these into context, depending on the
chosen evaluation procedure (cf. “Evaluation procedures”), they can be
compared to the same metrics for either other algorithms or the same
algorithm under different conditions
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applicable evaluation methods, or result in the necessity of
laborious annotation.

Next, the collection of eye tracking data needs to be
subdivided into development and testing data. While in
the context of evaluation we are only interested in the
testing part of the data, a careless splitting of the data may
result in invalid or inherently unfair evaluation, e.g. if the
development set is not sufficiently different from the testing
data. “Validation procedures” deals with different validation
procedures that can be employed for algorithm evaluation,
with “How to split the data” focusing on the specific aspects
of the development-testing split that may affect the fairness
of the evaluation results.

Our main focus – and the largest block in Fig. 1 –
is the evaluation itself, i.e. the computation of certain
metrics or statistics reflecting the performance of the tested
eye movement detector. The primary factor affecting the
evaluation choices is the presence of ground truth for the
eye movements in the eye tracking signal – typically expert
annotations2, though when comparing the outputs of two
detectors to one another, the predictions of one of them can
be used as ground truth.

In this paper we briefly touch on the evaluation possibil-
ities that do not involve labeling the ground truth (“Evalua-
tion based on eye movement metrics”, “Evaluation based on
stimuli parameters”, “Application-based evaluation”), cor-
responding to the topmost group of possible outputs of the
evaluation block in Fig. 1. Methods that are applicable in
a particular case heavily depends on the specific set-up of
an eye tracking experiment: E.g. whether the eye tracking
data can be stored and analyzed offline; to which extent the
known properties of the stimuli and instructions given to the
participants define the gaze behavior in advance or can be
correlated to some statistics of this behavior (e.g. duration
of fixations, amplitude of saccades, etc.); whether there is a
target application, the performance of which is the primary
optimization target when improving or developing the eye
movement event detection (e.g. gaze-based user interaction
or biometrics); etc.

By far the largest part of the paper is dedicated to various
aspects of comparing the predictions of an eye movement
detector to the available ground truth (i.e. the “Yes”
branch in the evaluation block of the flowchart in Fig. 1).
“Detection performance evaluation” provides an overview
of the necessary steps and concepts, introducing sample-

2There is plenty of debate about whether (or to which extent) expert
annotations represent the gold standard of eye movement detection
(Hooge et al., 2018), what are the exact definitions of fixations
(Hessels et al., 2018), saccades, and other events, what information is
needed to annotate the exact onsets and offsets of the events, especially
when eye-head coordination is involved (Agtzidis et al., 2019), etc.
These questions are outside the scope of this review, but we encourage
algorithm developers to always report against what their algorithms’
outputs are being evaluated.

and event-level evaluation, as well as eye movement event
matching. There we also discuss certain decisions that are
crucial for the evaluation, such as how multiclass evaluation
or unlabelled samples can be handled, etc.

“Evaluation metrics” is dedicated to describing the
evaluation metrics, including those that measure how well
an the eye movement events are detected (according to a
certain criterion of accepting a detection) and those that
measure the detections’ quality (i.e. how well they align
with the corresponding “true” events) – the two outputs at
the bottom of the evaluation block in the flowchart. At the
end of this section we discuss the usability of the reviewed
metrics as a stand-alone evaluation tool in terms of a number
of properties (naturally handling multiclass evaluation,
suitability for imbalanced data sets, etc.), comparing them
to one another.

In “Event matching methods” we describe the specific
details of various event matching approaches – a corner-
stone step for almost any type of event-level evaluation of
an eye movement detector. This step is at the same time
extremely implementation-dependent (as the logic of most
matchers in the literature is non-trivial) and lacks any stan-
dardization across different works. The fine implementation
details or potential flaws in the matching logic can substan-
tially shift the outcome of the overall evaluation. Moreover,
there is not one “correct” event matching logic that would
handle all the corner-cases that could come up in the data
in a way that would be satisfactory for any use case. There-
fore, it is important to understand the specific matching
patterns that one can expect from the matchers described
in the literature. We provide plentiful illustration of the dif-
ferent matchers’ behavior in this section, discussing their
benefits and shortcomings, in general and with respect to
one another. At the end of this section, we summarize the
matcher landscape for an easier overview.

To illustrate and quantify the influence of event matching
on the evaluation, in “Interaction between the performance
metrics and event matchers” we examine the difference
between the values of the same metric obtained under
different event matching approaches on an example of
a large published dataset. This highlights the difficulty
in comparing event-level metrics between papers that use
subtly different evaluation methodology.

Finally, “Summary, recommendations, and discussion”
summarizes the recommendations towards improving the
evaluation pipeline made throughout this work. We also
discuss various open questions regarding designing or
assessing an evaluation strategy.

Intended audience and related work

This review of the existing practices of evaluating eye
movement event detection algorithms mostly mirrors the
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tutorial that the authors held at the ACM Symposium on Eye
Tracking Research & Applications (Startsev & Zemblys,
2019), expanding on the ideas and methods presented
there, covering more ground overall, and providing a
comprehensive source of information on the subject. We
note that algorithm evaluation strategies that we describe in
the rest of the paper are mostly relevant for the algorithm
developers who want to convincingly demonstrate the
advantages of their proposed methods or gain insights in
order to improve them. Likewise, researchers examining
and reviewing publications in the eye movement detection
field could find the critical review of the existing evaluation
methodology useful, as it aligns with the interests of
ensuring the high quality of publications that contribute
to the state of the art, as well as encouraging inter-
comparability and reproducibility in the research field.

A deeper understanding of the building blocks of the
evaluation process would also allow those not actively
developing their own eye movement detectors to make a
better informed decision when e.g. selecting an evaluation
procedure to follow in order to choose an existing detector
to use in their application. It has to be pointed out,
however, that there is no single “right” choice of an
evaluation pipeline, as e.g. some groups of those in need
of creating an evaluation set-up might prioritize ease
of use or implementation simplicity over robustness or
descriptiveness, and vice versa.

Studies focusing on the evaluation measures exclusively
are rare, as even novel evaluation approaches are typically
introduced in conjunction with describing a new algorithm
and, therefore, not extensively studied in a dedicated
manner. The authors usually name the key differences from
the other methods in the literature, as well as the addressed
shortcomings of the existing evaluation strategies, but only
in a limited context (Zemblys et al., 2019b; Startsev et al.,
2019a; Kothari et al., 2020). In a recent work by Startsev
et al. (2019), a number of eye movement event detection
metrics were evaluated in an empirical way, demonstrating
that they strongly differ at least in some cases. That work
served as an initial motivation for a wider-scope comparison
and analysis that we undertake in this review.

To the best of our knowledge, no dedicated reviews
addressing evaluation strategies for eye movement event
detection exist to date. Comparisons of a number of
different algorithms (Andersson et al., 2017; Stuart et al.,
2019; Startsev et al., 2019a; Dalveren and Cagiltay, 2019)
do not specifically focus on the differences of various
metrics. Eye tracking methodology books (Duchowski,
2007; Holmqvist et al., 2011) also do not discuss
performance measures for event detectors. While Holmqvist
et al. (2011, part III) list around 120 “eye movement
measures”, such as number of fixations or saccades, fixation
duration, saccade amplitude, etc., these are statistics meant

to quantify the properties of respective events in the
recording, not measure the algorithm’s detection quality.
In “Evaluation using similarity to the ground truth event
parameters” we describe how such measures can be “re-
purposed” for algorithm evaluation as well.

Remarks on terminology

In this review we strive to use the term “detection” for
parsing raw gaze data into events, as in our view it better
describes the end result of the eye tracking data processing
system that we want to evaluate. Since “eye movement”
is used in the literature to describe a complete event,
we also interchangeably use “eye movement detection”
and “eye movement event detection” to refer to exactly
the same process. We provide detailed reasoning for this
nomenclature choice in Appendix A and encourage other
researchers to use this term to avoid further confusion in the
field.

When talking about sample-level labels, however, we
will refer to individual samples as “classified as X”
or “labeled as X” as a shorthand for “belonging to
the eye movement type or class X”. Similarly, when
talking about confusion matrix-based evaluation metrics
(“Confusion matrix-based measures”), we will refer to them
as “classification” performance metrics.

When talking about the quantitative outcomes of the
evaluation, we often refer to these as “scores” for brevity,
as a shorthand for “result of metric computation” – i.e. a
numerical value reflecting the quality of the algorithm’s
predictions as measured by some evaluation metric.

Evaluation protocols

In this section we go through the full pipeline of
developing and testing of the eye movement event
detection algorithm, preceding to the computation of
evaluation metrics themselves. We start from creating,
selecting, or acquiring a data pool (“Data sources”),
moving to algorithm validation procedures during its
development (“Validation procedures”), to a comparison
against either competing approaches (“Comparison against
other algorithms”) or against different eye tracking data
quality levels (“Robustness against varying data quality
and other data- or algorithm-specific parameters”). We
finally offer some remarks on cross-dataset evaluation in
“Cross-dataset evaluation”.

While this part of the paper does not focus on the
particular evaluation strategies themselves (for that, see
ensuing “Evaluation methods” and “Evaluation metrics”),
we argue that meaningful evaluation does not merely
concern the metrics used to test the results of an algorithm,
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but touches every aspect of the analysis. For instance,
using a biased validation or an overfitting-prone validation
scheme, or choosing an unsuitable dataset cannot be helped
by switching to a better detection quality measure.

Data sources

This section provides an overview of different sources of
eye tracking data relevant for evaluating an eye movement
detector. For this, we focus, first and foremost, on evaluation
pipelines that rely on the availability of some form of
the “ground truth” eye movement events. For the case of
evaluation without the ground truth, we refer the reader to
the evaluation strategies in the first parts of “Evaluation
methods” and the dataset assumptions or requirements in
the respective papers. We note, however, and elaborate on
this in the corresponding sections, that such strategies can
be seen as a sanity check, and not a direct evaluation of the
algorithm’s performance.

Therefore, when talking about evaluating the perfor-
mance of an eye movement event detector against some
form of ground truth, we essentially mean the comparison
of two eye movement data streams – sequences of eye track-
ing samples each labeled as a certain eye movement type
(e.g. fixation, saccade, etc., or undefined if no label is avail-
able). One of these data streams is referred to as the ground
truth, the other – as prediction. That is, having an output of
an algorithm (predicted event labels), we want to establish
how similar these labels are compared to the ground truth.

While “ground truth” typically means eye movement
labels manually produced by an expert annotator, it is worth
noting that, in principle, this type of comparison can and
has been applied to various pairs of eye movement data
streams (as long as they describe the labels for the same
underlying eye tracking signal) – the labels of two experts,
two algorithms compared to one another, or e.g. the outputs
of the same algorithm before and after eye tracking data
quality degradation. Nevertheless, we will refer to the two
data streams as the ground truth and prediction sequences
for simplicity.

We assume that the labels in both data streams are
provided at the level of individual gaze samples. While
this is not usually the way e.g. human annotators would
label the data, this is a universal representation, to which
annotated continuous events can be converted. Also, it is
not necessarily the case that all samples receive a label:
Some event classes may not be detected by an algorithm, or
be irrelevant to the study and thus not annotated. Without
limiting the generality, we state that the gaze samples
without a label have actually been labelled as an undefined
class (some works, for example Larsson et al. (2013), do
this explicitly in the annotation pipeline). In this case, we
can speak of every gaze sample being labelled without

imposing restrictions on the event detector or the annotation
methodology.

We also note that it is not required that the same
sets of labels are present in the two compared data
streams: An expert could have annotated more event types
than the algorithm detects, or vice versa. The only two
requirements are that each sample in the ground truth and
prediction sequences has a single label (either assigned
explicitly or undefined) and that there is a strict one-to-
one correspondence between the samples in both sequences
(i.e. both sequences map to the same eye tracking data).
The special cases where a sample can be annotated with
several labels at once – e.g. as a part of a saccade and at the
same time a part an optokinetic nystagmus event (Agtzidis
et al., 2019) – would be handled by the currently existing
evaluation pipelines via performing several evaluations:
Testing is divided into such subsets of labels that the
requirements above are fulfilled, i.e. the algorithm is tested
as a fixation and saccade detector separately from its ability
to detect optokinetic nystagmus.

Publicly available datasets

The easiest and most straightforward source of expert
annotations for an eye movement event detector is
relying on already published datasets. The corresponding
publications typically include thorough descriptions of the
annotation process and the details of the recording set-up.
To facilitate the task of selecting a dataset that could be
used for either evaluation or development, we provide a
list of publicly available data in Table 1 together with their
basic properties, including overall duration, the annotated
eye movement types, and notes of how these data were
collected. We also provide an online version of the table
on the project repository page that can be updated when
necessary. An important consequence of the availability of
a number of datasets for diverse eye tracking contexts is
that, in many cases, using one of the larger existing datasets
for algorithm testing or development would be preferential
to annotating a small number of recordings for each study
(especially for machine learning-based algorithms, having
more data for development and testing generally leads to
a better algorithm generalization). However creating new
datasets is also an extremely valuable contribution to the
field and we encourage researchers to make their datasets
publicly available. In this case, considerations listed in “Eye
tracking data collection and annotation” should be taken
into account and described in sufficient detail.

Another important advantage of using publicly available
datasets is that evaluation results for other algorithms on
these data are often available either online or in papers
that used these data themselves. This allows for an easier
state-of-the-art comparison, without searching and ensuring
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Table 1 List of publicly available annotated datasets to illustrate the
variety of readily available material for algorithm development and
evaluation. “Duration” reflects the mount of unique eye tracking data;
duration in parentheses – the total amount of available annotated
data (including undefined samples and taking into account several

available annotations for a single recording). Sample distributions
do not list proportion of undefined samples and samples annotated
as noise, blinks and similar. Note that datasets might have different
definitions of fixations, saccades, and other events

Dataset Duration Set-up Sampling
frequency

Eye-tracker Sample distribution

Lund2013†
(Andersson et al., 2017)

14.9 min
(18.6 min)

Screen-based,
pictures, moving
dots and video clips

500 Hz†† SMI Hi-Speed 1250 46.49% Fixation
5.88% Saccade
3.34% PSO
41.60% Pursuit

Notes: two expert annotators, fully manually annotated, partial annotation overlap. Includes data that was used in other papers. Download from
https://github.com/richardandersson/EyeMovementDetectorEvaluation

IRF
(Zemblys et al., 2018)

8.1 min Screen-based,
fixate-saccade task

1000 Hz EyeLink 1000Plus 86.77% Fixation
5.65% Saccade
3.00% PSO

Notes: one expert annotator, fully manually annotated. Six participants, data from a replication study (Zemblys et al., 2019a). Download from
https://github.com/r-zemblys/irf

MPIIEgoFixation 24.2 min Head-mounted, 30 Hz Pupil Pro 74.19% Fixation

(Steil et al., 2018) unscripted daily

life activities

Notes: frame-by-frame annotations of one annotator. Download from https://www.mpi-inf.mpg.de/MPIIEgoFixation

humanFixationClassification 5.9 min Screen-based, 300 Hz Tobii TX300 71.82% Fixation

(Hooge et al., 2018) (70.4 min) pictures and

search task

Notes: 12 expert annotators, fully manually annotated, all annotation data overlap. 10 adult free viewing and 60 infant search task (Hessels
et al., 2016) trials. Download from https://github.com/dcnieho/humanFixationClassification

360EM 32.9 min Head-mounted, 120 Hz FOVE Primary labels

(Agtzidis et al., 2019) naturalistic 360◦ 75.15% Fixation

videos 10.44% Saccade

9.76% Pursuit

Secondary labels

0.81% OKN

27.64% VOR

15.84% OKN+VOR

1.47% Head pursuit

Notes: two stage annotations of one expert annotator after training and discussion session. First stage (primary labels and optokinetic nystagmus
– OKN – or nystagmus) uses pre-labelled saccades and does not account for the head motion. Second stage (vestibulo-ocular reflex – VOR,
VOR + OKN, Head pursuit) uses labels from the previous stage that are re-examined in the context of the eye-head coordination. Ca. 3.5 h of
eye- and head-tracking recordings, ca. 16% annotated. Download from https://gin.g-node.org/ioannis.agtzidis/360 em dataset

GazeCom 4.7 h Screen-based, 250 Hz††† EyeLink II 73.96% Fixation

(Startsev et al., 2019b) (14.1 h) naturalistic video 10.67% Saccade‡

9.83% Pursuit

Notes: manual annotations of one expert tie-breaking and adjusting labels of two novice annotators. Novice annotators (paid
undergraduate students) used pre-labeled data and went through the data twice. Labels of novice annotators are available. Download from
https://gin.g-node.org/ioannis.agtzidis/gazecom annotations
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Table 1 (continued)

Dataset Duration Set-up Sampling
frequency

Eye-tracker Sample distribution

Hollywood2EM
(Agtzidis et al., 2020)

2.15 h
(4.3 h)

Screen-based,
movie clips

500 Hz SMI Hi-Speed 1250 59.46% Fixation
9.87% Saccade‡
26.54% Pursuit

Notes: manual annotations of pre-labeled data, two stage annotation (paid student followed by an expert coder). Labels of student annotator
are available. Download from https://gin.g-node.org/ioannis.agtzidis/hollywood2 em

Gaze-in-wild
(Kothari et al., 2020)

3.06 h
(4.15 h)

Head mounted,
naturalistic tasks

300 Hz‡‡ Pupil Labs
+ custom setup

12.50% Fixation
7.12% Saccade
2.65% Pursuit
26.72% VOR

Notes: independent annotations of five trained annotators, ca. half of the data is annotated. Naturalistic tasks: indoor navigation, ball catching,
object search, tea making. Download from http://www.cis.rit.edu/rsk3900/gaze-in-wild

†Named as such by Zemblys et al. (2019b)
††Part of the data were recorded at 200 Hz (Friedman, 2020; Zemblys et al., 2020)
†††Data for subject “SSK” were recorded at 500 Hz (Startsev et al., 2019a, p. 559)
‡PSOs annotated as a part of saccades
‡‡Upsampled from the original 120 Hz data due to synchronization with other devices. Upsampled using low-pass filtering and Piecewise Cubic
Hermite Interpolating Polynomial (Kothari, R., personal communication, May 29, 2020).

reasonable operation of the latest algorithms (especially
since their complexity is increasing). It should be noted,
however, that simply comparing published scores to the
ones obtained using a new algorithm does not ensure
valid evaluation if any of the evaluation details differ.
For that reason, some of the datasets either provide the
outputs produced by the tested algorithms directly (Agtzidis
et al., 2019; Startsev et al., 2019b; Agtzidis et al., 2020),
eliminating the need to exactly match the evaluation strategy
reported in the corresponding papers, or provide code to run
the evaluation for the new approaches (Hooge et al., 2018;
Startsev et al., 2019b; Kothari et al., 2020).

Eye tracking data collection and annotation

It can often be the case that the available datasets do
not satisfy the requirements for the study, e.g. there are
no recordings in a scenario of particular interest to the
researchers, with a particular device, etc. In that case, a
collection of the dataset may be undertaken, with an ensuing
annotation effort. The same considerations we describe here
for the dataset collection apply when choosing a publicly
available dataset, whether already annotated or that will be
labelled during the planned study.

Collection

The primary considerations for dataset conception could
probably be condensed to the eye tracking experiment

set-up, including the type of stimuli (static vs. moving;
synthetically generated and controlled vs. naturalistic vs.
the real world; task vs. no task given to the observers,
etc.), the eye-tracker type (screen-based vs. wearable) and
frequency (from 30 Hz for the majority of currently existing
wearable systems to at least 2000 Hz in state-of-the-art
screen-based trackers). For eye movement detectors, these
factors essentially influence (1) their applicability to this
domain (for already published approaches) and (2) the eye
movements that one can expect to detect. E.g. testing a
microsaccade detector on 30 Hz data will likely not yield
meaningful conclusions.

The size of the dataset plays a role as well: A larger
amount of labelled eye tracking recordings allows for a
more reliable performance estimate, and enables a larger-
scale optimization. Depending on the scale of the study,
varying amounts of data can be annotated in its context.
This is not, however, to say that the recordings that are
not annotated are collected in vain: Firstly, annotation
can also take place at a later time point, allowing for
expanding the scale of the dataset by investing additional
expert time only, i.e. without the need to reproduce the
set-up potentially years after the initial recordings were
collected. Secondly, there are more immediate benefits to
be had even from unlabelled data: (1) Some approaches
allow learning or inferring important patterns from data
with no annotation (the unsupervised learning research
area), or benefit from more unlabelled data being available.
The algorithm in Startsev et al. (2019b), for instance,
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demonstrated improving performance with the increasing
number of recordings per stimulus video clip during its
testing. (2) While undertaking quantitative evaluation on the
data without the ground truth is not always a sensible option,
qualitative examination of the developed algorithm’s output
on independent data that were definitely not used during its
fine-tuning is always of value.

Annotation

Annotating eye tracking data is a difficult and time-
consuming process. The time required for labelling e.g.
one second of eye tracking the data can range between 10
and 60 seconds in different paradigms (Hooge et al., 2018;
Startsev et al., 2019b; Agtzidis et al., 2019; Kothari et al.,
2020), and months of man hours might be needed to collect
a representative set of annotated recordings. Annotation
is usually done by the field experts that use graphical
interfaces with visualizations of various representations of
raw or filtered eye tracking data, such as gaze position over
time, gaze speed over time plots, 2D scanpath plots, etc.
(Hooge et al., 2018, Fig. 1; Agtzidis et al., 2019, Fig. 1;
Startsev et al., 2019b, Fig. 2; Kothari et al., 2020, Fig. 7).
Experts then either freely, solely based on their experience,
or following some preset rules label onsets and offsets of
events – fixations, saccades, PSOs, smooth-pursuit, etc. –
for which the annotations are desired. In case of explicit
rules being used for annotation, it can be undertaken by
trained non-experts as well. It has to be remembered that
as the algorithm, the parameters of which are optimized to
produce the outputs better resembling the events observed in
the annotated data, will inherently be attempting to replicate
the annotation patterns present in these data, the quality and
consistency of the annotations to a large extent define the
quality of the predictions.

One approach to speed up the typically lengthy
annotation process (especially when multiple event types
are being annotated) is to first detect (a subset of) events
using an algorithm, and then ask for the experts to confirm
and modify these pre-annotated events (Agtzidis et al.,
2019; Startsev et al., 2019b). This approach might, however,
bias expert decisions towards agreeing more with the
algorithm’s predictions. It is, therefore, advisable to employ
a very simple algorithm (i.e. one with only few parameters
that usually cannot cope with complex data) for this pre-
annotation and encourage annotators to make as many edits
as they feel is necessary (Agtzidis et al., 2020).

In addition to choosing a suitable graphical interface
(e.g. see discussion in Agtzidis et al., 2019 for the head-
mounted eye tracker case), the number of raters annotating
the same eye tracking signal needs to be considered.
This is especially important when it comes to evaluating
the results of an algorithm, as well as putting them

into context. For some applications, the discussion of
inter-coder differences may not be of interest (Hoppe &
Bulling, 2016; Steil et al., 2018; Zemblys et al., 2018). In
other cases, the output of an algorithm may be compared
to multiple codings or a consensus coding (Andersson
et al., 2017; Friedman et al., 2018; Bellet et al., 2019;
Zemblys et al., 2019b, etc.) and, therefore, multiple raters
performing the annotation are required. Comparing the
differences between the algorithm’s labels and those of
the human annotators to the inter-rater variability e.g.
may be specifically beneficial, indicating to which extent
the imperfections in the algorithm’s predictions may be
irreducible.

Synthetic data

In parallel to real data collection and annotation, there is
a possibility of simulating eye tracking recordings. This
approach could ensure virtually unlimited amounts of data
for eye movement algorithm development and evaluation.
Simulation enables objective ground truth labels in the
sense that it allows controlling various properties of the
data, such as the exact order and duration of events, level
and properties of the noise, as well as sampling rate and
various event-related parameters – amplitude and velocity of
saccades, fixational drift, amplitude of PSOs, etc. However,
the main drawback of using synthetic data is that they
still differs from real recordings and in many cases are
just idealised representations of a subset of all the possible
cases. In addition, all properties of raw data and events
that are used to simulate recordings are usually derived
from models previously published in the literature or from
real data using computational approaches, meaning that
the same skepticism of whether “real” events exist applies
to the synthetic data as much as to the manually labeled
real data.

Despite the limitations of synthetic data, researchers
have used it for algorithm development and validation.
Otero-Millan et al. (2014, Fig. 2) simulated microsaccade
sequences using a microssacade template (an average shape
of manually labeled microsaccades) and used them to
compare two microsaccade detection algorithms. Synthetic
eye tracking signal was generated by randomly inserting
microsaccades with random peak velocities and adding
noise, generated by the 10th order autoregressive process
and a multiplicative low-frequency component of white
noise. Dai et al. (2016) proposed a parametric model
for saccadic waveforms and used simulated saccades and
different noise levels to evaluate four common saccade
detection algorithms. One step further, Fuhl et al. (2018)
used artificial data to train a machine learning based
event detection algorithm. Authors demonstrated that their
algorithm, even without having “seen” any of the real
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recordings in its training, performs on par with three
other traditional algorithms when tested on three different
datasets of real eye tracking recordings. Zemblys et al.
(2019b) employed an end-to-end approach (i.e. achieving
the goal while bypassing the intermediate steps typically
present in traditional pipeline designs, more specifically,
using raw gaze data to get desired output without employing
filtering, feature engineering, thresholding and similar
steps) to generate eye tracking data3 with fixations,
saccades, and PSOs. The authors trained a recurrent neural
network – gazeGenNet – using only 44 seconds of manually
labeled data, which was then able to generate signal with
properties similar to the real eye movement recordings.
This synthetic data was subsequently used to train a neural
network – gazeNet – for detecting the eye movement events.
The authors concluded that their approach was capable
of generalizing to other datasets well, outperforming the
state-of-the-art event detection algorithms.

Validation procedures

When evaluating an eye movement event detection algo-
rithm, it is essential that evaluation is performed using a
dataset (or part of it) that was not used when developing and
fine-tuning the algorithm. This is a general rule in algorithm
development and machine learning, but it becomes some-
what more specific in the context of the eye movements.

In general, the data are split into the development and test
subsets. The development set represents the part of data, with
the help of which any of the parameters of the algorithm
are optimised. These parameters can be e.g. thresholds for a
conventional event detection algorithm or weights and meta-
parameters when training a machine learning-based model.
In the latter case, it is very common to once again split the
development set, where the typically larger part (the training
set) is used for actual training, and the typically smaller part
(often called validation set) – for early-stopping and meta-
parameter optimization. Using the validation set should
also prevent the optimization process from overfitting to
the training set, as the difference in detection performance
on the two can be monitored during the training process,
guiding the developer to make corresponding decisions and
adjustments if the discrepancy increases unacceptably.

In principle, this training-validation-test subdivision of
the dataset should be applied anytime a non-negligible
optimization of the algorithm’s parameters takes place, even
if it does not involve machine learning.

The test set should, ideally, be used just once for each
developed method, after all training, optimization, and
modifications have already taken place based on the other
subsets. This prevents the developers from “cheating” and

3Available from https://zenodo.org/record/1476449

giving their algorithms an unfair advantage on the test set,
compared to competing algorithms.

There is no standard way of performing the data splitting
for eye tracking data, and researchers have employed
various approaches: Larsson et al. (2013) divided their
dataset into two parts by assigning the participants into two
equally large groups – one for training and one for testing.
Hoppe and Bulling (2016) randomly selected 75% of the
data for training while the remaining 25% were equally split
into validation and testing sets (although the authors do not
specify how exactly they split the data). Similarly, Zemblys
et al. (2018) used 20% of the data (one of the five subjects)
for testing, while the rest were split into the training and
validation sets by randomly selecting continuous part of
each of the trials (corresponding to 25% of total length) to
the validation set.

Various types of cross-validation are also quite common,
as the typically small amounts of available annotated
data discourage the researchers from evaluating on a
single allotted subset of the data. Consequently, algorithm
developers choose to iterate through different parts of the
entire dataset and use those for testing, while the rest is
used for training and validation. The results of all iterations
can then be aggregated to reflect the algorithm performance
score on the whole dataset. For example, Anantrasirichai
et al. (2016) trained their model ten times by randomly
assigning half of the data to the training and test sets on
each run; Startsev et al. (2019a) employed 18-fold cross-
validation (each fold corresponding to all recordings for a
single stimulus video), while Bellet et al. (2019) used a fixed
testing set and 10-fold cross-validation for algorithm tuning
and optimization. We comment on different strategies to
perform both train-test and cross-validation splitting of a
single dataset in the section below.

A more thorough algorithm development and testing
procedure would be to use cross-dataset validation. The
training and testing datasets then might be recorded in
different labs using different eye trackers, have different
sampling rates, and differ in data quality. A more detailed
description of cross-dataset evaluation is provided in
“Cross-dataset evaluation”.

How to split the data

Albeit several relatively large datasets with the ground truth
eye movement annotations have become available in recent
years (cf. Table 1), they are still relatively rare, and typically
contain recordings for a number of observers viewing a
certain collection of stimuli. While the lack of the amount
of available data limits extensive testing of the algorithms’
generalization, the implications of the recording scenario
are indirect but no less important. In particular, this issue
makes it cumbersome to ensure that the training and the
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test subsets do not overlap in terms of possibly critical
higher-level information.

Consider, for instance, two higher-level properties of
an eye tracking recording: who is watching what, i.e. the
observer identity and the stimulus. It is very easy to ensure
that the individual gaze samples are not shared between
the training and testing data. However, ensuring that both
the stimuli and the observers viewing these stimuli are
different between the training and test sets presents a more
challenging problem. Avoiding the observer and the stimuli
information leak from the training to the test set would be
very impractical – it would mean that a potentially large part
of the dataset would remain unused, either for training or for
testing (see Appendix B).

To understand why the who and the what questions
are important for the purpose of dataset splitting, consider
works on observer identification via eye movement-derived
features (Rigas and Komogortsev, 2017, e.g.) and on the
identification of the viewing context – e.g. activity of the
observer (Bulling et al., 2010; Kunze et al., 2013, to name a
few). If information about both the who and the what can be
inferred based on eye movements, the inverse may also be
true, and optimizing an eye movement-related model on the
data from the same observers or for the same stimulus as in
the test set could yield biased results.

Based on the reasoning above, it would seem optimal
to collect datasets with a single recording from each
subject, each corresponding to a unique stimulus – in that
case, any split of the resulting eye tracking recordings
would automatically ensure both stimulus- and observer-
level independence. This is, of course, both unrealistic and
inefficient, and would complicate certain related usages
of the data, where statistics over a number of viewings
are desired (clinical population viewing patterns’ analysis
(Gutiérrez et al., 2020) or saliency prediction (Judd et al.,
2009), e.g. analysed jointly with eye movements (Startsev
& Dorr, 2020)).

We elaborate specifically on the stimulus dependency
of the eye movements on an example of smooth pursuit.
This eye movement type is very much dependent on the
movement patterns seen by the observer. Both Dorr et al.
(2010) and Mital et al. (2011) noted that the gaze patterns of
different viewers are more similar when moving objects are
presented. Additionally, Meyer et al. (1985) reported that
the human gaze matches the target speed rather accurately
during smooth pursuit up to ca. 100 ◦/s, which means that
pursuit gaze signals for different observers will be similar,
when the same targets are followed. This similarity was
quantitatively verified in Startsev et al. (2019b) as well,
meaning that when an algorithm is trained on gaze data with
the same smooth pursuit targets as in the test set, there is a
chance it will overfit for this information, and the results on
the test set will be overly optimistic.

In Startsev et al. (2019a), two modes of cross-validation
were compared: One where the train and test sets never
contained gaze recordings for the same observers, and
one where they did not overlap in terms of the viewed
stimuli (video sequences, in that case). While for fixation or
saccade detection there was no large difference between the
validation modes, smooth pursuit demonstrated a stronger
dependency on the video signal than on the observer: The
algorithm trained and tested on gaze recordings of different
observers but for the same stimuli was more prone to
overfitting compared to the algorithm trained and tested on
the data of the same observers but non-overlapping video
sets.

Time-wise splitting for eye tracking data. If this level of
separation is impossible or impractical, one can also split
data time-wise, i.e. based on the part (in time) of the viewed
stimuli. On an example of video data, a random (continuous)
subset of each video’s duration can be used as an evaluation
set (see schematic illustration in Fig. 20 in Appendix C).
We validated the usefulness of this data splitting scheme
for a practical eye movement detection application in a
preliminary experiment (see details in Appendix C), where
train-validation-test split is performed. There, the test set
was always chosen in the same way, but two methods
to perform the train-validation split of the remainder of
the data were implemented: random sampling (of windows
of gaze data) and the proposed time-wise splitting. The
model with time-wise disjoint training and validation sets
demonstrated consistently better test performance. We thus
strongly advocate for ensuring that data set splitting be
performed in such a way that all gaze signal corresponding
to identical (parts of the) stimuli would be assigned to the
same data set part.

Evaluation procedures

In principle, an eye movement detector could be meant
to only be used with e.g. data recorded with one eye
tracker. In this case, its evaluation with the help of a
dataset recorded with that particular tracker can serve as an
adequate representation of future-use conditions. Even in
this case, however, it has to be noted that data quality (even
obtained with the same device) can vary widely because of
the subject-specific characteristics, subject population, the
operator, and recording protocol (Holmqvist et al., 2011;
Holmqvist et al., 2012; Nyström et al., 2013; Blignaut and
Wium, 2014; Hessels et al., 2015).

Therefore, if the test set of recordings is not diverse
enough (either in terms of the utilized devices or
recording conditions), additional robustness evaluation
should be considered (e.g. additive noise, etc.). If the
algorithm represents a general approach to event detection,
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evaluation should also include testing on as many datasets
as reasonably possible. Researchers could also consider
resampling the data to simulate a wider range of sampling
frequencies, on which the algorithm should be able to
operate. We elaborate on various considerations connected
to these aspects of the evaluation set-up in the remainder of
this section.

Comparison against other algorithms

In order to draw conclusions from the performance scores
of a developed eye movement detector, examining these in
isolation may not be enough, as this does not necessarily
provide sufficient context for their interpretation (e.g. in
order to judge whether the developed algorithm advances
the state of the art). Thus, quantitative and qualitative results
of the evaluation can benefit from comparison to other
algorithms in the literature, ideally tested under the same
conditions. While it does require additional effort, this is the
most straightforward way to demonstrate the benefits of the
proposed method. Given the multitude of publicly available
algorithms published in recent years, it is difficult to justify
completely abstaining from this type of comparison. On
the other hand it has to be admitted that not all publicly
available code repositories are easy to navigate or utilize.

An important consideration to remember is that while
comparing newly developed eye movement detectors to
such established and simple algorithms as I-VT or I-DT
(Salvucci & Goldberg, 2000) is very appealing, they can no
longer be deemed to represent an adequate approximation
of the state of the art in eye movement detection, and thus
would likely in many scenarios be a very weak standard
of performance. This is especially true when the data are
somewhat more complex than what these algorithms were
designed to deal with – include noise (e.g. originate from
infants, see Hessels & Hooge, 2019) or include movement
either in the stimulus (Mital et al., 2011; Larsson et al.,
2016; Startsev et al., 2019b), or of the observer themselves
(Kinsman et al., 2012; Agtzidis et al., 2019; Kothari et al.,
2020). While in e.g. Steil et al. (2018) I-VT and I-DT
were used as baseline fixation detectors in wearable eye
tracking data, it is worthwhile noting that especially in this
context it is known that simple few-statistic thresholding of
the gaze speed or its absolute movement is an inherently
flawed approach to eye movement detection due to the more
complicated gaze-head-world dynamics (Kinsman et al.,
2012).

Slightly more flexible yet very easy-to-implement
algorithms include I-VVT and I-VDT (Komogortsev &
Karpov, 2013) that additionally enable the detection of
smooth pursuit. For head-mounted eye tracking specifically,
a more versatile simple algorithm (I-S5T – relying on

five speed thresholds to disentangle head and eye-in-head
movement) was introduced in Agtzidis et al. (2019) as
well.

An important note and warning about using any of
the appealingly simple to implement thresholding-based
approaches is that their performance on any given dataset is
heavily dependent on the thresholds themselves, and their
values optimized on one dataset are not (or at least not
necessarily) suitable for another (Steil et al., 2018; Startsev
et al., 2019a). Therefore, it is reasonable to systematically
test a variety of threshold values or their combinations in
order to achieve the best reachable performance level of the
given approach. This effectively leads to overfitting, but,
taking into account the incapability of very simple methods
to perfectly fit the complex real-world data, it could in
many cases be desirable to let the baseline method overfit
when comparing a newly developed method to a simple
baseline. This results in comparing the new approach with
the best-case-scenario version of the baseline, making for
a stronger argument of the proposed method’s superiority.
For example, Steil et al. (2018) iterated over a range of
thresholds for I-VT and I-DT, demonstrating their strong
dependency on the threshold value; in Startsev et al.
(2019a), a grid-search for threshold pairs of I-VVT, I-
VDT, and I-VMP (Lopez, 2009) was performed, and the
best threshold pair for each method was used in the final
comparison.

It is as important to point out that when a modern
highly-parameterized detector is used as a baseline, but its
pre-trained version cannot be used directly (e.g. the out-
of-the-box performance is unreasonably poor, or due to
technical reasons such as eye tracker data frequency, etc.),
letting such an algorithm overfit will lead to an unrealistic
estimate of its performance, and thus an unfair comparison
to any other method. In this case, for maximal fairness, both
the developed algorithm and the baseline approach should
be optimized in a similar manner so that neither overfits the
data.

As a fallback option, when comparison to already
published methods is for some reason impossible or would
only be meaningful for one or two other methods, another
layer of validation can stem from testing against what
was referred to as “baseline eye movement classifiers”
in Startsev et al. (2019) – algorithms that produce eye
movement labels without taking the gaze signal itself
into account. Comparing the developed algorithm to some
of those methods allows the researchers to quantify the
extent to which their method improves on just leveraging
aggregated eye movement statistics or patterns in the dataset
that is used for the analysis. This could also point towards
the limitations of the employed dataset – its implicit biases
or lack of variability.
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Robustness against varying data quality and other data- or
algorithm-specific parameters

Here we touch on additional strategies that are used to
test the robustness of eye movement detection algorithms.
A generally applicable strategy consists of testing the
detection algorithm against the same underlying eye
tracking data, but while varying its data quality (with the
assumption that the corresponding eye movement labels
remain the same). For example, original data can be
resampled when testing the algorithm’s robustness against
different sampling rates, or artificial noise can be added
if the algorithm is expected to be applied to data from
different eye trackers or different populations (e.g. infants
or those with eye movement-related disorders) – i.e. data
with varying noise levels. The desired outcome for the tested
algorithm is that the detected events’ statistics and other
performance measures should remain similar across a range
of sampling frequencies, noise levels, and other aspects of
data quality.

Hessels et al. (2017), for example, tested their algorithm
by adding constant and variable noise up to 5.57◦ RMS
(also known as RMS-S2S – the root mean square of the
sample-to-sample distances) and simulating different levels
of data loss. Authors showed that their algorithm produced
similar numbers of fixations, mean (and standard deviation)
of fixation duration for noise levels up to 5◦ RMS and was
able to deal with data loss. In Zemblys et al. (2018) the
authors resampled 1000 Hz eye tracking signal to sampling
frequencies between 30 and 1250 Hz, as well as added
white Gaussian noise resulting in data with noise from
0.0083◦ to 7.076◦ RMS in different parts of the screen.
Performance of the examined algorithm remained similar
for the data frequencies of 120 Hz and higher, and with
an average noise levels up to 0.26◦ RMS. Detected events
were then compared to the expert annotations via both
event parameters and Cohen’s kappa metric. Similarly, Peng
et al. (2019, Figure 7) used additive white Gaussian noise,
demonstrating that their algorithm performs better than the
competing approach for signal-to-noise ratios between 38
and 50.

Interestingly, however, Niehorster et al. (2020) recently
demonstrated that adding neither white noise nor the
noise simulating based on a real eye tracking recordings
is sufficient for an extensive testing of an algorithm’s
resilience to noise. The authors argue that both – white and
the signals measured from a specific eye tracker – are only
points in a continuum of noise types. Therefore, a thorough
noise robustness analysis (representative of the data from

many different eye trackers) should include tests on the
whole range of possible noise types4.

An algorithm-specific robustness testing was under-
taken in Startsev et al. (2019b): The algorithm described
there relies on clustering the gaze samples from multi-
ple observers’ recordings for the same stimulus. While the
full dataset contained the recordings of ca. 47 observers
per stimulus, it was not clear how exactly the number of
available recordings influences the method’s performance.
In combination with both sample- and event-level quality
measures, a quantitative evaluation was performed at dif-
ferent observer subset sizes, thus systematically exploring
the dimension of the parameter space to which the method
would clearly be sensitive.

A very important note at this point is that for any type
of robustness testing, one can freely adjust the parameters
of the algorithm as long as it is done with fairly obtained
information (i.e. as long as this adjustment can be performed
for any independent and unseen data to which the method
can be applied). For instance, the noise level can be a
parameter of the algorithm as long as it is not taken directly
from the used noise generator, but computed based on some
gaze signal statistics. Sampling frequency can also be a
parameter as it can be inferred from the gaze samples’
timestamps, etc. For instance, the algorithm by Startsev
et al. (2019b) provides a formula to adjust one of its main
clustering parameters based on the sampling frequency and
the number of observers, and the algorithm of Dar et al.
(2020) is parameterized by both the sampling frequency and
the noise factor (among others).

Cross-dataset evaluation

As mentioned previously, various eye trackers and partic-
ipant populations can lead to a gaze signal with widely
varying properties. Therefore, whenever relevant for the
intended use of the algorithm, a thorough algorithm eval-
uation should include testing using multiple datasets. For
example, Bellet et al. (2019) used four datasets: two
1000 Hz Eyelink1000 datasets with human subjects, 500 Hz
Eyelink1000 recordings from a single macaque monkey and
1000 Hz data collected from three rhesus macaque monkeys
implanted with scleral search coils. Hauperich et al. (2020)
compared their microsaccade detection algorithm to another
algorithm using two different datasets – Lund2013 (500 Hz
SMI Hi-Speed 1250 recordings (Andersson et al., 2017))

4Niehorster et al. (2020) provide fixational noise generator code at
https://github.com/dcnieho/FixationalNoise generator

1664 Behavior Research Methods (2023) 55:1653–1714

https://github.com/dcnieho/FixationalNoise_generator


and in-house 1000 Hz Eyelink1000 recordings. Dar et al.
(2020) used the same Lund2013 dataset and two 1000 Hz
Eyelink1000 datasets – one from a laboratory setting and
another recorded using telephoto lens during simultaneous
fMRI acquisition thus yielding lower data quality.

When the developed algorithm is meant to only be used
with a certain eye tracker or a certain participant population,
multiple datasets in the relevant experiment set-up, but
recorded on separate occasions, by different operators, in
different environmental conditions, with different relevant
stimuli types, etc., could be used for a thorough evaluation.

In some cases when the algorithm is designed to only
work on a data with a specific sampling rate, cross-
dataset evaluation poses certain challenges – data need
to be resampled to algorithm’s “native” sampling rate.
For example, Zemblys et al. (2019b) upsampled the
250 Hz GazeCom (Startsev et al., 2019b) and the 300 Hz
humanFixationClassification (Hooge et al., 2018) datasets
to 500 Hz using first-order spline interpolation before
evaluating their algorithm.

Downsampling the data is not a trivial matter either. First,
the data need to be low-pass filtered to avoid aliasing. For
instance, Zemblys et al. (2018) used a Butterworth filter
with a window size of 20 ms and cut-off frequency of 0.8
times the Nyquist frequency of the new data rate. Voloh et al.
(2020) downsampled their original 300 Hz data to 150 Hz
although did not specify any details while Pekkanen and
Lappi (2017) downsampled simulated 1009 Hz data simply
using linear interpolation.

Downsampling the ground truth event annotations poses
another challenge, as data might become incoherent.
Consider e.g. a fixation followed by a very short saccade
and a longer PSO. When downsampling to a very low
sampling rate, this saccade might become too short to
span even one sample and, therefore, be removed, resulting
in an annotation where a fixation is followed by a PSO.
Houpt et al. (2018) report that after downsampling 1000 Hz
data to 30 Hz, 73.1% of the saccades and 3% of other
events became one sample long (yet it is unclear how many
events were removed altogether). A possible workaround
for “disappearing” events could be ensuring that no event
will be downsampled to 0 samples, but this does not
guarantee consistent event labels in all cases either.

Evaluationmethods

The most common evaluation method – comparison
between two sources of eye movement event labels can be
carried out in two principally different ways – either by
comparing the labels of each individual gaze point in the
two sources (i.e. sample-level evaluation), or by comparing
entire oculomotor events – uninterrupted sequences of

samples with the same label in either of the class label
sources, such as complete fixations, saccades, etc. – i.e.
event-level evaluation. Evaluation on the level of samples
does not allow for many options, although a few different
metrics are used in the literature: accuracy or disagreement
rates (Anantrasirichai et al., 2016; Hoppe and Bulling, 2016;
Andersson et al., 2017, etc.), Cohen’s kappa values (Larsson
et al., 2013; Hooge et al., 2018; Zemblys et al., 2018, etc.),
as well as sensitivity, specificity, or F1 scores (Santini et al.,
2016; Peng et al., 2019; Bellet et al., 2019; Startsev et al.,
2019a, etc.).

On the other hand, a growing number of event-
level evaluation strategies exist already, often principally
different from one another: average statistics of the ground
truth and detected events, such as duration, amplitude, main
sequence, etc. (Andersson et al., 2017; Zemblys et al., 2018;
Dar et al., 2020), or comparing the distributions of such
event statistics (Startsev et al., 2019b); different ways of
computing F1 scores (Hooge et al., 2018; Startsev et al.,
2019a); variations of the Cohen’s kappa (Zemblys et al.,
2019b; Startsev et al., 2019); temporal offset measures of
Hooge et al. (2018); average intersection-over-union ratios
in (Startsev et al., 2019a; Kothari et al., 2020); Levenshtein
distance between event label sequences (Zemblys et al.,
2019b, can be applied on the level of gaze sample labels as
well).

In addition to the availability of the ground truth and
the level of the evaluation (individual samples or events),
selection of the evaluation method should also be guided by
considering whether the evaluation treats the eye movement
detection algorithm as a tool to achieve a further goal (e.g.
calculate saccade main sequence, use algorithm output in a
human-computer interaction, etc.), or as the end-goal in its
own right. The latter evaluation perspective usually requires
evaluation to be very descriptive and often very concise,
and is mostly a domain of algorithm developers. Below we
list available evaluation methods and discuss the context in
which these can be applied.

In this section, we first cover the evaluation methods
that are not directly related to quantifying the detection per-
formance itself, starting from event statistics-based evalua-
tion, to stimulus parameters-driven methods, to application-
based eye movement detector assessment. The last part of
this section (“Detection performance evaluation”) focuses
on the direct evaluation of the event detection capabilities
of the tested algorithm. This part is most relevant to the
remainder of this review, as it reflects the need for generally
applicable unified evaluation in order to facilitate algo-
rithm comparison between publications, and thus contribute
to clearer understanding and easier collaboration between
different researchers. This naturally entails a variety of deci-
sions that ideally need to be taken in a uniform way across
different papers, spurring the discussion in the field.
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Evaluation based on eyemovementmetrics

Evaluation methods that are not directly linked to quantify-
ing the detection performance of the algorithm itself and in
some cases do not even require the ground truth are mostly
based on descriptive event statistics – such as average fix-
ation duration or mean saccade amplitude – and statistical
tests. In addition, several other computational methods that
enable a more in-depth performance analysis exist and are
described in the sections below.

If stimuli properties with predictable effects on gaze
behavior, e.g. size, position, or trajectories of salient
targets, etc. are unknown, the most obvious evaluation of
the detected events is computing average eye movement
statistics. A few examples include:

– number or frequency of fixations and saccades (e.g.
detecting a dozen saccades per second on average is
indicative of false detections);

– distributions of event durations, saccade amplitudes,
etc. (e.g. the distribution of detected smooth pursuit
durations peaking very close to zero indicates likely
fragmentation of the detected events);

– main sequence (i.e. an empirically known relationship
between saccade magnitude and peak velocity; if the
saccades identified by the model follow the typical
pattern with few outliers, these are likely realistic
– nothing can be said about the amount of missed
detections, however.

These and other eye movement parameters have been
extensively studied and, therefore, the algorithm’s ability
to produce plausible event statistics is a sign of reasonable
performance. It is important to point out, however, that
this is merely a “sanity check” for the detections, as even
the well-understood properties of eye movement sequences
depend on the stimulus and instructions, even in similar-
sounding paradigms: For video clip viewing, using different
stimulus material can lead to different distributions of gaze
on the screen – e.g. increased center bias for cinematic
material, compared to naturalistic videos (Dorr et al., 2010)
– and thus influence such basic properties as saccade
amplitude and duration distributions (Agtzidis et al., 2020).
In the set-ups where observers are instructed with regards to
their viewing behavior (e.g. to look at the moving dot or to
follow moving objects as much as possible) the influence is
even more directly reflected in the eye movement statistics.

A possible additional use of the evaluation procedure
above is to find the range of algorithm’s settings that result
in stable performance, i.e. finding such parameter values,
where small changes in those will not lead to a drastic
change in the considered statistics (Komogortsev et al.,
2010). Similarly, Hessels et al. (2017) evaluated a number of

algorithms against themselves to examine the robustness of
the eye movement measures to additive noise and simulated
data loss. It is, however, important to note that this type of
evaluation still needs additional analysis employing other
evaluation methods to confirm that these stable measures are
“correct” and make sense. Without additional analysis it is
quite possible that an otherwise useless algorithm, e.g. one
that identifies all samples as fixations, will score the highest
as its output would appear very stable despite perturbations
in its parameters or the noise added to its inputs.

Evaluation using similarity to the ground truth event
parameters

This type of evaluation is based on the assumption that
a better performing algorithm should also produce event
detections with properties more similar to these of the
ground truth. For example, Andersson et al. (2017, Tables 2,
4, 5, 6 and Fig. 2) compared mean duration, standard
deviation, and number of fixations, saccades, and PSOs
obtained from two human coders and ten event detection
algorithms. To summarize these three parameters with a
single similarity measure, the authors calculated root-mean-
squared deviations (RMSD, Andersson et al., 2017, Eq.
2) for all algorithms against the two human coders. The
algorithm having the minimum RMSD was considered to be
the most similar to the humans experts.

Hooge et al. (2018, Figs. 3 and 5) compared the number
of fixations and saccades, average fixation durations, and
saccade amplitudes across twelve expert coders. Zemblys
et al. (2018) used a similar approach and compared the
ground truth event properties – the number and duration
of fixations, saccades, and PSOs – to the output of their
random forest based algorithm (IRF). To evaluate how well
the algorithm reproduces the main sequence compared to
manually coded data, the authors calculated main sequence
and amplitude-duration relationships using the ground truth
labels (Zemblys et al., 2018, Fig. 13) and then used
the coefficient of determination (R2) to compare these
relationships to the ones obtained when using the output of
IRF and the Nyström and Holmqvist (2010) algorithms.

Instead of comparing summary statistics, Startsev et al.
(2019b, Table 4) used Kullback–Leibler divergence and
histogram intersection similarity to quantitatively evaluate
the correspondence between the distributions of the ground
truth and predicted smooth pursuit durations.

Two examples of using distribution-related analysis for
qualitative evaluation are presented by Dar et al. (2020)
and Otero-Millan et al. (2014). The former work used
main sequence and distributions of event durations to
qualitatively demonstrate that their algorithm, when tested
on two different datasets, produces events with similar
properties (Dar et al., 2020, Figs. 3 and 4). In Otero-Millan
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et al. (2014, Fig. 3), the authors compared the distributions
of microsaccade amplitudes and peak velocities, confirming
that their unsupervised clustering based algorithm produces
reasonable values.

Evaluation based on stimuli parameters

The underlying intuition of the methods described in
Komogortsev et al. (2010) and Komogortsev and Karpov
(2013) and summarized in this part of the review is that
a non-negligible amount of information about the gaze
behavior of the observers is known beforehand when the
observer has been instructed to follow a dot (or another
target) that is being programmatically moved on the screen.
In this way, the eye movements of the observer are “pre-
defined” by the stimulus: The periods of time when the dot
is stationary encode fixations (with a known duration and
location), when it is jumping from one point to another –
a saccade is encoded (with a known amplitude), and when
it is smoothly moving along a certain trajectory, a smooth
pursuit is expected (with a speed matching that of the
target). This paradigm presumes either a single gaze target,
or instructions to the observer that sufficiently define gaze
behavior in the presence of multiple targets. This is a strong
limitation, but it can be suitable for some experimental
set-ups.

Based on these assumptions, several scores can be
computed to compare the detected eye movements to those
encoded in the stimulus. The authors refer to these as
behavioral scores. One group of these scores is referred
to as “quantitative”, and describes (1) the proportion of
fixation samples in the vicinity of the simultaneously
displayed stationary gaze targets, (2) the ratio of the sum of
all detected saccade amplitudes to the sum of all target jump
amplitudes in the stimulus, and (3) the ratio of all detected
smooth pursuit tracks to all the smooth pursuit target
tracks in the stimulus. “Qualitative” score group describes
the spatial proximity of the centres of detected fixations
and pursuit samples from the respective simultaneously
displayed targets, as well as the speed difference in detected
and stimulus-encoded pursuits. One last additional measure
is defined as the ratio of smooth pursuit-labelled gaze
samples that occurred when only fixation targets were being
displayed. This is an approximation of a false positive
rate metric for smooth pursuit detection, and can be seen
as a much simplified version of a similar video-based
measure later proposed by Larsson et al. (2016, see also
“Video-based evaluation for smooth pursuit detection”).

Overall, while behavioral scores do not require manually
annotating the data in order to produce a numerical quality
measure for an eye movement detector, they have very

limited applicability – one has to know in advance which
eye movements have to (or are at least very likely) to
happen at which time. Additionally most of the measures
are affected by the precision and accuracy of the eye
tracking data, subject’s ability and willingness to follow
the instructions, and also properties of subject’s oculomotor
system. For example, larger saccades to distant targets are
executed in multiple steps – usually one large, inaccurate
saccade and one or multiple corrective saccades (Van
Gompel et al., 2007, Chapter 13; Laurutis and Zemblys,
2009). A well-performing algorithm that correctly detects
all of these saccades is likely to score lower compared to the
algorithm that only detects one large saccade. The sum of
such multi-step saccade amplitudes might be considerably
larger than the sum of target jump amplitudes because
of overshoots and inaccurate landing positions of large
saccades.

Video-based evaluation for smooth pursuit detection

Larsson et al. (2016) introduced an approach to evaluate
smooth pursuit detectors based on whether its detections
correspond to the motion patterns in the video (since smooth
pursuit can be defined as following a moving target with the
movement of the eyes). This falls somewhere in-between
evaluating without any knowledge of the stimulus and with
the exact knowledge of how the gaze targets were moving –
the stimulus material is required for analysis, but no coding
of moving objects in it is needed.

The authors proposed first identifying up to six moving
objects in a video (via feature point detection and tracking,
already implemented in computer vision libraries, followed
by clustering according to their speed vectors). The periods
when gaze point is in motion are then matched to the objects
moving with the most similar speed vector. If the matched
gaze and object were close in spatial coordinates as well,
this part of the signal is marked as pursuit according to what
the authors call the “video-gaze model”. For an evaluated
smooth pursuit detector, the percentages of smooth pursuit it
labels in agreement and in disagreement with the video-gaze
model were computed as quality measures.

While this does provide a way to express the performance
of a model in a numeric way, it effectively compares
the tested model against another, independent model –
the proposed video-gaze model, the predictions of which
are used in place of the ground truth. Additionally, the
video gaze model itself involves a substantial number of
parameters and thresholds (for determining the “moving”
gaze and feature points, tracking, clustering, as well as
determining the alignment between the gaze and the video
motion).
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Application-based evaluation

Application-based evaluation is indirect, “third party”
evaluation where the algorithms’ performance is assessed
or compared using an application that depends on eye
movement event detection. For example, a better detector
is likely result in a better interaction experience and faster
task completion times in human-computer interfaces similar
to the one presented by e.g. Schenk et al. (2017), because
such interaction techniques directly dependent on the eye
movement detection. Earlier/better saccade detection could
also lead to a better saccade landing position estimation
in foveated rendering systems like the one developed
by Arabadzhiyska et al. (2017). Zemblys et al. (2018)
hypothesized that it is reasonable to expect that more precise
eye movement detection should result in better performance
of eye movement-based biometric system, since it is based
on fixation and saccade features. Authors demonstrated that
their proposed event detection algorithm improves equal
error rate of the Rigas et al. (2016) biometric system by
between 1% and 6.2%, compared to a baseline algorithm by
Nyström and Holmqvist (2010).

Application-based testing is useful when accurate event
detection is not of direct interest or, for example, when
data recording is disallowed by the license restrictions. It
can also be an additional test for a newly developed event
detector (as it was used in Zemblys et al. (2018)), although
the usability of this approach on its own is very limited.

Detection performance evaluation

All of the approaches described above only provide a
limited view of the performance of the event detector and
usually lack any insight into how the detection performance
could be improved. They can be considered as high-level
performance evaluation techniques that show the influence
of the eye movement detector on the final application that
utilizes it or on the subsequently computed eye movement
measures. Nevertheless, these approaches operate without
explicitly comparing event predictions to the ground truth
or can infer an approximation of the ground truth from the
stimuli.

Further in the section, we survey the methods that can
be utilized when lower-level, more detailed information
about the performance of the detector itself is desirable.
These methods can provide insights into what kinds of
errors the detector is prone to: for example, whether it
misclassifies a large portion of smooth pursuits as fixations
or tends to label saccade onsets and offsets incorrectly.
These methods strictly require ground truth, but enable
precise evaluation and can point out where the errors
occur.

Sample-level evaluation

Comparing labeling performance on the sample level is
straightforward, as there is always a one-to-one correspon-
dence between the predicted and the ground truth sample
labels and, therefore, any classification performance eval-
uation metric (see “Confusion matrix-based measures”) or
other prediction quality measures can be directly computed.

However, since the eye tracking data are usually
imbalanced – the majority of samples belong to fixations,
smooth pursuits, or other slow eye movement types (cf.
Table 1) – it may be challenging to achieve a reliable
evaluation. As a consequence, sample-level performance
estimates can be unreliable and over-optimistic. Take, for
example, two different predicted sequences illustrated in
Fig. 2. On the sample level, the situations depicted on
the left and on the right are identical: Both predicted
sequences have 80% of the samples labeled correctly, and
the remaining 20% of the ground truth fixation samples
are mislabeled as saccades. Both qualitatively, and when
considering quantitative evaluation on the level of complete
events, however, the predictions are considerably different:
The left prediction sequence has one seemingly correctly
detected fixation (GT1→P1) and one falsely detected
saccade (P2). The predicted sequence on the right instead
consists of three separate fixations (P3, P5 and P7) and three
falsely detected saccades (P4, P6 and P8). It is intuitively
obvious that detections illustrated on the right of Fig. 2 are
worse (or at least differently bad, compared to the ones on
the left), yet sample-level evaluation does not in any way
quantify this, and any sample-level score would indicate that
the two predicted label sequences are identically similar to
the ground truth.

Event-level evaluation

Compared to the evaluation on the level of individual
gaze samples, event-level evaluation is considerably more
involved and ambiguous. With events defined as uninter-
rupted sequences of samples with the same label, there is no
one obvious way how to establish correspondences between
the events in the ground truth and in the predictions. Sub-
sequent evaluation is not necessarily straightforward either,
with many possibilities of quantifying the agreement. We
call the procedure of obtaining event correspondences event
matching, and provide a high-level overview of the aspects
of this process below. “Event matching methods” contains
detailed descriptions of the different approaches for event
matching developed in the eye tracking literature to date.
It should be noted that, on the whole, event-level evalua-
tion is slower and more computationally intensive than its
sample-level counterpart, especially when event matching
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Fig. 2 Example of limitations of sample-level performance evaluation.
Blue are fixations, red – saccades. Black lines between the ground truth
and predicted events illustrate possible event matching

is involved. Researchers have also developed a number of
event-level evaluation methods that do not require explicit
matching of ground truth and predicted events, though
these typically rely on distributions and other statistics of
event properties (see “Evaluation based on eye movement
metrics”).

Event matching

Event matching is a procedure that establishes a mapping
between the eye movement events in the ground truth and
the predicted event sequence. The procedure for producing
an intuitive and useful matching (in the sense of enabling
sound and descriptive evaluation) can be rather complicated
and potentially computationally expensive, as the events
in the two sequences rarely align perfectly; might be
fragmented or merged; there might be multiple viable
match candidates for a single ground truth event; or a
corresponding event might not even exist. It is, however,
a worthwhile endeavour, as matching enables identifying
what kind of errors the algorithm makes, and where exactly
in the data they occur.

In our definition, producing a matching is equivalent
establishing a mapping M between two event sets (GT and
P – ground truth and predictions), which can be represented
as a set of correspondences between event sequence subsets,
i.e.

M = {〈gti ⊆ GT, pi ⊆ P 〉, i = 1 . . . |M|} , (1)

where |M| is the number of correspondences in M and gt

and p – corresponding ground truth and predicted events
respectively. Note that both gt and p are event sets – subsets
of the respective complete sets GT an P . This is a very loose
definition that does not restrict all the possible matches, thus
enabling entirely arbitrary mapping, including matching to
an empty set ∅, matching non-overlapping events, one-to-
one, one-to-many, and many-to-many matching.

Matching methods (see “Event matching methods”)
either implicitly or explicitly impose certain restrictions on
the matches they can possibly produce, with the purpose
of making them more intuitive, thus enabling sensible
event detector performance evaluation. Example restrictions

include such rules as: matched events need to either overlap
or be in very close proximity; matched events need to be
of the same class; only one-to-one matches are allowed,
etc. Naturally, the restrictions internally imposed by a
matching algorithm have a bearing on which events are
matched to which, if to any at all, thus in turn affecting the
applicability of evaluation metrics, as well as the resulting
scores of the evaluation pipeline as a whole (cf. “Interaction
between the performance metrics and event matchers”). For
instance, a one-to-one matching will not enable quantifying
event fragmentation directly, while enforcing same-class-
only event matches will in most cases yield a different
evaluation score, compared to allowing matches between
events of any classes.

An important concept of event matching is unmatched
events, or, in our formalization – events matched to
an empty set ∅ rather than a corresponding event or
events. Usually it is the evaluation procedure itself that
defines how to account for unmatched events. For example,
evaluation that consists of comparing the properties of
the corresponding ground truth and predicted events
(see “Evaluation based on eye movement metrics”) only
considers same-class matches and ignores the rest, together
with the unmatched events. Classification performance
metrics (see “Evaluation metrics”), on the other hand,
can account for various combinations of classes in each
match, including the unmatched events: When calculating
the multiclass performance scores, the events that remain
unmatched, if any, can be treated as either “missed” (an
unmatched event in the ground truth) or “false alarm”
(an unmatched event in the predicted labels), and thus
contribute to the score. Therefore, it is important to
remember that not all event matchers report unmatched
events, effectively making even the same evaluation
metrics fundamentally incomparable when obtained using
different matching techniques (see “Interaction between the
performance metrics and event matchers”).

Matching symmetry Typically, direct event-level evaluation
relies on a fixed ground truth (e.g. expert annotations) to
which the predicted labels of all the tested algorithms are
compared, i.e. event matching direction is GT → P .
However, in the case of comparing two expert coders or two
algorithms between themselves, event matching symmetry
becomes important both for evaluation consistency and
comparability. Different matching techniques may yield
different matches and, consequently, different evaluation
scores, depending on what is compared to what. Therefore,
it is very important to report the direction of the
applied event matching. One alternative would be to run
the matching (and the subsequent evaluation) in both
directions and average the resulting scores or measures,
thus eliminating potential matching direction bias (e.g.
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Kothari et al., 2020). While guaranteeing the evaluation
symmetry, this approach is naturally slower and somewhat
more cumbersome. Therefore, all other aspects being equal,
it would be preferable to achieve the symmetry of evaluation
via the guaranteed matching symmetry directly.

One-to-many and many-to-one matching When talking
about matching in general, the “one-to-many” characteri-
zation refers to the ability of registering matches between
single entities and entity groups (in our case – eye move-
ment events and their groups). This is in contrast both to
one-to-one matching, where only matches between single
events or single events and ∅ are allowed, and to many-
to-many, where matching between arbitrary event groups
is possible. To be able to better describe the approaches
in the eye movement event detection literature, we need
to additionally differentiate between matchers capable of
establishing “one-to-many” and “many-to-one” correspon-
dences, the left side of the adjective referring to the ground
truth events, and the right side – to the predicted events.
This means that if an event matcher is characterized as
“one-to-many”, it can match a single ground truth event
to multiple detected events (i.e. it can potentially correctly
handle fragmentation cases). Similarly, a “many-to-one”
characterization is applied to a matcher that can poten-
tially handle cases where multiple ground truth events are
merged into a single detected event by matching these to one
another. A matcher that can do both we will then describe
as “one-to-many and many-to-one”. Naturally, if an event
matcher is symmetric, it has to belong to this latter variety.

Multiclass vs. binary evaluation

Many of the annotated eye movement datasets are inherently
multiclass, as more than two event types are annotated
(cf. Table 1 and “Cross-dataset evaluation”). Many existing
algorithms also detect more than one eye movement class.
In this situation, the performance of an algorithm can
be evaluated using an overall score, i.e. a score that
reflects its performance at correctly detecting all event types
that this algorithm was designed to detect (or all event
types in the ground truth). We refer to such evaluation
scores as the multiclass performance scores. Contrasted
with these are binary performance scores that evaluate
the algorithm’s ability to correctly detect a single event
class separately. Binary scores can be computed for every
annotated event type, thus providing a more descriptive
and easily interpretable, though less concise evaluation
of algorithm’s performance. To obtain a concise statistic,
binary scores can then be averaged and represented as
overall performance as a single score.

Concise multiclass sample- or event-level scores (further
discussed in “Confusion matrix-based measures”, especially

in the context of Table 3) are useful for brevity, e.g.
when comparing different algorithms that all detect the
same set of event types, or different versions of the same
algorithm (for example when training a machine learning-
based algorithm, or adjusting thresholds for a traditional
event detector). Nonetheless, it is not uncommon to also
report classification performance scores for each of the
event types separately (Agtzidis et al., 2019, Table 3;
Startsev et al., 2019a, Table 2; Zemblys et al., 2019b, Tables
7 and 8). Event-level detection quality metrics (expanded
on in “Event quality metrics”), on the other hand, usually
only make sense in a binary setting, as they are calculated
for each of the event types separately (e.g. the alignment
between the ground truth fixation and corresponding falsely
detected event is usually not of interest).

A noticeable advantage of binary evaluation is that it
enables relatively fair comparison of algorithms that do not
necessarily detect the same set of events, allowing to focus
on the detection performance for the classes of interest, or
those that the compared algorithms all have in common. It is
important to note that multiclass evaluation using multiclass
classification performance measures (accuracy, κ , MCC)
will result in different scores compared to averaging the
same scores of per-class binary evaluation.

There are multiple ways to perform binary evaluation
in the presence of several event classes. Having denoted
the “event class of interest” as E, the simplest way
forward would be to ignore all non-E events altogether.
This would correspond to e.g. directly applying the
evaluation procedure of Hauperich et al. (2020) in the
presence of multiple-class events, although it was originally
developed for a single-class setting. This, however, does not
distinguish between missing and misclassifying the event
of type E, and thus does not lend itself to a descriptive
evaluation pipeline on the whole.

If the non-E events are not to be ignored completely,
they could be simply registered as belonging to the
“negative class”, while events of type E can be considered
as positive-class entities. This process is called binary
remapping, and its application allows for e.g. any of the

Fig. 3 Example of multiclass (on the left) and binary evaluation using
sample-level binary remapping (on the right). Blue are fixations, red
– saccades, green – PSO, gray – negative class in binary evaluation.
Black lines connect the ground truth with the predicted events matched
to it according to the largest overlap criterion

1670 Behavior Research Methods (2023) 55:1653–1714



detection performance evaluation methods (see “Confusion
matrix-based measures”) to be applied and per-class scores
to be calculated. The remapping can be performed either
on the level of samples or events: With sample-level binary
remapping (i.e. performed before the uninterrupted same-
class sequences of samples are grouped into events of the
respective class), a sequence of two separate non-E events
becomes a single longer negative-class event. With event-
level binary remapping (i.e. after the samples are grouped
into events already), the two subsequent non-E events
would stay as two separate but now explicitly negative-
class events (e.g. for fixation as class E, a sequence of a
saccade and a PSO would be mapped to a sequence of a
two negative class events, i.e. a non-fixation and a non-
fixation). Both types of binary re-mapping have been used
in the literature already, e.g. Zemblys et al. (2019b) used
the sample-level remapping procedure, while Startsev et al.
(2019a) and Startsev et al. (2019) opted for its event-level
alternative.

Interaction with event matching When performed prior
to event matching in the event-level evaluation, binary
remapping can and usually will affect the matching
outcome. Figure 3 illustrates a simple example of sample-
level binary remapping affecting a hypothetical event
matching approach (based on largest overlap between the
events, similar to Maximum overlap in “Maximum overlap
matching”). In the multiclass case (in the figure on the left),
the ground truth fixation GT1 is matched to a predicted
fixation P1 since their overlap is the largest. However, after
sample-level binary remapping (in the figure on the right),
event P5 (the result of grouping two sets of negative-class
samples – corresponding to P2 and P3) has the largest
overlap with the fixation GT2. Therefore, the fixation GT2
can no longer be considered as correctly detected, and a
false negative error will be registered instead.

Descriptiveness A downside of a binary evaluation strategy
in terms of producing insightful statistics is that it is not
always obvious how to produce descriptive performance
summaries of the detection pattern, e.g. that a fixation is
not just “misclassified”, but confused with a smooth pursuit,
or, in a more complicated example – with a sequence of
several events, like smooth pursuit, a small saccade, and
a PSO. The latter situation would also present a challenge
for multiclass evaluation, as it requires one-to-many event
matching, which is rarely seen in the literature, but it
is at least theoretically possible to produce observations
that would be directly useful and interpretable for the
algorithm developer in this case as well. Maintaining this
information throughout the binary evaluation (e.g. that
the predicted negative-class event P5 in Fig. 3 consisted
of respective events P2 and P3 prior to the remapping)

would alleviate this problem, but would require a careful
overhaul of the existing pipelines. As it stands right
now, multiclass event matching and evaluation seems to
provide the most descriptive option when considering
one algorithm, while binary evaluation (with sample-level
binary remapping before event matching) provides the
fairest way of comparing multiple detectors, especially
when they do not detect the same set of eye movement
events.

Negative-class events Furthermore, event-level binary
evaluation requires additional consideration of the
unmatched negative events. While unmatched positives
are treated as “missed” or “false alarms”, unmatched neg-
atives can be considered as errors, as correct predictions
or ignored. Recent works (Zemblys et al., 2020; Startsev
et al., 2019) argue that penalizing the algorithm score
for incorrectly detecting events other than the one under
evaluation does not provide a desirable view of the algo-
rithm’s performance. On the other hand, Friedman (2020)
argues that approach originally used in Zemblys et al.
(2019b) where the authors counted unmatched negative
events as true negatives unfairly inflates the performance
score. Zemblys et al. (2020, Table 2) analyzed all three
approaches, demonstrating that disregarding unmatched
negative-class events(i.e. belonging to the class other than
the one being evaluated) results in a Cohen’s kappa score
that best reflected the algorithms’ performance in terms of
detecting only the event type of interest.

Handling undefined events

As mentioned before in “Data sources”, it is not required
that all the samples in the data have an event label. For
example, parts of the data might be too noisy to reliably
annotate events, or the study requires only one type of event
to be annotated (Hooge et al., 2018; Steil et al., 2018).
In this case, all the unannotated samples form undefined
events. These, especially those in the ground truth, are
typically not of interest when assessing the performance of
event detection algorithms. Therefore, special care needs
to be taken to avoid the artifacts that undefined events can
introduce into the evaluation process and results.

It is also very common to evaluate algorithms using data
with a different set of event types annotated compared to
what the algorithm is designed to detect (Andersson et al.,
2017; Zemblys et al., 2019b). Hence, events of types that are
not both annotated in the ground truth and detected by the
algorithm need to be either ignored or explicitly converted
to undefined before performing the evaluation. For example,
to develop their algorithm Zemblys et al. (2019b) used
only part of the Lund2013 dataset (Andersson et al., 2017)
where two independent coders identified samples being
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either fixation, saccade, or PSO. When comparing different
algorithms, authors then relabelled output samples that do
not belong to the three evaluated classes to undefined.
Depending on the differences in eye movement definitions,
conversion between classes may be necessary as well: E.g.
to evaluate an algorithm that detects both saccades and
PSOs on a dataset where the definition of saccades includes
PSO into this event type (e.g. GazeCom dataset from
Startsev et al., 2019b), re-mapping predicted PSO samples
to “saccade” rather than treating them as undefined events
would align the saccade definitions in the annotations and
the algorithm’s output.

While some event matchers described below in “Event
matching methods” ignore the sequences of undefined class
labels altogether, others treat undefined events just like any
other event class: That is, they allow for the undefined
events to be matched with any other event(s), including
undefined-to-undefined matches. The later are however
uninformative and simply increase the performance score
without describing the algorithm’s performance any better.
Take, for instance, a fixation detector tested on a dataset of
annotated fixations (e.g. Hooge et al., 2018). Any matches
found in the unlabelled part of the data are irrelevant (though
correlating in this particular example) with regards to the
detection quality that one might want to measure.

When considering the event-level evaluation pipeline
as a combination of two parts – “event matching” and
“metric computation” – that can be chosen freely, it is a
responsibility of the researchers to ensure a meaningful
combination of those steps, especially concerning the
undefined events. For instance, a matcher that treats
undefined events as any other class should not be combined
with either a multiclass evaluation metric (that also equates
all classes) or a binary metric that rewards true negatives:
Both of these might be easily inflated by an abundance of
undefined-to-undefined matches.

Evaluationmetrics

Evaluation metrics listed in this section require ground truth
annotations and the correspondence between the ground
truth and the prediction sequences established. On the sam-
ple level this correspondence is inherently present, while
event-level evaluation requires event matching (“Event
matching methods”). Once that is done, the detection power
of the prediction algorithm can be quantified using vari-
ous metrics. For example, Hooge et al. (2018, Fig. 9) and
Kothari et al. (2020, Table 7) provide event timing eval-
uation, Hooge et al. (2018, Table 4) and Startsev et al.
(2019a, Tables 1 and 2) report event-level F1-scores, Zem-
blys et al. (2019b, Tables 7 and 8) and Startsev et al.
(2019, Table 2) use event-level Cohen’s kappa, etc. All

evaluation methods below are discussed in the context of the
properties that a reliable and intuitive event-level evaluation
method should possess: It should be able to identify all the
errors (together with their types) that the algorithm makes
and evaluate the algorithm’s output in a consistent and easily
interpretable way.

Event quality metrics

Event matching enables the evaluation of the quality of the
predicted events, i.e. the assessment of how similar, in terms
of their properties, the ground truth and the predicted events
are. We note that usually only the matched events of the
same class are analysed for event quality – mistakes related
to mislabelling the events are handled via other metrics
(see “Levenshtein distance” and “Confusion matrix-based
measures”).

Event timing

Event timing is the most often evaluated event quality
metric: Even if the algorithm is capable of producing event
sequence similar to that in the ground truth, onset, offset,
and duration of the test events might differ. Hooge et al.
(2018) proposed using the Relative Timing Offset (RTO)
and the Relative Timing Deviation (RTD) to capture these
subtle timing differences. RTO (equivalent to bias in Bland-
Altman plot, see below) is the difference between the
on-/offset of the ground truth and the on-/offset of the
predicted events, respectively, while RTD is the variance
of RTO. Authors argue that these measures are “the
missing links between agreement measures such as the F1
score and the eye movement parameters” (Hooge et al.,
2018, p. 1879). A similar metric was used by Kothari
et al. (2020), but instead of providing differences in onsets
and offsets separately, authors calculated timing offset as
l2 distance between the on- and offset timestamp pairs
(Eq. 2):

l2 =
√

(GTonset − Ponset)
2 + (GToffset − Poffset)

2, (2)

where GT stands for an event in the ground truth, and P –
for the correspondingly matched predicted event.

The absolute timing offsets have different implications
for the events of different durations: E.g. the misalign-
ment of a few samples is probably not very important in
fixation detection, but might mean that half of a saccade
is misaligned. To evaluate how well the ground truth and
predicted events align in time, Startsev et al. (2019a) and
Kothari et al. (2020) used event Intersection-over-Union
ratio (IoU) – a measure that takes the duration of the
two matched events into account and indicates the pro-
portion of their overlap with respect to the duration of
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the union of the two events. IoU has a useful property of
ranging between 0 and 1 (where 1 means perfect event
timing agreement and 0 – no overlap), contributing to its
general-purpose ease of interpretation. On the other hand,
in the situation of close familiarity with the data set, the
algorithm developer might prefer absolute timing differ-
ences since those are expressed in the same units as event
durations.

It is worth noting that all of the timing measures are
easiest to formalize under the assumption of exclusively
one-to-one matches being allowed, and indeed we have
formulated them in this setting here. Nevertheless, all of
the measures above can be applied with a one-to-many
matcher: E.g. if a ground truth event if fragmented in
the algorithm predictions, and the matcher has accounted
for it, one could use the first and last events of the
fragmented sequence to determine the on- and offset,
respectively, of the “predicted event” e.g. in RTO of l2
definitions. Indeed, the matcher used by Kothari et al.
(2020) allows for one-to-many correspondences, and the
authors have computed all the event quality measures in this
setting.

Bland-Altman analysis

Analysis of timing offsets as well as any other event
property (duration, amplitude, velocity, etc.) can be
performed with Bland-Altman plot (Bland & Altman,
1986) – a method for analyzing the agreement between
two quantitative measurements of the same variable. It
was used by e.g. Swan et al. (2020, Figs. 9 and 10)
when comparing the output of their algorithm detecting
certain patterns in the gaze signal (“gaze scans”) to
the ground truth. Bland-Altman plot – the difference of
the two paired measurements plotted against the mean
of these (referred to as “magnitude” by the authors)
– enables visualization and statistical analysis of the
differences between the two measurement systems. In
addition such representation allows to investigate the
relationship between the measurement error and the
magnitude of the measurement, e.g. if larger timing errors
are associated with longer fixations, etc. Note that even
though the ground truth measurement value is available,
the magnitude is estimated as the average of the two
measurements. Plotting the difference against the ground
truth will always show a relation when there is none (Bland
& Altman, 1995). Average difference is called bias and
shows how much, on average, the two systems (e.g. the
ground truth and predictions) differ. The limits of agreement
show an agreement interval, within which 95% of the
differences between the two measurement methods fall.

For an in-depth review of Bland-Altman analysis refer to
(Giavarina, 2015). Here we only note that such analysis is

very flexible, not being limited to a fixed set of compared
measures. Such plots can be produced for any conceivable
eye movement-related measure that is of direct interest
for the undertaken study (average estimated pursuit speed,
fixation stability, etc.), as long as it can be computed based
on the results of event matching.

Unlike computing the average of these measures
across all events in the ground truth or predictions, or
even comparing the distributions of these values (cf.
“Evaluation using similarity to the ground truth event
parameters”), Bland-Altman plots allow directly assessing
the differences between the corresponding events, not the
overall distributions. Special care has to be taken with
respect to undetected or falsely detected events, however,
as those are not represented in the plot, as there are no two
“measurements” that can be compared.

Levenshtein distance

Levenshtein distance is a metric originally used for
measuring the differences between two sequences of
characters. It is also referred to as “edit distance” in
the literature, as it corresponds to the minimal number
of “edits” (single character insertions, substitutions, or
deletions) required to match the two compared sequences.
In application to eye movements, the labels of the ground
truth samples (or events) and the corresponding-level output
of the detector can be easily re-interpreted as sequences
of “characters” denoting event type, enabling the ready
application of this metric.

Length-normalized Levenshtein distance is often used to
evaluate speech recognition systems (Amodei et al., 2016;
Dernoncourt et al., 2018; Chiu et al., 2018). It is called
Character Error Rate (CER) or Word Error Rate (WER)
depending whether the evaluation is performed on the level
of individual characters or complete words:

CER = (ic + sc + dc)

nc

; WER = (iw + sw + dw)

nw

, (3)

where i is number of insertions, s – number of substitutions,
d – number of deletions, and n – number of characters or
words in the ground truth sequence. Subscript indices c and
w refer to characters and words, respectively.

Sample Error Rate In the eye movement literature, Zemblys
et al. (2019b, Table 6) used a length-normalized sample-
level Levenshtein distance (denoted Sample Error Rate by
the authors) as one of the evaluation metrics for their
recurrent neural network-based event detection algorithm. It
was also tested in Startsev et al. (2019) among a number of
other detector quality metrics and demonstrated a fair ability
to separate the “baselines” from dedicated eye movement

1673Behavior Research Methods (2023) 55:1653–1714



detection algorithms, even though the different in their
scores was not large.

This metric is relatively easy to interpret and, if
normalized for sequence length, it ranges from 0 to 1, where
0 is the best achievable score. In some cases, however,
Levenshtein distance can be a very poor quantification
for eye movement detection performance: For example,
imagine the case of alternating saccades and fixations,
where a detector misclassifies the first sample of every
ground truth saccade as a fixation and extends every saccade
by one sample. The actual number of errors made by the
algorithm would be twice the number of saccades in the
dataset. By contrast, the number of edits required to match
such ground truth and predicted event sequences will only
be 2 – one deletion at the beginning and one insertion at the
end of the test sequence.

This metric is also relatively difficult to compute
(compared to other sample-level measures), requiring the
number of operations proportional to the square of the
evaluated sample sequence length. In contrast, all of the
confusion matrix-based metrics are computed in linear time.
This becomes especially noticeable with prolonged eye
tracking recordings and high sampling frequencies. For a
thorough description on calculating Levenshtein distance,
see Manning et al. (2010, Chapter 3.3.3, p. 58).

Event Error Rate is the event-level Levenshtein distance
normalized by the length of the ground truth event sequence
that provides information on how well the event detector
preserves the ground truth event sequence5 (Zemblys et al.,
2019b, p. 846). The benefit of computing Event Error Rate
lies in its convenience: While being an event-level metric,
it does not require explicit event matching, and can be
computed directly for the pairs of event sequences, without
any preliminary steps. The matching is implicitly computed
during the computation of the distance, however, though
there are no restrictions on this matching (e.g. matched
events do not need to overlap or even be close to one another
in time).

As highlighted in (Startsev et al., 2019), event-level
Levenshtein distance is susceptible to potentially “confus-
ing” e.g. randomly vs. meaningfully labelled eye tracking
sequences: For instance, a plausible yet random sequence
of eye movement events produced a lower Event Error Rate
than six out of seven tested algorithms from recent literature.
Concerns that Levenshtein distance does not evaluate simi-
larity well enough are also expressed in language processing
community (e.g. Greenhill, 2011).

In addition, Event Error Rate does not necessarily range
between 0 and 1. In case the predicted event sequence

5It is widely used in speech recognition systems under the name of
Word Error Rate

Table 2 Example of a confusion matrix C for N classes. The Cii

elements on the diagonal quantify correctly predicted labels, the rest
– Cij,i �=j refer to samples mislabelled in a particular way (label j

assigned to an example of class i). Notations in brackets denote
terms used in binary classification: TP for True Positives, TN – True
Negatives, FP – False Positives, and FN – False Negatives

Predicted

Class 1 Class 2 . . . Class N

(Positive) (Negative)

Ground truth Class 1 C11 C12 . . . C1N

(Positive) (TP) (FN)

Class 2 C21 C22 . . . C2N

(Negative) (FP) (TN)

. . . . . . . . . . . . . . .

Class N CN1 CN2 . . . CNN

is longer than the ground truth event sequence, Event
Error Rate could exceed 1. Therefore, if evaluation requires
measures to have a certain range, for example when
combining multiple different measures into one meta-
measure (e.g. RMSD in Andersson et al. (2017, Eq. 2)
or S in Zemblys et al. (2019b, Eq. 6)), one would need
to normalize the Levenshtein distance by the length of
the longer of the two compared sequences (Startsev et al.,
2019), or clip the resulting values at 1.

Confusionmatrix-basedmeasures

The most basic, yet often the most informative method
to describe the performance of an algorithm is a table
containing the numbers of correctly and incorrectly
classified samples or events – a confusion matrix (Table 2).

In the case of binary evaluation, one of the classes
(Class 1 in Table 2) is referred to as a positive class,
and the other other one (Class 2) – as negative class.
The values on the diagonal of a binary confusion matrix
are the amount of True Positives (TP) and True Negatives
(TN), corresponding to correctly labelled samples or events
of the positive and negative class, respectively. Entities
incorrectly labelled as the positive class (C21 in Table 2) are
counted under the name of False Positives (FP), and those
incorrectly labelled as the negative class – under the name
of False negatives (FN) (C22 in Table 2). For example, when
the event detection algorithm is designed to only detect
fixations (Class 1, positive) while the rest of the samples are
labeled as saccades – Class 2 or negative – false negatives
are fixations in the ground truth that received the labels of
saccades from an algorithm, and vice versa for the false
positives.
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The numbers of correctly and incorrectly classified
entities are usually normalized for better interpretability.
Most often a confusion matrix is normalized along its rows,
i.e. each row is divided by its sum to express the proportions
of correctly and incorrectly classified ground truth entities
of each of the eye movement classes (e.g. Hoppe & Bulling,
2016, Fig. 7; Houpt et al., 2018, Tables 2 and 4; Zemblys
et al., 2019b, Fig. 8). Such normalization allows for
quick assessment of both how accurate the algorithm is at
correctly detecting every events class (sensitivity, see below;
values on the diagonal), and what what misclassification
errors it makes.

While the metrics that can be derived from the confusion
matrix attempt to summarize the matrix by one or several
statistics, reporting the full table enables precise attribution
of the misclassified examples: Zemblys et al. (2019b, Figure
8) report that compared to two expert coders, their algorithm
misclassifies around 18% and 16% of PSO samples as
fixations; Hoppe and Bulling (2016, Figure 7) show that
their algorithm has a tendency to label ground truth saccade
and smooth pursuit samples as fixations; Zemblys et al.
(2019b, Fig. 9) also provide an event-level confusion matrix
that enabled them a more in-depth analysis of potential
causes of the detection errors. Given such information,
algorithm developers can focus more on the algorithms’
bias towards certain directions of mislabeling (e.g. other
events as fixations, etc.) and thus possibly improve the
performance in a targeted way.

Despite of confusion matrix providing a lot of infor-
mation about the labelling behavior of the event detection
algorithm, it is not a performance metric by itself, contain-
ing N2 values. Therefore, it is often desirable to express the
algorithm’s performance more concisely. The performance
measures that we discuss in this section are derived from
the confusion matrix and are used by researchers to evaluate
and compare eye movement event detection algorithms.

Accuracy

Accuracy is the ratio between the number of correctly
classified samples or events and the total number of entities.
It can be calculated and reported separately for each class
(Eq. 4 below), with all events of “other” classes treated as
negatives, and only the events of the considered class – as
positives:

Accuracybinary = T P + T N

T P + T N + FP + FN
. (4)

In the case of binary classification it is, of course, only
computed once, since it would be the same for either
class. For the multiclass case, the binary accuracy for one

class effectively ignores misclassification errors between all
“other” event types.

Accuracy can also be directly computed for all classes
together, thus reporting the overall performance of the
classification algorithm:

Accuracymulticlass =
∑N

i=1 Cii∑N
i,j=1 Cij

, (5)

where C is the confusion matrix for N classes (see Table 2).
Accuracy is an easy to understand and calculate metric

and, therefore, widely used when reporting performance of
eye movement detectores (see Anantrasirichai et al., 2016,
Tables 1 and 2; Hoppe and Bulling, 2016, Table 2; Santini
et al., 2016, Table 3; Peng et al., 2019, Table 3 for a few
examples). A closely related metric – misclassification rate
(or error rate; equivalent to 1 − Accuracy) – was used
by Andersson et al. (2017, Table 8, referred to as “ratio”),
Startsev et al. (2019a, Table 7), Dar et al. (2020, Table 2), to
name a few.

However, accuracy in these definitions represents a
poor metric for evaluating the performance in unbalanced
datasets (where certain classes are prevalent or underrep-
resented) because of the accuracy paradox6: A predictive
model with high accuracy might in fact have a low predic-
tive power, i.e. although having high absolute performance
scores, the output of the model would not be much different
from a simple baseline calculated from event base rates. The
majority of gaze samples in eye tracking data are typically
attributed to fixations or other slow eye movements like
smooth pursuit (see Table 1). Therefore, if e.g. an algorithm
predicts all the samples as belonging to the majority class,
its sample-level accuracy will be high, but such an algorithm
would be useless in practice. On the event level the issue
is not so prominent, yet can be problematic when evaluat-
ing data containing relatively rare events such as blinks or
PSOs. A solution to account for data imbalance is to calcu-
late a variant of the accuracy measure – weighted accuracy:

Accuracyweighted =
N∑

i=1

wi

Cii∑N
j=1 Cij

, (6)

where wi is the weight for the ith event class and C is the
confusion matrix for N classes.

In order to preserve the range and with it the intuitive
interpretation for good – close to 1.0 – and bad – closer
to zero – scores, weights with the following properties are
used: wi ≥ 0,

∑N
i=1 wi = 1. The intuition behind the

weighting is to strengthen the influence of the less frequent

6See https://towardsdatascience.com/accuracy-paradox-897a69e2dd9b
for an in-depth explanation.

1675Behavior Research Methods (2023) 55:1653–1714

https://towardsdatascience.com/accuracy-paradox-897a69e2dd9b


classes, which would have only a limited impact on the
non-weighted accuracy: For instance, a classifier labelling
everything blindly as fixations would have a 90% accuracy
in a dataset of 90% fixation and 10% saccade samples, even
though one class is completely ignored (see “All majority”
corner-case test in Table 6, Appendix D).

A special case when all weights are equal to 1
N

is
called balanced accuracy and was used by e.g. Larsson
et al. (2016, Table 8) when evaluating and comparing their
head movement-aware event detector to other algorithms.
Balanced accuracy ensures that if the classifier takes
advantage of the majority class, its score will be as low
as 1

N
. In a binary case, balanced accuracy is equal to

the arithmetic mean of sensitivity and specificity. When
employed to evaluate event-level performance, however,
balanced accuracy can result in either over- or under-
estimated score, thus potentially misleading the algorithm
user. See Appendix F and Fig. 22 for a more detailed
explanation.

Other options to calculate weighted accuracy include
using weights either directly or inversely proportional to
the support (also known as class probability p, i.e. the
proportion of samples or events in each of the event
classes). Proportional weighting however makes the correct
prediction of the majority class even more important, which
might be desirable in some cases. To counteract this, one
can weigh proportionately 1 − p instead, thus making
the minority class more important. In the example above,
the weights for fixations and saccades would be set to
0.1 and 0.9, respectively. If one of the event types has
very few occurrences, this minority class will be heavily
“upweighted” in the score calculation, and the algorithm
predicting every sample as belonging to the minority class
will score unreasonably high.

Another approach to deal with the accuracy paradox
was used by Goltz et al. (2019), where the authors used
this metric in combination with bootstrapping: They com-
puted the accuracy of the algorithm’s predictions on 20
different random subsets of the data that were sampled
in such a way as to contain an equal number of each
event labels. Similar to balanced accuracy, bootstrapping
ensures that a poor performing algorithm, such as major-
ity or minority class predictor, does not score better
than 1

N
.

On the whole, accuracy should be avoided when
evaluating eye tracking data. Weighted accuracy is also not
a perfect solution, as it heavily depends on the selected
weights, making it difficult to compare across studies,
in addition to not fully solving the accuracy paradox.
Bootstrapping, on the other hand, ensures that the testing
data themselves are balanced, though it can only be applied
on the sample level: There is no universally sensible way
of sampling only certain events for evaluation without

potentially heavily affecting the outcome of event matching,
thus skewing the results in each subsampled set. Moreover,
bootstrapping makes accuracy calculation both parameter-
dependent (number of samples, sampling with or without
replacement) and randomness-dependent. The latter means
e.g. that the researchers would need access to the exact
code and random state (or the exact random subsets that
resulted from these) that produced the evaluation results in
order to exactly reproduce these, which may be difficult
to conveniently achieve across platforms and programming
languages.

Binary metrics

We will now describe a set of evaluation metrics that
are based on the confusion matrix analysis and can be
only computed in a binary setting: Precision, sensitivity
(or recall), specificity, and F1-score. To compute these, a
certain “event type of interest” – for example fixation –
needs to be considered as the “positive” class, while the rest
of the event types (e.g. saccade, PSO, etc.) are considered as
belonging to the “negative” class.

In case an event detection algorithm is designed to detect
only one event type, it is enough to report one precision,
sensitivity, specificity or F1-score score. For example in
Anantrasirichai et al. (2016, Tables 1 and 2) authors report
precision and sensitivity (recall) only for fixations when
evaluating their fixation detection algorithm. However, if
the algorithm detects more than one event type, such binary-
setting scores need to be calculated for each of the events
separately (cf. also “Multiclass vs. binary evaluation”), and,
optionally, averaged to report the overall performance (see
for example Hoppe and Bulling, 2016, Table 2 or Larsson
et al., 2016, Table 8).

Precision reveals the proportion of predicted entities
(samples or events) of the positive class that belong to the
positive class in the ground truth as well:

Precision = T P

T P + FP
. (7)

For instance, when evaluating fixation detection, sample-
level precision would be computed as the share of samples
with the predicted fixation label that are attributed to the
fixation class in the ground truth. It can be understood as the
metric of the reliability of a predicted positive-class label.

Sensitivity (also known as recall or True Positive Rate)
measures the proportion of the ground truth entities of
the positive class that are correctly predicted as that class.
In other words, sensitivity describes how successful the
algorithm is at not missing the entities of a particular type
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of eye movement type – the positive class:

Sensitivity = T P

T P + FN
. (8)

Specificity (also known as True Negative Rate) is a measure
complementary to sensitivity, and can be interpreted as the
sensitivity for the negative class. It is computed as the
proportion of the negative-class ground truth entities that are
correctly identified as such by the algorithm:

Specif icity = T N

T N + FP
. (9)

F1-score is defined as a harmonic mean (mean with the
emphasis on the lowest value) between precision and
sensitivity, and is often used as a way to quantitatively
assess the algorithm’s performance with one metric when
no inherent preference for either precision or sensitivity can
be inferred. In fact, F1 is just one of a family of metrics
(denoted as Fβ , with β setting the balance between the
importance assigned to precision and sensitivity)7. The most
commonly used variant (with β = 1) is formalised as
follows:

F1 = 2
precision × sensitivity

precision + sensitivity
= 2T P

2T P + FP + FN
.

(10)

Jaccard index (JI, also known as Jaccard similarity coef-
ficient or intersection-over-union8) measures the ratio of
entities labeled as the positive class in both the ground truth
and predictions at the same time vs. the entities labelled as
the positive class in at least one of the sequences:

J I = T P

T P + FP + FN
. (11)

JI can also be calculated for any event type pair separately
and presented similarly to a confusion matrix (Dar et al.,
2020, Fig. 2): E.g. one can compute the ratio of gaze
samples labelled as fixation in the ground truth and as
saccades by the algorithm at the same time vs. the gaze
samples labelled either as fixation in the ground truth or as
saccade by the algorithm.

Receiver operating characteristic curve

Receiver operating characteristic (ROC) curve is a graph-
ical representation of the algorithm’s performance, where,

7An intuitive understanding of Fβ scores can be gained e.g. from the
visualization in https://www.mikulskibartosz.name/f1-score-explained
8We reserve the term intersection-over-union, IoU for the measure
of similarity between two eye movement events, cf. “Event quality
metrics”, to avoid confusion, and use JI to refer to the classification
quality metric.

at various algorithm’s settings, True Positive Rate (sen-
sitivity, TPR) is plotted against the False Positive Rate
(1−specificity, FPR). For an example of a ROC curve used
to compare event detection algorithms see Otero-Millan
et al. (2014, Figs. 6B and 9) and Hoppe and Bulling
(2016, Fig. 6). Receiver operating characteristic is based
on a confusion matrix, however in fact requiring multiple
confusion matrices to be calculated, each using different set-
tings for the algorithm (corresponding neatly to different
“operating points” on the ROC – i.e. different settings lead-
ing to one single confusion matrix that results in one point
on the curve).

These settings can be e.g.:

– velocity or dispersion thresholds in traditional event
detection algorithms like I-VT or I-DT (Salvucci &
Goldberg, 2000);

– a set of multiple thresholds if the algorithm uses more
than one;

– a threshold on probability of sample belonging to
positive/negative class in machine learning based
algorithms, or any other algorithm that provides some
kind of confidence value associated with the predicted
sample label.

While showing the trade-off between specificity and sen-
sitivity, the ROC curve analysis can, however, be misleading
when applied to unbalanced data. Saito and Rehmsmeier
(2015) analysed a number graphical analysis tools, includ-
ing ROC curves, and advocated for using precision-recall
curves (PRC) to account for class imbalance. Authors show
that PRC is more informative and conclude that it bet-
ter expresses the classifier’s susceptibility to imbalanced
datasets.

As it is often desirable to express the performance in
a concise way, preferably as one number, any curve-based
analysis would need to be in some way summarized. The
area under the curve (AUC) metric, applied to an ROC or a
similar curve (e.g. PRC), describes how well the algorithm
performs across all possible settings or thresholds. In
practice however it is often impossible to evaluate the
algorithm for every possible setting, therefore only a subset
is used, and an approximation of the AUC is calculated and
reported. If the curve is contained within the [0; 1] × [0; 1]
square (which holds for ROC and PRC, for instance), its
AUC ranges from 0 to 1.

For ROC and PRC, the “ideal” curve would have the
y coordinate at 1.0 on the whole considered segment (i.e.
maintain perfect sensitivity at any specificity, or perfect
precision at any recall level). Thus, the AUC of 1 would be
achieved by the perfect detector. For ROC, an AUC of 0.5
corresponds to chance-level detector, and values below 0.5
signal that the algorithm is doing the opposite of what it
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was designed to do, for example labels most of the fixation
samples as saccades and vice versa.

Single operating point ROC In many practical situations,
the evaluation is performed for one set of detected eye
movement events without a possibility to produce detections
at any other operating point of the detector. While many data
science frameworks will technically allow computing area-
under-the-curve metrics in this case, we strongly discourage
this practice, as (1) in the theoretical definition such
ROC AUC can be directly expressed as (sensitivity +
specif icity)/2, but (2) in practice it will substantially
underestimate9 the AUC, as well as (3) may be strongly
affected by the specific implementation details due to the
ambiguity of sorting elements with precisely equal values.

Different settings and comparability The most straightfor-
ward case for producing an ROC curve is having a con-
fidence score assigned to each of the entities (samples or
events) detected by the algorithm under evaluation. In this
case, for any threshold value, one can treat only the enti-
ties with confidence above this threshold as positive-class
predictions. By varying the threshold enough, a full range
of performance from “all entities are marked as negative
class” (threshold higher than maximal confidence score) to
“all entities are marked as positive class” (threshold lower
than minimal confidence score) can be covered in a system-
atic way. This is, however, a relatively rare scenario for eye
movement detectors, where one will more likely be able to
change certain parameters of the algorithm in order to obtain
several performance points. Such process is less straight-
forward than varying a single confidence threshold, since
one typically needs to sample from the multi-dimensional
parameter space of the algorithm (which is not a well-
defined process by itself), and the resulting operating points
will likely not form a curve (see e.g. Fig. 8 in Startsev
et al., 2019b). To perform any sort of curve-based analysis,
the highest-sensitivity points at any specificity value would
need to be selected to form the “encompassing” curve.
Additionally, it is not guaranteed that by varying algorithm
settings one would obtain sufficient coverage of the full
x axis of the ROC plot – from zero to perfect specificity,
forcing the partial AUC computation, further complicating
inter-publication comparison, since different x axis ranges
have might been examined. We also refer the reader to

9Hanley and McNeil (1982) discuss the underestimation of the “true”
AUC when an empirical ROC with a handful of rating categories
are constructed, and the effect is stronger for just one operating
point – equivalent to using two rating categories only. Katostaras
and Katostara (2013) introduce a special formula that adjusts for this
underestimation.

DeLong et al. (1988) for a statistical viewpoint on compar-
ing ROC AUC scores for different detectors on the same
dataset.

Cohen’s Kappa

Cohen’s Kappa (Cohen, 1960) is the measure of agreement
between two sources of labels that is also based on
a confusion matrix and can be calculated in both,
binary and multiclass setting. Compared to accuracy,
precision, sensitivity, and other similar measures, Cohen’s
kappa (denoted κ) directly accounts for class imbalance
by effectively quantifying the relative improvement the
algorithm makes compared to what a random mix-up of the
class labels it assigns would achieve:

κ = po − pe

1 − pe

, (12)

where po is the observed agreement, equivalent to accuracy,
and pe is the the agreement expected by chance, calculated
as10:

pe =
N∑

i=1

Ci· × C·i
s2

, (13)

where C is confusion matrix for N classes; Ci· = ∑N
j=1 Cij

(the sum of ith row – total number of entities of class i in
the ground truth); C·i = ∑N

k=1 Cki (the sum of ith column –
total number of entrites labelled as class i by the algorithm);
s = ∑N

i,j=1 Cij – total number of entities in C. Thus, pe

quantifies how often the ground truth and the algorithm
would on average agree on the label for a single entity, given
the respective frequencies of each label (for class i: Ci·/s in
the ground truth and C·i/s in the algorithm’s labels).

Cohen’s kappa is, by far, the most frequently reported
metric when evaluating the performance of eye movement
detection algorithms (Larsson et al., 2013, Tables 6 and
7; Larsson et al., 2015, Tables 4, 5 and 6; Larsson et al.,
2016, Table 9; Santini et al., 2016, Fig. 6; Andersson et al.,
2017, Table 7; Pekkanen & Lappi, 2017, Table 1; Hooge
et al., 2018, Table 3; Zemblys et al., 2018, Table 3, Figs. 7
and 10; Startsev et al., 2019a, Table 7; Startsev et al.,
2019, Tables 2 and 3; Zemblys et al., 2019b, Tables 6 and
8; Bellet et al., 2019, Tables 2, 3 and 5; Wadehn et al.,
2019, Table 2; Dar et al., 2020, Table 3, and many more).

Despite of its popularity, there are a number of issues
causing Cohen’s kappa to produce unreliable scores. Some
criticism with regards to not taking bias and prevalence
in the dataset into account was voiced by Byrt et al.
(1993). However, the proposed correction effectively turn
the metric into accuracy (the formula for both prevalence-
and bias-corrected κ can be rewritten with the use of a

10Equation adapted from Delgado and Tibau (2019)
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constant and accuracy). It is, nevertheless, suggested that
Cohen’s kappa should not be reported without additional
statistics (prevalence and bias). Furthermore, Delgado
and Tibau (2019), among others, advocate against using
Cohen’s kappa and show that in some cases when marginal
probabilities are very small, the κ score can be affected to
the extent that worse classification results can obtain higher
scores.

Adjusted event-level Cohen’s kappa In the formulation
above, Cohen’s kappa quantifies the improvement an
algorithm makes by ordering its predicted labels (for eye
movement events or samples, depending on the level of
the evaluation) compared to a random shuffling of the
same entities (i.e. “agreement by chance”). For event-
level evaluation, this random agreement is equivalent
to shuffling the order of the labels of the events,
without changing the events’ durations. This means that
this condition includes assigning e.g. saccade labels to
one second-long fixation events, etc. As this behavior
may not represent a reasonable chance-level baseline for
performance evaluation, and, therefore, may be suboptimal
in the role of a normalization statistic for the kappa
formula, Startsev et al. (2019) re-defined the procedure
for computing chance-level agreement for event-level
evaluation. Instead of shuffling labels alone, that work
proposed shuffling the temporal order of whole events.
Not to shift the distribution of event statistics, the same-
class events that end up one after the other as the result
of this shuffling are not merged together. This shuffling
can be repeated multiple times to stabilize the statistic
(should not be required for large-scale datasets). After every
shuffling, F1-score for the evaluated class is computed
(though not named as such in the paper; contrasted to all-
class accuracy in traditional Cohen’s kappa) so as not to
penalize poor temporal alignment of e.g. saccades to the
ones in the ground truth when evaluating fixation detection.
The average agreement value is used as pe in Eq. 12. The
value of po is also computed via the positive-class F1 score.
For multiclass evaluation, all-class accuracy is used – same
as for traditional Cohen’s kappa analysis.

Correlation

Correlation quantifies how two variables change with the
respect of one another. Depending on the nature of the two
compared variables, correlation can be measured by cal-
culating, for example, Pearson’s, Spearman’s or Kendall’s
correlation coefficients. Although not describing which cor-
relation measure was used, Munn et al. (2008, Figures 3
and 6) employed a correlation coefficient to compare fix-
ation detection performance between the three coders and
the I-VT (Salvucci & Goldberg, 2000) algorithm. In the

case of binary classification, the correlation measures listed
above would yield the same result (see Table 6 in Appendix
D). However, neither of them is applicable in the multi-
class case, because event classes are neither continuous nor
discrete ordinal variables.

A correlation measure suitable for evaluating classifi-
cation results is called Matthews Correlation Coefficient
– MCC (Matthews, 1975). In a binary case, as originally
proposed by Matthews (1975), MCC is equivalent to phi
coefficient (Cramir, 1946) and is defined as follows:

MCC = T P × T N − FP × FN√
(T P + FP)(T P + FN)(T N + FP)(T N + FN)

.

(14)

A natural extension to multiclass case was proposed by
Gorodkin (2004) and is calculated as11:

MCCmulticlass = c × s − ∑N
n pn × tn√(

s2 − ∑N
n p2

n

)
×

(
s2 − ∑N

n t2
n

) (15)

where, for a confusion matrix C for N classes,

– c = ∑N
n=1 Cnn – the total number of correctly predicted

entities in C;
– s = ∑N

i,j=1 Cij – the total number of entities in C;

– tn = ∑N
i=1 Cni – the number of occurrences of class n

in the ground truth; and
– pn = ∑N

i=1 Cin – the number of occurrences of class n

in the algorithm’s predictions.

Chicco and Jurman (2020) compared Matthews Corre-
lation Coefficient to accuracy and F1-score in a binary
classification case and concluded that MCC, contrary to the
other two metrics, is robust when evaluating imbalanced
data. In order to achieve a high MCC score, the “classifier
has to make correct predictions both on the majority of the
negative cases, and on the majority of the positive cases,
independently of their ratios in the overall dataset”. Despite
of its obvious advantages, to the best of our knowledge,
Matthews Correlation Coefficient was never used when
evaluating the performance of event detection algorithms.

Summary

Table 3 summarises metrics for evaluating the sample or
event level performance of the eye movement detection
algorithms. All discussed metrics can be used in a binary
setting, i.e. separately calculating the performance for each
eye movement event type that the algorithm can detect.
These per-class scores can then be averaged (or weighted
in some other way) to provide an overall performance score

11Equation adapted from https://scikit-learn.org/stable/modules/mod
el evaluation.html#matthews-corrcoef
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if needed. Accuracy, Matthews Correlation Coefficient,
Cohen’s kappa, and Levenshtein distance can also be
directly calculated while considering all event classes at
once. Weighted accuracy is the only parameterized metric.
Although its parameters (the per-class weights) can be
inferred from the ground truth annotations, it has to be noted
that there are several ways of accounting for class imbalance
via weights: e.g. the class with a share of samples or events
of p could get a weight of p, (1 − p), 1

N
, where N is the

number of classes, or similar.
Another property listed in Table 3 is robustness against

the corner-cases, i.e. the metric’s ability to provide low
scores for very simple detectors – randomly assigning event
labels (with equal probability), labelling all samples with
the majority- or minority-class label, randomly shuffling
the ground truth labels, and assigning predictions of the
“wrong” class to all samples. We computed all the metrics
we list in the table for these scenarios and provide respective
scores in Table 6 in Appendix D. These tests are similar to
what was performed in Startsev et al. (2019), though the
analysis in the latter work focused on event-level evaluation,
and was dataset-dependent (i.e. performed on real data).
Here, we aimed for a simplified analysis, and therefore
opted for a fixed example of ground truth labels: a sequence
of alternating fixations and saccades, all fixations and
saccades comprising 90 and 10 samples, respectively, to
simulate a realistic class imbalance. We did not include
other classes for the reason of simplification as well.

Note that this corner-case robustness score can be seen
as an empirical assessment of the ability of each metric to
describe the performance of the event detection algorithm
on its own. – i.e. without any additional measures or without
comparing the score to that of any other algorithm or
baseline. This is a rather uncommon scenario, since studies
overwhelmingly report several performance measures for
at least two algorithms that are being compared. However,
ranking the metrics according to their usability in a simple
context provides an additional way to characterise them.

We assigned three “usability” levels – low, medium, and
high, – and include these in Table 3. Rank was assigned
to all the metrics based on the number of properties listed
in Table 3 that they possess (e.g. whether the score can
be directly defined for a multiclass case, does it account
for imbalanced data, etc.). The most important role in this
scoring was attributed to the corner-case robustness, since
without additional analysis of e.g. label distribution in the
ground truth or algorithm predictions we cannot exclude
that we are dealing with a corner-case. Believing in the
reasonable performance of an algorithm (supported by a
high performance score) while it is in reality no better than
chance is a poor outcome of an evaluation, and a dangerous
conclusion to reach.

We note that the corner-case robustness tests in
Appendix D were performed in conjunction with sample-
level evaluation. This was done to maintain the simple and
easily reproducible set of corner-case tests. In principle, the

Table 3 Summary of the metrics for eye movement detection per-
formance evaluation. In the Range column the target value (best
performance) is in bold. For Cohen’s kappa and MCC, values below
0 indicate performance below chance level; for ROC AUC – values

below 0.5 have the same meaning. For other evaluation metrics, the
chance level performance is dependent on the class balance, and such
a threshold cannot be provided

Binary Multiclass Accounts for Parameter-free Corner-case Range Usability

imbalanced data robustness on its own

Accuracy � � � [0; 1] Low

Balanced accuracy � � � � [0; 1] Medium

Precision � � [0; 1] Low

Sensitivity � � [0; 1] Low

Specificity � � [0; 1] Low

F1-score � � [0; 1] Low

Jacard index � � [0; 1] Low

Cohen’s Kappa, κ � � � � � [-1; 1] High

MCC � � � � � [-1; 1] High

ROC AUC � † � [0; 1] Low

Length normalized � � � [0; 1]‡ Low

Levenshtein distance

†In this context, ROC AUC cannot be called parameter-free, since in most practical cases of eye movement event detection evaluation it is unclear
what should be iterated in order to obtain the ROC curve, and this can be perceived as a relatively complex “parameter” when computing this
metric.
‡Can be larger than 1 if the predictions sequence is longer than the ground truth (e.g. for event-level evaluation, see “Levenshtein distance”)
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conclusions about the metrics’ usability can be extended to
the event-level evaluation as well, as the main properties
of the metrics remain unchanged, and the corner-case
robustness in terms of class imbalance is also similar.
However, event-level corner cases would bring their own
set of problems (excessive event fragmentation or merging,
temporal offsets, etc.), which would affect the event
matching outcome, which in turn needs to be adequately
handled by the metrics. This is difficult to cover with
representative examples of ground truth and prediction
pairs while testing an appropriate set of event matchers
and metric pairs. Startsev et al. (2019) compared different
event-level metrics with real data – manual annotations and
real algorithm’s predictions, – however only used slight
variations of the same matcher. In “Interaction between the
performance metrics and event matchers” we test different
matcher-metric combinations on real data as well, although
with the focus on their differences on average, and the
interaction between the matchers and metrics.

Event matchingmethods

Event-level evaluation of the eye movement event detection
algorithms (beyond average event statistics) is a quite recent
development in the field, yet several methods for event
matching were proposed. Below we describe in detail and
discuss the pros and cons of event matching techniques
applied to eye tracking data in the literature to date. This part
of the evaluation pipeline seems to be the least standardized
and the most diversely developing, so its review and
improvement forms an important part of this paper.

Majority voting

Majority voting evaluation method, proposed by Hoppe and
Bulling (2016) does not require explicit event matching,
and the events as such (i.e. as uninterrupted sequences
of sample labels) are never considered in one of the
two compared event label sequences. Hoppe and Bulling
(2016) evaluate their event detection algorithm by checking
how the majority (over 50%) of the predicted samples
corresponding to each ground truth event are labeled. A
ground truth event can remain not classified if no class in the
corresponding predictions obtained the necessary majority.

Although this approach is conceptually simple and easy
to implement, it is prone to inflating evaluation scores and
not accounting for the detection of false events. Majority
voting is effectively a sample-level evaluation approach, the
only difference being that the agreement is calculated for
each of the ground truth events instead of each samples. See
for example Fig. 2: When using Majority voting evaluation,
same as for sample-level evaluation, the left and the right

Fig. 4 Example of the Majority voting evaluation (Hoppe & Bulling,
2016). Blue are fixations, red – saccades, green – PSO, orange –
smooth pursuit. Black lines connect the ground truth with predicted
events that correspond to the sample-wise majority class during a
particular ground truth event

predicted event sequences would score the same – one
correct prediction of ground truth fixation will be registered,
even though the two prediction sequences are considerably
different qualitatively. Nevertheless, we consider Majority
voting to be the event-level evaluation method since it
accounts for events at least to some degree.

Figure 4 further illustrates the limitations of the majority
voting evaluation approach. Events GT1 and GT2 are
counted as correct predictions because the majority of
the samples during these events are predicted to belong
the same class as the corresponding ground truth events.
GT3 and GT6 are counted as PSO-Fixation and Saccade-
Pursuit errors (or false negatives in the case of per-event
evaluation). Events GT4, GT5 and GT7 are further counted
as correctly detected, however false saccades P5, P7 and
P9 during these events are not accounted for, thus inflating
any confusion matrix based evaluation score. Furthermore,
note how event P8 contributes to making both GT5 and GT7
correctly detected events. However, as the predictions are
only considered as samples, this evaluation method cannot
in any way account for the corresponding event merging
or splitting. Finally, the majority voting technique is not
symmetric, meaning that if one swaps the ground truth and
predicted sequences, the resulting matches and calculated
score will differ.

Although Majority voting evaluation approach was not
presented as an event matcher, it could be seen as such.
All predicted events that belong to the majority class during
each ground truth event can be considered as matched (see
black lines in Fig. 4). This would enable one-to-one, but
also one-to-many and many-to-one matches (i.e. detecting
fragmented and merged events). However, similarly to
Event-driven error characterization (see “Event-driven error
characterization” below), a situation when events appear
to be both merged and fragmented could arise (e.g.
P8→[GT5;GT7] and GT7→[P8;P10] in Fig. 4) and would
require additional decisions to handle.

1681Behavior Research Methods (2023) 55:1653–1714



Manual error coding

Friedman et al. (2018) compared four event detection
algorithms using the taxonomy of 32 error types that were
designed to cover all the decisions the algorithms need
to make when detecting noise, fixations, saccades, and
PSOs. Half of these error types described missing the
event or mislabeling the event class, for example “PSO not
detected”, “fixation misclassified as noise”, etc (Friedman
et al., 2018, Table 1), which is essentially a reduced version
of confusion matrix that excludes correctly detected events.
The other half of the error types described timing errors
such as “fixation starts too late” or “saccade ends too early”.
When evaluating algorithms, expert coders were presented
with one second of the algorithm-labelled sequence in
an interface that closely resembled those used for hand-
labelling the eye movement events (Andersson et al., 2017;
Hooge et al., 2018; Startsev et al., 2019b) and were asked
to classify and count the errors the algorithm made in
its predictions for the depicted part of the signal. Since
it was possible that the exact same samples would be
assigned different error types by different coders – for
example, inaccurate detection of saccade offset can be
interpreted as “saccade ending too early/late” or “PSO
starting too early/late” error – authors used error type
hierarchy, based on the order in which the Nyström and
Holmqvist (2010) algorithm detects events. In addition,
authors used several heuristic rules for coding the errors:
saccade timing errors were only counted if timing was off
by at least 3 samples (3 ms at 1000 Hz) from the human
expert judgement (note that the exact expert judgement
of where a saccade event border should have been is
not explicitly recorded anywhere and exists only in the
head of the expert); the first event in the recording and
unclassified fixation periods shorter that 40 ms were not
evaluated; saccades were defined according to the shape
in the gaze position plot, while PSOs had to have a
certain velocity profile and start immediately after the
saccade. Such heuristic rules would need to be updated in
case of e.g. a different sampling frequency of the underlying
gaze data, and these modifications are not always obvious.

While the approach by Friedman et al. (2018) does
not require pre-annotated ground truth labels, an implicit
assumption remains the same as for obtaining the ground
truth labels, i.e. that there exists a perfect set of labels for a
given sequence of gaze points, and an expert annotator could
potentially produce it.

The major difference is rather procedural: The annotation
of error types does not require precise adjustment of the
border between the detected events, meaning that this could
potentially be less time-consuming than manually coding all
the events. However, as the authors themselves point out,

manual error coding is only faster when comparing two or
three algorithms (Friedman et al., 2018, p. 1375).

The major limitation of manual error coding is repro-
ducibility. When comparing multiple algorithms, the coder
is presented with the same data but labeled by different algo-
rithms, therefore the same errors can potentially be coded
differently on two different occasions. To be able to use this
approach, coders first need to be trained not only to recog-
nise fixations, saccades and other events in raw eye tracking
data, but also to follow quite complex heuristic rules and
hierarchy of error types. Friedman et al. (2018), therefore,
held a training session where three raters first practiced by
scoring a small set of data, while having open discussion
followed by detailed comparisons of the results and discus-
sions to reach consensus. However even such training does
not guarantee that implicitly-set internal thresholds (Hooge
et al., 2018) for registering a certain type of error would not
shift over time, leading to the impossibility of fairly evaluat-
ing a new algorithm e.g. a year later or by a different coder.
Much like humans are not a gold standard of fixation anno-
tation when one wants to consistently assign labels to all
recordings with the same set of rules (Hooge et al., 2018),
the reliability of the results obtained using the evaluation
approach by Friedman et al. (2018) can be very problematic,
potentially making two scores obtained in the same pro-
cedure incomparable. Furthermore, since this method does
not account for the correctly detected events, it is impos-
sible to compare the performance of the algorithm across
different datasets. The absolute number of errors is only
meaningful when comparing different scoring on the same
data, but if the algorithm was to be evaluated using differ-
ent datasets, no conclusions about the performance could be
drawn. Since datasets can differ in size and, therefore, in the
total number of events, finding the same number of errors
in two datasets does not mean that the algorithm performs
equally well on both. In this case, a meaningful performance
metric would be the proportion of errors to the number of
correctly classified events, or the number of errors per one
second of an eye tracking recording, assuming a compara-
ble frequency of events in the different datasets, which is
not always an acceptable assumption.

Yet another limitation is presented by the error labeling
hierarchy that is based on the order in which one particular
algorithm (Nyström & Holmqvist, 2010) detects eye move-
ment events. Different algorithms might process events in a
different order, while in the case of machine learning-based
algorithms such event processing order does not exist at all
– each sample is rather assigned a probability of belonging
to a certain event type , without a discernible order of steps.
As a result, a fixed error type hierarchy would be rather a dis-
advantage of the evaluation scheme, instead of helping obtain
tailored insights into the particular parts of the detector.
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Earliest overlapmatching

Hooge et al. (2018) proposed using a simple method for
explicit single-type event matching – they match each
reference (ground truth) fixation with the first overlapping
fixation in the test sequence. All matches are one-to-one,
i.e. when two fixations are matched they are withdrawn
from the pool of possible matches for further analysis. For
example, in Figure 5 fixation GT1 in the ground truth
overlaps with two fixations in the prediction sequence (P2
and P4). Fixations GT1 and P2 are matched since they
overlap earliest in time, and this match can then be counted
as a true positive. Meanwhile, the predicted fixation P4
remains unmatched as it does not overlap with any still
available ground truth fixation, and can be subsequently
counted as an error (a false positive). Similarly, the ground
truth fixation GT3 is matched with the fixation P6, while
the ground truth fixation GT5 remains unmatched and can
be counted as an undetected event, i.e. a false negative
error. And finally, the GT7→P8 match can be registered as
another correct (true positive) detection. Based on this event
matching, Hooge et al. (2018) computed both confusion
matrix-based scores (F1-score) and event-quality metrics
(see RTO and RTD in “Event quality metrics”) in order to
compare the annotation patterns for each pair of the twelve
expert coders in their data.

Despite being a one-to-one matching technique, the
earliest overlap method can be seen as being able to deal
with event fragmentation and merging, in a certain context.
While in terms of event detection evaluation it will only
be able to match one event in the ground truth to one
predicted event, the situation is different for the event timing
evaluation pipeline proposed by Hooge et al. (2018): In
their work, the timing of event on- and offsets are evaluated
separately, with the earliest overlap matcher applied in
two directions. For event onsets, the matcher is applied as
described above, from the start to the end of the recording.
For the offset timing evaluation, however, the order is
reversed, and the matcher effectively prefers the events
overlapping latest in time. An example demonstrating the
potential usefulness of this inversion can be seen in Fig. 5,
where for event offset evaluation, the offset of fixation
GT1 would be compared to that of P4, and the offset of
P6 – to GT6 (see dashed black lines in the figure). For
timing evaluation on the whole then, GT1 can be seen
as fragmented into P2 and P4, while GT3 and GT5 are
seen as if merged into a detection P4. Without additional
modifications to the evaluation pipeline, however, these
implied merges and fragmentations are not reflected in the
evaluation of the event detection performance.

Earliest overlap event matching was designed in the
context of a binary evaluation setting only (i.e. evaluating
the performance of detecting a single eye movement type;

Fig. 5 Example of the Earliest overlap event matching method
(replicates Fig. 10 from Hooge et al., 2018). Blue are fixations, gray
– unlabeled events. Solid black lines between the ground truth and
predicted events indicate event matches, dashed black lines show event
matches when earliest overlap matching is performed in reverse order
(for fixation offset timing evaluation; hence, the endpoints of events
are connected with dashed lines)

fixations vs. non-fixation). As noted by Zemblys et al.
(2019b, p. 845), using it for multiclass event analysis
will cause unintuitive12 event matching. Therefore, when
used in combination with most of the event-quality metrics
discussed in “Event quality metrics”, it can result in both
over- or under-estimation of the algorithms’ performance.
Yet, in some scenarios, unintuitive matching can also occur
in binary setting. For example, even a slight overlap with
an earlier positive event is preferred over a much larger
overlap with a later negative event (see GT2→P1 match
in Fig. 6). Fixations GT2 and P1 in ground truth and
prediction sequences respectively are matched despite of
majority of the samples in the predicted sequence during
the fixation GT2 being labeled as an event P2 of another
type. Such scenario is very likely – e.g. event P2 can be
a smooth pursuit detected by the algorithm. Mislabeling
fixations as pursuits and vice versa is a very common
behavior in event detection algorithms (Holmqvist et al.,
2011, Section 5.8; Hoppe and Bulling, 2016). Evaluation
using the Earliest overlap event matching method would
unfairly benefit the algorithm’s scores, even if its detection
is poor: This particular GT2→P1 match (Fig. 6) would
be counted as a correct detection of a fixation, albeit with
potentially poor event-quality scores.

Multiclass extension of the earliest overlap matching

The issue of poorly handling sequences of events of multiple
classes was not obvious in the context in which the earliest
overlap event matching method was employed in Hooge
et al. (2018), as only one class – fixation – was considered.
In the case when all gaze samples are assigned a label,
the question of how to apply this matching strategy does
not have a good answer. There are two naturally arising

12We use the word “unintuitive” instead of “incorrect”, because the
matching algorithm is not actually making an error and doing exactly
what it was designed to do. However the resulting matching may not
be what one would intuitively expect.
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Fig. 6 Example of unintuitive event matching in binary and multiclass
setting using the Earliest overlap event matching method (Hooge et al.,
2018). Blue are fixations, red – saccades, green – PSOs, and gray –
unlabeled events. Black lines between the ground truth and predicted
events indicate event matches

possibilities (Zemblys et al., 2019b, p. 845): (i) Ignore the
samples of the classes that are not evaluated at the moment
(i.e. first match saccades, then fixation detection, etc.), and
(ii) keep the samples of all the classes and performing the
matching as-is13. The alternative (i) is effectively erasing
the multiclass nature of the problem, and converts matching
into a binary set-up as originally proposed by Hooge et al.
(2018) with all the limitations described earlier. It is also
identical to our multiclass extension of Hauperich et al.
(2020) approach (see “Overlap matching”).

For the alternative (ii), the situation of unintuitive
matching as exemplified in Fig. 6 can lead to the
underestimation of the algorithm’s performance. The
Earliest overlap method matches fixation GT6 in the ground
truth with the predicted PSO P5 despite only slight overlap
between these events, while the majority of the samples
constituting GT5 are correctly predicted as a fixation. This
is by far not an unrealistic example of this shortcoming of
the matching procedure. Consider, for instance, a perfect
event detector, the predictions of which are all shifted by
one sample (with the first sample of the recording being
labelled as e.g. noise). Practically speaking, this is a very
accurate algorithm with a minor offset in its detections. The
Earliest overlap strategy applied in multiclass setting will,
however, mean that all of the detections would be registered
as incorrect.

Overlapmatching

Hauperich et al. (2020, Fig. 4B) used a simple binary
matching technique, where a match is registered if a positive
event in the predicted sequence overlaps with positive
ground truth events by at least one sample. The main
evaluation in that work was performed by considering only
one match from overlapping events and ignoring the rest

13Note that our multiclass extension of the Hooge et al. (2018)
matching method ignores undefined events to best reflect what
the original approach is doing: matching “positive” and ignoring
“negative” events, where “negative” event in multiclass setting is the
undefined class.

of the events that are part of a merge or fragmentation.
That is, in the event sequence in Fig. 5, Hauperich et al.
(2020) approach ignores events P4 and GT5, thus not
penalizing the performance score if the algorithm splits
or merges the ground truth events. The authors argue that
such an approach is reasonable because the number of
fragmentations and merges depend on tunable parameters
that the user of the algorithm has access to. In addition,
the authors repeated the calculations by penalising the
occurrence of unmatched events in fragmentation and
merges (Hauperich et al., 2020, Fig. 5B). In the binary
setting, this approach is identical to the Earliest overlap
method (Hooge et al., 2018): The earliest of the overlapping
positive events is chosen for a match since one-to-many or
many-to-one matching is not allowed.

Multiclass extension of the overlap matching

In order to systematically compare different matcher
and metric combination in “Interaction between the
performance metrics and event matchers”, we also extended
the overlap event matching strategy to the multiclass setting.
It is somewhat similar to the extension of the earliest
overlap method, but instead of matching the ground truth
event with the first overlapping event from the predicted
sequence, multiclass overlap matcher looks for the first
event of the same class, i.e. only allows matching fixations
with fixations, saccades with saccades, etc.

However, Zemblys et al. (2019b, p. 845) argued that
“this way we would unfairly assist the algorithm to appear
better in the evaluation by asking the question ‘whether
the algorithm detected the ground truth event’ rather
than ‘how well the algorithm classifies data’ ”. Figure 7
illustrates a case of unintuitive event matching using
Hauperich et al. (2020) approach in the multiclass setting.
Despite the algorithm effectively confusing fixations and
smooth pursuits, the overlap matcher identifies one correct
prediction (GT2→P1), while the rest of the events remain
unmatched (and during the subsequent evaluation can
be counted as missed). Intuitive and useful (in a sense
of helping to identify what errors the algorithm makes)

Fig. 7 Example of the Overlap event matching method (Hauperich
et al., 2020) in a multiclass setting. Blue are fixations and orange
– smooth pursuit events. Black lines between the ground truth and
predicted events indicate event matches
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Fig. 8 Example of the Maximum overlap event matching method
(Zemblys et al., 2019b). Blue are fixations, red – saccades, green –
PSOs, and orange – smooth pursuit events. Black lines between the
ground truth and predicted events indicate event matches

matching in this example would be to report pursuit-
fixation and fixation-pursuit errors (GT1→P1, GT2→P2,
and GT3→P3), which can be achieved with e.g. the
Maximum overlap matching technique described below
(also see Fig. 8).

Maximum overlapmatching

To establish a more intuitive one-to-one correspondence
between the two sets of events, Zemblys et al. (2019b)
proposed matching events based on the amount of overlap
(measured in the number of gaze samples or in time
units) between the ground truth and predicted events. For
every event in the ground truth, all overlapping events in
the predicted sequence are examined and the one with
the largest overlap is selected as a match. Maximum
overlap method thus presents a combination of event-
level evaluation procedures by Hoppe and Bulling (2016)
and Hooge et al. (2018) that solves some of the issues
characteristic to these methods. First, unlike Majority
voting, it explicitly performs event matching, thereby
enabling the use of any evaluation metrics described in
“Evaluation metrics”. Second, it ensures a more intuitive
matching, where there is some guarantee on the quality
of the matches aside from the matched events just
intersecting. In addition, maximum overlap method can be
directly applied for both binary and multiclass event-level
evaluation.

Figure 8 shows an example of applying the maximum
overlap event matching method. Note how fixation GT2 is
now matched with event P2 (contrary to GT2→P1 match
in Fig. 6 for Earliest overlap), because of the much larger
overlap for the GT2–P2 pair. Similarly, fixation GT6 is now
matched with fixation P6 instead of PSO P5 when earliest
overlap method was used (see Fig. 6). The result of the
event detection evaluation in Fig. 8, therefore, would consist
of three correct detections, two misclasification errors, one
missed event (GT3), and one false event detection (P5).

In some scenarios the Maximum overlap method is
subject to misplacing the cause of the mistake made by an
algorithm. The classes of the eye movements are inherently

unbalanced in terms of their durations – for example,
saccades and PSOs are by their nature short, in order of tens
of milliseconds, while fixations or smooth pursuits can span
several seconds. This leads to a disproportionate number
of samples assigned to certain classes. Therefore, e.g. for
a 20 ms saccade, a 10 ms overlap with a fixation would
mean a different (intuitive) degree of overlap compared
to the 5 ms overlap with another saccade. This case is
illustrated in Fig. 9. Saccade P9 overlaps with the fixation
GT5 and the saccade GT6. Because the overlap between
GT5 and P9 is larger, the match between this event pair is
preferred when using the Maximum overlap method, which
results in reporting one misclassification (fixation GT5 →
saccade P9) and one false negative error (the “missed”
GT6). However, a more intuitive outcome would be to
match GT6→P9, since the algorithm in Fig. 9 actually
detected the ground truth saccade GT6, even if this detection
was not perfectly timed.

While Maximum overlap improves on the Earliest
overlap when it comes to event detection evaluation, it
loses some ground in terms of evaluating the event timing
(for example when comparing how two coders differ in
labeling on- and offsets of fixations (Hooge et al., 2018)).
The Maximum overlap approach does not address the issue
of event fragmentation and merging and, therefore, the
subsequent analysis of timing differences can result in
inaccurate estimation of timing errors. In Fig. 9, the ground
truth fixation GT1 was split into three separate fixations
(events P1, P3, P6) by falsely detecting two saccades
P2, P4 and a PSO (event P5). Since GT1 and P3 get
matched because of the highest overlap, comparing on-
and offset differences between these two fixations would
signal large disagreement. In reality, however, the algorithm
that produced the predictions illustrated in the figure has
accurately detected both, the onset and the offset of the
fixation GT1 by accurately labeling the onset of the fixation
P1 and the offset of the fixation P6. Similarly, the predictor
in Fig. 9 missed the saccade GT4 and, therefore, merged
two fixations GT3 and GT5 into one long fixation P8.
The Maximum overlap matches GT3 to P8, and as P8 is
thereby taken out of the possible matches for GT5, the latter

Fig. 9 Example of the limitations and unintuitive event matching
of the Maximum overlap method (Zemblys et al., 2019b). Blue are
fixations, red – saccades, and green – PSOs. Black lines between the
ground truth and predicted events indicate event matches
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is matched to a saccade P9. If earliest overlap matching
method were to be used to analyse these two sequences,
fixation onset error would be estimated to be zero (since
GT1 would get matched with P1 instead of P3, and GT3
remains matched to P8). The offset timing error would only
take into account the small difference between offsets of
events GT5 and P8 (earliest overlap matching is performed
in reverse order for offset timing difference estimation, see
“Earliest overlap matching”), instead of the large difference
between offsets of GT3 and P8 in the case of Maximum
overlap matching. The shortcoming related to event timing
as exemplified above can be generalized to event quality
measures (“Event quality metrics”) in general. It also is
not specific to the Maximum overlap matching, but applies
to any one-to-one matching technique, unless special steps
are taken as for the Earliest overlap matcher – e.g. the
Maximum intersection-over-union matcher described in
“Maximum intersection-over-union matching” suffers from
this problem just as much.

Maximum intersection-over-unionmatching

First utilized for eye movement events in Startsev et al.
(2019a), this strategy is very similar to the Maximum
overlap matcher of Zemblys et al. (2019b) that was
introduced at the same time. The difference is that when
choosing a match for a given ground truth episode, the
decision is based on maximising not the overlap itself,
but the ratio of the episode pair’s overlap to their joint
length (referred to as intersection-over-union ratio in the
literature; IoU) instead. This helps the matching technique
avoid the unintuitive matching of the maximum overlap as
exemplified in the Fig. 9 (GT5→P9 match). When using
Maximum IoU matching, the predicted saccade P9 is now
matched with the ground truth saccade GT6 (Fig. 10),
because IoU for the GT6→P9 pair is 0.33, while for
GT5→P9 it is lower – 0.29. In general, this matching
scheme makes it less likely that a very long event could be
matched with a very short one, allowing for a more intuitive
error attribution.

Fig. 10 Example of Maximum intersection-over-union (IoU) event
matching method (Startsev et al., 2019a) with IoU threshold of 0.3.
Blue are fixations, red – saccades, and green – PSOs. Black lines
between the ground truth and predicted events indicate event matches

An important feature of IoU matching method is that
the used criterion involves a measure that falls within the
same [0; 1] range for any event pair, of any of the eye
movement classes. This means that the matching criterion
can be strengthened by using a class-independent IoU
threshold, thus forcing the matched event pairs to adhere to
a higher standard of what a “match” is, i.e. only allowing the
matches where the IoU is above a certain threshold (Startsev
et al., 2019a; Startsev et al., 2019; Voloh et al., 2020). In
Fig. 10 a threshold of IoU>0.3 is used, and the ground truth
fixation GT1 is not matched to any event from the predicted
sequence as the highest possible IoU for a potential match
with this event is only 0.29 (GT1→P3). Setting a threshold
at IoU>0.5 or higher means that there can be no more
than one candidate match for any given ground truth event,
i.e. while selection is still based on the maximum IoU, for
any given pair of overlapping events in the ground truth
and predicted sequences, if one pair satisfies the IoU>0.5
inequality, there can be no other pair that satisfies it as
well. Such a threshold would consequently simplify the
implementation of the matching procedure, as there is no
need to compare the IoU values for different candidate
matches. This or similar match-strengthening criteria can
be in principle combined with any event matcher, either
potentially simplifying its algorithm or adding flexibility via
a variable matching strictness level.

Note on implementation differences

At this point we also address one non-obvious detail of
implementing the ideas of “matching events with maximum
overlap” or “with maximum IoU” that will influence the
properties of the matcher itself and the evaluation results,
namely – the order in which the potential matches are
considered.

In the implementation of the maximum-overlap matcher
in Zemblys et al. (2019b), all non-zero overlap between
event pairs in the ground truth and in the predictions of the
algorithm are recorded. These overlapping pairs are then
sorted by their overlap and iterated through from maximum
overlap downwards (highest-to-lowest iteration order). If
neither of the events in the candidate pair is matched to
another event yet, the candidate pair is recorded as a match;
otherwise, the candidate pair is skipped.

In the implementation of the maximum-IoU matcher
in Startsev et al. (2019a), the ground truth events are
considered in their temporal order (first-to-last iteration
order). For each event in the ground truth, all predicted
events overlapping with it are considered. The one with
the highest IoU is selected and the corresponding event
pair is recorded as a match. The already matched predicted
event cannot be a match to any further ground truth
event.
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Both iteration orders are valid, however would yield
different matching results. For example, in sequences
depicted in Fig. 10, the maximum-IoU matcher without an
IoU threshold but with first-to-last iteration order would
produce a match between fixation GT5 and detected saccade
P9, even though IoU(GT5, P9) is lower than IoU(GT6, P9).
This happens simply because GT5 would be considered
before GT6, and P9 would at that point be still unmatched.
In the highest-to-lowest iteration order, the GT6→P9
potential match would be considered before GT5→P9 due
to the higher IoU, and thus have priority. With a match IoU
threshold of over 0.5, however, the iteration order would not
make any difference.

In addition, the highest-to-lowest iteration order ensures
the symmetry of the matcher, since the sequences play equal
roles in the process (unlike in the first-to-last iteration,
where the ground truth events guide the iteration process).
As a consequence of these differences, we opted for highest-
to-lowest iteration order for the maximum-IoU approach
in our codebase and analyses. The only drawback of this
approach is the increased computational complexity, as
potential matches have to be sorted, resulting in linearithmic
time (w.r.t. the number of potential events pairs), while the
first-to-last iteration order can be implemented with linear
computational complexity.

Window-basedmatching

Kothari et al. (2020) proposed Event-Level Cross-Category
metric – ELC – that they argue solves the issues with the
reliability of timing offset evaluation when using either
earliest – Hooge et al. (2018) – or maximum overlap –
Zemblys et al. (2019b) – matching methods. ELC also
works in multiclass setting and is able to handle event
fragmentation (but not merge) errors. To enable this,
Kothari et al. (2020) introduce what they call Window-based
matching – an approach to ensure event match quality by
adding timing constraints on when events are considered
to be matched. More specifically, the ground truth event
is matched and counted as a correct prediction only when
its onset and offset roughly align with onsets and offsets
of test events of the same class. Ground truth events that
are completely contained within a predicted event of the
same type are called detached events. The authors suggest
that these can be safely counted as correct predictions (and,
correspondingly, as successful matches) depending on the
strictness of user’s requirements (Kothari et al., 2020, p. 11).

Figure 11 shows an example of the proposed Window-
based event matching procedure. The ground truth fixation
GT1 is matched with the predicted fixation P1, since their
onsets align perfectly (green dashed line from GT1 to P1 in

Figure 11) and offsets are within a defined search window
(red dashed line from GT1 to P1 in Fig. 11). Similarly,
the ground truth fixation GT6 is matched with predicted
fixations P6 and P8, since the onset and the offset of
GT6 align perfectly with the onset of fixation P6 and the
offset of fixation P8 (green and red dashed lines from GT1
to P6 and P8, respectively, in Fig. 11). The ground truth
and predicted smooth pursuit episodes GT4 and P3 are
slightly misaligned, however the misalignment is smaller
than a defined search window and, therefore, the two events
get matched. Blink episode GT2 and saccade GT5 in this
example, even if they overlap, respectively, with blink P2
and saccade P4 are not matched because while the onsets
of both corresponding events pairs are, under the selected
search window criterion, aligned, the offsets are not. The
blink event GT2 in Fig. 11) is fully contained inside the
predicted blink P2, and thus presents an example of a
detached event, in the nomenclature of Kothari et al. (2020).

After identifying all correct predictions via Window-
based event matching, ELC proceeds with calculating
detection errors. While normally this would not concern the
descriptions of the event matching, the procedure proposed
in conjunction with computing ELC makes slight changes
in the event timing and establishes further “matches” in
the two label sequences that need to be considered if
one attempts to use the event matching from this work
as a standalone and generically applicable event matcher.
The proposed ELC pipeline first corrects the timing errors
in the ground truth and predicted sequences, and then
calculates event mismatches in the aligned sequences.
Timing correction is applied on all matched transition
points (green and red dashed lines in Fig. 11), regardless

Fig. 11 Example of Window-based event matching, adapted from
Kothari et al. (2020, Fig. 8). Blue, magenta, red, orange, and gray
are fixations, blinks, saccades, smooth pursuits, and undefined events
respectively. Black lines between the ground truth and predicted events
indicate correct event matches. Green and red dashed lines indicate
event onset and offset transition point matches. Black dashed lines
in the two bottom scarf plots indicate error type mapping after event
transition point alignment
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of the match status of the corresponding events. For
each matched transition point timestamps of the ground
truth and predicted events are averaged to create a single
transition point. Before the alignment, ELC replaces
unlabeled samples with corresponding samples from the
other sequence. ELC alignment procedure enables fast and
easy calculation of event classification errors based on direct
sample mismatches between the two aligned sequences
(two bottom scarf plots in Fig. 11). For example, for the
sequences in Fig. 11 ELC registers saccade-blink, saccade-
pursuit and fixation-saccade errors (see black dashed lines
between the aligned event sequences in Fig. 11). All correct
and incorrect matches can then be analysed using most of
the metrics described in “Evaluation metrics”. It is then
obvious that in order to obtain not just the same-class
“positive” matches from the Window-based approach, this
alignment needs to be considered as part of the matcher
(even though it alters the original event timing).

The advantage of the window-based matching is that it
in many cases can correctly handle event fragmentation,
allowing for more accurate timing and detection evaluation
(compared to purely one-to-one matchers). By only
allowing the same-class events to be matched when certain
on- and offset timing conditions are met, it also accounts for
the quality of the correct event matches (similarly to setting
an IoU threshold for the Maximum intersection-over-union
matcher). In addition, the matching technique of Kothari
et al. (2020) removes potential error type assignment
ambiguity by resolving the differences in the timing of event
transitions between the ground truth and predicted events.
See for example the saccade GT3 in Fig. 11: It overlaps
with the blink P2 and the pursuit P3; however, after the
alignment (two bottom scarf plots in Fig. 11), this ambiguity
is removed and the missed saccade GT3 can be considered
as a saccade-blink error in subsequent evaluation.

One of the drawbacks of Window-based event matching
is, however, its asymmetry, meaning that it gives different
result depending on which event sequence is considered
to be the ground truth and which – the prediction. The
authors, therefore, propose performing the evaluation twice
by interchanging the prediction and ground truth sequences,
and averaging the resulting measures of choice. This event
matcher also heavily depends on a choice of the threshold
(the search window size for the transition point match) that
might cause inter-study or inter-dataset result comparison
issues, especially if is used with data sampled at different
frequencies. It might be difficult for an inexperienced user
to select an appropriate threshold and, moreover, thresholds
might need to be different for different event types and
sampling rates. In their paper Kothari et al. (2020) used
±25 ms for saccades and ±35 ms for other events. However,
if used with low sampling rate data, e.g. 30 Hz, these values
correspond to only ≈1 sample and therefore might be too

strict for defining a correct match. The authors propose that
intuitive value for a threshold is the duration of the shortest
event in the annotations14.

Window-based matching is also prone to unintuitive
event matching and, in some cases, can potentially incor-
rectly evaluate the algorithm’s performance by ignoring
prediction errors. While being able to handle fragmentation
of ground truth events, event merges do not get matched
and, therefore, cannot be counted either as correct or as
incorrect predictions by a subsequently computed metric –
see fixations GT1 and GT3 that are merged into one pre-
dicted fixation P1 in Fig. 12. Fixation GT1 is considered to
be a detached event and, as the authors note, can be safely
counted as a match. However, the fixation GT3 would be
ignored in the subsequent evaluation since it is not fully
covered by the fixation P1. This inability to correctly han-
dle simple cases of merging errors is especially important
in the light of the authors’ suggestion to perform the match-
ing in both directions (ground truth → prediction and vice
versa). When this route is taken, even the correctly handled
fragmentation errors can potentially turn into unsupported
merge errors (unless all of the merged events are fully
contained in the “overarching” event).

Similarly to the Earliest overlap (Hooge et al., 2018)
and Maximum overlap (Zemblys et al., 2019b) methods,
the Window-based approach is prone to unintuitive event
matching that misplaces the cause or labeling error. In
Fig. 12, smooth pursuit episode GT5 is matched with short
detected pursuit events P2 and P4 because they satisfy
all event matching criteria. However, most of the samples
during the pursuit GT5 were actually labeled as the fixation
P3. While the matcher would still in this case register a
GT5→P3 match after the temporal alignment (which can
be later counted as a pursuit-to-fixation misclassification
error), it would also treat P2 and P4 as correct detections of
GT5, thus effectively marking GT5 as a correctly detected
event. Moreover, because of how sequence alignment in
Window-based matching works, the ground truth saccade
GT4, that in fact was mislabeled as a pursuit P2 (see top
two scarf plots in Fig. 12), after the alignment is counted as
saccade-fixation error.

In some cases the sequence alignment procedure can
remove incorrectly detected events altogether. For example,
consider a situation where the offset of the ground
truth event is matched with a certain predicted event
(see GT1→P6 match in Fig. 13) that succeeds another
predicted events that itself is a match for a different ground
truth event (GT2→P3 match in Fig. 13). In-between the two
predicted events in question – P3 and P6 – a saccade P4 and
a blink P5 are also detected. After the transition point
alignment procedure, however, the predicted blink P5 is

14Yang, Z., personal communication, September 17, 2020
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Fig. 12 Example of limitations and ambiguous cases for Window-
based event matching (Kothari et al., 2020). Blue, red, and orange
are fixations, saccades, and smooth pursuits respectively. Black lines
between the ground truth and predicted events indicate correct event
matches. Black dashed lines in the two bottom scarf plots indicate error
type mapping after event transition point alignment

removed from the evaluation (see bottom scarf plot in
Fig. 13). Moreover, fixation P6, which intuitively should
be counted as a pursuit-fixation error (because pursuit
GT2 fully contains the fixation P6), is also removed from
the evaluation, while a similar case of fixation-pursuit
misclassification (samples corresponding to GT1 and P3)
remains. Indeed, it is ambiguous how to include the saccade
P4 and the blink P5 in the evaluation: While P5 is
completely contained within GT2 and could be counted
as pursuit-blink error, saccade P4 overlaps with both
fixation GT1 and pursuit GT2. Unfortunately, Window-
based matching approach of Kothari et al. (2020) is not
able to handle such cases. A solution to this problem could
be adding other matching criteria, that require the ground
truth and predicted events to overlap instead of just checking
the timing of their on- and offsets. However, even such
addition would not solve the problem of event detection
errors that are not accounted for in the matching process.
See for example the match between fixations GT5 and P9
in Fig. 13. The saccade GT4 that is missed by the detector
is short enough that the sequence alignment procedure (that
stretches GT5 so that its onset matches the average of that
of GT5 and P9) effectively erases GT4 from existence and,
consequently, from any subsequent evaluation.

Event-driven error characterization

Most of the automated matching strategies discussed in this
section – Earliest overlap (Hooge et al., 2018), Maximum
overlap (Zemblys et al., 2019b), and Maximum intersection-
over-union (Startsev et al., 2019a) – do not address the issue
of event fragmentation or merging: They only allow for
events to be matched one-to-one, excluding the possibility
of quantifying the extent to which the event detection
algorithm suffers from splitting ground truth events into

Fig. 13 Example of Window-based event matcher erasing events from
the evaluation. Blue, magenta, red and orange are fixations, blinks,
saccades and smooth pursuits respectively. Black lines between the
ground truth and predicted events indicate correct event matches.
Black dashed lines in the two bottom scarf plots indicate error type
mapping after event transition point alignment

several smaller ones, or merging several several events
into one. Window-based matching (Kothari et al., 2020) is
only able to handle fragmentation, but not merge errors.
Both of these error types can, in principle, be seen as
inserting or missing the “in-between” events, respectively,
that the aforementioned matching schemes can register, but
a direct quantification of event fragmentation or merging is,
nevertheless, not enabled.

Ward et al. (2006) proposed Event-driven error character-
ization (EDEC) – a method for scoring event errors based on
the idea of segments (sequences of samples where neither
ground truth nor prediction change) – that is able to quan-
tify four error types, including fragmentation and merge.
EDEC was later used by Steil et al. (2018, Figures 4 and
6) when evaluating their fixation detection algorithm for
head-mounted eye-trackers. Ward et al. (2006, Figure 2, left)
provide an algorithm for assigning one of four error types –
insertion, merge, deletion, and fragmentation – to the events
that were incorrectly detected or missed. The rest of the
events where both prediction and the corresponding ground
truth are not assigned to any of the four error categories
are labeled as correct. In addition, correct, merged or frag-
mented events can be assigned an underfill or overfill error
label if the ground truth event is not completely covered
by a corresponding test event or test event “spills” over its
boundary (even if by one gaze sample).

It is important to understand that EDEC does not include
an explicit event matching procedure as such. It effectively
computes certain statistics that describe the event detection
quality. The process for computing these statistics, however,
implicitly defines the correspondence between the events
in the two label sources (the ground truth and predictions),
which can be interpreted as a matching scheme (e.g. if event
A is said to be fragmented into events B and C, then A
is matched to both B and C at the same time, etc.). We
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discuss a potential approach for explicit event matching
based on the outputs of EDEC in Appendix E (however,
fully developing, implementing such an event matching
method is outside the scope of this review).

An example of all possible scoring labels assigned by
EDEC is provided in Fig. 14. In this example, fixations
GT1 and P1 overlap perfectly and are, therefore, labeled
as a correct detection (cf. “C” in both GT1 and P1 boxes
in the plot). Fixations GT11 and P8 also give an example
of a correct detection, however P8 starts and ends earlier
than GT11; therefore, GT11 is also assigned underfill, while
P8 is marked with an overfill error label (cf. the subscript
indices U and O of the correct detection mark “C” in the
plot). Further, the ground truth fixation GT2 is misclassified
as a saccade P2, while saccade GT3 is misclassified as
a fixation P3. Therefore, both GT2 and GT3 are deletion
errors, while P2 and P3 are insertions. Finally, the last two
error types demonstrate how EDEC handles one-to-many
and many-to-one matches. The ground truth fixation GT4
was split into two fixations P4 and P6 by falsely detecting
saccade P5 in the test sequence, thus this data fragment
is assigned fragmentation and insertion errors. And in the
opposite case, the data fragment is labeled as a merge and
two deletion errors where three separate smooth pursuit
events GT5, GT7 and GT9 were classified as one long
pursuit P7 because the algorithm missed the saccade GT6
and the fixation GT8.

Ward et al. (2006) conclude that their proposed
event error scoring is a non-ambiguous and objective
characterization of event-level errors that explicitly evaluate
different sources of mistakes – timing, fragmentation, and
merges – that are usually ignored by other event evaluation
methods. However, in some scenarios EDEC can provide
unintuitive or even ambiguous results. For example, in
Fig. 15 the ground truth smooth pursuit event GT2 is split
into two separate pursuit episodes P1 and P3 (fragmentation

Fig. 14 Example of Event-driven error characterization (Ward et al.,
2006). It partly replicates an example provided by Steil et al.
(2018, Figure 4). Blue, red, and orange are fixations, saccades, and
smooth pursuits, respectively. Black lines between the ground truth
and predicted events indicate event relationships based on which error
labels are assigned. C denotes correct detections, while D represent
deletions, I – insertions, F – fragmentation, and M – merge errors.
Lowercase letters u and o indicate event timing errors – overfill and
underfill of the otherwise correctly identified events

error). In addition, this data fragment also contains event
timing errors – P1 starts earlier than GT2 while P3 ends later
than the offset of GT2. However, EDEC does not register
these timing errors15. Similarly, the algorithm merged the
ground truth fixations GT3 and GT5 into one fixation P4
that does not entirely cover either of the two aforementioned
ground truth events. The corresponding underfill errors
do not get registered on the event level by EDEC thus
potentially affecting subsequent evaluation of the algorithm
performance.

An ambiguous situation for EDEC evaluation arises e.g.
when the algorithm misses the ground truth saccade (event
GT7 in Fig. 15) and detects a false one (P7) later on.
In such case, the Ward et al. (2006) method reports a
merge error because two ground truth fixations GT6 and
GT8 appear to be detected as one fixation P6. EDEC also
reports a fragmentation error, because saccade P7 appears
to split the ground truth fixation GT8 into fixations P6
and P8. Note how the same minimally overlapping event
pair, P6 and GT8, drives the reporting of both errors. In
this particular example, the two ground truth and the two
predicted fixations appear to be involved at the same time
in both a fragmentation and a merge error. Steil et al.
(2018, Fig. 4) grouped such cases into an additional error
type FM. However, the described scenario can in fact
happen because of the incorrect timing of the predicted
saccade P7. Suppose the event detection algorithm uses
noise filtering without delay compensation and, therefore,
the onsets of all events are delayed just enough so that
all short saccades do not overlap with their ground truth
counterparts. EDEC evaluation would score all events to
be fragmentation, merge, insertion and deletion errors.
Modification of EDEC proposed by Steil et al. (2018) would
report one fragmentation-merge error for the entire test trial
plus insertion and deletion errors. Although such scenarios
might be rare, users of EDEC must be cautious if many
fragmentation and merge errors are reported and provide an
interpretation of the reason behind these errors.
Algorithm evaluation using EDEC As mentioned already,
event-driven error characterization was designed to only
count detection errors and analyse event or segment level
error tables (Ward et al., 2006, Tables 3 and 4). Because
the method does not directly provide event matching, eval-
uation using confusion matrix and common classification
performance measures (see “Confusion matrix-based mea-
sures”) or direct analysis of event timing offsets (e.g. RTO
and RTD, “Event quality metrics”) is not enabled “out-of-
the-box” (cf. Appendix E for a discussion of establishing an
event matching approach based on EDEC).

15Overfill errors are only registered in segment evaluation using the
algorithm provided in Ward et al. (2006, Fig. 2, right), but not on the
event level (see also the definition of a segment in the beginning of
“Event-driven error characterization”).
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Fig. 15 Example of Event-driven error characterization (Ward et al.,
2006) missing timing errors. Blue, red, and orange are fixations,
saccades, and smooth pursuits, respectively. Black lines between the
ground truth and predicted events indicate event relationships based
on which error labels are assigned. D are deletions, I – insertions, F –
fragmentations, and M – merge errors

Aside from the tables of either event or segment level
errors, the output of EDEC can be used to calculate a unified
metric CDI (Eq. 16 below; Steil et al., 2018):

CDI = C − D − I, (16)

where C is the number of correctly detected events, D and
I – numbers of deletions and insertions, respectively. As
any other event detection quality metric (cf. “Confusion
matrix-based measures”), this unified metric can be used
for summarizing the algorithm’s performance as well as to
fine-tune its parameters or explore the performance across a
range of settings (Steil et al., 2018, Fig. 5).

For a more detailed analysis, the output of the EDEC
evaluation procedure can be visualized as an Event Analysis
Diagram (Bulling et al., 2012, Fig. 8; Steil et al.,
2018, Fig. 6). Event Analysis Diagram shows proportions
of correctly detected events and errors with the respect to
the total number of events in the ground truth and the test
sequences.

Ensemble of matching schemes

Since different event matching approaches provide a
different view of the algorithm’s performance, the same
metrics can be computed for several matching schemes,
with averaging or in another way aggregating the scores. A
similar approach was used in Startsev et al. (2019a) with a
family of maximum IoU matching schemes with different
IoU thresholds. The scores (F1 in that case) for different
detectors were plotted against the IoU threshold values
ranging from 0 to 1 (Startsev et al., 2019a, Fig. 4), allowing
for a comparison of the performance over a range of the
matching strictness criteria. These curves can, in principle,
be integrated (with the IoU threshold as the variable of
integration), resulting in an area-under-the-curve measure
(similar to summarising an ROC with a single value as
discussed in “Receiver operating characteristic curve”).

Summary

In Table 4 we provide a summary of event scoring and
matching approaches used in the literature when evaluating
the performance of event detection algorithms. Like for
classification performance metrics, we evaluate the usability
(low, medium, or high) of each approach based on the
theoretical analysis in this section. The properties we
consider in this analysis correspond to the columns of the
table: applicability to multiclass problems; directly enabling
either confusion matrix or event timing analyses; whether
the matching algorithm takes into account the “quality”
of the match candidates; whether the algorithm is capable
of producing only one-to-one matches, or whether one-to-
many or many-to-one matching is enabled as well. We also
consider the symmetry of the matching and whether any
matching parameters need to be set.

Among the methods listed in the table, Manual event
scoring (Friedman et al., 2018) and Majority voting (Hoppe
& Bulling, 2016) are not technically event matchers and
provide only a very limited view of where the algorithm
fails to reproduce the ground truth event sequence. Overall,
because of the complexity of the Manual event scoring, its
non-deterministic nature, dependency on error thresholds,
and very limited benefits (faster evaluation in some cases),
we do not recommend using this method except to yourself
acquaint with the dataset and the typical errors of the
considered algorithm. The exception may be the case when
one is certain that the same data and the same algorithm
will never be tested again in the future. Majority voting
approach, on the other hand, is very simple and easy
to use. It is deterministic and enables a full confusion
matrix-based score evaluation. However, it is prone to
inflating scores as it does not, in any way, account for
event fragmentation and is asymmetric event matching
method. In addition, both Majority voting and Manual
event scoring do not enable the detailed quantitative
analysis of event timing, making their usability very
limited.

The Earliest overlap (Hooge et al., 2018) and the
Overlap (Hauperich et al., 2020) methods are very similar
and, in fact, equivalent in a binary case. The only difference
lies in the multiclass matching extension16: The former
allows for matches of events of any class, while the later
only matches events of the same class to one another. As
such, the multiclass Earliest overlap matcher can potentially
underestimate the algorithm performance, while multiclass
Overlap matcher is subject to inflating the scores. Yet if
one is interested in the subsequent event timing evaluation,

16Neither is part of the originally presented methods, and are based on
loose interpretation of the wording their authors used to describe the
binary-case procedure.

1691Behavior Research Methods (2023) 55:1653–1714



Table 4 Summary of event matching techniques used for eye move-
ment event detection analysis. Manual event scoring (Friedman et al.,
2018), Majority voting (Hoppe & Bulling, 2016), and EDEC (Ward
et al., 2006) do not perform explicit event matching. However, they still
establish a certain correspondence between events in the ground truth
and the predictions, which is the “matching” we assess in this table.

Note that Manual event scoring does not count correct detections,
hence its results cannot be represented as a conventional confu-
sion matrix. Sample-level is included in the table for reference and
describes the properties of effectively treating each gaze sample inde-
pendently, thus naturally obtaining a “matching” between sample-level
labels in the ground truth and the predictions

Multiclass Enables confusion Enables event Accounts for Allows one-to-many Symmetric Parameter-free Usability

matrix analyses timing analyses match quality and many-to-one

matches

Sample-level � � � � Low

Majority voting � � �† � Low

Manual event scoring � N/A Low

Earliest overlap �‡ � � � � Medium

Overlap �‡ � � � � Medium

Maximum overlap � � � � �†† � High

Maximum IoU � � � � �†† � High

Window-based � � � �† Low

EDEC � � �‡‡ � Medium

†Allows only one-to-many matches, i.e. one event in the reference sequence – typically ground truth – may be matched to multiple predicted
events, but not the other way around
‡Original approach was only used in binary setting, however the method can be easily extended to multiclass cases
††The symmetry of these methods depends on their implementation, see “Note on implementation differences”
‡‡Ground truth and predicted event are given different labels to indicate conceptually the same detection error, otherwise evaluation is symmetric.
N/A for the symmetry of manual event scoring refers to the fact that this method is inherently not reproducible, therefore it is difficult to discuss
its symmetry.

both of these methods are to be preferred to the rest,
albeit with a trick: Applying these matching techniques
first in the direct temporal order (i.e. from start to the
end of the sequence) – to assess the timing of event
onsets, and then in the reverse temporal order (i.e. from
the end to the start of the event sequence) – to assess the
timing of event offsets. This repeated matching accounts
for event fragmentation and merging and enables a more
accurate estimation of event timing errors, compared to
e.g. Maximum overlap or Maximum intersection-over-union
matchers.

The next two methods – Maximum overlap (Zemblys
et al., 2019b) and Maximum intersection-over-union (Start-
sev et al., 2019a) both account for the match quality (i.e.
prefer higher-quality, in their respective definitions, matches
to the lower-quality ones, regardless of the temporal order
or match candidates). In fact, the procedures are identical
apart from the definition of the metric used to quantify the
quality of a certain match candidate. They were developed
to work in both binary and multiclass settings, and enable
a relatively accurate and intuitive estimation of labeling
errors. Moreover these methods are symmetric (depend-
ing on the implementations, see “Note on implementation
differences”), thus enabling non-ambiguous comparison of
e.g. two expert coders without either assigning a special

role of the “reference coder” to one of them or hav-
ing to perform the comparison twice. While the simple
principles of these event matches make them very easy
to interpret from the prospective of their user, they also
lead to a drawback of both strategies: When the goal of
the performance analysis is the quantification not of the
detection performance itself, but rather of event timing,
one should keep in mind that neither Maximum overlap
nor Maximum intersection-over-union account for event
fragmentation and merge errors (only one of the ground
truth events will be matched to one of the predicted
events – based on the respective criterion of the matcher)
and thus are prone to overestimating the timing errors
(see e.g. Fig. 9).

Window-based event matching approach (Kothari et al.,
2020) was developed to account for event fragmentation
and event timing quality. However, it exhibits some
unintended behavior and is, in its current form, susceptible
to misinterpreting error types, or even hiding some errors
from the analysis during its label alignment stage. Because
of these complications, we do not implement this promising
method in our code package and exclude it from empirical
analyses in the next section.

Event-driven error characterization (EDEC) (Ward et al.,
2006) is the only method that directly accounts for event
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fragmentation and merge errors and enables a very detailed
analysis of the detection errors. The method is parameter-
free and symmetric. Unfortunately, it does not include
an event matcher as such, and using the ideas of EDEC
in combination with traditional confusion matrix-based or
timing error analyses requires a non-trivial extension of this
method (cf. remarks in Appendix E) in order to transform
it into a general-purpose event matcher (such as the others
reviewed in this section). This, naturally, limits its usability
in algorithm development process. In addition, EDEC marks
the detected events with and “underfill” or an “overfill”
error label if the event borders are not perfectly aligned
with those in the ground truth (i.e. misalignment by a
single sample is sufficient). For high-frequency eye tracking
recordings, this will likely mean that in practice virtually all
correctly detected events will receive a marking signifying a
timing error, reducing the level of insight gained from such
analysis.

Interaction between the performance
metrics and event matchers

In “Evaluation metrics” and “Event matching methods” we
list a number of metrics and methods used for sample- and
event-level detection performance evaluation. Some of these
methods (e.g. comparison of fixation and saccade durations,
behavioral scores, etc.) are in effect sanity checks for the
algorithm outputs (and not measures of its performance),
and quite a few of these do not need ground truth
annotations. Other evaluation strategies, in particular those
directly evaluating the quality of the algorithm’s detections,
strictly require ground truth and can enable descriptive and
concise evaluation that is relevant for for both the user and
the developer of the algorithm.

The multitude of the tools available for designing an
evaluation pipeline is especially prominent in case of the
evaluation on the level of whole eye movement events,
which can in principle combine any event matcher with
any metric to quantify the event-level performance of
an algorithm. In this section, we aim to empirically
demonstrate the effect of combining different metrics
and matchers in order to observe systematic trends and
differences. Here, we focus on event-level evaluation, and
on detection quality metrics specifically (“Levenshtein
distance” and “Confusion matrix-based measures”). We
include sample-level evaluation with the same metrics for
reference, to demonstrate the practical differences between
sample- and event-level evaluation.

We excluded two event matching strategies from this
analysis – Window-based (Kothari et al., 2020) and EDEC
(Ward et al., 2006) – since the analyses we undertake
mainly focus on combining the event matchers with various

detection quality measures, and those typically summarize
the confusion matrix. The two excluded matchers, however,
account for fragmentation and/or merge errors, and there
are multiple ways to incorporate such one-to-many and
many-to-one matches into the confusion matrix, and
this examination is outside the scope of this review.
Moreover, Window-based matching would be additionally
more challenging to analyze or re-implement due to the
likely unintended behavior of the matcher (specifically in
terms of label alignment, cf. “Window-based matching”.
EDEC is, nevertheless, implemented in our codebase and
can be tested separately.

All the experiments in this section were carried out using
the codebase provided with this article, thus illustrating
the versatility and multitude of the available evaluation
approaches and scores to be used for the future researchers
and algorithm developers.

Method

The data we use for this analysis is the Hollywood2EM
dataset (Agtzidis et al., 2020) with the ground truth
fixations, saccades, smooth-pursuits, and noise annotated.
Annotations were performed by pre-segmenting monocular
500 Hz gaze data with the I-VVT algorithm (Komogortsev
& Karpov, 2013), followed by first a paid student, then
an expert annotator adjusting incorrectly detected events.
Around 59% of the samples were labeled as fixations,
10% as saccades, almost 27% as pursuits (see Table 1);
the remainder we relabeled to undefined samples. In this
analysis we use the “test” subset of the Hollywood2EM
dataset – i.e. ca. 92% of all data.

In addition to the ground truth labels, the dataset
includes events as detected using 15 publicly available event
detection algorithms (see Agtzidis et al., 2020, Table 1 for
a full list). Similarly to the ground truth data, we relabeled
the classes other than fixations, saccades, and pursuits as
“undefined” in order to provide a uniform evaluation set-up
for the ensuing analysis.

For each eye tracking recording we calculate the length-
normalized sample- and event-level Levenshtein distances,
sample-level confusion matrix-based performance scores,
as well as perform Majority voting evaluation. To enable
direct event-level performance score calculation, we also
perform several variants of event matching: Earliest overlap,
Overlap, Maximum overlap, and Maximum IoU (with and
without an extra match criterion). We then calculate a subset
of the detection quality metrics listed in Table 3 for both
sample- and event-level evaluation, in both the multiclass
and binary (using binary remapping) settings. We excluded
the ROC AUC metric from this analysis since in the absence
of some confidence score for each of the predictions it does
not provide insights into model performance beyond other
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(a) (b)

Fig. 16 Average multiclass (16a) and binary-setting (16b) sample-
and event-level Levenshtein distances (NLD; presented as their com-
plements, 1 − NLD), accuracy, balanced accuracy, Cohens’s Kappa
(κ), and Matthews correlation coefficient (MCC) scores of 15 event
detection algorithms. Event-level scores were calculated using the

Majority voting, Earliest overlap, Overlap (two modes), Maximum
overlap, and Maximum IoU event matching methods. Error bars cor-
respond to ±1 standard deviation. Binary-setting scores are averaged
over binary fixation, saccade, and smooth pursuit detection. Figure
best viewed in color

metrics (see reasoning in “Receiver operating characteristic
curve”). For the other metrics, we present our result in
two groups: First, for the metrics that can be computed in
both multiclass and binary setting (Levenshtein distance,
accuracy, balanced accuracy, Cohen’s kappa, MCC), then
– for those metrics that can only be applied in a binary
setting (precision, sensitivity, specificity, F1-score, JI). In
the binary setting, we average the scores of each of the
metrics for the three classes of interest - fixations, saccades,
and smooth pursuits – to represent the overall performance
with one value. To ensure a fixed range of the computed
metrics, all the scores were clipped to the [0, 1] interval
(meaning that event-level Levenshtein distances cannot
exceed 1, and negative Cohen’s kappa values were treated
as 0), while the metrics that could not be calculated are
ignored.

Typically, in a research paper that e.g. proposes a
new detection algorithm, the scores for the different
algorithms would be analysed separately in order to
understand which of the compared eye movement detectors
performs best. In this work we are, in contrast, interested
in the systematic analysis of the interaction between
the evaluation approaches and the metrics computed.
Therefore, we aggregate the scores over the full set of
recordings and all of the 15 tested algorithms. Since
the majority of the algorithms compared in (Agtzidis
et al., 2020) are relatively old, threshold-based approaches,
and, moreover, five of them do not detect pursuit at
all, we do not expect their average performance to be
particularly good, especially in pursuit detection. We
thus expect the metrics and evaluation approaches that

adequately quantify the algorithms’ performance to also
reflect this. Results below can, therefore, be interpreted
as the performance of a hypothetical “average”, and in
this case by-design mediocre, event detection algorithm
tested with in a large set of evaluation settings. This
interpretation enable us to compare the different evaluation
settings to one another, instead of comparing the various
algorithms.

In the binary setting, we choose the evaluation mode
where we ignore unmatched negatives (see “Multiclass vs.
binary evaluation”). The two other possible choices are to
consider unmatched negative events as errors or correct
predictions (true negatives). However following analysis
of Zemblys et al. (2020) we deem ignoring unmatched
negatives as the approach that best reflects the algorithm
performance in the most reliable and intuitive way.

Results

Figure 16a shows the aggregated results of sample-
and event-level normalized Levenshtein distances (NLD),
accuracy, balanced accuracy, Cohens’s Kappa (κ), and
Matthews correlation coefficient (MCC) scores. Figure 16b
presents the same statistics for binary-setting evaluation.

Note that for illustration purposes and easier interpreta-
tion, Levenshtein distances are represented by their com-
plement in the plot (i.e. one minus NLD). This ensured
the uniform interpretation of the value 1.0 (i.e. as “perfect
prediction”) for all the metrics in the figure.

For all metrics but the Levenshtein distances, the
evaluation is performed in combination with different
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evaluation approaches: either on the level of single gaze
samples, or using one of the seven event matching strategies
we test here: Majority voting (Hoppe & Bulling, 2016),
Earliest overlap (Hooge et al., 2018), two modes of Overlap
(Hauperich et al., 2020), Maximum overlap (Zemblys et al.,
2019b), Maximum intersection-over-union (Startsev et al.,
2019a), and the variation of the latter with a match criterion
of IoU>0.5.

The following parts of this section touch on different
observations we made based on the obtained statistics,
and further explores several aspects of the interaction
between various evaluation strategy components, such as
the conspicuous zero scores for Cohen’s kappa and MCC
in Fig. 16b observed for binary event-level evaluation with
Earliest overlap or Overlap event matcher (“Event-level
performance evaluation”) or substantially higher, compared
to other methods, Majority voting evaluation scores
(“Sample-level and Majority voting evaluation”).

Accuracy

Independent of the evaluation scheme (sample- or event-
level using different event matching methods) the accuracy
and the weighted accuracy metrics yielded the highest
scores in our experiments, followed by the MCC and κ .
In terms of relative difference, the average accuracy score
is between 50 and 100% above the other metrics in the
overwhelming majority of the evaluation settings, likely
illustrating the accuracy paradox, and thus inflating the
scores of the algorithms that take advantage of the majority
event class. Over half the samples in the dataset are fixations
and, in addition, 5 out of 15 algorithms in our evaluation
detect only fixations and saccades but not smooth pursuit.
Consequently, the dataset-wise probability of an arbitrary
sample being labeled as a fixation is considerably higher
compared to that of the other event types. Indeed, the
dataset-wise sample-level confusion matrix (which accounts
for the labels predicted by all 15 algorithms) in Fig. 17
shows that 89% of the ground truth fixation samples were
labeled as fixations; moreover, 24% and 69% of the saccade
and pursuit samples, respectively, were also mislabeled
as fixations. Simply put, in our evaluation the accuracy
score mainly depends on the performance of detecting
fixations – the majority class, while incorrectly detecting
other events has minimal impact. This demonstrates that
a relatively high score (cf. accuracy versus MCC and κ

in Fig. 16a) does not mean a good performance of the
algorithm.

The inflated accuracy scores are even more prominent in
binary (per-event) evaluation (visualized in an aggregated
form in Fig. 16b). For example, average binary sample-
level accuracy scores for fixation and pursuit detection –
0.73 and 0.76 respectively – are similar to the average

multiclass accuracy score of 0.70, while binary sample-level
saccade detection accuracy in this dataset is 0.95. Averaging
these three per-class binary scores yields an overall binary-
setting sample-level accuracy to 0.81 – considerably higher
than in the multiclass setting. This further illustrates that a
seemingly high accuracy score is not a sufficient indicator
of good performance, and could give a false sense of the
algorithm performing well.

Balanced accuracy is designed with the intention to avoid
such inflated estimates on imbalanced data, yet is still
yields fairly high scores on our dataset. Moreover, on
average, the multiclass event-level balanced accuracy is
actually higher compared to non-weighted accuracy in
our evaluation. Similar to the binary evaluation, balanced
multiclass accuracy depends on the interplay between
the balance of event types and the performance of cor-
rectly detecting the events of each type separately. How-
ever, when used in combination with event matchers
that are present in the literature, it is prone to overes-
timating (or in some cases underestimating) the perfor-
mance, mostly because of how unmatched events are han-
dled in event-level evaluation (see in-depth explanation
in Appendix F).

Sample-level and Majority voting evaluation

All sample-level multiclass metric scores, just like the
event-level ones obtained using the Majority voting,
indicate high agreement between the ground truth and the
predictions, while the event matchers specifically designed
to find two-way correspondences in the ground truth and

Fig. 17 Overall sample-level confusion matrix for the complete
dataset, i.e. summarizing the predictions of all tested algorithms.
Normalized along the rows to represent proportions of correctly and
incorrectly labeled samples
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Fig. 18 Averages of binary metrics of 15 event detection algorithms,
evaluated in a binary setting. All scores represent average performance
of binary fixation, saccade, and smooth pursuit detection. Event-level
scores were calculated using the Majority voting, Earliest overlap,
Overlap (two modes), Maximum overlap, and Maximum IoU event
matching methods. Error bars span ±1 standard deviation

predicted events result in substantially lower scores across
the board (see Figs. 16a and 16b). These high scores are,
however, overly optimistic performance estimates and are,
to a large extent, affected by the class imbalance in the
data.

Both discussed evaluation strategies also fail to account
for merged and fragmented events: As long as the majority
of the sample labels in the two sequences agree, the
evaluation scores will be high and give a false sense of good
performance (see “Sample-level evaluation” and “Majority
voting”). This effectively means that two event detectors
that deliver qualitatively widely different predictions can
easily obtain the same scores with both sample-level
and Majority voting-based evaluation strategies: E.g. an
algorithm that detects all events with a one-sample offset
can score the same as (or very close to) another detector that
fragments every single event in the ground truth with one
wrong-class sample in the middle. A similar example was
given in Fig. 2 to motivate event-level evaluation.

Moreover, Majority voting effectively ignores some of
the incorrect predictions if the majority of the samples in the
prediction sequence agree with a certain ground truth event:
Note how most of the metrics, including the binary ones
in Fig. 18, are higher when computed via Majority voting
compared to the sample-level scores.

Event-level performance evaluation

Event-level performance scores in Fig. 16a and b present
the empirically observed differences between various event
matchers, and support some of the conclusions about their
pros and cons that we discussed in the respective sections.
The magnitudes of the differences in the average statistics
in these plots effectively express, in this dataset and for
the compared algorithms, the frequency of the situations
where the theoretical differences that we observed in the
corresponding parts of “Event matching methods” occur
in practice: For instance, while Maximum overlap and
Maximum IoU have a distinct type of a scenario when whey
would produce differing outcomes (see Fig. 9), the practical
differences, at least on average, are small. Meanwhile,
applying an IoU threshold of 0.5 for a Maximum IoU
matcher leads to a drastic change in the subsequently
computed metrics, meaning that a lot of the matches
registered by the Maximum IoU matcher had an IoU below
this threshold.

In the multiclass setting (Fig. 16a) the Earliest overlap
method produces the lowest performance estimates (except
for the thresholded Maximal IoU matcher – “IoU>0.5”)
for each of the metrics. This result illustrates and supports
the observation that, as described in “Earliest overlap
matching”, Earliest overlap is likely to fail at intuitively
matching corresponding events (especially in its multiclass
extension), and an evaluation pipeline based on this
matching technique is, therefore, prone to underestimating
the algorithm performance.

The multiclass-setting extension of the Overlap matcher
is similar to the Earliest overlap, except it only allows
matching events of the same class. Moreover, as it was
originally used by Hauperich et al. (2020), only one match
from the overlapping events is taken into account for
metric computation, and the rest of the events that are part
of a merge or fragmentation are ignored (see “Overlap
matching”). Inevitably, compared to the other methods that
include all unmatched events in the subsequent agreement
quantification, these choices lead to substantial performance
overestimation. We also ran the Overlap matcher in a
mode where all events are considered for further evaluation
pipeline steps (i.e. unmatched events in a fragmentation
are not suppressed). Needless to say, the resulting scores
(see “Overlap (all)” in Fig. 16) are lower compared to
those obtained via the Overlap matching method, and much
closer to those of the Maximum overlap and Maximum
IoU methods. The theoretical drawback of preferring a one-
sample overlap of two same-class events over a much larger
overlap with an event of a different class still remains even
for the “Overlap (all)” matching strategy. In practice this
would mean registering such potential unintuitive matches
as correct detections, thus inflating the evaluation scores.
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This aligns with the observation that the scores obtained
with this matcher are higher compared to e.g. Maximum
overlap.

In the binary setting (Fig. 16b), the Earliest overlap and
the Overlap method (importantly, in the mode when all
unmatched positive events are considered – i.e. the “Overlap
(all)” variant) are equivalent – cf. identical respective scores
in Fig. 16b, also Fig. 18 below. Note that both approaches
exclude negative events from the matching procedure, i.e.
all negative events remain unmatched. Since we ignore
unmatched negatives in our evaluation, and neither the
Overlap nor the Earliest overlap matcher produces any
matched negatives, the resulting binary accuracy and
balanced accuracy scores are lower compared to those
obtained via Maximum overlap or Maximum IoU matchers
(since the latter two matchers can produce matched negative
events that count towards increasing the accuracy score). In
addition, without any correct negative matches the κ and
MCC scores become less or equal to 0, effectively making
evaluation using the Earliest overlap or Overlap matchers
in combination with the κ and MCC scores impossible. If
the aforementioned combination is nevertheless desirable,
unmatched negatives can be converted to true negatives (see
Fig. 23 in Appendix G, also Zemblys et al., 2020).

The Maximum overlap and IoU matchers are very similar
in theory, and result in nearly identical scores regardless
of the examined metric. For some of the tested algorithms
using the Maximum IoU matcher yields higher scores,
likely illustrating that it can deal with some cases of
unintuitive matching characteristic for Maximum overlap.
In addition, the Maximum IoU matcher enables setting a
threshold for match quality (we tested its version with an
IoU of over 0.5 required for a pair of events to be considered
as a match). Naturally, this degrades all the performance
scores (cf. “Maximum IoU” vs. “IoU>0.5” in both parts of
Fig. 16), reflecting the more stringent evaluation set-up.

Normalized Levenshtein distance

Normalized Levenshtein distance (NLD) is different from
the other metrics and evaluation approaches provided in this
section in a sense that it can take advantage of matching
sub-sequences in the two compared sample or event data
streams, even if these sub-sequences are not aligned in time,
or are seconds apart. Since typical event-level transitions
between eye movement types are relatively repetitive, and
consist in a large part of alternating fixations and saccades,
this may present a practical problem as well as a theoretical
one (Startsev et al., 2019). As a result, in some corner
cases NLD can considerably overestimate the algorithms’
performance.

As can be observed in Fig. 16, sample-level NLD seems
to indicate a much higher prediction quality level compared

to other metrics (even for sample-level evaluation), and
additionally has a much lower standard deviation. The latter
fact is at odds with the algorithms we compare having a
wide range of suitability for our data (several algorithms
ignoring one of the eye movement types of interest
altogether), and likely indicates that choosing between
several eye movement detectors based on sample-level NLD
would be challenging. Event-level NLD, however, seems
to provide scores comparable to other metrics on average,
albeit with noticeably higher standard deviation of the
metric.

To assess how similar NLD performance estimates are
compared to other methods we used linear modeling –
lm(NLD ∼ method), where method is a combination
of an entity matching approach (samples or events using
various event matchers) and an evaluation metric. A fit with
a highest coefficient of determination (R2) is considered
to identify the most similar performance estimates. In
both multiclass and binary setting the sample-level NLD
is nearly identical to the sample level accuracy – linear
models in both cases are highly significant with r2 ≈ 1.
This is consistent with the fact that the “editing” of all
the incorrectly predicted sample-level labels would directly
correspond to a normalized edit distance of 1 − accuracy.
Although the computation of NLD can result in a more
elaborate set of editing operations, for a non-corner-case
situation it is unlikely to be very different. Multiclass
event-level NLD is most similar to the Earliest overlap
accuracy score (r2 = 0.84, p = 9.3e−5), while in the
binary setting it is most similar to the accuracy score
calculated using the Maximum IoU matcher (r2 = 0.9, p =
5.9e−6). These strong empirically observed similarities
indicate that both sample- and event-level NLD suffer
from the same practical problems as the accuracy measure
(without class balancing) – cf. theoretical observations
regarding e.g. class imbalance in “Confusion matrix-based
measures”), as well as the practical implications in
“Accuracy” above.

Binary metrics

Figure 18 presents the evaluation results for the metrics
that can only be computed in the binary setting: precision,
sensitivity, specificity, F1-score, and Jaccard index (JI).
Only sample-level JI is calculated since event-level JI
would refer to the event quality rather than event detection
performance metric (see “Event quality metrics”), which
evaluates an entirely different aspect of prediction quality,
not comparable to the other metrics here.

Sample-level precision (0.71) and specificity (0.8)
indicate a fairly good average performance of the evaluated
algorithms. Scores are almost identical to the binary
accuracy and balanced accuracy scores (0.81 and 0.71
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respectively, see Fig. 16b), which we deemed to be overly-
optimistic performance estimates. The high sample-level
precision score of 0.71 indicates that most of the samples
classified as a certain event type indeed belong to that type
in the ground truth. This is relatively easy to achieve in
an unbalanced dataset – a random sample classifier has
the precision corresponding to the proportion of a certain
event type (see Table 6 in Appendix D), i.e. anything
better than random will score even higher. Moreover, since
saccade events are relatively easy to detect, as long as
the algorithm does not predict a lot of false saccades,
its saccade detection precision will be high (on average
0.83 in our evaluation), thus inflating the average precision
score.

The average sample-level specificity is also inflated
because the algorithms tested here tend to, on average,
predict more of the majority (fixation) class samples:
Specificity evaluates the performance of detecting negative
(i.e. other than the currently evaluated) class, and therefore
it is relatively low for fixations – 0.51 – as the negative-
class samples (i.e. non-fixations) are often still predicted
as fixations. However, the sample-level specificity for
saccade and pursuit detection evaluation is 0.98 and 0.91
respectively, resulting in a high sample-level specificity
score of 0.8 on average. In contrast to specificity, the
sensitivity metric evaluates the performance of detecting
positive class and is relatively high for fixations (0.88)
compared the minority classes – saccades (0.68) and
pursuits (0.28) – thus resulting in a comparatively low
class-average sample-level sensitivity score of 0.62.

F1-score is the harmonic mean of precision and
sensitivity: For sample-level scores, for instance, even
though precision is relatively high (0.71), the F1-score of
0.58 is closer to sensitivity (0.62), i.e. the lower of the two.
Note that in any individual case the F1-score lies between
the between the precision and sensitivity, however with
all the averaging that we do in this analysis it looses this
property (since harmonic mean is closer to the lower of
the two scores, and precision and sensitivity are not always
ordered in the same way). Finally, the sample-level JI score
indicates rather poor performance of 0.47, which is on par
with the sample-level binary κ and MCC scores (0.42 and
0.51 respectively, see Fig. 16b) – the scores that account
well for class imbalance.

When considering event-level evaluation with binary
metrics in Fig. 18, it is again valuable to examine the
systematic differences between different event matchers.
Similarly to the case with multiclass metrics, there is little
difference in the average scores obtained via Maximum
overlap and Maximum IoU matchers, but introducing a
match threshold in the latter matcher (“IoU>0.5” in Fig. 18)
considerably lowers all performance scores. Interestingly,
however, precision, sensitivity, and F1-score are higher for

the Earliest overlap and Overlap event matching approaches
compared to the Maximum overlap and Maximum IoU. This
is the opposite of what we observed in Fig. 16b for all of
the tested multiclass metrics – accuracy, Cohen’s kappa,
MCC – applied in a binary-setting evaluation procedure:
There, the scores for Maximum overlap and Maximum
IoU were substantially higher. This reversal is due to the
fact that the evaluation measures in question here (i.e.
precision, sensitivity, and F1-score) only account for two
types of detection errors: missed positive-class detections
(false negatives) and falsely detected positive events (false
positives). By their design, Earliest overlap and Overlap
matchers only allow positive events to be matched, thereby
reducing the number of false negatives (by preferring even
poorly aligned same-class matches to any different-class
ones, however well aligned) and increasing the true positive
count. Maximum Overlap and Maximum IoU, on the other
hand, allow for any events to be matched, for example
the ground truth positive event can be matched with the
predicted negative event and vice versa, thus in many
cases increasing the number of false positives and false
negatives while decreasing the true positive count. This
leads to lowered scores for the metrics we consider here (see
respective formulas for precision – Eq. 7, sensitivity – Eq. 8,
and F1-score – Eq. 10).

Similarly to the results of multiclass metrics in the binary
setting (Fig. 16b), specificity – a metric that evaluates the
performance of detecting negative class events (see Eq. 9)
– cannot be calculated for the Earliest overlap and Overlap
matchers since they do not produce any matches between
negative-class events, therefore the number of true negatives
cannot be assessed. Calculation of event-level specificity
scores hence is only enabled when using the Maximum
overlap and Maximum IoU matchers as they allow any
events to be matched, including negative-to-negative.

Summary, recommendations, and discussion

In this section, we first summarize the main recommenda-
tions throughout this review, focusing on the evaluation that
is directly quantifying the performance of an eye movement
detector (thus excluding e.g. application-driven evaluation),
and doing so in relation to ground truth labels, for exam-
ple expert annotations. Evaluation procedures not requiring
ground truth are presented in the paper as well (“Evalua-
tion based on eye movement metrics”, “Evaluation based on
stimuli parameters” and “Application-based evaluation”),
but the review did not delve as deeply into these.

We also bring the reader’s attention to several decisions
that can heavily influence the results of the evaluation, and
do not have a trivial answer. These possible solutions have
their own benefits and drawbacks, and cannot be chosen
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without the context in which the evaluation is supposed to
take place.

Ensuring fair evaluation

The cornerstone of a sound evaluation of any eye movement
event detection algorithm is always separating the set of
the eye tracking data that is used in the development
and optimization process from the set where it is tested.
Otherwise one risks overfitting the algorithm to a particular
dataset, which will lead to reduced generalization and over-
optimistic performance estimates.

Ideally, the training and the test sets would have neither
overlapping observers nor stimuli. When creating a dataset
from scratch, consider recording two entirely disjoint sets
from the beginning – with two groups of participants and
two groups of stimuli, – thus ensuring both the efficiency of
the data collection process and a very clean separation of the
data subsets. When working with an existing dataset, based
on the findings in (Startsev et al., 2019a) we recommend
focusing on keeping the stimuli sets disjoint between the two
sets. This is especially applicable when dealing with heavily
stimulus-dependent properties of eye movements: smooth
pursuit or other eye movements with properties heavily
influenced by the stimulus parameters – e.g. saccades
amplitudes pre-determined by the synthetically generated
stimuli.

If data separation on the recording level is not feasible,
consider splitting the dataset in a time-wise manner, i.e.
uninterrupted parts of the recording assigned to different
sets, again ensuring that stimuli do not overlap in the two
sets (see more in Appendix C).

Choosing the evaluation protocol

An evaluation protocol in this context consists of selecting
the dataset(s) used in the evaluation and comparing the
algorithm(s) against adequate baselines.

Datasets

In Table 1 we provided a list of properties and short
descriptions of publicly available datasets with expert-
annotated ground truth that we encourage to use for
developing and testing new algorithms. The diversity
and volume of readily available data enable extensive
evaluation of the algorithm generalization capabilities,
making cross-dataset evaluation readily accessible to the
algorithm developers, in addition to being highly desirable.
Furthermore, using an existing dataset instead of investing
effort and time into recording and annotating a new
one facilitates an easy way of comparing the proposed
approach to other algorithms, since annotated datasets

were likely already used to develop and test event
detectors. The performance scores for these are typically
available in the corresponding papers. It should be noted,
however, that unless the evaluation procedure is followed
exactly, the published score and the one obtained using
a new approach are not comparable (see “Interaction
between the performance metrics and event matchers”
where we show that different evaluation approaches lead
to large deviations in the obtained performance scores).
Thus, prefer datasets that come equipped with either the
evaluation tools or the labels produced by a number
of other event detection methods so that they can be
evaluated in the same pipeline as the newly developed
approach.

On the other hand, annotated eye tracking datasets still
by far do not offer a complete coverage of all realistic
use cases for eye movement detection systems, therefore
recording and annotating a new dataset is a valuable
contribution. Moreover, it can sometimes present the only
option: E.g. if annotated data of a certain eye tracker
or at a certain frequency are not available. Annotating a
new dataset is extremely time consuming (though there
are options to significantly speed up the annotation, albeit
with some caveats – more details in “Eye tracking data
collection and annotation”) and yet does not ensure perfect,
“gold standard” labels (Hooge et al., 2018). Some studies
successfully used synthetic data for both developing and
testing an event detection algorithm (Otero-Millan et al.,
2014; Fuhl et al., 2018; Zemblys et al., 2019b), though
we still strongly recommend to focus at least part of the
evaluation on real eye tracking data, this being the target
application domain of the developed algorithms.

Synthetic data could be used to simulate the properties
of a certain eye tracker in the annotated signal of another.
For instance, without having the annotations for an eye
tracker A, the annotated data of eye tracker B could be
modified to resemble the properties (level of noise, etc.) of
the device A, for example in a manner similar to neural
network-based style transfer for images (cf. Gatys et al.
2016 and subsequent works in this domain). A much more
straightforward way to achieve a similar goal is directly
adapting the signal by the means of resampling, mixing in
a certain level or patterns of noise, or filtering. These can
be derived from the “target” set-up either empirically or via
theoretical estimates. In principle, any approach to simulate
a different eye tracking signal distribution can serve as
means of testing the algorithm’s generalization ability, and
can be employed just as any other independent real datasets.

Comparison

In order to put the results of the developed eye movement
event detector in appropriate context, we recommend
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looking for publicly available detectors that were developed
in a setting that is as close as possible to the one in the
tested condition, as algorithms often do not work well in
conditions for which they were not designed (Andersson
et al., 2017): For instance if the eye tracking data involve
looking at moving objects, using a traditional fixation
detection method originally developed for reading studies
is very unlikely to yield satisfactory results. Moreover, in
general using a one-threshold method to solve an inherently
multimodal problem (Steil et al., 2018) will not provide a
good baseline.

When the algorithms to which the developed method is
being compared are considerably simpler computationally
(e.g. consist of several thresholding rules, similar to I-VT, I-
VVT, etc.), it could be reasonable to estimate their best-case
performance, effectively letting their parameters overfit to
the test data. In addition to making a stronger case for the
superiority of the developed method, this also simplifies the
optimization for these simple algorithms, eliminating the
need for cross-validation, etc.

Another useful approach is evaluating the robustness
of the algorithm’s behavior to e.g. different noise levels
in the eye tracking data, or other parameters, in order to
understand the algorithm’s sensitivity to various properties
of its inputs. Regarding noise-driven evaluation, we refer
the reader to Niehorster et al. (2020), where the authors
demonstrated that the simplest approaches to simulating
noise may not be sufficiently representative.

Choosing an evaluationmethod

Available and applicable algorithm evaluation methods
depend on a number of factors where the most important
variable is the availability of annotated eye movement
events that may be used as a ground truth. We argue
that without it the evaluation of the eye movement
detector’s performance is essentially a “sanity check” for
the detected events, but hardly a precise measure of the
performance of the algorithm. For example, an algorithm
that fails to detect every second fixation would still yield
a fixation duration distribution that is comparable to the
literature. Nevertheless, there might be many reasons why
evaluating eye movement event detector without using the
annotated events is desirable. For example, the purpose of
the evaluation may simply be fulfillable without it (e.g.
comparing the distributions of fixation durations produced
by two algorithms). One could also argue that the ground
truth precisely reflecting the state of the visual system
either does not exist or cannot be sufficiently accurately
approximated by expert annotations, hence comparing
algorithms’ to expert coding is not worth the labour-
intensive manual annotation. In some cases synthetic stimuli
and instructions to the observers can already sufficiently

define the eye movements, and therefore the stimuli
properties can be used for the evaluation. Sometimes it may
even be impossible to record the eye tracking signal for the
evaluation (e.g. due to eye tracker license restrictions). The
overview of evaluation methods that can be applied in such
situations can be found in the first three parts of “Evaluation
methods”.

The comparison between the ground truth annotations
and the output of an algorithm can be performed on the
level of samples (comparing the labels of each individual
gaze point in the two sources) or events (comparing
the timing and the labels of uninterrupted sequences of
samples with the same label). For sample-level evaluation
the correspondence between gaze samples is already
established: The compared sources of eye movement labels
– i.e. the ground truth and the output of the algorithm
– are inherently describing the exact same set of the
considered entities (the gaze samples). For the evaluation
in terms of whole eye movement events, however, some
correspondence has to be established between the two
sets before many of the traditionally applied forms of
quantitative evaluation can take place. We call this process
event matching and describe various approaches developed
to perform it in great detail in “Event matching methods”.
The properties of the matching technique can influence not
just the “sensibleness” of the resulting evaluation score,
but even the possibility of subsequently quantifying a
particular type of differences in the two sets of labels.
Although many works in the literature to date report
sample-level scores only, these do not present a reliable
performance estimation and are strongly affected by the
majority class. Based on both theoretical considerations
(cf. e.g. “Sample-level evaluation”) and practical event
matcher analysis in “Interaction between the performance
metrics and event matchers” we conclude that event-level
evaluation should be preferred on the whole as more
adequately representing the intuitive understanding of the
eye movement detection algorithm quality.

When choosing the evaluation method it is very
important to take the prospective end “user” of the
evaluation results into account. Some researchers might
only be interested whether one or the other algorithm works
better for their application, or whether the considered eye
movement detector is, in some sense, “good” or “better than
another” in term of e.g. reproducing saccade main sequence,
while disregarding how many events the algorithm failed to
detect. Such an evaluation effectively treats the detector as
a black box. The particular ways to improve the algorithm
are typically not directly produced, although, of course, can
be somewhat inferred or guessed at.

Another group of users, meanwhile, might be interested
in e.g. how many saccades were missed or mislabeled as
other events, and might want to know where exactly in
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the data these errors occur. This evaluation prospective is
mostly the domain of event detection algorithm developers,
whose main interest (aside from showcasing the superiority
of their method) is pinpointing the main sources of the
algorithm’s errors, with the purpose of improving it in the
long run.

With the advent of machine learning-based event
detection algorithms (Bellet et al., 2019; Startsev et al.,
2019a; Zemblys et al., 2019b, to name a few), it has also
become relevant to motivate the choice of an evaluation
approach not just by differentiating between a handful of
algorithms (e.g. in the form of evaluation results tables):
Suitability for guiding the training of an algorithm or
optimizing its parameters becomes crucial in the absence
of a human expert interpreting the results. This purpose
puts the ultimate weight on the fairness and conciseness
of the evaluation, since all of the relevant aspects of the
algorithm’s predictions need to be effectively summarized
by a single number.

Some aspects of different evaluation methods and
measures (especially on the level of events) contribute
to their interpretability, bias, and suitability for various
purposes and testing scenarios. While the fairness of the
evaluation (which can be interpreted as not misleading into
a false sense of good and reliable performance, either in
the absolute sense or when comparing several different
approaches to one another) is relevant for any use case, the
priorities of evaluation descriptiveness and conciseness vary
between different “target groups”. With the eye movement
detection algorithm developers’ perspective being central
to this review, we attempt to realistically balance our
recommendations between being descriptive (i.e. easily
enabling a clear understanding of what mistakes an
algorithm makes) and concise (i.e. not requiring pages of
statistics to report) in such a way that it would be feasible to
incorporate in a research publication.

Comparing algorithms that detect different sets of eye
movement types

When choosing an evaluation method for a particular
comparison between a set of different algorithms, special
attention needs to be paid to whether the selected approach
will fairly reflect the performance of the evaluated eye
movement detectors in comparison to one another. These
considerations thus go beyond the descriptiveness and other
properties of the evaluation method in the context of a single
considered detector. In particular, it is important to consider
whether all of the compared algorithms detect the same
set of eye movement event types. If they do not, different
evaluation methods will differently reflect this, affecting the
outcome of the comparison.

In principle, if not the same sets of eye movement
types are detected by all the compared algorithms, binary
evaluation approaches and measures that quantify the
detection quality per eye movement type should be
employed. And this should, indeed, be sufficient for sample-
level evaluation. Event-level evaluation, however, is more
intricate, as event matching is also affected by detecting
or not detecting various eye movement types. As explained
in more detail in “Multiclass vs. binary evaluation”, we
recommend using sample-level binary remapping prior to
event matching to ensure comparability between different
algorithms, even though it is neither the most concise,
nor the most descriptive approach (since it is difficult to
keep track of what exact misclassification took place, or
whether the event was missed altogether). In contrast, to
obtain a detailed insight into the prediction patterns of a
particular algorithms (or to compare the algorithms that
all detect the same set eye movement types), multiclass
matching should be employed as a more descriptive
approach, even if binary evaluation measures are used
afterwards.

Ensuring descriptive and concise evaluation

As concluded in the previous parts of this review, event-
level evaluation is a step towards a more intuitive estimate of
the algorithm’s performance, contributing to the fairness of
the evaluation on the whole, as it enables e.g. distinguishing
between slight timing offsets and systematic fragmentation
or merge errors. Furthermore, the ability to quantify and
discuss the performance of an eye movement detector
in terms of complete events opens up many possibilities
that are simply unavailable for sample-level analyses, such
as exploring event timing, thus potentially increasing the
descriptiveness of the analysis as well.

One of the desired characteristics of a descriptive
evaluation is providing the developer and the user of the
algorithm with sufficiently precise and interpretable insight
into the source of the inaccuracies in the algorithm’s
detections, not merely some evaluation score. Here, event
matching is crucial, as it is exactly the element of the
evaluation pipeline that deals with the following reasoning:
Which events need to be considered together in order to
judge how well the algorithm performed in this particular
instance? Thus, in order to draw the conclusions that
correspond to the intuitive understanding of the errors that
the detection algorithm is making, event matching used
during the evaluation has to correspond to the intuitive ideas
of the experts in the field. This has proven to be difficult
to achieve in practice, and while work has been done to
incorporate that intuition into the matching schemes, there
is still room for improvement: Each of the methods we
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examined in this review has its pros and cons, and it is
important to know them before choosing the one to use.

In order to demonstrate the properties of various
evaluation metrics and event matching approaches, we used
a recent real large-scale (ca. 2 h) dataset of eye movement
events during movie watching (Agtzidis et al., 2020), for
which the predictions of fifteen algorithms were provided
alongside the expert annotations. On these data, we applied
and systematically compared a number of combinations
of different event matchers (Table 4) and evaluation
metrics (Table 3). Our results support the conclusion
that reliable eye movement event detection performance
evaluation requires a combination of an intuitive event
matcher that does not bias the evaluation by establishing
counterintuitive matches that inflate the scores of the
considered metric, and a metric that compensates for class
imbalance.

In the following, we will first summarize the role and
importance of good event matching – the cornerstone of any
event-level evaluation pipeline, and discuss the contribution
of match strictness to the quality of ensuing evaluation. We
then discuss the benefits and limitations of different types of
quantitative evaluations that can be applied after the events
are matched.

Event matching

Matching eye movement events between the two compared
sets is the key to performing most of the quantitative
analyses, e.g. assessing the similarity between detections of
an algorithm and the ground truth on the level of events.
Technically, any event matching strategy would enable this,
though perhaps not equally well.

For example, as we both argue theoretically in “Event
matching methods” and practically demonstrate in “Interac-
tion between the performance metrics and event matchers”,
using either sample-level evaluation or the Majority voting
(Hoppe & Bulling, 2016) approach to event-level evalu-
ation leads to consistently overly-optimistic performance
estimates, almost regardless of the choice of a metric, as
these methods are mostly insensitive to event fragmenta-
tion and merge errors. While this is more related to the
fairness of the evaluation, event matching can have a very
direct influence on the descriptiveness as well. For instance
both the Overlap (Hauperich et al., 2020) and the Earliest
overlap (Hooge et al., 2018) event matching strategies were
originally proposed in a binary setting, i.e. matching only
the events of interest (e.g. fixations), and disregarding the
rest. This restricts one from using standard evaluation mea-
sures that are either inherently multiclass (Cohen’s kappa,
MCC) or focus on the “negative” class (specificity). For
the purposes of the analysis in this review we extended
the Overlap and Earliest overlap matchers to a multiclass

setting, enabling their direct application in combination with
multiclass metrics.

In general, only matching events of a single class can
make the overall evaluation process more difficult, as it
rules out the usage of very concise multiclass evaluation
metrics, for example, and is less flexible on the whole.
When developing a general-purpose event matcher, we,
therefore, recommend considering a multiclass scenario
first and foremost. Note that this does not limit event
matching in itself (i.e. the matcher can still only match
fixations to fixations and saccades to saccades, etc.), but
ensures the matching can be applied even when several eye
movement types are annotated and detected.

Another important property of an event matching strategy
is whether it enables matching only individual events to one
another (one-to-one matching), or whether matches between
event groups are allowed as well: In practice, eye movement
event matchers that go beyond one-to-one matches – EDEC
(Ward et al., 2006)17 and Window-based matching (Kothari
et al., 2020) – focus on correctly handling merges and
fragmentations, leading to the creation of matchers that can
be characterized as one-to-many and many-to-one matchers,
respectively (cf. additional remarks on this terminology in
“Event-level evaluation”).

The extension of EDEC by Steil et al. (2018) introduced
the “merge-fragmentation” error type, thus potentially
making it a many-to-many matcher. However, we do not
recommend using this variant especially for high-frequency
eye tracking data, since it can lead to large parts of the
eye movement labels being labelled as a single error (cf.
“Event-driven error characterization”).

The major benefits of using one-to-many and many-to-
one instead of one-to-one matching are (1) the potential
to quantify event merging or fragmentation (which is
impossible to achieve with one-to-one matchers, at least
directly), and (2) the potentially more precise subsequent
event timing evaluation (what we referred to as “event
quality metrics” in “Event quality metrics”). The latter
also relates to the way in which a matcher handles
fragmentation and merging (illustrated in Fig. 9): E.g. for
the fragmentation case, if only one of the detected events
is matched to the ground truth event, any event timing
comparison will show large timing errors, even though the
on- and offset of the ground truth event were detected
precisely. Thus, without a thorough manual examination
of the predictions and event matches, the resulting timing
scores might be misleading. While one-to-many matching
solves these issues, developing an intuitive and robust
matching strategy is not a trivial task, and existing

17EDEC does not include an explicitly defined event matcher, thus we
here mean the matching that can be derived by interpreting the results
of EDEC – see Appendix E.
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one-to-many methods exhibit unintuitive behavior, either
potentially suppressing or misattributing the errors (cf.
examples in “Window-based matching” and “Event-driven
error characterization”). Another approach for more precise
assessment of event timing errors in the presence of merging
and fragmentation was proposed by Hooge et al. (2018). It
consists in applying a one-to-one event matcher (Earliest
overlap) twice – once in the natural temporal direction
to assess the timing of onsets, and once more in the
reverse direction to assess the timing of event offsets.
Since one event can thus be matched to two different
ones, this effectively creates a one-to-many event matching
strategy. However, such multi-step process also separates
the computation of event detection and event timing scores,
making the whole procedure somewhat less flexible.

Our review and empirical analysis of the event matchers
indicate that the most reliable and concise algorithm
performance estimation is likely achieved by employing the
Maximum overlap or Maximum IoU matchers. These yield
similar scores in both multiclass and binary settings, while
at the same time considering all the errors the algorithm
makes. In addition such evaluation enables very descriptive
subsequent analysis of algorithm errors – be it confusion
matrix, analysis of eye movement metrics, or event timing
evaluation (though Earliest overlap matcher is more suitable
for the latter purpose).

The event matchers that can match several events to
one, and thus capable of handling event merging and
fragmentation, could add a further layer of evaluation,
enabling direct quantification of these error types. However,
currently available one-to-many event matching strategies
lack the robustness compared to the more straightforward
one-to-one event matching: For both Window-based and
EDEC matching strategies, it is relatively easy to produce
an example ground truth and predicted event sequences, for
which the resulting matching would be counter-intuitive.

We believe that while recent works have produced reli-
able one-to-one matching approaches, future improvements
in the area of one-to-many eye movement event match-
ing are needed. This should eventually bring the whole eye
movement event detection research field closer to a gen-
erally applicable and flexible evaluation, and thus closer
to much improved comparability of evaluation between
publications.

Match strictness The intuitiveness of some event matching
strategies is undermined by potentially registering two
events that overlap by a single sample as a successful
match, and thus communicating a correct detection to
the subsequent event detection evaluation. Not all event
matchers account for the quality of the produced matches
in their pipeline (cf. Table 4), and those that do, might still
allow arbitrary-quality matches (although potentially having

given priority to higher-quality ones). As such, there is an
obvious use case for a generic procedure that would enforce
certain guarantees on the events that end up being matched.

In principle, any minimal match criteria can be imposed
(e.g. degree of overlap, or other timing-based criteria). The
important issue is that the verification of these criteria
should ideally be integrated into the matching procedure:
Filtering out the poor quality matches only after the event
matching may have a different effect on the evaluation
compared to doing so inside the matching algorithm. If
the implementation of the event matching algorithm iterates
over candidate matches in the order of their quality (cf.
“Note on implementation differences”) and the match
acceptance criterion is represented by a threshold on
the same quality measure (e.g. an IoU threshold for the
Maximum IoU matcher (Startsev et al., 2019a)), applying
the filtering post-hoc or inside the matching algorithm will
be identical. In any other case (e.g. a criterion based on
the alignment of events’ on- and offsets for a Maximum
overlap matcher, or a Maximum IoU matcher with a
start-to-end iteration order), there will be a difference
between the two ways of applying the match filtering
criteria: If a ground truth event has multiple candidate
matches, some fulfilling the acceptance criteria and some
not, selecting from those during the event matching itself
leaves the possibility to guarantee that a match will be
found. With the post-hoc filtering, however, it is possible
that the chosen match will not fulfill the defined acceptance
criteria, resulting in the ground truth event being registered
as “undetected” (unmatched), changing the evaluation
outcome.

Such a simple modification was originally proposed in
Startsev et al. (2019a), where the Maximum IoU matcher
was presented together with its variant that rejected match
candidates, where event pairs had the intersection-over-
union statistic lower than a certain threshold. This allowed
for varying the degree of evaluation strictness with a single
parameter, and thus for comparing the performance of a
number of eye movement detectors over a range of strictness
levels (Startsev et al., 2019a, Fig. 4).

Overlap as a minimal requirement for matching An inter-
esting question regarding the criteria that should be imposed
on the matched events is raised by the differences in the
behavior of any of the overlap-based matches and the
Window-based matching (Kothari et al., 2020): The lat-
ter method allows for short events to be matched even
when they do not overlap, as long as both their onsets and
their offsets are not shifted by over a fixed threshold (the
authors used 25 ms for saccade events, but a threshold can
be changed by the pipeline user). In contrast, the other auto-
matic event matching methods do not allow matches that are
not overlapping by at least one sample.
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Both of these approaches have their downsides: On the
one hand, a temporal offset of more than the duration of
the respective event should usually be enough to declare the
ground truth event as missed and the predicted events as a
false detection (i.e. no need for registering a match). On the
other hand, as in the example given in “Event-driven error
characterization”, there may be a case where systematic
temporal offsets are introduced by the detector (e.g. via
using noise filtering without delay compensation). In this
case it could be desirable to register the misaligned events
as matches, and later quantify their temporal offsets.

On the whole, we recommend a combination of using
the evaluation scheme that only registers events as matched
when they overlap and manually inspecting the predictions.
The former covers the prevalent cases, with no noticeable
systematic temporal offset that is not accounted for, while
the latter would hopefully catch such systematic errors
(especially if the developer is aware of the potential
problems of the event detection algorithm related to signal
filtering; or if they are alerted by the extremely low scores
obtained in the automatic evaluation procedure).

Evaluation measures

There are two relatively well-defined groups of metrics
used to quantify the quality of the eye movement detector
outputs in the literature: detection performance and event
quality measures. The former (cf. “Levenshtein distance”
and “Confusion matrix-based measures”) consist mostly of
various confusion matrix-based analyses (with Levenshtein
distance being an exception), and focus on quantifying
how many events in the ground truth received a correct
or incorrect label from the eye movement detector, how
many events were falsely detected, etc. These metrics are
typically summarizing a (part of) confusion matrix to allow
quickly assessing some aspect of either overall or per-class
performance of the algorithm.

While detection performance metrics ignore e.g. the
differences between the ground truth and detected event
on- and offsets (as long as the event matcher registered a
match), event quality metrics (cf. “Event quality metrics”)
focus on assessing the alignment between the matched
events. Typically, these metrics ignore events that are not
matched (e.g. an undetected ground truth event would
not affect the average event quality score), which speaks
strongly for using them in combination with detection
performance metrics. An exception from this pattern is
the event-quality IoU metric as it was used in (Startsev
et al., 2019a), where the average statistic was computed over
all ground truth events, with 0 assumed where no match
was found. This is, however, not something that should be
generally recommended, as it mixes the incomplete picture
of detection quality (e.g. false detections are ignored)

with event quality, thus reducing the interpretability of the
measure.

Detection performance metrics An example of a relatively
descriptive event-level evaluation could be reporting the
detection performance via a confusion matrix (Zemblys
et al., 2019b, Fig. 9, e.g.), thus providing a very detailed
overview of the algorithm’s performance, both for the end
user and the algorithm developer: One can examine the
number or proportion of mislabeled events, as well as
which events get mislabeled most frequently. This could
enable them to decide whether the algorithm is suitable for
detecting a certain event type. For the developer, examining
the confusion matrix additionally provides valuable insights
by highlighting the most problematic eye movement event
confusion or miss cases, etc.

Concise evaluation is enabled by calculating classifica-
tion performance metrics described in “Evaluation metrics”,
summarizing the corresponding confusion matrix. However
metrics such as accuracy, precision, sensitivity, specificity,
F1-score, as well as sample-level JI are highly affected by
imbalanced data (i.e. usually the prevalence of fixations).
Therefore, they were assigned a low usability rank in our
analysis (see Table 3). Levenshtein distance produces scores
very similar to accuracy, and consequently also receives a
low usability rank. It should thus be avoided due to data
imbalance effects as well as other objections to its suitability
for eye movement data (cf. Levenshtein distance”).

It is worth highlighting that we do not, in principle,
advocate against using the metrics with low “usability on
their own” rank, since in most cases one does possess
information about class balance, and can compare the
scores to those of another algorithm. Also, reporting
multiple scores ranked as “low”, for example, is a perfectly
acceptable practice: E.g. precision and recall are a great way
to quickly dissect the errors that the algorithm is making
(labelling “additional” samples/events that do not belong to
the examined class, or missing the “true” samples/events
of it), although this shifts the balance from concise to
descriptive evaluation.

Two metrics received a “high” usability-on-their-own
rank: Cohen’s kappa and Matthews Correlation Coefficient
(MCC). Both of these are designed to handle imbalanced
data, making them specifically suitable to be used without
detailed awareness of the eye movement class prevalence in
a particular dataset. We note, however, that while Cohen’s
kappa is widely reported in the literature, it can be severely
affected by rare classes (Delgado & Tibau, 2019), and
can produce counterintuitively bad scores for event-level
evaluation of chance-level predictions (Startsev et al., 2019).
MCC, on the contrary, is seemingly more robust but
nowhere near as widely spread as Cohen’s kappa.
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Limitations of a confusion matrix One fundamental
descriptiveness-related limitation of the confusion matrix-
based analysis, however, surfaces when considering
event-level evaluation that can be operating with one-to-
many matches, such as would be representing merging
or fragmenting the events. For instance, it is difficult to
objectively reflect via a confusion matrix the situation
when a fixation is fragmented into three shorter fixations
with two falsely detected saccades in-between. The falsely
detected saccades can be easily accounted for (e.g. as +2
added to the cell of the matrix corresponding to the row of
“undefined” and the column of “saccade”). The fixation
fragmentation is problematic, however: Mostly likely, reg-
istering one correct detection (i.e. +1 at the intersection of
the “fixation” row and column) and two false detections
(+2 for the “undefined” row and “fixation” column inter-
section) would adequately reflect both the good and the
bad aspects of such a detection (i.e. a fixation is detected,
but is heavily fragmented). However, after these counts are
recorded into the confusion matrix, the connection between
the event fragments is broken: No subsequent analysis will
be able to quantify the degree of event fragmentation, or
report on what event types mostly cause the fragmentation.

Binary vs. multiclass metrics The choice between binary
and multiclass evaluation metrics effectively provides
the researchers with a trade-off between descriptiveness
and conciseness of the evaluation: Binary metrics allow
examining the performance of the algorithm per each eye
movement type, but need to be reported for every class of
interest. If conciseness is more crucial, multiclass measures
will provide a single score for all type, thus making e.g.
ranking several algorithms easier, but at the cost of lower
level of detail of the evaluation.

Event quality measures Based on our overview of the event
quality measures, no strong preference for one or the other
measure can be declared, and, aside from the ease of
interpretation for a particular researcher, the metrics differ
relatively little. The only set of measures substantially
different from the others (in terms of descriptiveness
and conciseness) are related to the relative timing offset
analysis proposed by Hooge et al. (2018): These report the
mean and standard deviation of the differences between
the matched event on- and offsets. While this can be a
very descriptive measure (computed in ms and tied to a
particular “end” of the respective events), the amount of
reported statistics may seem excessive for a brief summary
of performance: When multiple eye movement types are
considered, mean and standard deviation need to be
reported for every event class, separately for event on- and
offsets.

As the users of eye movement detectors may want to
assess whether using a particular algorithm will likely
significantly alter subsequently analyzed event statistics
(e.g. average fixation duration, mean saccade amplitude,
etc.), these can be directly incorporated in the event quality
analysis: Any of the rich number of eye movement statistics
can be used in this context (cf. “Evaluation based on eye
movement metrics”), possibly combined with e.g. Bland-
Altman analysis (“Event quality metrics”), thus providing
exactly the necessary data to a potential user.

Ensuring comparability to the literature

First of all, it is important to note that the vast majority
of research to date is limited to sample-level evaluation.
Event-level evaluation is not as of yet standardized, so
comparability of event-level analyses can only be ensured
by executing the same evaluation procedure – either
published together with the algorithm one is comparing
against, or own pipeline executed for the predictions of the
baseline algorithms. As we have stressed in this review,
implementation details of the event-level evaluation have a
direct effect on the resulting statistics, which are difficult to
assess in advance, so any re-implementation effort of such
a pipeline needs to be carefully validated before comparing
the results to the original publication.

In terms of sample-level analysis, Cohen’s kappa is, on
the whole, one of the most reported measure of agreement
in eye movement literature, therefore reporting it has the
benefit of wide comparability across different publications.
F1-score would probably take the second spot in the
popularity list, and thus has similar benefits.

When performing comparison to a particular publication,
it may be advisable to use or implement the evaluation
approach in that work, even if it may be poor in terms
of its descriptiveness or even fairness – this can serve as
a preliminary comparison method and will ensure that the
results of that particular work are reproduced correctly.
In order to improve the quality or level of detail of the
evaluation, adding further evaluation strategies is perfectly
reasonable, of course.

It has to be noted, however, that any measure in any
evaluation scenario is only fully comparable between two
instances of computing it when both the evaluation pipeline
(especially for event-level analyses) and the dataset are the
same. Differences in the datasets, for instance, will likely
include variations in class balance, which will inevitably
affect most evaluation measures. The presence or absence
of certain event types (e.g. smooth pursuit) can even affect
binary evaluation strategies focusing on fixation detection.
Alternatively, comparing the performance of the same
algorithm for several datasets reveals the generalization
ability of the algorithm.
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Conclusions

This review of a seemingly narrow topic of eye movement
event detection evaluation demonstrates it being a complex,
continually evolving subject, full of trade-offs and com-
promises. To be able to both choose and develop sensible
evaluation pipelines, an overview of existing approaches
is important. The purpose of this review is to provide the
reader with the information and tools enabling them to make
an informed decision about what methods to use to fulfill
their particular evaluation goals. We assembled the recom-
mendations covering a broad spectrum of topics spanning
complete evaluation process – from dataset selection or
collection and how these data are used for validation and
evaluation (“Evaluation protocols”), to high-level principles
of the evaluation (“Evaluation methods”), to the specific
information about quantitatively comparing the output of an
eye movement detection algorithm to “gold standards” (typ-
ically – manual annotations) – both the metrics that can be
used in such analysis (“Evaluation metrics”) and the strate-
gies employed to evaluate eye movement events instead of
single gaze tracking samples (“Event matching methods”).

In place of a brief summary, we suggest the following as
best practices in eye movement event evaluation:

– To assess the quality of an eye movement detector,
whenever possible or practical quantitatively compare
its outputs to expert annotations. While these may
not be the coveted “gold standard” of eye movement
event labels, they provide a re-usable common ground
for evaluation and lend themselves to extracting the
most informative insights into the error patterns of the
examined event detector.

– Carefully report the complete evaluation pipeline and
provide the annotations used in place of the ground
truth, the algorithm outputs, as well as the code for
the evaluation and the detection algorithm together
with the results. Ensure that the chosen pipeline
allows for fair algorithm performance assessment (cf.
“Evaluation protocols” and the summary in “Ensuring
fair evaluation”).

– Use event-level evaluation strategies. Event fragmenta-
tion is one of the most frequent problems of existing
algorithms, and explicitly accounting for it is only pos-
sible with event-level evaluation. Refer to “Summary”
of the “Evaluation metrics” section for remarks on the
various event matching approaches that form the corner-
stone of this kind of evaluation, as well as “Interaction
between the performance metrics and event matchers”
for the empirical observations on their properties.
Specifically for event matching, we recommend the

Maximum IoU matcher with highest-to-lowest IoU
iteration order for reliable one-to-one matching, and
encourage further refinement of one-to-many matching
strategies.

– Use a combination of the metrics that quantify event
detection (i.e. confusion matrix-based analyses; from
these, we particularly recommend Matthews correlation
coefficient as a reliable measure) and the timing of
detected events (what we refer to as event quality
measures). Refer to “Summary” for remarks on the
properties of individual evaluation metrics, as well as
“Interaction between the performance metrics and event
matchers”.

– When focusing on the detection patterns of a single eye
movement detector, use multiclass evaluation strategies
(including multiclass event matching). These provide
the most descriptive and most concise summary of the
errors an algorithm is making.

– When comparing a diverse set of eye movement
detectors (e.g. not all detecting the same set of eye
movement types), use binary evaluation strategies
with binary sample-level remapping prior to event
matching (cf. “Multiclass vs. binary evaluation”). This
ensures a comparable evaluation of each eye movement
type detection, regardless of the algorithms’ detection
patterns for other event types.

– Regardless of the metrics used e.g. for concisely
comparing between a set of algorithms, provide a
confusion matrix to describe the algorithm(s) of special
interest. The readers can then intuitively interpret the
typical errors of the respective methods, and even
calculate a specific metric in order to compare results
between the studies. Make sure the confusion matrix
includes a special row and column that would allow
reporting both false detections and missed events of
each eye movement type.

We provide the implementation of all the metrics and
event-level evaluation strategies we compared in “Interac-
tion between the performance metrics and event matchers”
in the code repository accessible via https://github.com/
r-zemblys/EM-event-detection-evaluation. While using this
exact implementation requires converting the input data
to the corresponding format, the repository can always be
used as a source of building blocks for designing own
evaluation pipeline, as we provide the event matching
and subsequent evaluation as separate steps, ready to be
modified when necessary. With making this range of tools
publicly available, we hope to encourage the reproducibility
of both eye movement detection research in general and the
quantitative evaluation of the algorithms in particular.
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Appendix A: Eyemovement “detection” vs
“classification”

In the literature, the process of parsing raw gaze data
into events is called “eye movement (event) detection” or
“eye movement (event) classification”. In case an algorithm
is only meant to detect one particular eye movement
type, it could be referred to as e.g. a fixation “detection”
or a fixation “classification” algorithm. Occasionally,
“identification” and ”segmentation” are used as well
(Salvucci and Goldberg, 2000; Pekkanen & Lappi, 2017;
Hessels et al., 2017, to name a few).

The two terms most commonly used in this context
– “detection” and “classification” – are usually used
arbitrarily, not detailing the reason behind the applicability
of the particular terminology. Moreover, many papers use
“detection” and “classification” interchangeably, even when
referring to the same algorithm (Larsson et al., 2015;
Andersson et al., 2017; Hooge et al., 2018). Hessels et al.
(2018) argue that the term “classification” is to be preferred
because, according to the authors, the word “detection”
would imply that “an oculomotor event [. . . ] is objectively
present in the eye-tracker signal and all one needs to do is
detect where it is” (Hessels et al., 2018, p. 7), which is not a
universally agreed-upon statement.

As already stated in the introduction, we strive to use
the term “detection”, as in our view it better describes
the end result of the eye tracking data processing system
that we want to evaluate. Namely, these systems provide
their user with some representation of the information,
where eye movement events of certain types begin and end.
This means that, effectively, eye movement localization and
classification are performed. In many fields outside eye
tracking, e.g. image or signal processing, this process has
an established name – detection. Note that in the case of
one-dimensional event label data, the distinction between
detection and segmentation observed for images, etc., is
erased.

The algorithms that are used in such pipelines to reach the
end result are not limited in their implementation, and can
in practice be anything from simple thresholding (Salvucci
& Goldberg, 2000) to machine learning-based classifiers
(e.g. Zemblys et al., 2018) or sequence-to-sequence deep
learning models (e.g. Zemblys et al., 2019b; Startsev et al.,
2019a), whether they operate with individual gaze samples,
windows of those, or entire recordings. To avoid confusion,
however, this should not change the name used for the
overarching system, even if this system merely records
sequences of uninterrupted eye movement labels produced
by the underlying algorithm into corresponding “events”.

Therefore, as well as in order to use the same terminology
as in other research fields where there is a clear distinction
between classification and detection, we use the term “event
detection” throughout this paper.

Appendix B: Clean observer and stimuli
separation

Figure 19 illustrates for the problem of separating both the
observers and the stimuli material for training and testing of
the model, when the considering a dataset where one set of
observers viewed one set of stimuli. Consider e.g. allocating
25% of the stimuli material and 25% of the observers for
testing, thus in terms of gaze samples making the test set
roughly only 1/16 (in red) of the full data collection. In
addition, none of the observers or stimuli used in testing can
be used for training purposes. This would mean that further
ca. 38% (in grey) have to be discarded entirely, leaving
just over half (ca. 56%, in green) of the data eligible for
algorithm development. This would make cross-validation
confusing, and reduce the utilization of the dataset.

Appendix C: Time-wise splitting for eye
tracking data

To test the time-wise splitting strategy (Fig. 20 and
“How to split the data”), we reproduced the evaluation set-
up from (Startsev et al., 2019a), where a deep learning

Stimuli

O
bs

er
ve

r

Test set recordings (1/4 of observers and stimuli)

Train set recordings

Unused recordings

Fig. 19 Splitting a dataset consisting of recordings for a number of
observers, each having been exposed to the same stimuli
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model is trained in stimulus-based cross-validation proce-
dure (i.e. “leave-one-video-out”). The test set corresponds
to the “left-out” fold (i.e. the eye tracking recordings for a
single video), while the recordings for the remainder of the
videos are used as a source for both training and validation
data for the model optimization procedure.

In the original experiment, training and validation
examples (inputs to the network – windows of gaze data
with corresponding labels) ware randomly drawn from the
non-test-video gaze recordings with a stride of ca. 1/4 s. In
principle, therefore, windows of gaze samples (reaching up
to 1 s in the original work; windows of 0.5 s were used here,
as well as in the vast majority of tests in the original paper)
that are very close to one another (or even contain largely
the same gaze samples) can end up one in validation, one in
training sets.

In this experiment, we compared the usage of this
random splitting to the time-wise splitting (see Fig. 20 for

Fig. 20 Schematic illustration for time-wise splitting of the dataset
with multiple observers viewing the same stimuli: Selecting the
validation set (in orange) as the parts of gaze recordings corresponding
to the same time moments of each video for all observers. This
way, we avoid including similar stimulus-specific gaze patterns (bold
line segments) in training (green) and validation (orange) sets, thus
obtaining overly optimistic validation scores due to possible overfitting

an intuitive illustration) in order to separate training and
validation sets for the network optimization process. The
validation set (in both cases – 10% of the data) was used
for early stopping (determining the optimal point to stop
the training in order to avoid overfitting) – a modification
compared to the original paper.

We present the evaluation in Table 5, obtained with
the same evaluation pipeline as in the original paper.
In our experiments, time-wise training-validation splitting
led to a consistently better-performing model (for all eye
movements and both sample- and event-level F1-scores),
with absolute F1 score differences within 2%, except
for event-level pursuit detection score that showed a 5%
improvement.

Appendix D: Corner cases for sample-level
metrics

In Table 6 we provide the scores of various metrics we
discussed in “Evaluation metrics” in a set of corner-case
scenarios. Unlike in “Interaction between the performance
metrics and event matchers”, we do not aim for a realistic
evaluation scenario here, but rather strive to conceptually
simplify the compared scenarios. We do this in order to
make the judgements about the observed scores easier.

To this end, we assembled a set of situations that
would reveal how each evaluation metric behaves in various
“corner cases”. For the “ground truth” source, we generate
synthetic event sequences that coarsely simulate a scenario
found in real eye tracking data, namely the alternating
sequence of fixations and saccades. For this particular test,

Table 5 Evaluation results contrasting typical random splitting of
training set examples (with “examples” being potentially overlapping
gaze signal windows here) vs. the proposed time-wise splitting. The
two splitting modes were used for separating training and validation
sets during he optimization process of otherwise identical neural
networks. Test sets are identical in both cases. Best result for each
metric is boldified

Metric Random Time-wise

splitting splitting

Fixation: sample F1 0.931 0.937

Fixation: event F1 0.878 0.890

Saccade: sample F1 0.872 0.892

Saccade: event F1 0.939 0.943

Pursuit: sample F1 0.683 0.693

Pursuit: event F1 0.529 0.580
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we generate 100 positive-negative event pairs where each
pair is comprised of 90 positive and 10 negative samples.
This can represent for example, 100 fixations followed by
100 saccades. While the organization into events does not
matter for most of the sample-level metrics, Levenshtein
distance depends on the order in which samples are ordered.

The corner-case predictions, to which the ground truth
from above is compared, include the following scenarios:
(i) all positive class labels, (ii) all negative, (iii) random,
(iv) randomly shuffled ground truth sample-level labels,
(v) predictions opposite to the ground truth labels, and
(vi) randomly shuffled ground truth events. The latter
case simulates event merge and fragmentation errors while
preserving the same sample class distribution (Startsev
et al., 2019). Since some of the metrics require labels of both
positive and negative class to be computed, we additionally
include the tests where all but one labels in the “predictions”
belong to the majority or minority class, respectively.

Appendix E: Event matching using
Event-driven error characterization (EDEC)

Here we provide a potential approach for obtaining explicit
event matches using the output of the segment-level
evaluation (Ward et al., 2006, Fig. 2), right that we used to
illustrate how EDEC could work as an event matcher e.g.
in Figs. 14 and 15. EDEC implementation first subdivides
the eye movement events into segments (i.e. intervals during
which neither ground truth nor prediction change). After
this step, all events in the ground truth and in predictions
that share a segment can be easily matched to one another.

Fig. 21 Potential ambiguity of event matching derived from EDEC
(top), and its possible resolution via an additional maximum overlap
matching criterion. Blue, red, and orange are fixations, saccades, and
smooth pursuits, respectively. Black lines between the ground truth and
predicted events indicate event matches. D are deletion, I – insertion
errors

In this way, events consisting of multiple segments
may be matched to several events in the other sequence
(corresponding to merge and fragmentation errors, e.g.).
This effectively makes the proposed approach a one-to-
many and many-to-one matcher. As with any other such
matching strategy, this leads to an ambiguity of accounting
for complex event matches in e.g. confusion matrix-based
analysis (cf. “Evaluation measures”)

Table 6 Classification scores for binary synthetic ground truth data with 90% of samples belonging to the positive class. The values that could
not be computed because of division by 0, are undefined for a particular case, or similar, are indicated with “-”

All majority All but one All minority All but one Random Shuffle Opposite Random

majority minority event shuffle

NLD 0.1 0.1 0.9 0.9 0.47 0.16 0.8 0.09

Accuracy 0.9 0.9 0.1 0.1 0.5 0.82 0 0.83

Balanced accuracy 0.5 0.5 0.5 0.5 0.5 0.5 0 0.52

Precision 0.9 0.9 - 0 0.9 0.9 0 0.9

Sensitivity 1 1 0 0 0.5 0.9 0 0.9

Specificity 0 0 1 1 0.5 0.1 0 0.13

F1-score 0.95 0.95 0 0 0.65 0.9 0 0.9

AUC 0.5 0.5 0.5 0.5 0.5 0.5 0 0.52

Jaccard index 0.9 0.9 0 0 0.48 0.82 0 0.82

κ 0 0 0 0 0 0 -0.22 0.03

Pearson’s r - 0 - -0.03 0 0 -1 0.03

Spearman’s ρ - 0 - -0.03 0 0 -1 0.03

Kendall’s τ - 0 - -0.03 0 0 -1 0.03

MCC - 0 - -0.03 0 0 -1 0.03
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An additional source of ambiguity comes from the
potential many-to-many matches that could result from
applying this matching scheme. E.g. in the top part of
Fig. 21, both GT1 and GT2 have a match with P2, but
GT1 is also matched with P1. This results in a group of
events (GT1, GT2, P1, and P2) that are all “matched” to
one another, if match transitivity were to be followed. Since
this would be impractical (as well as unintuitive) for any
further evaluation, the conflicting matches would need to
be dealt with prior to any further steps in the pipeline.
The bottom pair of scarf plots in Fig. 21 demonstrates an
example of solving match conflicts by using the maximum
overlap (Zemblys et al., 2019b) approach. Since GT1 and
P2 overlap the most, they are matched creating smooth
pursuit–fixation error, while the remaining events may
be considered as unmatched, enabling the application of
traditional evaluation metrics.

Appendix F: Under- and over-estimated
performance using balanced accuracy

To demonstrate the potential pitfalls of using balanced
accuracy for event detection evaluation, we picked two
scenarios, both in the Hollywood2EM dataset (Agtzidis
et al., 2020): First, a non-expert’s annotations (“student
coder”) were compared to the final labelling that was
corrected by an experienced coder. While showing some
differences, the two sets of labels largely agree, as they were
produced following the same principles and definitions.
The second scenario is comparing the labels of the I-VVT
algorithm to the final expert annotations. I-VVT is a simple
two-threshold method for eye movement classification that
is highly influenced by noise, and on a qualitative level
provides very fragmented predictions. Figure 22 shows five
multiclass metrics for the student coder scenario (top) and
the I-VVT algorithm (bottom). These were calculated using
different sample- and event-level evaluation approaches,
which are noted on the horizontal axis.

Aside from the balanced accuracy, the various event-level
performance scores (from “Earliest overlap” onward on the
horizontal axis) conform with the intuitive idea of detection
quality: The labels of the manual annotators, similar in
nature and principle, achieve high scores, and the noisy
prediction labels have very poor event-level scores. Note,
however, the idiosyncratic behavior of balanced accuracy
(in orange): While yielding consistently lower scores in
comparison to all other metrics when events of the two
human annotators are evaluated, balanced accuracy for the
I-VVT algorithm is instead considerably higher. In fact,
when using the Overlap matcher, balanced accuracy for I-
VVT is close to that of the manual annotator (0.75 vs.
0.85, respectively). This signals that at least this particular

Fig. 22 Example of balanced accuracy score under-estimating (top,
human coder) and over-estimating (bottom, I-VVT algorithm) event-
level eye movement event detection performance

combination of event matching and the metric would not
form an adequate basis for a fair performance evaluation.
While the other matching strategies in combination with
balanced accuracy yield lower scores, they still suggest
a substantially higher prediction quality than any other
measure combined with any other event matching strategy.

This odd behavior of balanced accuracy stems from how
the event matching is achieved, and how unmatched events
contribute to the performance score (as I-VVT is prone
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to event fragmentation, and all the event matchers tested
here are one-to-one, such evaluation will produce numerous
unmatched events in the predicted sequence). In multiclass-
setting evaluation, unmatched events are typically treated
as errors of some kind, and should intuitively contribute to
lowering the final score. When confusion matrix analysis
is applied, the way in which this is done depends on
whether the unmatched event occurs in the ground truth
or the prediction sequence: Missed events (i.e. unmatched
events in the ground truth), typically contribute to the
intersection of the row corresponding to the event type
and a special column dedicated to undetected events;
false detections (i.e. unmatched predicted events) contribute
to the intersection of the special row dedicated to non-
existent events and the column corresponding to the
event type.

Balanced accuracy, in its most widespread form, equals
the average of per-class sensitivity scores, i.e. the average
of values on the diagonal of the row-wise normalized
confusion matrix, including the one in the special row for
false detections in the case of event-level evaluation. Since
the value on the diagonal in the latter will be zero (a false
detection cannot be “correct” by definition), including it
in the averaging will always drive the scores down (cf.
the top plot in Fig. 22). On the other hand, by averaging
row-normalized values on the diagonal, the potentially
multitudinous false detections (e.g. for I-VVT) will not be
accounted for in the normalization, driving the values on the
diagonal high (cf. the bottom plot in Fig. 22).

The latter problem is exacerbated by same-type-only
event matching (e.g. the Overlap event matcher), since the
row-normalized values on the diagonal will be exactly 1.0,
making the combination of such matching strategies and
balanced accuracy particularly bad for representing the true
prediction quality of an eye movement detector.

Appendix G: Effect of treating unmatched
negatives as true negatives

In binary setting, the Earliest overlap and Overlap event
matching methods do not allow for the negative-class events
(i.e. not belonging to the event type under evaluation) to be
matched, meaning that the matching output will not contain
any true negatives. As a consequence, Cohen’s kappa and
MCC become less or equal to zero, according to our
observations in Fig. 16b, indicating a below-chance level of
performance. This makes the evaluation and comparison of
the algorithm performance highly impractical.

One possible approach to enable the evaluation in
such situations is to convert unmatched negatives to true
negatives (Zemblys et al., 2020). In Fig. 23 we provide such
evaluation. Comparing these results to the original values

Fig. 23 Average sample- and event-level accuracy, balanced accuracy,
Cohens’s Kappa (κ), and Matthews correlation coefficient (MCC)
scores of 15 event detection algorithms, evaluated in a binary setting.
All scores represent average performance of binary fixation, saccade
and smooth pursuit detection. Event-level scores were calculated using
the Majority voting, Earliest overlap, Overlap (two modes), Maximum
overlap, and Maximum IoU event matching methods. Unmatched
negatives were converted to true negatives. Error bars show ±1
standard deviation

reported in Fig. 16b, we observe that (i) most noticeably,
MCC and κ scores are non-zero for Earliest overlap and
Overlap matchers; (ii) accuracy and balanced accuracy
become very similar and much higher across the board,
since all negative-class events that used to be treated as false
or missing detections are effectively treated as correctly
detected now; (iii) MCC and κ also increased (where the
comparison can be made – for Maximum Overlap and IoU
matchers), but by much less in comparison.

Declarations

Open Practices Statement The library is implemented in Python – a
free and open-source programming language, as we want to encourage
more researchers to use our codebase for result comparability, without
requiring to obtain often expensive licenses of popular academic
software packages.
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performance in continuous context recognition using event-driven
error characterisation, International Symposium on Location-and
Context-Awareness, pp. 239–255.

Wadehn, F., Weber, T., Mack, D.J., Heldt, T., & Loeliger, H.-A.
(2019). Model-based separation, detection, and classification of
eye movements. IEEE Transactions on Biomedical Engineering,
67(2), 588–600.

Zemblys, R., Niehorster, D.C., & Holmqvist, K. (2019). Correction
to: “Using machine learning to detect events in eye-tracking data”.
Behavior Research Methods, 51(1), 451–452.

Zemblys, R., Niehorster, D.C., & Holmqvist, K. (2019). gazeNet:
End-to-end eye-movement event detection with deep neural
networks. Behavior Research Methods, 51(2), 840–864.

Zemblys, R., Niehorster, D.C., & Holmqvist, K. (2020). Evaluating
three approaches to binary event-level agreement scoring. A reply
to Friedman (2020). Behavior Research Methods.

Zemblys, R., Niehorster, D.C., Komogortsev, O., & Holmqvist, K.
(2018). Using machine learning to detect events in eye-tracking
data. Behavior Research Methods, 50(1), 160–181.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1714 Behavior Research Methods (2023) 55:1653–1714

https://etra.acm.org/2019/tutorials.html
https://emdetectionmetrics.page.link/etra2019

	Evaluating Eye Movement Event Detection
	Abstract
	Introduction
	Evaluation pipeline and paper structure
	Intended audience and related work
	Remarks on terminology

	Evaluation protocols
	Data sources
	Publicly available datasets
	Eye tracking data collection and annotation
	Collection
	Annotation
	Synthetic data

	Validation procedures
	How to split the data
	Time-wise splitting for eye tracking data.


	Evaluation procedures
	Comparison against other algorithms
	Robustness against varying data quality and other data- or algorithm-specific parameters
	Cross-dataset evaluation


	Evaluation methods
	Evaluation based on eye movement metrics
	Evaluation using similarity to the ground truth event parameters

	Evaluation based on stimuli parameters
	Video-based evaluation for smooth pursuit detection

	Application-based evaluation
	Detection performance evaluation
	Sample-level evaluation
	Event-level evaluation
	Event matching
	Matching symmetry
	One-to-many and many-to-one matching

	Multiclass vs. binary evaluation
	Interaction with event matching
	Descriptiveness
	Negative-class events

	Handling undefined events


	Evaluation metrics
	Event quality metrics
	Event timing
	Bland-Altman analysis

	Levenshtein distance
	Sample Error Rate
	Event Error Rate


	Confusion matrix-based measures
	Accuracy
	Binary metrics
	Precision
	Sensitivity
	Specificity
	F1-score
	Jaccard index

	Receiver operating characteristic curve
	Single operating point ROC
	Different settings and comparability

	Cohen's Kappa
	Adjusted event-level Cohen's kappa

	Correlation

	Summary

	Event matching methods
	Majority voting
	Manual error coding
	Earliest overlap matching
	Multiclass extension of the earliest overlap matching

	Overlap matching
	Multiclass extension of the overlap matching

	Maximum overlap matching
	Maximum intersection-over-union matching
	Note on implementation differences

	Window-based matching
	Event-driven error characterization
	Algorithm evaluation using EDEC

	Ensemble of matching schemes
	Summary

	Interaction between the performance metrics and event matchers
	Method
	Results
	Accuracy
	Balanced accuracy

	Sample-level and Majority voting evaluation
	Event-level performance evaluation
	Normalized Levenshtein distance
	Binary metrics


	Summary, recommendations, and discussion
	Ensuring fair evaluation
	Choosing the evaluation protocol
	Datasets
	Comparison

	Choosing an evaluation method
	Comparing algorithms that detect different sets of eye movement types

	Ensuring descriptive and concise evaluation
	Event matching
	Match strictness
	Overlap as a minimal requirement for matching

	Evaluation measures
	Detection performance metrics
	Limitations of a confusion matrix
	Binary vs. multiclass metrics
	Event quality measures


	Ensuring comparability to the literature

	Conclusions
	Appendix  A: Eye movement ``detection'' vs ``classification''
	Appendix B: Clean observer and stimuli separation
	Appendix  B: Clean observer and stimuli separation
	Appendix C: Time-wise splitting for eye tracking data
	Appendix  C: Time-wise splitting for eye tracking data
	Appendix D: Corner cases for sample-level metrics
	Appendix  D: Corner cases for sample-level metrics
	Appendix E: Event matching using Event-driven error characterization (EDEC)
	Appendix  E: Event matching using Event-driven error characterization (EDEC)
	Appendix F: Under- and over-estimated performance using balanced accuracy
	Appendix  F: Under- and over-estimated performance using balanced accuracy
	Appendix G: Effect of treating unmatched negatives as true negatives
	Appendix  G: Effect of treating unmatched negatives as true negatives
	Declarations
	References


