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Abstract
The measurement efficiency of a multidimensional computerized adaptive testing (MCAT) can be improved by taking the 
correlations between the dimensions into account during the item selection and latent-trait estimation procedures (Segall, 
1996; Wang & Chen, 2004). Although a multidimensional computerized classification test (MCCT), which was based on a 
multidimensional itemresponse model, was previously found more efficient than its unidimensional counterpart, the difference 
was negligible (Seitz & Frey, 2013); the researchers had adopted a sequential probability ratio test (SPRT) as the termina-
tion criterion in this MCCT study. To make a classification decision on each dimension, which is called a grid classification 
(Wang et al., 2019), only items that loaded on that dimension were used to calculate the likelihood ratio, which squandered 
the available information of the correlations between the dimensions. The current study utilizes such useful information to 
improve the measurement efficiency of the MCCT by applying a conditional distribution of the latent-trait estimates and then 
including all the administered items to calculate the likelihood ratio in the SPRT. The performance of this newly proposed 
method was evaluated through a series of simulation studies. The results showed that the proposed method can sizably 
improve the measurement efficiency of an MCCT by saving 1% to 32% of the test length in comparison with the SPRT when 
the two test dimensions are at least moderately correlated. The findings and further applications of this study are discussed.

Keywords Multidimensional computerized classification test · Sequential probability ratio test · Conditional latent trait 
distribution

Every day, various tests and questionnaires are used in many 
fields; these include achievement tests, self-reported psycho-
logical/clinical assessments, and organizational personnel 
selection instruments. These tests can be divided into two 
categories: (1) based on the purposes of the measurement 
and (2) the way that the test scores are interpreted. Included 
in the first category is the ranking of the trait level of the 
test-takers in an ascending or descending manner along a 

continuum that is being measured, which is called norm-
referenced testing. Examples of this include many language 
proficiency tests (e.g., the Test of English as a Foreign 
Language, TOEFL) and many achievement tests in schools 
(e.g., when a “curve” is applied in the grading). The other 
category of tests includes those in which an examinee’s 
trait level is compared to a set of pre-specified criteria to 
make a pass/fail, master/non-master, or basic/proficient/
advanced decision, which is called criterion-referenced 
testing. Examples of the latter type of test, such as a test 
for a driver’s license, teacher certification, or a depression 
screening instrument, intrinsically classify examinees into 
one of two or more mutually exclusive categories and are 
also commonly described as classification tests (Spray & 
Reckase, 1996).

Generally, these two kinds of tests were originally imple-
mented in a paper-and-pencil format in which all the exami-
nees were asked to respond on an identical test form. Ben-
efitting from the rapid progress in computer technology and 
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the increased availability of computers (particularly personal 
computers) in the latter half of the twentieth century, the 
way that tests were delivered and administered changed. For 
example, computerized adaptive testing (CAT) (van der Lin-
den & Glas, 2000) was developed to estimate respondents’ 
latent traits on a continuum with shortened length tests that 
can reach precisions comparable to their paper-and-pencil 
counterparts. Based on similar logic, computerized classifica-
tion tests (CCTs; Thompson, 2009; Huebner & Fina, 2015) 
were developed to facilitate making accurate classification 
decisions for examinees more efficiently (Spray & Reckase, 
1996) and can be used to find a balance between the level of 
confidence in the accuracy of a classification decision and the 
number of items that need to be administered (Bartroff et al., 
2008). For both kinds of computerized testing, a concern in 
measurement efficiency is crucial for test administrators and 
practitioners. This concern is even more pressing when a test 
measures multiple dimensions simultaneously.

Many of the commonly used classification instruments 
were designed to measure multiple dimensions simulta-
neously and make classification decisions on each of the 
dimensions separately. For example, the second version of 
the Minnesota Multiphasic Personality Inventory-2 (MMPI-
2; Butcher et al., 1989) contains ten clinical scales and three 
main validity scales that measure an adult’s personality and 
psychopathology. A total of 567 true/false items were used 
to measure ten clinical symptoms, such as hypochondria, 
depression, hysteria, and mania. After completing the inven-
tory, a set of transformed T-scores are used to indicate the 
level of clinical symptoms on each of the MMPI-2 scales, 
with scores below 50 points representing low levels or nor-
mality. A multidimensional instrument, such as the MMPI-2, 
is mostly (if not always) designed to comprehensively screen 
for all the domains/symptoms simultaneously, rather than 
for only one or some of them. Under such a scenario, the 
required number of items for the multidimensional measure 
is expected to be sufficiently large to reach a qualified preci-
sion necessary for classification decisions. The more dimen-
sions being measured, the more items will be required. As 
a consequence, more dimensions are likely to yield a longer 
questionnaire and hence increase the response burden for the 
participants, which might in turn encourage participants to 
not complete instruments, yielding lower response rates and 
poorer data quality for studies (Jones, 2014; Rolstad et al., 
2011). Therefore, how to improve measurement efficiency 
is an important issue for multidimensional CCTs (MCCTs; 
van Groen et al., 2016).

In order to improve the measurement efficiency of 
MCCTs, we can follow the example provided by multidi-
mensional computerized adaptive testing (MCAT; Segall, 
1996; Luecht, 1996). Both MCCTs and MCATs are simi-
larly based on multidimensional item-response theory. The 
measurement efficiency of MCATs was found to be largely 

improved over their multiple unidimensional counterparts by 
taking the correlations between dimensions into account in 
latent trait estimation and item selection procedures (Segall, 
1996; Wang & Chen, 2004). Though it was expected that 
the required items for an MCCT would be fewer than for 
comparable multiple unidimensional CCTs (i.e., multiple 
UCCTs), this is not the case according to the current MCCT 
literature (e.g., Seitz & Frey, 2013).

Because the termination criteria highly determine the 
measurement efficiency of CCTs, they have been repeat-
edly investigated in recent years when investigating meas-
urement efficiency. One of the most commonly used termi-
nation criteria in the CCT field is the sequential probability 
ratio test (SPRT; Wald, 1947). Through testing two simple 
hypotheses, the SPRT is used to decide whether an exami-
nee’s θ is greater than a specified point above the cutoff 
score or less than another specified point below the cutoff 
score (Thompson, 2009). This method was first applied to 
implement decision-making with CATs by Reckase and his 
colleagues (Reckase, 1983; Spray & Reckase, 1996). The 
SPRT has been further investigated in many studies during 
the last two decades (Eggen, 1999; Eggen & Straetmans, 
2000; Finkelman, 2008; Thompson, 2009; van Groen et al., 
2014, 2016). The popularity of the SPRT is mostly due to 
its ease of implementation and its usefulness in classifying 
examinees into two or more categories (Eggen & Straet-
mans, 2000; Spray & Reckase, 1996). However, these stud-
ies were mostly focused on unidimensional rather than mul-
tidimensional CCTs.

To investigate whether the SPRT can be applied to an 
MCCT, Spray et al. (1997) used it on the two-dimensional 
ACT Mathematics Test to make a single overall decision. 
They specified a passing rate on a reference test and obtained 
an equivalent latent passing score by solving for the latent 
trait vector. Two distinct curves that were approximately 
parallel were then defined to create an indifference region 
for a two-dimensional CCT to make an overall decision for 
the participants. However, the vectors that satisfied these two 
curves might not have yielded identical likelihood values for 
each administered item, so they concluded that an extension 
of the unidimensional SPRT to its multidimensional case was 
not feasible. Moreover, van Groen et al. (2016) conducted 
three simulation studies to compare several item-selection 
procedures and classification methods for a within-item mul-
tidimensional item pool (i.e., all the items simultaneously 
measured multiple dimensions) to make an overall decision. 
By applying the reference composite (RC) method (Reckase, 
2009) to place all the projected examinees’ latent trait vec-
tors on a unidimensional line, all the examinees could then 
be ranked on the RC axis. The simulation results supported 
that their proposed method had the same characteristics as 
the unidimensional SPRT. Furthermore, the multidimensional 
SPRT resulted in more accurate decisions and longer tests 
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than its unidimensional counterpart (van Groen et al., 2016). 
Specifically, the average test length (ATL) for the MCCTs 
and UCCTs ranged from 44 to 50 and 38 to 50, respectively, 
in which 50 was the maximum test length by design. The 
percentages of correct classifications (PCC) for the MCCTs 
(ranging from .865 to .895) were higher than those of the 
UCCTs (ranging from .837 to .851). Recently, van Groen et al. 
(2019) extended their previous studies to classify examinees 
by making a decision per dimension or making an overall 
decision based on all dimensions, under both the between-
item and within-item multidimensional models. They com-
pared two termination criteria: the SPRT and the confidence 
interval method (Kingsbury & Weiss, 1979). Through two 
simulation examples, they concluded that the SPRT tended to 
result in longer tests but more accurate decisions.

In addition, Seitz and Frey (2013) proposed an MCCT for 
between-item multidimensionality; in other words, multiple 
dimensions were being measured simultaneously with uni-
dimensional items. To make classification decisions for each 
dimension, which is called a grid classification (Wang et al., 
2019), they adopted a multiple unidimensional version of the 
SPRT as the termination criterion. Through a series of simula-
tion studies, they found that an intrinsically multidimensional 
CCT resulted in a similar PCC with a shorter ATL than its 
multiple unidimensional counterparts. Specifically, for a two-
dimensional test with a between-dimension correlation equal 
to 0.85 and only one cut score on each dimension, the mean 
PCC and mean ATL for the UCCTs and MCCTs were 78.95%, 
47.20, 79.24%, and 46.47, respectively. Given that the PCCs 
were comparable, the differences in test length between the 
MCCTs and UCCTs were less than about one item (over an 
average of 47.20 items), which indicates that the efficiency of 
the MCCTs did not show much improvement over the UCCTs. 
In sum, both of the studies used multidimensional versions of 
the SPRT as the termination criterion in the MCCTs and found 
that the measurement efficiency remained similar to their uni-
dimensional counterparts.

These unexpected results were mainly due to these stud-
ies actually using a multiple unidimensional version of the 
SPRT, as it functioned the same way as the unidimensional 
CCTs, one dimension at a time. By doing so, the correlations 
between the dimensions were not being taken into account in 
the termination criterion of the MCCTs. More specifically, 
the items loaded on a dimension only provided information 
for making classification decisions on that dimension, not for 
any others. Without auxiliary information delivered from the 
other dimensions, the measurement efficiency of the MCCTs is 
hardly improved, which causes difficulty for practitioners using 
these algorithms to make informative decisions efficiently. 
To this end, this study aimed to improve the measurement 
efficiency of grid MCCTs by including auxiliary information 
from other dimensions. Specifically, a conditional latent-trait 
distribution is applied to the multidimensional version of the 

SPRT. Through also incorporating the information of the cor-
relations between the dimensions into the estimation of the 
examinees’ latent trait into the calculation of the likelihood 
ratio in the SPRT, this method was expected to improve the 
measurement efficiency of grid MCCTs, and its performance 
was investigated through a series of simulation studies.

This article is organized as follows. First, multidimensional 
item-response theory is introduced, followed by the unidimen-
sional and multidimensional versions of the SPRT. Second, the 
way we apply a conditional latent-trait distribution to the SPRT 
is demonstrated. Next, the cut-score-based item selection pro-
cedure is also presented. After that, we describe the simulation 
study that was conducted to evaluate the performance of the 
original SPRT and the newly proposed SPRT in terms of the 
percentage of correct classifications and average test lengths in 
grid MCCTs. Finally, several suggestions based on the findings 
of this study are made.

Multidimensional item‑response theory

The multidimensional item response model describes the 
relationship between an examinees’ latent trait vector, item 
parameter vector, and the probability of a correct response 
on an item. For example, taking the three-parameter multi-
dimensional item-response model (M3PL), the probability 
of examinee j endorsing item i can be calculated as follows 
(Segall, 1996):

where θj stands for the latent trait vector of examinee j, and 
��
i
=
(
ai1, ai2,… , aip

)
 represents the item discrimination vec-

tor of item i. For dimension r that item i was not intended 
to measure,  air = 0. If all the items have multiple nonzero 
elements in ai, then the test has within-item multidimen-
sionality; when only one nonzero element exists in ai, the 
test has between-item multidimensionality (Wang & Chen, 
2004). The symbols  bi and  ci represent the item difficulty and 
pseudo-chance parameter for item i. The symbol 1 is a p × 1 
unit vector, which indicates the same item difficulty is used 
on each dimension that is being measured.

Sequential probability ratio test (SPRT)

The SPRT method was used to make a binary classification 
decision through testing the two simple hypotheses listed 
below (Nydick, 2014):

(1)Pi
(
��
)
= ci +

1 − ci

1 + exp
[
−��

i

(
�� − bi ∙ �

)] ,

H0 ∶ θj = θ0 − δ = θL,

H1 ∶ θj = θ0 + δ = θU,
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where θj is an unknown latent trait parameter underlying the 
responses to the items for examinee j, and θ0 is the cutoff 
point that is used to distinguish a pass from a fail. With these 
hypotheses, the SPRT creates an indifference region around 
θ0 with a width equal to 2δ, where θL and θU stand for the 
lower and upper bounds of this region (Spray & Reckase, 
1996). To make a decision with high accuracy, a narrow 
indifference region (i.e., a smaller δ) should be specified, yet 
a longer test is required to make such a decision (Reckase, 
1983).

After creating the two simple hypotheses and deciding 
on the size of δ, the SPRT method calls for a likelihood 
ratio test to make a pass/fail decision for each examinee. 
For an examinee that has already been administered k 
items, the likelihood that this examinee will obtain a spe-
cific response vector is defined as follows:

where uk is the examinee’s response vector on k items;  Pi(θj) 
denotes the probability that an examinee with latent trait θj 
endorses item i; and  ui = 1 or 0 indicates a correct or incor-
rect response on item i, respectively. The likelihood ratio 
(LR) is then calculated as follows:

where the numerator and the denominator calculate the 
likelihood of obtaining a response vector uk at the upper 
and lower bounds of the indifference region, respectively. 
After that, the LR is compared to two decision points A 
and B, which are defined as A =

1−β

α
 and B =

β

1−α
 , where α 

and β represent the nominal Type I and Type II error rates, 
respectively. If LR ≥ A, the examinee’s θ is more likely 
to be above, rather than below, the cutoff score, and  H1 is 
accepted. The examinee is then classified as a “pass” on the 
classification test (θj > θ0), and the test is terminated. In con-
trast, if LR ≤ B, the examinee’s θ is more likely to be below, 
rather than above, the cutoff score, and  H0 is accepted. The 
examinee is then classified as a “fail” on the classification 
test (θj < θ0), and the test is terminated. If B < LR < A, then 
no decision is made, and another item is selected and admin-
istered, unless the maximum test length has been reached 
(Spray & Reckase, 1996).

(2)L
(
θj;�k

)
=

k∏

i=1

Pi
(
θj
)ui(1 − Pi

(
θj
))1−ui ,

(3)

LR =
L
�
�k�θj = θU

�

L
�
�k�θj = θL

� =

∏k

i=1
Pi
�
θU

�ui�1 − Pi
�
θU

��1−ui
∏k

i=1
Pi
�
θL
�ui�1 − Pi

�
θL
��1−ui ,

Grid multidimensional computerized 
classification test (grid MCCT)

To make multiple classification decisions, one for each dimen-
sion, in a between-item grid MCCT in which each item is 
designed to measure only one dimension, Seitz and Frey 
(2013) applied the SPRT to facilitate this goal. Though the 
conditions can be extended to multiple cutoff scores on each 
dimension, we focus on the two-category condition in this 
study to keep the conditions simple. The hypotheses being 
tested for the classification decision on the cutoff score along 
dimension d can be expressed as follows:

where �(d)
j

 indicates the examinee’s latent trait vector, and a 
classification decision is currently being made on dimension 
d. As demonstrated in Seitz and Frey’s (2013) MCCT study, 
the SPRT method’s test statistic on dimension d can be 
expressed as follows:

where k indicates the number of items being administered, 
and �(d)

U
 and �(d)

L
 stand for the latent trait vector that only dif-

fers in dimension d and can be expressed as follows:

where θ(d)
U

 and θ(d)
L

 are the upper and lower bounds of the 
indifference region on dimension d. By comparing the ele-
ments in Eqs. 7 and 8, readers can find that these two vec-
tors only differ in the elements on dimension d, whereas 
every other element is the same. To calculate the likelihood 
ratio in Eq. 6, all k items that already had been administered 
should theoretically be involved in the calculation. However, 
because Seitz and Frey (2013) were trying to make decisions 
in a between-item MCCT in which all the items were unidi-
mensional, the likelihood ratio in Eq. 6 was simplified, and 
the revised equation is as follows:

(4)H
(d)

0
∶ �

(d)

j
= �(d) − δ = �

(d)

L

(5)H
(d)

1
∶ �

(d)

j
= �(d) + δ = �

(d)

U
,

(6)

LR(d) =

L
�
���(d)

U

�

L
�
���(d)

L

� =

∏k

i=1
Pi

�
�
(d)

U

�ui
�
1 − Pi

�
�
(d)

U

��1−ui

∏k

i=1
Pi

�
�
(d)

L

�ui
�
1 − Pi

�
�
(d)

L

��1−ui
,

(7)�
(d)

U
=
[
θ̂(1), θ̂(2) … θ̂(d−1), θ

(d)

U
, θ̂(d+1) …

]
,

(8)�
(d)

L
=
[
θ̂(1), θ̂(2) … θ̂(d−1), θ

(d)

L
, θ̂(d+1) …

]
,
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where ud are the responses to the  kd items that are designed 
to measure dimension d, which means only the items that 
are loaded on dimension d were really helpful for mak-
ing a decision on dimension d (i.e., items cannot provide 
any information when making classification decisions on 
dimensions that are outside the dimension that they are 
proposed to measure). The between-item MCCT in their 
study was actually a set of multiple unidimensional CCTs, 
with one CCT for each dimension. This in turn hampers the 
expected improvement in measurement efficiency from the 
CCTs to the MCCT in which the latter can usually facilitate 
the improvement by extracting information from the other 
dimensions.

Sequential probability ratio test 
with conditional latent trait distribution 
(SPRT_C)

To extract auxiliary information from other dimensions when making 
a classification decision on dimension d, we can follow the example 
provided by the use of the MCATs. Because the multiple dimen-
sions that are simultaneously measured in an MCAT are usually (if 
not always) correlated with each other, the correlations between the 
dimensions are taken into account during the estimation of the latent 
traits. An examinee’s latent trait estimates on all the dimensions are 
therefore updated simultaneously in real time after an item is admin-
istered, which can help increase the measurement efficiency (Wang 
& Chen, 2004). In the current study, to improve the measurement 
efficiency of an MCCT, two components were introduced to use the 
information from the between-dimension correlations.

First, the latent trait distributions of the other dimensions 
are estimated conditioned on the upper and lower limits of 
the dimension that is currently being classified. The condi-
tional latent trait distribution is pre-calculated and then taken 
into consideration in SPRT_C by applying this information 
to Eq. 6. Specifically, when making a decision on dimension 
d, the hypotheses being tested in the MCCT are as follows:

where θ0
(d), θL

(d), and θU
(d) indicate the cutoff point, lower 

bound, and upper bound of the indifference region on dimen-
sion d, respectively. The test statistic of SPRT_C is then 
expressed as follows:

(9)

LR(d) =

L
�
�d�θ

(d)

U

�

L
�
�d�θ

(d)

L

� =

∏kd
i=1

Pi

�
θ
(d)

U

�ui,d
�
1 − Pi

�
θ
(d)

U

��1−ui,d

∏kd
i=1

Pi

�
θ
(d)

L

�ui,d
�
1 − Pi

�
θ
(d)

L

��1−ui,d
,

(10)H
(d)

0
∶ θ(d) = θ0

(d) − δ(d) = θL
(d)

(11)H
(d)

1
∶ θ(d) = θ0

(d) + δ(d) = θU
(d),

where θ
(m)and θ�

(m) indicate the expected values of the latent 
trait distribution of dimension m conditional on θU

(d) and 
θL

(d), respectively. These values can be easily calculated 
before the test proceeds, given the indifference regions on all 
the dimensions and the correlations between the dimensions.

Second, instead of only using the administered items 
that loaded on the dimension being classified, SPRT_C 
subsumes all the items that have been administered into 
the calculation of the likelihood ratio. For example, in 
Eq. 12, the vectors of the expected values of the latent 
trait distribution that differ for every element are listed in 
the denominator and numerator, respectively, in  LR(d). By 
doing this, all the administered items can provide various 
levels of information to help make the classification deci-
sion on dimension d, no matter which dimension these 
items were designed to measure. By accumulating the 
information that was contributed by every administered 
item in this way, the resulting test information on each 
dimension is higher than its unidimensional counterpart.

Given a test designed to measure multiple latent traits 
that follows a multivariate normal distribution, if the latent 

trait vector θ is divided as � =

[
��
��

]
 , then θ follows a mul-

tivariate normal distribution with mean vector � =

[
�1
�2

]

and a variance-covariance matrix Σ =

[
Σ�� Σ��

Σ�� Σ��

]
 . The 

conditional distribution of θ1 given θ2 = a follows a mul-
tivariate normal distribution with mean and variance-
covariance equal to � and Σ , respectively (Eaton, 1983). 
That is,

where

For example, taking a two-dimension θ, the conditional 
distribution of θ1 given θ2 can be expressed as follows 
(Jensen, 2000):

where ρ stands for the correlation between the two dimen-
sions, and  (u1, σ1) and  (u2, σ2) stand for the means and 

(12)

LR(d) =

L

{
�
||||

[(
θ(d) = θU

(d)
)
,
(
θ
(1)
, θ

(2)
,… , θ

(d−1)
, θ

(d+1)
,… |θU(d)

)]}

L

{
�
||||

[(
θ(d) = θL

(d)
)
,
(
θ�

(1)
, θ�

(2)
,… , θ�

(d−1)
, θ�

(d+1)
,… |θL(d)

)]} ,

(13)P
(
��|�� = �

)
∼ N

(
�,Σ

)
,

(14)� = u1 + Σ12Σ
−�
22

(
� − �2

)
,

(15)Σ = Σ�� − Σ��Σ
−�
��
Σ��.

(16)P
(
θ1
||||
θ2 = a

)
∼ N

(
u1 +

σ1

σ2
ρ
(
a − u2

)
,
(
1 − ρ2

)
σ2
1

)
,
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standard deviations of the distributions of θ1 and θ2, respec-
tively. Assuming the two-dimensional latent traits follow a 

multivariate normal distribution with u =

[
0

0

]
 and 

Σ =

[
1 ρ

ρ 1

]
 , where ρ stands for the correlation between the 

dimensions, and the cutoff point and δ on dimension θ2 are 
set at 2 and 0.2, respectively, which results in an indifference 
region of [1.8, 2.2]. The updated upper and lower bounds of 
θ 1  a r e  [ θ 1 | θ 2  =  2 . 2 ] ~ N ( 1 . 7 6 ,  0 . 3 6 )  a n d 
[θ1|θ2 = 1.8]~N(1.44, 0.36), while the corresponding likeli-
hood ratio can be expressed as the following:

where (θ1|θ2) is a distribution rather than a scalar. To cal-
culate the likelihood, the expectation of the distribution is 
used in this study. In SPRT_C, classifying examinees into 
one of two mutually exclusive categories on dimension d can 
proceed with the following steps:

1. Estimate the latent trait vectors that are conditioned on 
θU

(d) and θL
(d) and their corresponding likelihood ratio 

 LR(d) according to Eq. 12.
2. Compare  LR(d) and make classification decisions accord-

ing to the following rules.
3. Accept θ(d) > θ0

(d) and classify the examinee as passed if 
 LR(d) ≥ A;

4. Accept θ(d) < θ0
(d) and classify the examinee as failed if 

 LR(d) ≤ B;
5. Select and administer one more item if B <  LR(d) < A;
6. When the test has reached the pre-specified maximum 

test length, the MCCT is forced to make a decision 
according to the following rules:

  Classify the examinee as passed if |log  LR(d) − log A | 
< |log  LR(d) − log B|, OR Classify the examinee as failed 
if |log  LR(d) − log A | ≥ |log  LR(d) − log B|.

Item selection

In determining the measurement efficiency of an MCCT, the item 
selection procedure is as important as the termination criterion. The 
item selection procedure attempts to choose an item that can provide 
the maximum information at a specific point on the θ scale. Accord-
ing to the different points along the θ continuum that are used to 
calculate the information, item selection procedures can be divided 
into two types. The first type uses the maximization of the item 
information at the current θ estimate. Studies using this approach 
include those of Kingsbury and Weiss (1983) and Reckase (1983). 
The second type uses the maximization of the item information at 

(17)

LR
(2) =

L

{
�
|||
[(
θ1
||θ2 = 2.2

)
,
(
θ2 = 2.2

)] }

L

{
�
|||
[(
θ1
||θ2 = 1.8

)
,
(
θ2 = 1.8

)] } =

L

{
�
||||
� =

[(
N(1.76,0.36), 2.2

]}

L

{
�
||||
� =

[(
N(1.44,0.36), 1.8

]} ,

the cut-score point. The two studies by Spray and Reckase (1994, 
1996) use this approach. In the current study, we adopted the latter 
approach for the reasons described below.

To make classification decisions in an adaptive test, 
Reckase (1983) used the SPRT as the termination crite-
rion, and the items were selected to maximize the infor-
mation at the previous latent trait estimate. However, 
Reckase stated that the SPRT assumes the probability of 
an endorsement is the same for all items, which makes 
it unreasonable if items are selected to maximize infor-
mation at a latent-trait level. In addition, when the item-
response function is a three-parameter logistic model 
(3PL; Birnbaum, 1968), the SPRT statistic was found to 
be non-monotonic with respect to the classification bound 
(Spray & Reckase, 1994). Also, by comparing these two 
types of item selection procedures in a CCT when using 
the SPRT as the termination criterion, selected items that 
yield the highest information on the cutoff point tend to 
result in higher measurement efficiency than the selected 
item having the most information based on the current 
latent-trait estimates (Spray & Reckase, 1994; Thompson, 
2009). Therefore, it is recommended to select items at 
the classification bound rather than the current latent trait 
estimate when using the SPRT as the termination criterion 
of the classification tests, which is what was done in the 
current study.

Simulation study

Design

A two-dimension grid MCCT that makes binary classifi-
cation decisions on each of the dimensions was employed 
in this simulation study. To compare the measurement effi-
ciency of SPRT_C with the SPRT that was used in Seitz 
and Frey (2013), denoted as SPRT in the study, three key 
independent variables were manipulated: (a) the correlation 
between the dimensions was set at 0.0, 0.5, or 0.8, which 
indicated a zero, medium, or high correlation, respectively; 
(b) the cutoff points were set at (−3.0, −3.0), (−2, −2), 
(−1.5, −1.5), (0.0, 0.0), (1.5, 1.5), (2, 2), (3.0, 3.0), (3.0, 
1.5), (3.0, 0.0), (0.0, 1.5), or (−3.0, −1.5), where the first 
and the second number in the parentheses stand for the cutoff 
point of the first and second dimension, respectively; and 
(c) the termination criterion was the SPRT method or the 
newly proposed SPRT_C method. The dependent variables 
were the percentage of correct classifications (PCC) and 
the average test length (ATL). The reasons for manipulating 
these independent variables and their respective levels are 
explained below.
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Correlations between dimensions

It has been found that the efficiency of an MCAT increases 
as the correlations between the dimensions increase (Wang 
& Chen, 2004). The higher the correlations, the more effi-
cient the MCAT. It was of interest as to whether similar find-
ings would hold for an MCCT, and therefore, this variable 
was included. Three levels of correlations were manipulated 
in this study: 0.0, 0.5, and 0.8, which indicated uncorrelated, 
moderately correlated, and highly correlated dimensions, 
respectively. It was expected that SPRT_C would have bet-
ter performance than SPRT as the between-dimension cor-
relation increased; the higher the correlation, the better the 
performance of SPRT_C. For the conditions with different 
levels of correlations, the performance of SPRT_C could be 
inferred from the results of this study.

Cutoff points

Nydick (2014) found that the performance of a CCT with an 
optimal Fisher information (FI)-based item selection algo-
rithm and SPRT depended on the location of each examinee 
relative to the cut point. Therefore, the locations of the cut 
points were used in the current study. In addition, both sym-
metric and asymmetric cutoff points were known to have 
been used in practice, so these two kinds of cutoff points 
were part of the manipulation.

Termination criterion

The termination criterion is used to decide whether a test 
should stop or not, which greatly determines the measure-
ment efficiency of a CCT. In addition, this research proposes 
a new termination criterion SPRT_C. Therefore, this vari-
able was included in the current study.

The PCC was calculated as the average percentage of cor-
rect classifications over all examinees. For each examinee, 
the classification decision correctness was coded as one 
when both dimensions were classified correctly, and it was 
zero when any of the dimensions were classified incorrectly. 
The ATL was calculated as the average number of items that 
were required for a classification decision across the exami-
nees. To better depict the performance of SPRT_C relative 
to SPRT on the two dependent variables, we calculated the 
relative efficiency (RE) on the PCC and ATL for these two 
methods as follows:

where  NSPRT _ c and  NSPRT stand for the PCC of SPRT_C 
and SPRT, respectively, when calculating the relative effi-
ciency on the PCC;  NSPRT _ c and  NSPRT stand for the ATL 

(18)RE =
NSPRT_c

NSPRT

of SPRT_C and SPRT, respectively, when calculating the 
relative efficiency of the ATL. For the condition in which 
the two methods have similar PCCs (i.e., an RE of the PCC 
close to 1), an RE value in the ATL smaller than one indi-
cates a shorter test for SPRT_C than SPRT. The smaller the 
RE value in the ATL, the more efficient SPRT_C is. For the 
condition in which the PCCs are not similar for both meth-
ods, the PCC and ATL should be taken into consideration 
simultaneously. Consequently, the PCC per item that divides 
the PCC by the ATL to depict the average PCC that each 
item can contribute is calculated for both methods. Another 
index that combines the information of both the PCC and 
ATL is the loss function (Vos, 2000), which is defined as 
follows:

where  1w is a binary indicator variable that takes a value of 
1 or 0 when the examinee was classified incorrectly or cor-
rectly, respectively; and L is the number of items that were 
administered to the examinee. The constant 100 is a penalty 
for an incorrect classification. A higher incorrect classifica-
tion rate, as well as a long test length, results in a higher 
value of the loss function. Hence, a lower value indicates 
the better performance of a method.

As to other design aspects of this study, the two-dimen-
sional item pool contained 600 unidimensional items in 
which one half measured the first dimension and the other 
half measured the second dimension. The item parameters 
were generated from the following distributions for both 
dimensions: a ~ N(1, 0.25^2), b ~ U(−3.6, 3.6), c ~ U(0, 
0.3), which was adopted from Chen et al. (2000). For each 
condition, the two-dimensional latent trait vectors were gen-
erated from a multivariate normal distribution for 5000 

examinees with a mean vector equal to 
[
0

0

]
 and a variance-

covariance matrix as 
[
1 ρ

ρ 1

]
 , where ρ is the correlation 

between the dimensions that were manipulated in the study. 
The response data were generated according to the multidi-
mensional three-parameter item-response model (Eq. 1). 
Because an analysis of variance (ANOVA) was applied to 
the PCC and ATL, the 5000 examinees were divided into 
five replications in which each replication contained 1000 
examinees. To make sure the final classification decisions 
were made according to items that were selected from both 
dimensions and to address the issue of test validity, the mini-
mum and maximum test length on each dimension were set 
at three and 30 for each examinee, which yielded the shortest 
and longest test containing six and 60 items, respectively. As 
for the parameters of SPRT and SPRT_C, α and β were usu-
ally each set at .05 or .10; whereas δ was usually set from .1 
to .4 to represent a small to large indifference region (Eggen, 
1999; Finkelman, 2008; Seitz & Frey, 2013; van Groen et al., 

(19)Loss = 100 ∗ 1w + L,
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2016). In this study, the parameters α, β, and δ were set at 
.05, .05, and .2, respectively, as suggested in the preceding 
research.

Results

The results of the PCC, ATL, PCC per item, and loss for both 
methods under the different levels of correlation and various 
cutoff points are presented from left to right in Table 1. The 
relative efficiencies of the PCC and ATL are listed as well. 

Below, the results are divided into sections describing the 
PCC and ATL, which are introduced separately.

Percentage of correct classifications (PCC)

When the two dimensions were highly correlated (ρ = 0.8), 
both methods yielded almost perfect classifications at the 
extreme symmetric cutoff points (−3.0, −3.0 and 3.0, 3.0). 
However, as the cutoff went toward the origin on the two-
dimensional space (0.0, 0.0), the PCC decreased to 82.08% 
and 87.14% for SPRT_C and SPRT, respectively. For other 

Table 1  Percentage of correct classification (PCC), average test length (ATL), PCC per item, and LOSS function under various conditions

Note. ρ = correlation between dimensions, SPRT sequential probability ratio test, SPRT_C sequential probability ratio test with conditional 
latent trait distribution, RE relative efficiency. RE > 1.00 indicates 1.01 > RE > 1.00; RE > 0.99 indicates 1.00 > RE > 0.99

PCC ATL PCC per item Average losses

ρ Cutoff point SPRT_C SPRT RE SPRT_C SPRT RE SPRT_C SPRT SPRT_C SPRT

0.8 ( 3.0,  3.0) 99.78 99.78 1.00 12.11 17.16 0.71 8.24 5.82 12.33 17.38
( 2.0,  2.0) 97.58 97.82 > 0.99 14.79 20.21 0.73 6.60 4.84 17.21 22.39
( 1.5,  1.5) 94.64 95.36 0.99 17.04 24.36 0.70 5.55 3.91 22.40 29.00
( 0.0,  0.0) 82.08 87.14 0.94 24.13 33.76 0.71 3.40 2.58 42.05 46.62
(−1.5, −1.5) 93.80 95.12 0.99 18.22 26.85 0.68 5.15 3.54 24.42 31.73
(−2.0, −2.0) 96.96 97.94 0.99 16.19 21.72 0.75 5.99 4.51 19.23 23.78
(−3.0, −3.0) 99.74 99.88 > 0.99 11.62 16.71 0.70 8.58 5.98 11.88 16.83
( 3.0,  1.5) 97.54 97.58 > 0.99 14.72 19.29 0.76 6.63 5.06 17.18 21.71
( 3.0,  0.0) 93.34 93.32 > 1.00 21.25 24.68 0.86 4.39 3.78 27.91 31.36
( 0.0,  1.5) 90.82 90.56 > 1.00 24.21 28.36 0.85 3.75 3.19 33.39 37.80
(−3.0, −1.5) 97.60 97.58 > 1.00 16.53 21.54 0.77 5.90 4.53 18.93 23.96

0.5 ( 3.0,  3.0) 99.68 99.76 > 0.99 16.78 17.16 0.98 5.94 5.81 17.10 17.40
( 2.0,  2.0) 97.94 98.14 > 0.99 19.54 20.06 0.97 5.01 4.89 21.60 21.92
( 1.5,  1.5) 94.88 95.20 > 0.99 22.92 24.35 0.94 4.14 3.91 28.04 29.15
( 0.0,  0.0) 83.92 86.96 0.97 30.01 33.34 0.90 2.80 2.61 46.09 46.38
(−1.5, −1.5) 94.16 95.08 0.99 25.66 26.73 0.96 3.67 3.56 31.50 31.65
(−2.0, −2.0) 97.28 97.72 > 0.99 21.46 21.73 0.99 4.53 4.50 24.18 24.01
(−3.0, −3.0) 99.76 99.86 > 0.99 16.01 16.72 0.96 6.23 5.97 16.25 16.86
( 3.0,  1.5) 97.38 97.42 > 0.99 16.72 19.23 0.87 5.83 5.07 19.34 21.81
( 3.0,  0.0) 93.08 93.06 > 1.00 21.80 24.34 0.90 4.27 3.82 28.72 31.28
( 0.0,  1.5) 90.64 90.98 > 0.99 25.30 28.23 0.90 3.58 3.22 34.66 37.25
(−3.0, −1.5) 97.26 97.54 > 0.99 18.12 21.43 0.85 5.37 4.55 20.86 23.89

0.0 ( 3.0,  3.0) 99.86 99.86 1.00 17.20 17.20 1.00 5.80 5.80 17.34 17.34
( 2.0,  2.0) 97.88 97.88 1.00 20.32 20.32 1.00 4.82 4.82 22.44 22.44
( 1.5,  1.5) 94.68 94.68 1.00 24.42 24.42 1.00 3.88 3.88 29.74 29.74
( 0.0,  0.0) 86.88 86.88 1.00 33.41 33.41 1.00 2.60 2.60 46.53 46.53
(−1.5, −1.5) 95.94 95.94 1.00 26.52 26.52 1.00 3.62 3.62 30.58 30.58
(−2.0, −2.0) 97.84 97.84 1.00 21.72 21.72 1.00 4.51 4.51 23.88 23.88
(−3.0, −3.0) 99.80 99.80 1.00 16.73 16.73 1.00 5.96 5.96 16.93 16.93
( 3.0,  1.5) 97.34 97.34 1.00 19.28 19.28 1.00 5.05 5.05 21.94 21.94
( 3.0,  0.0) 93.00 93.00 1.00 24.49 24.49 1.00 3.80 3.80 31.49 31.49
( 0.0,  1.5) 90.90 90.90 1.00 28.21 28.21 1.00 3.22 3.22 37.31 37.31
(−3.0, −1.5) 97.82 97.82 1.00 21.43 21.43 1.00 4.56 4.56 23.61 23.61
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cutoff points, such as the middle symmetric, (−1.5, −1.5) 
and (1.5, 1.5), and asymmetric, (3.0, 1.5), (−3.0, −1.5), (0.0, 
1.5), and (3.0, 0.0), both methods yielded PCCs greater than 
90% (ranging from 90.56% to 97.60%). For the ρ = 0.8 condi-
tions, the relative efficiency ranged from 0.94 to 1.00, which 
indicated that SPRT_C performed comparably to SPRT. 
A similar pattern was found in the moderately correlated 
condition (ρ = 0.5). The highest PCCs were found for the 
extreme symmetric cutoff points, whereas the lowest PCC 
was found at the cutoff (0.0, 0.0). When the two dimensions 
were uncorrelated, SPRT_C performed exactly the same as 
SPRT. In general, the resulting relative efficiency ranged 
from 0.94 to 1.00, which means SPRT_C yielded PCCs 
fairly comparable to SPRT in all the simulated conditions.

An ANOVA of the mean PCC revealed that the three-way 
interaction effect of the correlation between dimensions, cut-
off points, and termination criteria was significant [F(5.76, 
34.65) = 14.608, partial η2 = .712, η2 = .005]. Simple main 
effects between the two termination criteria in each condi-
tion of the correlation between the dimensions by the cutoff 
points were also examined. Only one of them [ρ = 0.8, cutoff 
points = (0.0, 0.0)] had a mean difference of 5.06% favor-
ing the SPRT criterion after a Bonferroni correction. The 
results also indicated that SPRT and SPRT_C performed 
quite comparably, except for a high correlation between the 
dimensions and a cutoff point close to zero.

Average test length (ATL)

When the correlation between dimensions was 0.8, 
SPRT_C generally yielded a shorter test length than SPRT, 
with a decrement ranging from 3.43 to 9.63 items (i.e., 
14% to 32% of the test length), which caused the RE of 
the ATL to range from 0.68 to 0.86. When the two dimen-
sions were moderately correlated, the RE of the ATL 
increased and ranged from 0.85 to 0.99 (i.e., saving 1% 
to 15% of the test length). For uncorrelated dimensions, 
SPRT_C yielded an identical test length as SPRT. In gen-
eral, SPRT_C resulted in a shorter test length than SPRT. 
The higher the between-dimension correlation, the shorter 
the SPRT_C test.

An ANOVA of the mean ATL revealed that the three-
way interaction effect of the correlation between dimen-
sions, cutoff points, and termination criteria was signifi-
cant [F(6.679, 12.84) = 21.694, partial η2 = 0.988, η2 = 
0.010]. With a Bonferroni correction, simple main effects 
between the two termination criteria in each condition of 
the correlation between dimensions by the cutoff points 
were all significant and favored the SPRT_C criterion 
(mean differences ranging from 3.43 to 9.63 when ρ = 0.8, 
and from 0.38 to 3.32 when ρ = 0.5) except for the condi-
tions when ρ = 0, as well as when ρ = 0.5 and the cutoff 
point = (2, 2), (−2, −2), (1.5, 1.5), and (−1.5, −1.5) (mean 

differences ranging from 0 to 2.926). The results again 
indicated that the test lengths were shorter (i.e., the meas-
urement efficiency was better) for SPRT_C than for SPRT 
when the two dimensions were correlated moderately or 
highly. The higher the correlation, the better the measure-
ment efficiency.

To simultaneously take the PCC and ATL into consider-
ation in comparing these two methods, the PCCs that each 
item could contribute were also calculated. As previously, 
both methods were found to yield the highest PCCs per 
item at the extreme symmetric cutoff points and the lowest 
PCCs per item at the origin. For the conditions in which 
the dimensions were moderately correlated, these two 
methods yielded similar PCCs per item, where SPRT_C 
resulted in a slightly higher PCC for each item than its 
SPRT counterpart. Under the highly correlated conditions, 
for the cutoff points for which both methods yielded com-
parable PCCs, (3.0, 3.0), (−3.0, −3.0), (0.0, 1.5), and (3.0, 
0.0), each item could contribute 3.74 to 8.57 and 3.17 to 
5.97 of the PCC in SPRT_C and SPRT, respectively. Even 
for other cutoff points in which SPRT_C exhibited slightly 
lower PCCs, (1.5, 1.5), (0.0, 0.0), and (−1.5, −1.5), each 
item could contribute PCCs ranging from 3.33 to 5.63 in 
SPRT_C relative to their SPRT counterparts that ranged 
from 2.53 to 5.97. In general, SPRT_C yielded compara-
ble to higher measurement efficiency than SPRT under 
all the simulated conditions. The higher the correlation, 
the more efficient SPRT_C, which indicated that SPRT_C 
could generally take advantage of the correlation between 
the dimensions to improve the measurement efficiency of 
an MCCT.

It is noteworthy that SPRT_C yielded lower PCCs than 
SPRT on the cutoffs (0.0, 0.0) and (−1.5, −1.5), respectively. 
To determine the reason underlying this phenomenon, all 
the examinees were divided into three categories accord-
ing to the results of the classification decisions: correct on 
both dimensions, correct on one dimension, and incorrect on 
both dimensions. The results are listed in Table 2. For each 
category, the number of examinees was counted, and their 
corresponding ATL was calculated. In general, SPRT_C 
accumulated fewer examinees than SPRT in the first cat-
egory, with most of them falling into the second category. 
For example, for the ρ = 0.8 conditions, SPRT_C accumu-
lated 348 examinees less than SPRT in correct decisions on 
both dimensions; 276 out of them were correctly classified 
on only one dimension.

Furthermore, we plotted the first 1000 examinees 
with their corresponding classification decisions on a 
two-dimensional plane for SPRT_C and SPRT on two 
cutoffs under highly correlated conditions (ρ = 0.8). The 
results at cutoffs (0.0, 0.0) and (−1.5, −1.5) are plotted 
in Figs. 1 and 2, respectively. An examinee who was clas-
sified correctly on both dimensions was marked as one; 
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otherwise, the examinee was marked as zero. In Fig. 1, 
all the zeros were distributed near the origin. More spe-
cifically, the zeros were distributed evenly in the four 
quadrants in SPRT, whereas most of the zeros were scat-
tered in the second and fourth quadrants in SPRT_C. That 
is, for examinees with one ability above the average and 
the other below the average, the application of between-
dimensional correlation in SPRT_C might have a nega-
tive influence on PCC. For cutoff (−1.5, −1.5), where 
the examinees are plotted in Fig. 2, the same findings 
still hold.

Conclusion

Classification tests are commonly used in education, 
psychology, and personnel selection fields. Taking the 
educational field for instance, the Preliminary Scholas-
tic Aptitude Test (PSAT), which is a nationwide, mul-
tiple-choice test in the United States, is used to assist 
in identifying students’ academic strengths and weak-
nesses mainly in reading and mathematics and provide 
them with practice and assistance for the Scholastic Apti-
tude Test (SAT), which is typically taken the following 

Table 2  Number count of examinees and their averaged test length of different type of classification decision results under various conditions

Note. ρ = correlation between dimensions, ATL average test length, SPRT sequential probability ratio test, SPRT_C sequential probability ratio 
test with conditional latent trait distribution, “-” = 0

Correct on both dimensions Correct on one dimension Incorrect on both dimensions

# of examinees ATL # of examinees ATL # of examinees ATL

ρ Cutoff point SPRT_C SPRT SPRT_C SPRT SPRT_C SPRT SPRT_C SPRT SPRT_C SPRT SPRT_C SPRT
0.8 ( 3.0,  3.0) 4989 4989 12.04 17.10 10 10 44.50 43.00 1 1 60.00 60.00

( 2.0,  2.0) 4879 4891 14.23 18.84 100 99 34.10 37.50 - - - -
( 1.5,  1.5) 4732 4768 15.37 23.19 234 221 45.38 48.00 34 11 54.79 57.82
( 0.0,  0.0) 4104 4357 19.76 31.53 833 594 43.71 48.11 63 49 49.68 57.96
(−1.5, −1.5) 4690 4756 16.37 25.68 264 234 45.01 49.28 46 10 52.52 59.80
(−2.0, −2.0) 4848 4897 16.09 21.10 130 97 34.78 39.30 - - - -
(−3.0, −3.0) 4987 4994 11.52 16.68 9 6 47.33 47.67 4 - 53.25 -
( 3.0,  1.5) 4877 4879 14.23 18.84 123 121 34.10 37.50 - - - -
( 3.0,  0.0) 4667 4666 20.45 23.84 333 334 32.39 36.41 - - - -
( 0.0,  1.5) 4541 4528 23.19 27.20 457 465 34.22 39.34 2 7 40.00 55.57
(−3.0, −1.5) 4880 4879 16.09 21.10 120 121 34.78 39.30 - - - -

0.5 ( 3.0,  3.0) 4984 4988 16.69 17.11 16 12 45.50 39.00 - - - -
( 2.0,  2.0) 4897 4907 16.16 18.76 94 91 37.45 36.92 - - - -
( 1.5,  1.5) 4744 4762 21.58 22.00 224 214 46.92 46.50 32 24 54.94 54.54
( 0.0,  0.0) 4196 4348 27.55 31.55 780 629 42.51 44.88 24 23 55.00 56.00
(−1.5, −1.5) 4708 4754 24.30 25.83 271 240 47.24 43.97 21 6 51.57 56.17
(−2.0, −2.0) 4864 4886 17.55 20.99 120 113 38.38 38.82 - - - -
(−3.0, −3.0) 4988 4993 15.92 16.68 9 7 51.56 45.43 3 - 50.33 -
( 3.0,  1.5) 4869 4871 16.16 18.76 131 129 37.45 36.92 - - - -
( 3.0,  0.0) 4654 4653 20.95 23.44 346 347 33.34 36.40 - - - -
( 0.0,  1.5) 4532 4549 24.10 27.00 465 445 36.79 40.34 3 6 52.00 60.00
(−3.0, −1.5) 4863 4877 17.55 20.99 137 123 38.38 38.82 - - - -

0.0 ( 3.0,  3.0) 4993 4993 17.18 17.18 7 7 37.29 37.29 - - - -
( 2.0,  2.0) 4894 4894 18.80 18.80 106 106 36.98 36.98 - - - -
( 1.5,  1.5) 4734 4734 23.44 23.44 262 262 41.61 41.61 4 4 60.00 60.00
( 0.0,  0.0) 4344 4344 31.75 31.75 632 632 44.01 44.01 24 24 55.63 55.63
(−1.5, −1.5) 4797 4797 25.84 25.84 197 197 42.21 42.21 6 6 57.00 57.00
(−2.0, −2.0) 4892 4892 21.05 21.05 105 105 38.82 38.82 - - - -
(−3.0, −3.0) 4990 4990 16.69 16.69 10 10 37.60 37.60 - - - -
( 3.0,  1.5) 4867 4867 18.80 18.80 133 133 36.98 36.98 - - - -
( 3.0,  0.0) 4650 4650 23.58 23.58 349 349 36.46 36.46 1 1 60.00 60.00
( 0.0,  1.5) 4545 4545 26.98 26.98 448 448 40.17 40.17 7 7 55.86 55.86
(−3.0, −1.5) 4891 4891 21.05 21.05 109 109 38.82 38.82 - - - -
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academic year. Operating under the assumption that a test 
can measure more than one latent trait, this kind of test 
can be used to make decisions on multiple dimensions. 
In reality, there are numerous testing programs that now 
require reporting subscale scores for different objectives 
(Yao & Boughton, 2007), including making decisions. 
These tests help decision-makers on a daily basis, and the 
results directly affect the lives of countless individuals. 
It is certainly of great value to improve the measurement 

efficiency of these classification tests, especially when 
a test is multidimensional.

For the conditions in which multiple latent traits are to 
be measured simultaneously, an MCAT applies the collat-
eral information of the between-dimensional correlations to 
the estimation of the latent traits, which has been found to 
largely improve its measurement efficiency (Wang & Chen, 
2004). In the current study, to apply such collatera infor-
mation to an MCCT, a conditional latent trait distribution 

Fig. 1  Plots of correctness of classification decisions for 1000 examinees under between-dimension ρ = 0.8 and cutoff (0.0, 0.0)

Fig. 2  Plots of correctness of classification decisions for 1000 examinees under between-dimension ρ = 0.8 and cutoff (−1.5, −1.5)
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was used in the SPRT. This approach is easy to implement 
in the SPRT and can be effective. Through a compendious 
simulation study, the proposed SPRT_C was found to largely 
shorten the test length (up to 32%) when the two dimensions 
were highly correlated; it was able to save up to 15% of 
the test length when the two dimensions were moderately 
correlated. As expected, more items can be saved when the 
correlation between the dimensions moves from moderate 
to high. Even when the dimensions were less correlated or 
uncorrelated, SPRT_C could perform in quite a similar man-
ner as its multi-unidimensional counterpart (i.e., SPRT in 
this study). Furthermore, the performance of SPRT_C was 
found to depend on the location of examinees relative to the 
cutoff point. The mean ability on both dimensions was both 
zero in this study, where SPRT_C resulted in the longest 
and shortest ATL on the cutoff point (0.0, 0.0) and extreme 
points (−3.0, −3.0) and (3.0, 3.0), respectively. The results 
confirmed Nydick’s (2014) findings in which he focused on 
CCT that was based on a unidimensional binary response 
model. Within the SPRT_C method, although the expected 
values of the conditional latent trait distribution are required, 
all these values can be calculated easily before the test pro-
ceeds. Therefore, this method can be used widely to make 
classification decisions in actual practice.

By shortening the test length, the measurement efficiency 
of an MCCT can be improved and convey many advantages. 
First, because the average test length of making classifica-
tion decisions for examinees was shorter in SPRT_C, this 
means fewer items are required to make classification deci-
sions with SPRT_C. Because the items that had the most 
information at the cutoff point were selected, SPRT and 
SPRT_C tended to yield the same sequence of selected 
items. Hence, items that were selected and examined by 
SPRT but not by SPRT_C (usually in the late stages of 
the test) will be exposed less and replaced less frequently. 
Therefore, the effort and workload of maintaining an item 
bank, as well as writing new items, can be lowered to some 
extent. This can help to achieve cost-effectiveness for many 
test programs. Second, respondents might be more willing 
to participate in a survey if they are told the length of a 
test is shorter. In addition, the tedium and carelessness of 
respondents can be diminished to some extent, which can 
in turn reduce the likelihood of invalid responses (Forbey & 
Ben-Porath, 2007; Schmidt et al., 2003). Moreover, a shorter 
test length can introduce a reduction in administration time, 
as well as patients’ and clinicians’ burdens, which is quite 
valuable for clinical assessments (e.g., mental health) (Gib-
bons et al., 2008).

A multidimensional classification test can be used to 
make an overall decision over multiple dimensions or mul-
tiple decisions with one for each of the dimensions. Though 
the former approach is more popular in the MCCT literature 
(Spray et al., 1997; van Groen et al., 2016), this study aimed 

to go with the latter approach for a number of reasons. First, 
for educational and psychological usage, this approach can 
provide more detailed diagnostic information for practition-
ers. For example, a natural science test might contain items 
that are designed to measure at least one of a number of mul-
tiple disciplines, such as physics, chemistry, biology, geol-
ogy, and astronomy. The results of the test can be an overall 
pass/fail decision on natural science. Nevertheless, making 
decisions for each dimension can provide score profiles to 
help a teacher diagnose students’ strengths or weaknesses 
in these more specific disciplines (Luecht, 1996). Second, 
the procedures that follow the decisions can be more effi-
cient and cost-effective. With such subscale information, 
subsequent lessons or plans can be more appropriately 
designed. For example, for jobs that require multiple skills, 
knowing applicants’ profile information on each skill can 
help human resource staff to appropriately arrange further 
training courses for newly recruited employees. All of these 
examples show how valuable this subscale information can 
be and why it should be collected whenever possible.

As to the choice of values for parameters α, β, and δ, it is 
generally recommended to use .05, .05, and .2, respectively, 
since many studies used the set of values and found it per-
formed well in the CCT scenario (Eggen, 1999; Finkelman, 
2008; Seitz & Frey, 2013; van Groen et al., 2016). The cutoff 
points used here were set to investigate the performance of 
the SPRT_C, therefore various combinations were manipu-
lated. In reality, the cutoff point should be set according to 
the purpose of classification. For example, a common con-
sensus to identify gifted and talented children is to set the 
cutoff points at 2.0 (or 1.96) standard deviations (SD) above 
the population mean on each dimension of the intelligence 
test. To identify disabled students for further remedial teach-
ing, the cutoff points can be set at 1.5 or 2.0 SDs below the 
population mean on latent continuums.

There might be limitations when applying the SPRT_C 
to a practical scenario. For example, the effect of α, β, and 
δ to the SPRT_C was investigated through another small 
simulation study that only contains cutoff points (−3.0, 
−3.0), (0.0, 0.0), and (3.0, 3.0). All three parameters were 
found to have a limited effect on PCC for both SPRT and 
SPRT_C methods. Parameter α and β showed their effects 
on ATL for cutoff points (0.0, 0.0), (−3.0, −3.0), and (3.0, 
3.0), (0.0, 0.0), respectively, whereas the size of δ, as well 
as its interaction with the other two parameters, can shorten 
ATL sizably. The results were not included in this paper due 
to the findings were quite similar to the current study, but a 
note should be made here. For shorter tests (e.g., less than 
10 items), the differences in the performance between the 
SPRT and the SPRT_C become smaller, which might imply 
a limitation that the benefit of using the SPRT_C might be 
diminished for short tests. Additionally, the minimum and 
maximum test lengths on each dimension were set at 3 and 
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30 for each examinee, yet that might be not good enough to 
address the issue of test validity. Instead, the content balanc-
ing procedure might be more useful, and its effects on the 
SPRT_C should be investigated in further studies.

As for further research, this study focused on an MCCT 
that proceeds with dichotomous items. How SPRT_C per-
forms for an MCCT with polytomous items can be further 
investigated. Additionally, several item selection procedures 
and termination criteria have been proposed to improve 
measurement efficiencies, such as the expected log-like-
lihood ratio method (Nydick, 2014) and Kullback-Leibler 
information (Eggen, 1999) for item selection procedures; 
and the generalized likelihood ratio (GLR; Bartroff et al., 
2008) and SPRT with stochastic curtailment (SCSPRT; Fin-
kelman, 2008) for test termination criteria. How the findings 
of the SPRT_C can be further applied as well as the improve-
ment of measurement efficiency when combined with these 
methods can be further explored. In addition, the item selec-
tion procedure used in this study selects items that yielded 
maximum information at cutoff points, which means it is a 
nonadaptive procedure. Some studies (e.g., van Groen et al., 
2016) have tried to make classification decisions by selecting 
the item that results in the largest decrement in the volume 
of the confidence ellipsoid at the current latent-trait level 
(i.e., adaptive) in the MCAT scenario (Segall, 1996). The 
performance of applying this kind of item selection strategy 
to MCCT combined with SPRT_C is of interest. Moreover, 
the SPRT_C method showed slightly poorer performances 
than SPRT for examinees whose two latent traits fell on dif-
ferent sides of the mean of latent trait distribution (usually 
at the origin) when the between-dimension correlation was 
high and the cutoff was set at (0.0, 0.0). Though the cutoff 
points were usually set at the extreme rather than the mean 
of the latent continuum, our findings imply that the SPRT_C 
method should be used with caution when the cutoff points 
are set at or near the mean of the latent trait distribution. 
How this drawback can be corrected in SPRT_C needs fur-
ther investigation. Furthermore, whether the measurement 
efficiency of an MCCT system that provides an overall clas-
sification decision with subscale classification or diagnosis 
information can be improved by SPRT_C is also of interest.
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