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Abstract
Dynamic networks are valuable tools to depict and investigate the concurrent and temporal interdependencies of various vari-
ables across time. Although several software packages for computing and drawing dynamic networks have been developed, 
software that allows investigating the pairwise associations between a set of binary intensive longitudinal variables is still 
missing. To fill this gap, this paper introduces an R package that yields contingency measure-based networks (ConNEcT). 
ConNEcT implements different contingency measures: proportion of agreement, corrected and classic Jaccard index, phi 
correlation coefficient, Cohen’s kappa, odds ratio, and log odds ratio. Moreover, users can easily add alternative measures, if 
needed. Importantly, ConNEcT also allows conducting non-parametric significance tests on the obtained contingency values 
that correct for the inherent serial dependence in the time series, through a permutation approach or model-based simula-
tion. In this paper, we provide an overview of all available ConNEcT features and showcase their usage. Addressing a major 
question that users are likely to have, we also discuss similarities and differences of the included contingency measures.

Keywords  Contingency measures · Dynamic networks · Binary time series · Network approach · Bivariate relationships

Introduction

During the last decennium, a surge of network methods 
washed up on the shores of the behavioral sciences. Net-
works offer valuable tools to depict and investigate the 
complex interdependencies of various variables. The vari-
ables constitute the nodes of the obtained networks and the 
strength of the pairwise or conditional (upon other variables) 
associations between the variables are represented through 
the edges that connect the nodes. Network methods have 
been applied to a wide range of problems, including affec-
tive dynamics (e.g., Bodner et al., 2018; Bringmann et al., 
2016), attitudes (e.g., Dalege et al., 2016), beliefs (e.g., 
Brandt et al., 2019), psychopathology (Borsboom, 2008, 
2017; Borsboom & Cramer, 2013; Cramer et al., 2010; Fried 
et al., 2017), and parent-child interactions (Bodner et al., 
2018, 2019; Van keer et al., 2019).

Network methods come in variations. First, the 
underlying data can be cross-sectional (i.e., many 
individuals are measured once) or intensive longitudinal 
(i.e., one or more individuals are measured frequently). 
Psychopathological networks, for example, were initially 
built based on cross-sectional data, facilitating insight 
into how symptoms relate across individuals (e.g., 
Boschloo et  al., 2015; Cramer et  al., 2016; Isvoranu 
et  al., 2016). Complementing these cross-sectional 
networks with dynamic networks, built on intensive 
longitudinal data, sheds additional light on the within-
subject relations between variables over time (e.g., 
Bringmann et  al., 2013; Bulteel, Tuerlinckx, et  al., 
2018b; Epskamp, Waldorp, et al., 2018b; Hamaker et al., 
2018). Second, the underlying data can be continuous, 
ordinal, categorical and binary (e.g., absence or presence 
of a behavior), or combinations thereof (mixed data). 
While most methods have been developed for continuous 
data (e.g., Epskamp, Waldorp, et al., 2018b), attention 
has also been paid to binary data (e.g., van Borkulo et al., 
2014) and mixed data (Haslbeck & Waldorp, 2020). 
Third, while most network methods focus on statistical 
model-based conditional variable associations, quantified 
through partial correlations (e.g., Epskamp, Borsboom, 
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& Fried, 2018a; Lafit et al., 2019) or regression weights 
(e.g., Bulteel et al., 2016a), some approaches investigate 
and explore simple bivariate (or pairwise) associations, 
without making model-based assumptions about how 
these connections come about (e.g., Bodner et  al., 
in press). An appealing feature of studying bivariate 
relations is that they are not affected by the composition 
of the variable set, whereas conditional associations 
may change when a variable is added or excluded. On 
the other hand, model-based network approaches are 
obviously attractive in that they may offer deeper insight 
into the mechanisms behind the observed associations. 
In the end, as holds for statistical analyses in general, the 
research question at hand should determine whether to 
focus on conditional or unconditional associations.

Scrutinizing the available software with the above 
three distinctions in mind, the development focused 
on conditional association-based approaches for 
continuous cross-sectional data (e.g., Epskamp & 
Fried, 2018). Software for the analysis of binary data 
(e.g., mgm, Haslbeck & Waldorp, 2020; IsingFit, van 
Borkulo et  al., 2014) and intensive longitudinal data 
(e.g., mlvar, Epskamp, Waldorp, et al., 2018b) has also 
been proposed. However, software for networks based 
on pairwise associations of binary intensive longitudinal 
variables is still missing, although such approaches have 
led to meaningful insights when investigating micro-
coded parent-child interactions (Bodner et  al., 2018, 
2019; Van keer et al., 2019) and longitudinal depression 
symptom reports (Bodner et al., in press). Therefore, 
we propose an R-package for building such contingency 
measure-based networks, which we called ConNEcT 
(Bodner & Ceulemans, 2021). The ConNEcT package 
includes seven contingency measures: proportion of 
agreement, the classic and the corrected Jaccard index, 
phi correlation coefficient, Cohen’s kappa, odds ratio, 
and log odds ratio. Other contingency measures can be 
easily added, as we will demonstrate. The package can 
be used to investigate concurrent associations (e.g., the 
association between two behaviors X and Y at the same 
moment) as well as temporal sequences (e.g., is the 
presence of behavior X at time point t associated with the 
presence of behavior Y at time point t+δ). The ConNEcT 
software also provides a tailor-made significance testing 
framework (Bodner et al., 2021). Finally, the package 
allows the visualization of the results in network figures.

The paper is organized into four modules, focusing on 
data requirements and exploration, contingency measure 
selection and computation, significance testing, and 
network visualization, respectively. Each module first 
gives a theoretical introduction to the topic, where we 
also delve deeper into some so far unanswered questions, 
such as the similarities and differences of the included 

contingency measures. Next, we explain how to apply 
the ConNEcT R-Package using illustrative examples. 
Figure 1 gives a visual overview of the four modules, 
making use of intensive longitudinal depression symptom 
data from a patient included in the study by Hosenfeld 
et al. (2015), which was also analyzed by Bodner et al. 
(in press).

Module 1: Data requirements 
and exploration

ConNEcT has been developed to investigate bivariate con-
tingencies in binary time series data. Such data show up in 
different forms in the behavioral sciences. To acknowledge 
this variety, we will make use of three data examples to 
illustrate the possibilities. The datasets are also included in 
the package.

(1)	 Symptom Data. The depression symptom data (see 
Fig. 1) stem from a patient in the study of Hosenfeld 
et al. (2015), also used in Bodner et al. (in press). The 
patient reported each week on the presence or absence 
of eight depression symptoms (core symptoms, lack 
of energy, eating problems, sleeping problems, 
psychomotor problems, feelings of guilt, cognitive 
problems, and preoccupation with death) for 145 
weeks. This data set is used in the introduction and in 
Modules 1 and 3.

(2)	 Family Data. These data, collected by Sheeber et al. 
(2012) and re-analyzed by Bodner et al. (2018), stem 
from a family interaction between two parents and 
their adolescent son or daughter during a nine-minute 
problem-solving interaction. The presence and absence 
of expressions of ‘anger’, ‘dysphoric’ feelings, and 
‘happiness’ were coded for each family member in an 
event-based way (i.e., noting when a certain behavior 
starts and when it stops). The codes were subsequently 
restructured into second-to-second interval data, 
resulting in a 540 seconds by nine variables binary 
data set. This data set is used in Modules 2 and 4.

(3)	 Attachment Data. In an attachment study (Bod-
ner et al., 2019; Dujardin et al., 2016), a mother and 
her child (aged 8 to 12 years) were videotaped while 
working on a three-minute stressful puzzle task. The 
interaction was coded in two-second intervals for the 
presence and absence of positive, negative, or task-
related behavior. The data set contains seven variables 
(‘Mother positive’, ‘Mother negative’, ‘Mother work-
ing alone’, ‘Mother and child working together’, ‘Child 
positive’, ‘Child negative’ and ‘Child working alone’) 
and 90 time points. This data set will be used in Module 
3 and 4.
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Theory

Number of variables and time points

Before starting the analysis, we recommend careful con-
sideration of which variables should be included. Though 
the values for pairwise contingency measures are not 
influenced by the total set of variables (in contrast to 
multivariate models in which parameter estimates can 
change when additional variables are modeled), includ-
ing a high number of variables can have consequences 
for the interpretability of the networks as it may imply 
that the network may become a complex, hard to interpret 
tangle of links and nodes.
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Fig. 1   Overview of the four ConNEcT modules using the data of 
weekly reported depression symptoms. This example patient (Hosen-
feld et  al., 2015) reported the presence or absence of eight depres-
sion symptoms (Core symptoms, lack of energy, eating problems, 
sleeping problems, psychomotor problems, feelings of guilt, cogni-
tive problems, and preoccupation with death) for 145 weeks. a Line 
plot of the depression symptoms over weeks, where elevated line seg-
ments indicate presence and segments that coincide with the refer-

ence line indicate absence. b Heatmap of the strength of the pairwise 
classic Jaccard values, quantifying concurrent contingency. c Histo-
gram of the sampling distribution of the classic Jaccard value; the 
solid line indicates the observed Jaccard value and the dashed line the 
95th percentile. d Network of the significant (α=0.05) contingencies; 
the node size reflects the relative frequency of the variables, while the 
saturation and width of the undirected edges represent the strength of 
the concurrent contingency.

Table 1   Relative frequencies and auto-dependencies of the Symptom 
Data

Relative frequency p1 ∣ 1 p1 ∣ 0

Core 0.71 0.98 0.05
Energy 0.57 0.96 0.05
Eat 0.00 NaN 0.00
Sleep 0.93 0.99 0.20
Motor 0.93 0.99 0.20
Guilt 0.46 0.92 0.05
Cogn 0.71 0.98 0.05
Death 0.65 0.96 0.08
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The optimal number of time points depends on two 
different types of considerations. First, the obtained number 
of time points is determined by the length of the covered 
time period and the frequency of the measurements, with 
longer time periods and higher frequency leading to 
longer time series. In case one is interested in rare (e.g., 
physical aggression) and short-lived behaviors (e.g., 
eye-movements), the overall time period should be long 
and the measuring frequent, to end up with a sufficient 
amount of time points at which the behavior is shown. For 
longer-lasting and more frequently occurring behaviors 
shorter and coarser time series may do. The second type 
of consideration pertains to statistical power. Longer time 
series will increase the available amount of information 
and decrease the estimation uncertainty of the contingency 
strength, and thus increase the power of significance tests 
(see Module 3).

Relative frequency and serial dependence

During data exploration, two characteristics of time 
series data are especially important to consider: the 
relative frequency (i.e., the proportion of ‘1’s; see 
above and Module 3) and the serial dependence (or 
auto-dependence) of each variable. Variables with 
very high or very low relative frequencies may not be 
very informative, since the absolute values of many 
contingency measures become hard to interpret in 
case of extreme relative frequencies (see Module 
3). Additionally, a simulation study by Brusco et  al. 
(2021) indicates that some contingency measures lead 
to comparable contingency values for certain relative 
frequencies but not for others, again suggesting that the 
relative frequency of the variables under study might be 
important to consider when deciding which contingency 
measure to use.

Serial dependence refers to the tendency of behaviors 
to be present for more than one time point. We can 
quantify it by calculating conditional probabilities 
and comparing them to each other or to the relative 
frequencies. Specifically, if the probability that a ‘1’ is 
observed given that a ‘1’ has been observed the time 
point before, p(Xt=1|Xt-1=1) or p1 ∣ 1 for ease of notation, 
differs from the probability that a ‘1’ is shown given a 
zero at the previous time point, p(Xt=1|Xt-1=0) or p1 ∣ 0, 
or from the relative frequency of ‘1’s, p(Xt=1) or p1, this 
suggests that serial dependence is present. Accounting 
for such serial dependence is important, to avoid false 

positives during significance testing (Bodner et  al., 
2021).

Tutorial

The ConNEcT package offers some data exploration 
features. Users can visualize the course of the raw data over 
time, as well as calculate and visualize relative frequency 
and auto-dependence.

Basics of the conData function

The input for the conData function is the raw data, struc-
tured in a time-points-by-variable matrix. Missing val-
ues need to be retained because certain operations (e.g., 
lagging the data; see Module 2) might lead to erroneous 
contingencies when missing values have already been 
removed. The function removes columns that contain 
non-binary values (e.g., identity number or time interval 
counting) and calculates the relative frequency and con-
ditional probabilities p1 ∣ 1and p1 ∣ 0 of each variable (see 
3.2.3). The output is a conData object, containing data: 
the raw data, after removing continuous and non-binary 
variables, and probs, a table containing the relative fre-
quencies and conditional probabilities of all variables. 
The labels of the variables are stored in varNames.

Relative frequency and serial dependence

To examine the relative frequency and the auto-dependence 
of each variable, we can examine the contents of the probs 
field of the conData object (Table 1). The symptom Death, for 
example, is shown 65% of the time (i.e., 94 of the 145 time 
points). Moreover, this symptom is characterized by high auto-
dependence, since almost every 1-score is followed by another 
1-score (i.e., 90 out of the 94 times, resulting in a p1 ∣ 1 of .96 
and p0 ∣ 1of .04), while a 1-score rarely follows a 0-score (4 out 
of the 51 times, resulting in p1 ∣ 0 of .08 and p0 ∣ 0 of .92).

Visualizations

The package provides different visualizations of the raw 
data that might reveal interesting characteristics, using 
the plot function. We will illustrate the function with the 
Symptom Data (see Fig. 1). First, the conData function is 
applied to the data and the results are saved in a conData 
object that we call Sdata. The plot.conData function can 
simply be called plot(Sdata). The plottype of the output 
can be specified as ‘interval’, ‘line’, or ‘both’. Figure 2 
shows the plot type ‘interval’, displaying a vertical tick 
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line indicates that the symptom is present (respectively, 
absent). It is also possible to choose ‘both’ to get a line 
plot with ticks at all intervals.

The relative frequencies can be visualized employ-
ing the barplot function1. This function has two 
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Fig. 2   Plot of the Symptom Data using the plot.conData function, plottype=’interval’.

1  The function barplot.conData is an extension of the generic barplot 
function. When applying barplot() to a conData object (i.e., the out-
put of the conData function), R will automatically call barplot.con-
Data. It automatically provides the horizontal barplot, which matches 
nicely with the line plots (Fig. 1a, Fig. 2) as it has the same Y-axis. 
The code for a vertical barplot can be found in the supplementary 
material.

each time a symptom was reported. The time intervals 
are indicated on the x-axis, while the y-axis represents 
the different symptoms. Alternatively, the plot type ‘line’ 
(see Fig. 1a) shows the presence of a variable in terms 
of the height of the line, where the line is higher than 
(respectively, coinciding with) the grey dotted auxiliary 

different plot types, plotting either only the relative fre-
quency (plottype=‘RelFreq’; see Fig. 3) or all three proba-
bilities p1, p1 ∣ 1, and p1 ∣ 0 (plottype=‘All’; see supplementary 
material https://​osf.​io/​p5ywg/).
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Module 2: Contingency measure selection 
and computation

Theory

To quantify the strength of the bivariate association 
between each pair of variables (X, Y), contingency values 
are computed. In the literature, a myriad of contingency 
measures has been proposed. They are often distinguished 
along two lines (e.g., Brusco et al., 2021; Warrens, 2008a): 
First, they differ in whether contingencies are assessed 
while accounting for the co-occurrence of zeros or not. 
Second, while some measures do not account for the 
amount of agreement that can be expected based on the 
relative frequencies of the variables, others compensate 
for this expected amount of agreement and are designed 
to have a zero value if the variables can be considered 
statistically independent. To represent these distinctions2, 
the following popular contingency measures were included 
in the ConNEcT-package: proportion of agreement 
(co-occurrence of zeros included, no correction), classic 
(co-occurrence of zeros ignored, no correction), and 
corrected Jaccard index (co-occurrence of zeros ignored, 
corrected), Cohen’s kappa (co-occurrence of zeros 
included, corrected), and the phi correlation coefficient 
(co-occurrence of zeros included, corrected). We also 
included the (log) odds ratio, because of its relationship 

to logistic regression, which often underlies model-based 
network approaches for binary data (e.g., van Borkulo 
et al., 2014). Interestingly, the chosen coefficients also 
represent the three biggest clusters of contingency 
measures discussed by Brusco et al. (2021).

In what follows, we will first introduce the different 
contingency measures. Second, we will investigate how 
the measures relate to each other. We will especially focus 
on the domain in which each measure is defined (the find-
ings are related to the definitions of the measures in the 
Appendix) and the correlations between the measures. We 
illustrate these relations by applying the different measures 
to empirical data. Third, we will explain how contingency 
measures can also be used to investigate the temporal rela-
tions between variables.

Introduction of the contingency measures

Notation  Table  2 shows the crosstabulation of a variable 
pair (X, Y), where the values ‘1’ and ‘0’ indicate the two 
possible values of the variables, indicating, for example, 
whether a certain behavior is shown (‘1’) or not (‘0’) or 

Death

Cogn

Guilt

Motor

Sleep

Eat

Energy

Core

0
.0

0
.2

0
.4

0
.6

0
.8

Fig. 3   Barplot depicting the relative frequencies of the Symptom Data.

Table 2   Crosstabulation of two binary variables X and Y

Variable Y

Value(Y)= 1 Value(Y)=0 Total Y

Variable X Value(X)=1 a b pX
1

Value(X)=0 c d pX
0

Total X pY
1

pY
0

1

2  Warrens (2008a) concludes in his dissertation that the seven most 
important coefficients with the most attractive properties include the 
classic Jaccard index (≈ Tanimoto), Sokal and Michener (≈Rand 
index and proportion of agreement), and Cohen’s kappa.
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whether a symptom is reported as present (‘1’) or as absent 
(‘0’). In this table, a denotes the proportion of time points 
at which both variables equal ‘1’, b the proportion that only 
variable X equals ‘1’, c the proportion that only variable Y 
equals ‘1’, and d the proportion that both variables equal 
‘0’. We also use the relative frequencies pX

1
 and pY

1
 that were 

introduced in Module 1, and their complements pX
0
 and pY

0
 . 

Note that these relative frequencies equal sums of a, b, c, 
and d. For example, pX

1
= a + b , pY

1
= a + c.

Proportion of agreement  The proportion of agreement PA 
quantifies the observed agreement, that is the proportion of 
time points at which the values of both variables equal either 
‘1’ or ‘0’:

This measure ranges from 0 to 1, with 1 indicating per-
fect agreement and 0 perfect non-agreement (every 1 in one 
time series pairs with a 0 in the other and vice versa). The 
proportion of agreement attaches equal importance to the 
co-occurrence of the values ‘1’ and of the values ‘0’. This for 
instance makes sense when analyzing dichotomous data on 
failed and passed tests (see Brusco et al., 2021) as including 
both double failures and double passes allows to shed light 
on aptitudes and learning deficits. This contingency measure 
is always defined.

Cohen’s kappa  Since the obtained proportion of agreement 
is affected by the relative frequencies of the variables (Bod-
ner et al., 2021), Cohen’s kappa (Cohen, 1960) refines it by 
correcting for chance agreement

where PE is computed as follows:

Since PA = a + d, see Eq. (1), and pX
1
= a + b , etc. we can 

simplify to (Warrens, 2008b):

Cohen’s kappa ranges from -1 to 1 with a value of 0 indi-
cating that the two variables are statistically independent. 
From Eq. (4) we derive that this situation occurs if ad equals 
bc. Moreover, kappa is not defined (n.d.) in the cases where 
both time series contain only ‘0’s or ’1’s, as in such cases not 

(1)PA(X, Y) = a + d

(2)�(X, Y) =
PA − PE

1 − PE

.

(3)PE(X, Y) = pX
1
pY
1
+ pX

0
pY
0
.

(4)�(X, Y) =
2(ad − bc)

pX
1
pY
0
+ pX

0
pY
1

only the numerator but also the denominator of (4) reduces 
to zero.

Classic Jaccard index  The Jaccard index was introduced by 
Jaccard (1901, 1912), to measure the ecological similarity 
of different geographical regions, based on the co-occur-
rence of specific species. It is calculated as:

The Jaccard index thus equals the proportion of time 
points at which both variables equal ‘1’ over the proportion 
of time points at which at least one of them is shown. This 
means that the Jaccard index only depends on the number of 
time points, in which the values of both variables equal ‘1’, 
but ignores those where both equal ‘0’.

This measure may, therefore, be useful for behavioral 
science questions, for which the co-absence of symptoms 
or behaviors is of less importance than their co-occurrence 
(Bodner et al., in press; Brusco et al., 2019). For example, 
Main et al. (2016, p. 915) argue that they ‘do not wish to 
treat shared absence of a target emotion in two people as a 
kind of synchrony of that emotion.’ The co-absence of emo-
tions and behaviors in micro-coded interaction data is indeed 
often a somewhat artificial result of assigning each coded 
event to a single coding category only, implying that the 
presence of one variable, automatically implies the absence 
of other variables (e.g., SPAFF, Coan & Gottman, 2007; 
LIFE, Hops et al., 1995). The Jaccard index ranges from 
0 to 1 and is not defined if both time series have a relative 
frequency of 0.

Corrected Jaccard index  Like the proportion of agreement, 
the classic Jaccard measure (JA) does not correct for chance 
agreement. Therefore, Bodner et  al. (2019) developed a 
corrected Jaccard index (JCorr), in which the classic Jac-
card index is compared to an expected value (JE), computed 
using the principles outlined in Albatineh and Niewiadom-
ska-Bugaj (2011):

JE expresses the Jaccard value that we would expect if X 
and Y do not systematically co-occur. It only depends on the 
relative frequencies of X and Y:

(5)JA(X, Y) =
a

a + b + c

(6)JCorr(X, Y) =
JA − JE

1 − JE

(7)JE(X, Y) =
pX
1
pY
1

1 − pX
0
pY
0
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Whereas a corrected Jaccard value of 0 implies that X and 
Y do not co-occur more than expected by chance, a negative 
value indicates that X and Y co-occur less than expected by 
chance. The corrected Jaccard is not defined if both time 
series have a relative frequency of 0 or of 1.

Odds ratio and log odds ratio  The odds ratio OR(X, Y) and 
the log odds ratio LOR(X, Y) are defined as

The odds ratio ranges between 0 and +Infinity, with a 
value of 1 (i.e., ad = bc ), indicating statistical independence 
between the variables. The value is not defined ( +Infinity), 
if b and/or c equals zero, implying that X or Y does not occur 
without the other (see also Bodner et al., 2021). The value 
is 0 when a and/or d equal zero, implying that X and Y do 
neither co-occur nor are they co-absent. In these cases, the 
value of the log odds ratio is not defined (-Infinity). The log 
odds ratio, therefore, ranges between -Infinity and +Infinity, 
with a value of zero indicating that statistical dependence 
cannot be assumed. Finally, both indices are also not defined 
if at least one of the variables has a relative frequency of 0 
or 1.

Phi correlation coefficient  The phi correlation coefficient 
(Yule, 1912) equals the Pearson correlation coefficient com-
puted on binary data. It can be calculated as:

(8)OR(X, Y) =
ad

bc

(9)LOR(X, Y) = log
(

ad

bc

)

r
�
(X, Y) =

ad − bc
√

pX
1
pX
0
pY
1
pY
0

The phi-correlation coefficient, therefore, has a value 
between -1 (perfect disagreement) and 1 (perfect agree-
ment), with 0 indicating statistical independence. Like 
the odds ratio and the log odds ratio, the formula of 
the phi correlation coefficient features a product in the 
denominator. As for them, variables with a frequency of 
1 or 0 imply the phi value to be undefined. In contrast 
to those two measures, the phi correlation coefficient, 
however, is never infinite.

Although the phi correlation coefficient is more often 
not defined than Cohen’s kappa (see Table 3 and the 
Appendix), some equalities between these two meas-
ures strike the eye. First, both Cohen’s kappa and the 
phi correlation coefficient equal 0 if ad = bc (if none of 
the variables has the frequency 0 or 1). Second, it can 
be derived that rφ(X, Y) exactly equals k(X, Y) whenever 
pX
1
= pY

1
.

Other contingency measures  The discussed contingency 
measures are only a subset of all possible measures (see 
Brusco et  al., 2021; Warrens, 2008b). Other measures 
have been proposed, such as Yule’s Q (Bakeman et al., 
1996; Bakeman & Quera, 2011) and the risk difference 
(Lloyd et al., 2016), the recurrence rate of cross-recur-
rence quantification analysis (Main et  al., 2016) and 
Wampold’s transformed kappa (Bakeman et  al., 1996; 
Holloway et  al., 1990). Measures that were developed 
for interrater reliability, like Gwet’s AC (Gwet, 2014; 
Wongpakaran et  al., 2013), Bangidwala’s B (Munoz & 
Bangdiwala, 1997) or Yule’s Y (Yule, 1912), or meas-
ures developed for comparing partitions, like the Rand 
index (Rand, 1971) or the adjusted Rand Index (Hubert 
& Arabie, 1985) might also be suitable. In the Tutorial 
part, we will demonstrate how such alternative contin-
gency measures can be added to the package.

Table 3   Which data characteristics lead to contingency values that are not defined, be it without specification (n.d.) or infinite(+Inf/-Inf), in the 
4860 variable pairs taken from the family study

R returns NaN for the unspecified undefined values and +INF/-INF for the infinite values

Condition contingency measure pX
1
= 0 and

pY
1
= 0

pX
1
= 0 or

pY
1
= 0

b = 0 and/or
c = 0

a = 0 and/or
d = 0

Proportion of agreement
Classic Jaccard n.d.
Corrected Jaccard n.d.
Cohen’s kappa n.d.
Phi correlation coefficient n.d. n.d.
Odds ratio n.d. n.d. +Inf
Log odds ratio n.d. n.d. +Inf -Inf
Frequency 179 983 63 1144
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Impact of the differences between the seven considered 
contingency measures

Contingency measures have been developed in many dif-
ferent domains (biology, economy, interrater agreement, 
partitioning, etc.; Warrens, 2008b). Many of these meas-
ures are hand-tailored for one specific context and use a 
specific notation, which makes a direct comparison of their 
definitions difficult. Therefore, contingency measures are 
often compared by calculating their values on simulated or 
empirical data (Brusco et al., 2021; Todeschini et al., 2012). 
Likewise, we will investigate the differences between the 
seven contingency measures in practice by calculating their 
values on empirical data and comparing the resulting values. 
To this end, we analyzed 4860 time series pairs taken from 
the study from which the Family Data (see Module 1) were 
also taken. The data represent the interaction data of several 
different families. The variables have a prevalence ranging 
between 0 and .94 with a mean of .12.

First, we investigate the domains in which each measure 
is (not) defined. Table 3 summarizes the conditions that lead 
to not defined values, be it unspecified (n.d.) or infinite (+Inf 
or -Inf) in these 4860 variable pairs and their prevalence 
for the different contingency measures (as discussed in sec-
tion 12). In the Appendix, we investigate how these find-
ings can be explained by the definitions of the contingency 
measures. There, we also discuss all potential cases that lead 
to not-defined values also including those cases that are not 
shown in this data, for example, those for variables with 
prevalence 1 (see Appendix Table A1, A2, A3).

Second, we investigate how the different measures relate 
to each other. The values of the contingency measures, espe-
cially their means and standard deviations (Table 4), were 
quite different. As a direct comparison, therefore, was diffi-
cult, we investigated whether the rank order was comparable 

between measures by calculating the Spearman rank cor-
relations across the 2491 binary variable pairs yielding 
defined and finite values for all contingency measure (2369 
out of the 4860 variable pairs from the sample above led 
to undefined values for at least one contingency measure; 
see Table 3). The corresponding scatter plot matrix and the 
distributions of the contingency values can be consulted in 
the Appendix (Figure A1).

Table 4 shows that Cohen’s kappa, corrected Jaccard, and 
phi correlation coefficient have very high rank order correla-
tions, whereas the proportion of agreement yields the most 

Table 4   Spearman rank order correlations between the contingency measures across the 2491 binary time series pairs that yielded defined values 
for all contingency measures

Note. From the 4860 variable pairs of the sample above, 2369 variable pairs lead to undefined values for at least one contingency measure (see 
Table 3)

Contingency measure 1 2 3 4 5 6 7

1 Proportion of agreement .377 .648 .642 .656 .684 .684
2 Classic Jaccard .850 .849 .853 .837 .837
3 Corrected Jaccard 1.000 .994 .967 .967
4 Cohen’s kappa .994 .964 .964
5 Phi correlation coefficient .978 .978
6 Odds ratio 1.000
7 Log Odds ratio

Mean (SD) 0.75 (.15) 0.15 (.17) 0.12 (.23) 0.09 (.17) 0.12 (.24) 12.8 (49.7) 0.7 (1.82)

-
0
.5

0
.0

0
.5

1
.0

Phi

CorrJacc

Kappa

Fig. 4   Relationship between Cohen’s kappa, corrected Jaccard and 
phi correlation coefficient for 3698 pairs binary time series (1162 of 
the 4860 pairs of the original sample yielded undefined values for at 
least one of the contingency measures; see Table 3). The triplets are 
sorted based on Cohen’s kappa values.

309Behavior Research Methods (2023) 55:301–326



1 3

deviating ranking, followed by the classic Jaccard. Figure 4 
investigates the differences between kappa, the corrected 
Jaccard, and phi in more detail by plotting their values as a 
function of the obtained kappa values. The figure reveals that 
the three indices coincide when kappa equals 0, but deviate 
elsewhere. Phi and kappa values are equal in some cases 
(e.g., when the relative frequencies of both variables equal 
each other), but in general phi yields higher absolute values. 
The corrected Jaccard, in contrast, yields less extreme values 
than kappa.

From concurrent to temporal relations

So far, we have only discussed concurrent bivariate relations. 
The temporal sequencing of variables can be used to investigate 
whether the presence of variable X at time point t is linked 
to the presence of variable Y one or more time points later, 
or vice versa. For instance, in coded interaction tasks the 
behavioral sequences between the interacting individuals are 
often studied (Bodner et al., 2018). Interestingly, such questions 
can be investigated by implementing the very same contingency 
measures, after appropriately lagging one of the two variables. 
For instance, to assess the strength of the association between 
X (at one time point) and Y (at the next time point), we calculate 
the contingency of Xt and Yt+1, implying a lag of one on Y. 
Per pair (X, Y), we always examine two temporal relations, one 
where only X is lagged and one where only Y is lagged; in both 
cases the same lag is used. This makes it, for example, possible 

to investigate whether both directions are significant or only 
one of them (or none).

An important question, however, is how to determine how 
large this lag should be. Most often this decision is taken 
based on previous findings or the research hypothesis. When 
there are no clues, however, one can obtain a tentative deci-
sion by considering different lags and evaluating how the 
values of the contingency measure change across different 
lags, through the inspection of a contingency profile. Spe-
cifically, we advise checking at which lag the contingency 
value becomes maximal and retaining this lag. The idea is 
based on a study by Main et al. (2016)3. To illustrate this 
principle, we plotted two contingency profiles for the Fam-
ily Data showing how the classical Jaccard index fluctuates 
across different lags (Fig. 5). The contingency profile for the 
Jaccard association between ‘father happy’ and ‘adolescent 
happy’ (panel a), shows that the Jaccard value is maximal 
at a lag of 0 (dashed line), providing evidence of a concur-
rent association (e.g., they probably laugh a lot together). 
In panel b, the Jaccard value reaches its maximum at a lag 
of 4, suggesting a leader-follower behavioral sequence, 

-10 -5 0 5 10

lag

fahappy  =>  adhappy

-10 -5 0 5 10

lag

adanger  =>  moanger

Fig. 5   Two Jaccard-based contingency profiles for the Family Data. 
Whereas panel a provides evidence for a concurrent association 
(maximum at lag 0), panel b suggests a behavioral sequence, in which 

the maximum is reached if the angry behavior of the mother is lagged 
by four time points.

3  Main et al. use diagonal recurrence profiles (DRP) from recurrence 
quantification analysis. This method was originally designed to find 
the optimal lag in reoccurring patterns within variables. Main et  al. 
translate this idea to analyze the lags in dyadic data and determine 
whether the binary micro-coded interactions show concurrent syn-
chrony (lags close to 0) or more a turn-taking pattern (lags differ from 
0).
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where the adolescent’s anger leads to an angry reaction of 
the mother four seconds later. Although these contingency 
profiles shed interesting light on the temporal dependence 
structure, they also indicate that finding a one-lag-fits-all-
associations solution may not be very realistic. Therefore, it 
might make sense to apply the different indicated lags on the 
same data and compare the resulting networks, to shed light 
on which contingencies are concurrent and which are of a 
fast- or slow-reacting nature (Van keer et al., 2019; Wilder-
jans et al., 2014). Note that the described procedure to select 
the optimal lag is descriptive, in that no significance test is 
performed. Investigating how to perform such lag selection 
tests is an interesting direction for future research.

Tutorial

Using the Family Data, we first discuss the conMx func-
tion that is provided to compute a contingency matrix 
and show how to visualize it in a heatmap using corrplot 
(Wei & Simko, 2021). Second, we illustrate how to obtain 

contingency profiles. Finally, we explain how alternative 
contingency measures can be integrated into the package.

Basics of the conMx function

The conMx function takes the following input arguments:

•	 data: Raw time series data in a time-point-by-variable 
matrix. Before calculating the contingency values, the 
non-binary variables will automatically be removed 
using the conData function (See Module1).

•	 lag: (default lag=0, indicating co-occurrence of data) a 
non-negative number, indicating the intervals for which 
the subsequent data shall be lagged. Lag=5 means that 
the contingency measure is calculated between all pos-
sible pairs Xt and Yt+5 (thus also between Yt and Xt+5,).

•	 conFun: The function used to calculate the contingency 
measure. For now, the classic Jaccard index (funClass-
Jacc), corrected Jaccard (funCorrJacc), Cohen’s kappa 
(funKappa), proportion of agreement (funPropAgree), odds 
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d) Phi Correlation Coefficient

Fig. 6   Heatmaps of the contingency matrices  for a classic Jaccard, b corrected Jaccard, c Cohen’s kappa, and d the phi correlation coefficient 
for the Family Data, using a lag of 1.
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ratio (funOdds) and log odds ratio (funLogOdds) and the 
phi correlation coefficient (funPhiCC) are included.

and yields a conMx object as output, with two fields

•	 value, a V by V matrix, with V indicating the number of 
variables. If a lag larger than 0 is used, the rows of the 

asymmetric matrix indicate the leading variable, and the 
columns the following variable. If the lag equals zero, the 
matrix is symmetric.

•	 para, the parameters of the analyses, subdivided in the 
lag field (lag), the name of the contingency function 
(funName), and the names of the variables (varNames).

Calculating contingency matrices

Let us now take a look at the Family Data. We use a lag 
of one second to investigate the fast temporal sequenc-
ing of the emotional expressions, and the classic Jac-
card measure to focus on the sequential co-occurrence 
of emotional reactions.

To visualize the contingency matrix as a heatmap, 
we make use of the corrplot function from the R pack-
age corrplot (Wei & Simko, 2021). The name of the 
contingency measure used to compute contingencies is 
added with a mtext to the plot after extracting it from the 
conMx$para$funName field.

Panel a in Fig. 6 shows the Jaccard contingency matrix. 
To find the contingency between ‘adolescent happy’ 
and ‘mother happy’ one second later we look for the 
J(adhappy, mohappy) value (in the last row and the sev-
enth column) which equals .33. The other panels in Fig. 6 
provide the contingency matrices for Cohen’s kappa, the 
corrected Jaccard, and the phi correlation coefficient 
Fig. 7.
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Fig. 7   Contingency profile for the happy emotional expressions of 
mother, father, and adolescent.
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Calculating and visualizing a contingency profile

To assess which lag is most suitable for investigating 
the temporal dependencies, we make use of contingency 
profiles (see Fig. 5). A contingency profile plots the con-
tingency between two variables for different lags. We can 
make this plot using the conProf function, which needs 
as input the data (data) and the contingency measure of 
interest (conFun). We also need to specify the maximum 
lag of interest (maxlag). The output is a conProf object 
that consists of a value that includes (maxlag*2+1) con-
tingency matrices for the different lags (ranging from 

4  The plot function here refers to the plot.conProf functions which is 
an extension of the generic plot function. When applying plot() to a 
conProf object (i.e., the output of the conProf function), R will auto-
matically call plot.conProf.

research question (e.g., an extension to existing research) 
might ask for a specific contingency measure that is 
not yet included. The ConNEcT package allows to 

-maxlag over zero to +maxlag), the parameters (para) 
containing the maximum lag (maxLags), the name of the 
contingency function (funName) and the names of the 
variables (varNames). The contingency profile is drawn 
using the following code4:

The contingency profiles are arranged like a matrix. 
For instance, the second contingency profile in the first 
row pertains to the contingency between mohappy and 
fahappy. Whereas the positive lags indicate that mohappy 
leads and fahappy follows, the negative lags represent the 
values for the reverse direction (i.e., fahappy followed by 
mohappy). Therefore, the two off-diagonal plots per vari-
able pair are mirrored versions of one another. The pro-
files on the diagonal are the auto-profiles, which reach 
their maximum at a lag of 0.

Experts’ excursion: How to integrate another contingency 
measure

The functions that are already included in the package 
cover a wide range of possibilities. However, a specific 
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include other contingency measures. We will showcase 
this by including the calculation of Gwet’s AC1 
(Gwet, 2014; Wongpakaran et al., 2013), an interrater 
agreement measure for binary data, that corrects for 
chance agreement. In the first step, the calculation of 
the measure should be specified, either manually or by 
calling a function. Here we make use of the function 
gwet.ac1.raw of the irrCAC-package (Gwet, 2019). 
The value for Gwet’s AC can be retrieved by gwet.ac1.

raw(x)$est$coeff.val and is stored in the value field. 
Second, the function must be given a name, both in 
the funName field and in the title. Finally, the function 
should be saved in an R -file using the same name 
(funGwet.R).

The function needs to be loaded using source() and 
the dependencies installed and loaded before running 
any function on the newly created contingency measures 
function.
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Fig. 8   Dependence of contingency values on the relative frequency 
and serial dependence. The first row plots the contingency values 
as a function of relative frequencies, with the different lines rep-
resenting the mean (solid line), +/- 1 sd (dashed lines), and min/
max (dotted lines). The values are calculated based on simulated, 
independent variables X and Y ( pX

1
= pY

1
range between 0.05 and 

0.95; each pair contains 500 time points) without auto-dependency 
( pX

1
= pX

1∣1
= pX

1∣0
= pY

1
= pY

1∣1
= pY

1∣0
 ). Row 2-4: Distributions of 

the contingency measures. While the relative frequency of X and Y 
always equals .5, their auto-dependency varies across the rows, in 
that in the second row p1|1=p1|0=0.5 (light-grey), in the third row, 
p1|1=0.8 (middle-grey), and in the bottom row p1|1=0.95 (black). 
Each panel is based on 100 replicates of the pairwise independent 
variables X and Y (each consisting of 500 time points) on which con-
tingency values were calculated for all 10,000 possible pairs.
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Module 3: Testing Significance

Theory

Many network methods prune network edges to avoid that 
further investigations are influenced by links of which the 
value is mainly an artifact of the modeling technique (e.g., 
Epskamp & Fried, 2018). This is often achieved through a 
regularization approach (e.g., Bulteel et al., 2016b; Kuis-
min & Sillanpää, 2017; Lafit et al., 2019). Implementing 
such approaches is not possible, however, when no mod-
eling approach is used. It might nevertheless be interesting 
to prune a network that relies on simple bivariate relations. 
One alternative strategy that one might think of is to sim-
ply prune edges based on the contingency strength, using 
some overall threshold value. We do not recommend this 
strategy because the contingency strength might depend on 
the relative frequency (Brusco et al., 2021) and the auto-
dependence of the variables (Bodner et al., 2021), as we 
now elucidate further. Figure 8 (first row) illustrates the rela-
tionship between the contingency measures and the rela-
tive frequency by plotting the contingency strength for two 
independently generated variables without auto-dependence 
as a function of their relative frequency. First, some con-
tingency measures highly depend on relative frequency: 
we observe a direct impact of the relative frequency on the 
mean of the obtained values in the U-shaped relation for the 

proportion of agreement and an upward trend for the classic 
Jaccard. The mean of the contingency measures that correct 
for the relative frequency—kappa, corrected Jaccard, phi—
remains close to zero, as desired. Second, the range and/or 
standard deviation might depend on the relative frequency: 
the observed range for the log odds ratio, for example, is 
much higher for the extreme relative frequencies, though 
the mean remains stable. Third, all contingency measures 
discussed here depend on serial dependence. The second to 
fourth rows of Fig. 8 further put the spotlight on the range 
of the obtained values, now focusing on auto-dependence. 
These rows show the distribution of the obtained values for 
two independent variables with a relative frequency of .5 
and with an auto-dependence that arises from none (sec-
ond row) over moderate (third row) to strong (fourth row). 
The range of the obtained values increases for higher levels 
of auto-dependence. This makes sense as auto-dependence 
may artificially install overlap, which can be mistaken for 
contingency. Specifically, two variables that show identical 
values at least once and contain longer periods of the same 
values within each variable, are more likely to show identi-
cal values also on adjacent time points. As a consequence, 
we observe broader sampling distributions, for higher serial 
dependence.

Therefore, we propose to prune network edges using the 
non-parametric significance testing procedure introduced and 
extensively validated by Bodner et al. (2021). This procedure 

…

(Step 1) Collect binary �me series

… (Step 3) Generate new scores based on original 
data for both variables under the assump�on 
of independence (test specific step)

(Step 2) Compute con�ngency value
(Step 4) Derive the sampling distribu	on of 
the con	ngency values under the assump	on 
of independence

(Step 5) Compare observed con	ngency value 
(grey line) with the 95th percen	le of the 
sampling distribu	on (dashed line)

Fig. 9   Schematic overview of the significance test.
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investigates whether a certain contingency value is bigger 
than would be expected by chance, given the relative fre-
quency and auto-dependency of the data. In what follows we 
briefly summarize the main principles of the test and explain 
the different variants that are included in ConNEcT.

Basic principles

The significance test consists of five steps, depicted in Fig. 9. 
After collecting the time series data (step 1) and calculating 
the chosen contingency measure on a pair of variables (step 
2), N samples or replicates of surrogate variable pairs are 
generated (step 3), under the null hypothesis that both varia-
bles are independent. This generation mechanism of the sur-
rogate data retains the most important characteristics of the 
separate original variables (i.e., relative frequency and serial 
dependence), but breaks down the pairwise interdependence 
between the two variables, to be in line with the null hypoth-
esis. The two generation mechanisms implemented in Con-
NEcT, a permutation-based and a model-based mechanism, 
are discussed in the following two subsections. Next, the 
same contingency measure is computed for each of the N 
by N surrogate variable pairs, yielding a sampling distribu-
tion of the contingency measure under the null hypothesis 

(step 4). In the fifth and last step, we compare this sampling 
distribution of the contingency values for the surrogate data 
with the value obtained in step 2. We consider the latter to 
be significantly stronger if it exceeds a certain percentile of 
the distribution, with the chosen percentile reflecting the 
adopted significance level.

Permutation‑based data generation

As illustrated by Fig. 10, the permutation-based approach 
cuts the original variables into ten5 roughly equal-sized 
segments of adjacent time points and subsequently per-
mutes these segments (Moulder et al., 2018). By permu-
tating the variables independently, the pairwise association 
between them is broken down. The relative frequency is left 
untouched and the serial dependence is also largely kept 
because sequences within the variables are often moved as 
a whole.

Model‑based data generation

In the model approach, the surrogate data is generated by 
simulating new data using characteristics of the original data. 
Specifically, the score for the first time point of the variable 
X is sampled from a Bernoulli distribution using the relative 
frequency pX

1
 as parameter. Next, all other scores Xt are drawn 

from a Bernoulli distribution using the observed conditional 
probability pX

1∣0
 if Xt-1=0 or the conditional probability pX

1∣1
 if 

Xt-1=1. The scores on Y are generated correspondingly. Note 
that the relative frequencies and auto-dependence of the thus 

Observed

Variable 1

10 3 7 1 8 4 9 5 2 6

3 7 9 5 10 6 4 1 8 2

5 10 4 2 8 3 1 6 7 9

1 4 6 8 7 5 3 2 9 10

1 2 3 4 5 6 7 8 9 10

10 8 5 2 3 4 9 6 1 7

1 5 8 7 4 2 6 10 3 9

8 6 10 1 3 9 5 7 2 4

9 3 8 10 2 7 1 4 6 5

1 2 3 4 5 6 7 8 9 10

Variable 2

… …
Permuta�on3

Observed

Permuta�on1

Permuta�on2

Permuta�on100

Permuta�on1

Permuta�on2

Permuta�on3

Permuta�on100

5 6 74

Fig. 10   Schematic representation of the permutation-based data gen-
eration. The two observed time series (Variable 1 and Variable 2) are 
first cut into ten rather equally sized segments. These segments are 
randomly rearranged per variable yielding 100 permuted versions. 

To distinguish the solutions, we colored the second, fourth, sixth, and 
tenth segment in different shades of grey. The contingency measure 
of interest is computed for each pair of permuted variables.

5  The number of ten segments leads to a good trade-off between leav-
ing auto-correlation intact and creating enough variability to avoid 
that the segments of the two variables end up in the same spot by 
chance (Bodner et al., 2021; Bulteel et al., 2018a). Using fewer seg-
ments would retain even more of the serial dependencies, but cause 
less variation in how the segments could be arranged in the permuta-
tion strategy, and vice versa.
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generated data may differ somewhat from the intended values 
due to sampling fluctuations.

Differences between the two data generating mechanisms

Both generation mechanisms often, but not always lead to 
the same test result. These differences can be understood by 
realizing that the permutation-based test keeps the relative 
frequency exactly the same for all surrogate data, whereas 
the model-based test generated surrogate data show some 
variation in relative frequency and auto-dependence. On the 
one hand, the choice of which test to use should, therefore, 
be based on whether or not we consider the relative fre-
quency of the observed data to be fixed or variable. On the 
other hand, the choice may also have practical implications. 
The model-based generation will yield a wider range of con-
tingency values for the surrogate data, but also a smoother 
sampling distribution, due to the variation in relative fre-
quency across the surrogate samples, as is illustrated in 
Fig. 11. Yet, in contrast to the permutation-based generation, 
this feature may generate surrogate data without observa-
tions for variables with a low relative frequency. However, 
if both variables have a relative frequency of 0, many con-
tingency measures cannot be calculated (see Module 2). It 
is, therefore, good practice to take a critical look at the sam-
pling distributions of the significance test.

Tutorial

Basics of the conTest function

Both significance tests are implemented in the conTest func-
tion. Like the conMx function, this function requires the 

specification of data, lag, conFun (see Module 2). Moreover, 
one should also set the following parameters:

•	 typeOfTest: specifies whether a model-based (‘model’) 
or permutation-based (‘permut’; default) data generation 
mechanism is used

•	 adCor: Logical parameter indicating whether (TRUE) or 
not (FALSE) the test should correct for auto-dependency, 
with TRUE being the default. If this parameter is set to 
FALSE, the test does not correct for serial dependence, 
because the surrogate data are generated based on the 
relative frequency only or by using segments of size 1. 
Although Bodner et al. (2021) showed that using these 
tests with time series data leads to an inflation of the type 
1 error, we provide the option for comprehensiveness.

•	 nBlox: the number of segments used in the permutation-
based test; the default value of this parameter equals 10

•	 nReps indicates the number of replicates or surrogate sam-
ples that are generated for each variable (default=100).

The output of the function is an S3 object of class ‘con-
Test’, containing:

•	 allLinks: contingency values (see conMx output)
•	 percentile: percentile of the sampling distribution where 

the observed contingency value is located
•	 pValue: p-value for the one-sided significance test cal-

culated as 1 minus the percentile.
•	 para: the parameter settings for

typeOfTest
adCor
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Fig. 11   Comparison of the sampling distributions of a the model-based and b the permutation-based data generation, using the classic Jaccard to 
quantify the contingency (lag=1) between the variables Mother’s positive and Child’s positive behavior from the Attachment Data.
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nReps
funName
lag
varNames

•	 samples: the generated surrogate samples per 
$variable1Name$variable2Name combination

Applying the significance test

We will illustrate the usage of the function employing the Symp-
tom Data on the not-lagged data (default lag=0). We apply the 

permutation-based test (typeOfTest = ‘permut’), correcting for 
serial dependence (default adCor = TRUE) to the observed clas-
sic Jaccard values (conFun = funClassJacc). For each variable 
in the observed data set 100 replicates (nReps=100) of surro-
gate data will be generated. On all possible pairs of the sur-
rogate data, the contingency measures are calculated, resulting 
in a sampling distribution consisting of 10,000 values. From 
the output test.result, we retrieve the classic Jaccard values in 
the observed data (test.result$allLinks) and the one-sided upper 
p-value (test.result$pValue).

From this output, we may, for example, conclude that the 
concurrent contingency between Guilt and Death has a Jaccard 

6  The p-value depends on the sampling distribution and may, there-
fore, slightly differ when the significance test is run several times, 
using different seeds.

of value .63, which is significant with a p-value of .00036. The 
function returns the exact p-value, without correction for mul-
tiple testing, allowing the user to implement a multiple testing 
correction of choice.

Taking a closer look at the sampling distribution

As was already mentioned above, it is good practice to 
critically inspect the obtained sampling distribution. In 
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our example, we might be interested in the concurrent 
relationships between Energy, Guilt, and Death, implying 
that we want to test three observed contingency values. To 
plot the associated matrix of sampling distributions, we 
first generate the corresponding conTest object. Second, we 
apply the hist.conTest function7. In the case of concurrent 
data, the distributions in the upper triangle of the matrix are 
exactly the same as those in the lower triangle for lagged 
data, they differ of course. By default, the 95% percentile is 
added to each histogram as a dashed line. Other percentiles 
can be requested by specifying the parameter signLev. The 
observed contingency value is added as a full grey line 
(Fig. 12).

Module 4: Networks

Theory

Up to now, we have examined data characteristics, quanti-
fied concurrent and temporal relationships between the vari-
ables over time and investigated whether these relationships 
are significant. This final module focuses on depicting these 
results as a network. We will point towards some advan-
tages of collecting the bivariate relations in a network and 
give some ideas about how the network could be analyzed.

The added value of drawing a network

The variables under consideration constitute the nodes of 
the ConNEcT networks, with the size reflecting their rela-
tive frequencies (Module 1). The edges between the nodes 
visualize the strength of the obtained contingency values for 
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Fig. 12   Sampling distributions of pairwise concurrent contingencies between Energy, Guilt, and Death, from the Symptom Data, quantified 
using the classic Jaccard. The permutation-based test used 100 samples/replications.

7  The function hist.conTest is an extension of the generic hist func-
tion. When applying hist() to an object of the class conTest (i.e., the 
output of the conTest function), R will automatically call hist.conTest.
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the different variable pairs (Module 2). Studying concurrent 
contingencies results in a network with undirected links, 
while focusing on temporal sequences leads to a network 
with directed links. Networks may include all contingency 
values or only the significant ones (Module 3). Networks 
are thus a perfect way to integrate all ConNEcT analyses in 
one plot.

Networks make it easier to discern contingency patterns 
that are sometimes difficult to spot in contingency matrices 
or heatmaps. Figure 13 illustrates this by showing the tem-
poral sequences using a heatmap as well as a network. The 
strength of the sequencing (lag=1) was quantified using a 
corrected Jaccard. Positive values are depicted with blue 
full arrows and negative values with brown dashed arrows. 
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The positive loops between negative child behavior (Cneg) 
and negative behavior of the mother (Mneg), between pos-
itive child behavior (Cpos) and positive maternal behavior 
(Mpos), and between positive child behavior (Cpos) and 
working on the task together (Togth) are easily traced in 
the network, whereas this is harder in the heatmap.

Network psychometrics

Networks can be described in various ways. Multiple 
descriptive measures have been put forward, such as the 
size of a network (i.e., the number of nodes) or centrality 
measures (see Epskamp et al., 2012). The latter measures 
have gained a lot of attention, especially in psychopathologi-
cal symptom networks. As discussed by Bringmann et al. 
(2019), the interpretation of these measures is, however, not 
as straightforward as it seems.

Some authors (e.g., Golino & Epskamp, 2017) 
have suggested screening the network for meaningful 
subgraphs. Subgraphs are subsets of the network, 
containing nodes and the links that connect them. 
Interesting are dense subgraphs, in which the nodes 
are all strongly interconnected, while the connections 
between the different subgraphs are then less strong. 
Indeed, the occurrence of clear subgraphs might reveal 
the underlying dimensionality of the data (Golino 
& Epskamp, 2017). The symptom network in Fig. 1, 
for instance, has a size of 8 and falls apart into four 
components8, one comprising five nodes that co-occur, 
and the other three pertaining to single nodes. In the 
affective family network in Fig. 14, the happy behaviors 
of all family members seem to form a dense subgraph. 
For the other non-zero connections it is difficult to 
discern which belong to a dense subgraph and which 
are more isolated. In the tutorial part, we will use this 
example to explain, how these dense subgraphs can be 
identified with a clustering method. Specifically, we 

will use the cluster walktrap algorithm (Pons & Latapy, 
2005) from the igraph package (Csardi & Nepusz, 2006).

Tutorial

All the analysis steps that were explained in the previous 
modules (lagging the data, calculating contingencies, and 
testing for significance) can be executed separately, but 
they can also be executed at once using the conNEcT 
function, which additionally yields a network.

The conNEcT function

The conNEcT function has the same input arguments as the 
ConTest function (Module 3), the conMx function (Module 
2) and the conData function (Module 1): data, lag, conFun, 
typeOfTest, adCor, nBlox, nReps. In addition, one should 
specify whether the significance test should be executed 
(test=TRUE; default: FALSE), and if so, with which sig-
nificance level (signLev; default=0.05). The function returns 
an S3 object of class ‘conNEcT’, comprising the following 
fields:

•	 allLinks: The obtained contingency value matrix
•	 signLinks: A contingency value matrix that only includes 

the significant contingencies; all other contingency val-
ues are set to zero (if no significance test is executed this 
matrix contains only NAs)

•	 pValue: A matrix holding the p-values for the one-sided 
significance test (if no significance test is executed, all 
p-values are set to NA)

•	 para (Parameters): Saving the settings of lags, test, 
typeOfTest, adCor, nBlox, nReps, funName, var-
Names

•	 probs: A table containing the relative frequencies and 
conditional probabilities of all variables (see Module 1).

8  Components are subgraphs that are totally seperated from each 
other.
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Example

We show the usage of the conNEcT function by applying 
it to the Family Data. We calculate the classic Jaccard 
(conFun=funClassJacc) on lagged data (lag=1; default: 
lag=0) and execute a permutation-based significance 

test (test=TRUE and typeOfTest= ‘permut’, default) that 
accounts for serial dependence (adCor = TRUE, default) 
using 10 Segments (nBlox=10, default) and 100 replica-
tions (nReps=100, default) with a significance level of 
5% (signLev=0.05, default).

9  Unfortuantelly, qgraph is not (yet) a generic function, which means 
that we cannot simply call qgraph with a conNEcT object to call 
qgraph.conNEcT.
10  If the significance test had not been called when generating the 
conNEcT function (test=FALSE), but the plot opts for only signifi-
cant links option (signOnly=TRUE), a warning message is displayed.

Plotting the network

A conNEcT object can be plotted as a network by call-
ing the qgraph.conNEcT9 function. The plot shows each 
variable as a node. The node size is adapted to the rela-
tive frequency. Default only the significant links are shown 
(signOnly=TRUE, default) 10; to display all links set 

signOnly to FALSE. Auto-loops are often uninforma-
tive and can be suppressed by adding diag=F. Since the 
qgraph function is taken from the R package qgraph 
(Epskamp et al., 2012), all features from qgraph can be 
used to optimize the plot (see examples for the networks 
in Figs. 1, 13 and 14 in supplementary material https://​
osf.​io/​p5ywg/)
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To look for clusters in a network, we can, for example, use 
the cluster_walktrap function (Pons & Latapy, 2005) from 
the igraph package(Csardi & Nepusz, 2006). Our applica-
tion of the function makes use of the qgraph and the igraph 
package which need to be installed first. Then we run the 
conNEcT function on the data. Here we chose to rely on all 
links (not only the significant ones) and to remove the diago-
nals. Clustering the contingency matrix reveals that there are 
three clusters, each consisting of the three adjacent nodes.

As we might consider this result slightly suboptimal in 
that we still have to look up the names of the variables, we 
might be tempted to add the variable names in an automated 
way, for example, with the following code:

Conclusions

We introduced the R package ConNEcT that implements the 
contingency measures based network approach for binary 
intensive longitudinal data. We showed in four modules (1) 
how the data can be explored, (2) how to compute pairwise 
contingencies among the variables, (3) how to investigate the 
significance of these contingency values, and (4) how to plot 
them in a network. Additionally, we gave first answers to some 
open questions: what are the similarities and differences of the 
included contingency measures, should the data be lagged, 
and if so, how are we able to get an idea of the appropriate lag, 
and how to detect patterns in the final network.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​3758/​s13428-​021-​01760-w.
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