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Abstract
Nowadays, exploratory and confirmatory factor analyses are two important consecutive steps in an overall analysis process. 
The overall analysis should start with an exploratory factor analysis that explores the data and establishes a hypothesis for the 
factor model in the population. Then, the analysis process should be continued with a confirmatory factor analysis to assess 
whether the hypothesis proposed in the exploratory step is plausible in the population. To carry out the analysis, researchers 
usually collect a single sample, and then split it into two halves. As no specific splitting methods have been proposed to date 
in the context of factor analysis, researchers use a random split approach. In this paper we propose a method to split samples 
into equivalent subsamples similar to one that has already been proposed in the context of multivariate regression analysis. 
The method was tested in simulation studies and in real datasets.

Keywords sample splitting · replication · exploratory factor analysis · confirmatory factor analysis · Duplex method · KMO 
index · SPSS · R

Factor analysis is a widely used multivariate technique that 
was initially proposed to explore data, especially in the con-
text of the development and assessment of psychological 
tests. During the 1980s and 1990s (see the detailed expla-
nation by Michael Browne, 2001), structural equation mod-
eling techniques suggested that exploratory factor analysis 
(EFA) was a poor substitute of what was then considered 
to be the most highly technical and correct approach: con-
firmatory factor analysis (CFA). It was not until the first dec-
ade of the millennium that EFA recovered its lost prestige. 
Nowadays, both EFA and CFA are considered two important 
consecutive steps in an overall process of analysis.

The popularity of factor analysis as an analysis technic 
has regularly been reported (see for example, Baglin, 2014; 
Costello & Osborne, 2005; Fabrigar et al., 1999; Izquierdo 
et al., 2014; or Watkins, 2018). An overall analysis should 
start with an EFA that explores the data and establishes a 
hypothesis for the factor model in the population. Then, the 
analysis process should be continued with a CFA to assess if 
the hypothesis proposed in the exploratory step is plausible 

in the population. Computing this overall factor analysis 
seems to be becoming popular among researchers, so here 
we are interested in how these steps can be planned in terms 
of the sample to be used in each analysis.

Using the same sample for both EFA and CFA, is obvi-
ously an undesirable practice: if the same sample is analyzed 
using two different methodological approaches, and the out-
comes lead to different conclusions, the problem is in the 
methodological approaches themselves, not in the sample 
data. If two samples are needed to compute an EFA fol-
lowed by a CFA, researchers could plan to collect data at 
two different moments, in two different places, or with two 
different media. However, all this could introduce biases that 
lead to non-comparable samples. For example, a sample of 
individuals collected via Facebook and another collected 
via TikTok are most likely to be representative of different 
populations. If different sources to obtain samples can be 
identified, each sample should not be composed exclusively 
by participants from a single source. In order to avoid it: (1) 
all the participants from different sources should be mixed 
to compose a single large sample; and (2) the large sample 
should be splat using some method in order to obtain two 
subsamples. In this way, both subsamples would contain 
participants from all the sources (see, for example, Del Rey 
et al., 2021).
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In the context of multiple regression analysis, de Rooij 
and Weeda (2020) point out that there are many ways in 
which the data can be partitioned in order to compute a 
cross-validation analysis, and that each set of data can lead 
to a different regression model. To solve this problem, they 
recommend repeating the cross-validation several times 
(with a default of 200 repetitions), and comparing the per-
formance of the different regression models tested among 
the cross-validation analyses. The proposals by Koul et al. 
(2018), also focused on multiple regression models, are in 
the same direction, and they advocate the repetition of the 
cross-validation study. While this strategy could to some 
extent be used in factor analysis, so many decisions have 
to be taken (for example, number of factors to be retained, 
variables that could be removed from the dataset, linear vs 
ordinal factor analysis, orthogonal vs oblique models, rota-
tion criterion, essential unidimensional models vs bifactor 
models, or number of second order factors) that it does not 
seem to be a very plausible strategy. In the factor analysis 
context, it would be better to use a split method that aims 
to produce equivalent dispersion matrices in the different 
partitioned datasets, so that the cross-validation study is car-
ried out just once.

In the next section, we review the technical options that 
researchers can use to split a sample in two comparable sub-
samples in the context of factor analysis. Then, we go on 
to propose a new method for producing such subsamples. 
Subsequently, the methods reviewed are compared in two 
simulation studies: one aims to assess the time taken by dif-
ferent methods to compute equivalent subsamples; and the 
second aims to assess how the characteristics of the dataset 
conditions affect method performance. Finally, we apply the 
methods reviewed and the new one to a different real dataset 
and assess how they perform.

Splitting samples in factor analysis

While splitting a sample in half may be seen as unimpor-
tant, we shall describe how this apparently innocuous proce-
dure can become more complex than initially expected. We 
should bear in mind that the key idea is to use an original, 
single sample to obtain two subsamples that are equivalent.

Strategies available to researchers

Before starting to study the strategies, we must first define 
what we understand by equivalent samples in the context of 
factor analysis. Then we will be able to review the strategies 
that are available.

Equivalent subsamples in factor analysis Factor analysis 
typically analyzes a correlation matrix: a Pearson correlation 

matrix in the linear factor model, or a polychoric correla-
tion matrix in the ordinal factor model. In order to assess 
the suitability of the correlation matrix to be factor ana-
lyzed, Kaiser and colleagues proposed the Kaiser-Meyer-
Olkin (KMO) statistic (Kaiser, 1970; Kaiser & Rice, 1974). 
When the index has a zero value, the sum of partial correla-
tions between observed variables is larger than the sum of 
correlations, which indicates that factor analysis is likely to 
be inappropriate for use with the corresponding correlation 
matrix. On the other hand, a value close to one indicates 
that the sum of partial correlations is not larger than the sum 
of correlations between observed variables, and that factor 
analysis should yield distinct and reliable factors. So KMO 
is related to the common variance in the correlation matrix, 
and it means that only matrices with high levels of common 
variance are suitable for factor analysis.

If a sample is divided into two, the subsamples can be 
regarded as equivalent in the context of factor analysis if all 
the sources of variance in the original sample are contained 
in both subsamples. If they are, both subsamples should have 
a similar amount of common variance, and the KMO value 
for each subsample will be the same (or very similar). The 
similarity can be assessed with the following index:

We shall call this index the Communality ratio (S). If 
the value of S is 1, both KMOs are identical (i.e., the cor-
responding subsamples are equivalent), while if it is 0, one 
of the subsamples only contains error variance. So a sample 
can be considered to be successfully split (i.e., the two sub-
samples are equivalent), if the S value is close to 1.

Random splitting of samples The simplest and most 
straightforward method for splitting a sample into two halves 
is to split it at random (see, for example, Mondo et al., 2021). 
When using this method, our hope is that the random split 
will send equivalent sets of individuals from the original 
sample to the subsamples. However, there is no guarantee 
that this will actually happen. As Osborne and Fitzpatrick 
(2012) pointed out, large samples made a difference when 
this procedure was used. In addition, it is also easier to 
achieve equivalent samples if a large amount of common 
variance is present (i.e., there are large sets of individu-
als that share a common profile in the observed variables 
accounted for by the latent factors in the model). However, 
researchers frequently have to use relatively small samples 
in which common variance is not as high as they would like 
it to be.

If a sample is randomly split into two halves, one of 
which is analyzed with EFA and the other with CFA, and 
the conclusions support a well-defined factor model, then the 

(1)S =

min
(

KMO1,KMO2

)

max
(

KMO1,KMO2

) .
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researcher will be glad with the random splitting procedure. 
However, when things go wrong and the CFA does not con-
firm the model suggested by the EFA, then the researcher 
may suspect that the random splitting is to blame for the 
failure (because it generated non-equivalent samples). The 
researcher (who would never admit it in the research report) 
may then be tempted to repeat (again and again) the random 
splitting of the sample until two halves are obtained that 
(maybe by chance) match the conclusions of the exploratory 
and confirmatory factor analyses. Obviously, this would be 
a perverse use of the split technique, and should never be 
an option.

For these reasons, it is advisable to use a splitting method 
that produces equivalent subsamples at once. In this case, if 
the two equivalent subsamples analyzed using exploratory 
and confirmatory factor analyses do (or do not) support the 
same factor model, we will feel more confident that: (a) the 
result depends on the true factor model in the population (if 
there is a factor model at all); and (b) the splitting method 
used to obtain the two subsamples has nothing to do with 
the conclusions obtained.

Methods used in multiple regression As factor analysis does 
not seem to have generated a specific method for splitting 
samples, we need to look for suitable methods developed in 
other multivariate data analysis techniques. In multiple lin-
ear regression, Kennard and Stone (Kennard & Stone, 1969 
proposed a method that was later improved by Snee (Snee, 
1977), who named it Duplex. The main idea is to generate 
subsamples of observations that uniformly cover the multi-
dimensional space by maximizing the Euclidean distances 
between the predictors. Duplex starts by selecting the two 
elements in the sample that have the greatest Euclidean dis-
tance between them and putting them in the first subsample. 
Then, of the remaining candidates, the two elements farthest 
from each other are put into the second subsample. In the 
next step, consecutive elements are selected and put alterna-
tively in the first and second subsamples, the element added 
being the one farthest away from all the elements already in 
the subsample. This selection method guarantees the repre-
sentativeness of the subsamples (i.e., all possible sources of 
variance are contained in the subsamples).

Duplex can be adapted to the context of factor analysis 
(see for example, Mas-Herrero et al., 2012; or Morales-Vives 
et al., 2012). The Euclidean distances between individuals in 
the sample are computed on the basis of the measured vari-
ables. For example, if we are analyzing a psychological test 
composed of m items, the responses of each participant to 
the m items are taken to compute the distances between all 
the participants. The main drawback is that the datasets in 
factor analyses need to be so large that Duplex turns out to 
be almost impracticable. While multiple regression typically 
requires just a few variables, factor analysis (for example, the 

items of a psychological test) usually requires a lot, so com-
puting Euclidean distances in the dimensional space defined 
by the m items of a questionnaire is slower in factor analysis 
than in regression analysis. However, the major difficulty 
is that distances between all the participants in the sample 
must be computed and compared a large number of times. 
For example, in a sample of 5,000 participants, 12,497,500 
Euclidean distances need to be computed. Even if each one 
were computed only once and then stored in the memory of 
the computer, managing such a large amount of information 
is not easy. Likewise, adding a new participant to the sub-
samples requires a compute-intensive task. Our conclusion 
is that, even if Duplex can be computed in large samples, a 
faster method should be proposed to optimally split samples 
in the context of factor analysis.

SOLOMON: a new proposal for splitting 
a sample into equivalent subsamples

Our new proposal, which we call Solomon, can simply be 
regarded as an adaptation of Duplex to the context of fac-
tor analysis. In order to explain Solomon, we are going to 
use an artificial sample of 999 individuals who answered a 
5-item questionnaire. We shall focus on the seven partici-
pants shown in Table 1.

If we inspect the responses shown in Table 1, we will 
soon realize that Teresa and Daniel produced a similar 
response pattern, that Gabriel and David are also similar to 
each other, and so are Laura and Maria. We will also con-
clude that Carlota produced a different response pattern to 
her six colleagues. However, the inspection of the responses 
will not help us much to describe, for example, how similar 
Laura’s and Gabriel’s responses are.

The Duplex algorithm computes the 21 distances between 
these 7 participants in the 5-dimensional space defined by 
the 5 items. However, in factor analysis we are not interested 
in the variance contained in the whole m-dimensional space, 
just in the common variance in the lower dimensional space. 
The first question to be answered is the maximum dimen-
sionality to be considered. In the context of factor analysis, 
Kaiser proposed the eigenvalue larger-than-one rule to deter-
mine the number of dimensions to be interpreted. While 
this rule is nowadays known to overestimate the number 
of advisable dimensions, it can be used here just as a con-
servative bound. In previous studies, I tested the Ledermann 
bound instead of Kaiser’s rule. This bound is the theoreti-
cal maximum number of factors (major plus minor factors) 
that can be considered in a dataset. However, Solomon per-
formed notably worse when based on the Ledermann bound 
(especially in datasets with a large number of variables): 
the presence of variance due to minor factors seemed to 
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introduce more error than useful information in the split-
ting of the sample. In addition, we would advise to consider 
at least two dimensions. The most important point is that 
no m dimensions need to be considered, but a much lower 
dimensionality.

In our opinion, one important feature of a sample split-
ting method is for it to be independent of the factor model 
proposed in the subsamples. We propose using Kaiser’s rule 
because it is well-known to overestimate the number of fac-
tors that should be extracted from the dataset at hand. In this 
regard, Kaiser’s rule seems to be a suitable bound because it 
makes it possible to include all the sources of variance that 
account to some extent for the communality in the dataset, 
but at the same time it avoids having to use as many dimen-
sions as the number of variables (as Duplex does). However, 
this bound is not meant to be the definitive number of factors 
to be extracted in the subsamples when a factor model is 
explored: researchers will have to decide how many factors 
they actually extract from the correlation matrix in order to 
propose a factor model.

In the case of our example with m=5, the maximum num-
ber of factors related to the common variance that we shall 
consider is 2. This bidimensional space can be graphically 
represented in a plot, in which individuals are represented as 
a cloud of points. Panel A in Fig. 1 represents this plot. Each 
of the 999 participants are represented by a point, and the 
seven participants in Table 1 have been highlighted with a 
bold point so that they can be clearly identified in the cloud. 
The visual inspection of this cloud of points is even more 
informative than the five response scores in Table 1. It is 
now easy to see how different Laura (L) and Gabriel (G) are.

So far we have simplified the dimensionality of the space. 
Instead of considering an m-dimensional space, we shall just 
consider a Q-dimensional space, where Q is always lower 
than m.

Duplex now computes Euclidean distances between 
the 999 individuals in the sample: this involves 498,501 
distances. Instead of this, we propose computing a single 
numerical value that represents the position of each of the 

999 participants in the cloud. To do this, we can set a ref-
erence and describe participants’ positions with respect to 
this reference. We propose that this reference be the prin-
cipal components. Principal Component Analysis (PCA) is 
closely related to factor analysis: PCA aims to summarize 
the variance in the variables involved, while factor analysis 
aims to identify the dimensional model related to the com-
mon variance.

If we compute the component scores of each participant, 
the first component in the canonical PCA solution is an axis 
that crosses the cloud of participants through the center: 
Panel B in Fig. 1 represents the first component. Now the 
projection of each participant on the first component helps 
us to describe its position in the cloud of participants. Col-
umn  C1 in Table 1 displays these projections, and Panel C 
shows Teresa’s and Maria’s projections on the axes: we can 
see that they are some distance apart in the cloud, and their 
projections (2.617 and -0.937, respectively) help to describe 
the difference between them. However, considering only 
the projection on the first component can be misleading. In 
Panel D, we can see that Daniel (Dn) and David (Dv) are not 
close together in the cloud of participants. However, their 
projections on the axis (2.065 and 2.062, respectively) would 
suggest that they are very similar. The reason for this is that 
we take into account only the first component, while Kaiser’s 
rule advises for this dataset to consider two dimensions.

The second component analysis (also in the canonical 
position) is again an axis that crosses the cloud of partici-
pants through the middle, but which is orthogonal to the 
first component. Panel E presents the axes related to the 
two components. We can now clarify that the graphical 
plot was from the very beginning represented in these two 
axes. The participants’ projections on the second component 
are presented in column  C2, and Panel F shows Daniels’ 
and David’s projections, which reveal (as we have already 
seen in the plot) that they are not so close in the cloud of 
participants.

In conclusion, we need to consider the projection on 
both axes in order to effectively describe the participant’s 

Table 1  Response and distance information for seven participants in the sample

Participants Participants' responses to items Projection on components Distance

I1 I2 I3 I4 I5 C1 C2 D

Teresa 5 2 1 2 1 2.617 1.140 1.276
Daniel 5 2 1 2 2 2.065 1.094 1.041
Gabriel 3 2 1 5 1 2.540 -1.002 0.869
David 2 2 1 5 1 2.062 -1.324 0.616
Laura 2 5 3 1 4 -0.429 0.759 -0.043
Maria 2 5 4 1 4 -0.937 0.714 -0.260
Carlota 1 2 4 3 3 -1.630 -0.875 -0.823
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position. However, our aim was to have a single numerical 
value to describe each participant’s position, and we ended 
with two values (i.e., the projection on each component). 
One solution to this is to combine the two numerical values 
into one. However, directly adding one to the other would 
not be the best idea because this means that we consider the 
projections on both components to be equally important in 
describing the participant. Each component is related to a 
different amount of variance. In our example the first com-
ponent accounted for 41.1% of the variance while the second 
accounted for 17.5%, which means that we should give much 
more importance to the projection on the first component 

than the projection on the second. To obtain a single numeri-
cal value that describes participants’ position in the cloud 
we can compute a weighted addition:

where wj is the proportion of variance accounted for by 
the j-th component, cij is the projection of the i-th partici-
pant on j-th component, and di is the numerical value that 
describes the position of the i-th participant in the cloud of 
participants. Column D in Table 1 orders the seven partici-
pants highlighted in the example in terms of this numerical 

(2)di =
∑Q

j=1
wjcij,
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Fig. 1  Graphical representation of individuals in a bidimensional space
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description. The further two participants are from each other 
in the sorted list, the more different they are. Teresa and 
Carlota are the two individuals who are furthest apart in the 
sorted list, and we can see in Fig. 1 that they are at some 
distance from each other. It should be said that this distance 
has to be computed for the 999 participants in the sample.

Now that the participants in the sample are ordered in 
terms of their position in the cloud of participants, the two 
subsamples can easily be computed: odd-numbered partici-
pants are assigned to subsample one, and even-numbered 
participants to subsample two. As the assignment to each 
subsample is made for the whole sample, from the informa-
tion in Table 1 it is impossible to know to which subsample 
the seven highlighted participants will be assigned. How-
ever, just for the benefit of the pedagogical explanation, let’s 
suppose that 992 participants have already been assigned to 
their subsamples, and the seven participants in our example 
are the last ones to be assigned. Teresa, Gabriel, and Laura 
would be assigned to the first subsample, and Daniel, David, 
and Maria to the second. However, we have an uneven num-
ber of participants so what should we do with Carlota? In 
fact, she could be assigned to either subsample: a single 
participant should not make a difference to the subsamples 
if the number of participants is large enough. For the sake 
of consistency, we should assign Carlota (an odd-numbered 
participant), to the first subsample.

Our aim was to obtain a splitting method that was faster 
than Duplex, but what we found also needs a considerable 
amount of computing. However, our Matlab code for Solo-
mon did manage to split a large sample substantially faster 
than Duplex and it can easily be computed using any sta-
tistical software that includes PCA. All that is needed is to 
obtain participants’ component scores in a Q-dimensional 
solution, and to compute the weighted sum (di) using the 
proportion of variance related to each component. Then, 
participants must be sorted in order of their di value. 
Finally, odd-numbered participants are assigned to the first 
subsample, and even-numbered participants to the second 
subsample.

Of course, it still remains to be seen which of the two 
methods provided the most equivalent subsamples in terms 
of Communality Ratio (index S). In addition, as Solomon’s 
most important characteristic is the short computing time 
needed to obtain equivalent subsamples, the time taken 
by Duplex and Solomon to split large samples should be 
compared.

First simulation study

The aim of the simulation study is to compare the time taken 
by Duplex and Solomon to compute equivalent subsamples. 
We were not interested in assessing the real computation 

time, because it can vary considerably from one computer 
to another. Instead, we were interested in the comparison 
when the two methods were computed with the same com-
puter. In addition, for the time estimates to be realistic, the 
simulation was carried out on a laptop. Laptops are popular 
among applied researchers, but are not very efficient at large 
computing tasks.

Study design

The simulation study was computed with Matlab. The 
Duplex method was computed with the code proposed by 
Daszykowski et al. (2002), which is the fastest implementa-
tion that we know in Matlab. Solomon was computed with 
the code we produced ourselves.

The most challenging aspect of splitting a sample into 
equivalent subsamples is the size of the sample itself. For 
this reason, this was the characteristic that we manipulated 
in the simulation study. In order to generate sample data, we 
produced a population loading matrix of 5 factors, and 20 
variables for each factor. Salient loading values of the vari-
ables were uniformly chosen in the range [.40, .45], while 
non-salient loading values were uniformly chosen in the 
range [-.10, .10]. From the population loading matrix, the 
corresponding population correlation matrix was obtained. 
Then, a normal random sample was obtained that had the 
population correlation matrix obtained in the previous step. 
The random samples were generated with sample sizes in the 
range [500, 7,500] with steps of 500 (i.e., samples of N equal 
to 500, 1,000, 1,500, …, 7,500]. Each sample was split using 
the Duplex method and the Solomon method.

We recorded the time taken by each method to split the 
sample. In addition, to assess the quality of the equivalence 
between subsamples, we computed the S index. Our expecta-
tion was that both methods would provide equivalent sub-
samples with similar S indexes.

We replicated the simulation process 100 times, so a total 
of 1,500 samples were split in half during the simulation 
study.

Results of the first simulation study

We computed the mean and standard deviation of the S index and 
the time taken to split the different sample sizes (see Table 2 and 3).

As can be observed, the equivalence of the subsamples in 
terms of the S index was slightly worse when small samples were 
split (between 500 and 1,500), and values were best with Duplex. 
However, when samples were large, these differences disappeared.

The computing times needed by Duplex ranged between 
0.63 seconds (samples with N=500) and 7.30 minutes (sam-
ples with N=7,500). Figure 2 shows how the time increased 
as the samples got successively larger. With samples of 
N=4,000, already more than a minute was required.
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On the other hand, the computing times taken by Solo-
mon ranged between 0.003 seconds (samples with N=500) 
and 0.059 seconds (samples with N=7,500). Solomon’s com-
puting time for the largest samples was still less than the 
time needed by Duplex for the smallest.

Finally, although the S index was systematically larger 
with Duplex, the outcomes in Table 2 show that the dif-
ferences are so small that the outcomes with Solomon can 
be regarded as equivalent when samples were larger than 
1,000.

Table 2  Mean and standard deviation for the comparison between Duplex and Solomon in the simulation study

computing time is expressed in seconds

Sample size DUPLEX SOLOMON

Computing time S Computing time S

   500 0.7274 (0.0568) .9797 (.0160) 0.0075 (0.0019) .9731 (.0189)
1,000 1.9661 (0.0817) .9912 (.0067) 0.0082 (0.0015) .9881 (.0085)
1,500 6.0192 (0.0957) .9941 (.0046) 0.0106 (0.0033) .9919 (.0053)
2,000 12.5072 (0.1767) .9957 (.0035) 0.0113 (0.0020) .9953 (.0039)
2,500 22.1769 (0.5978) .9961 (.0034) 0.0122 (0.0022) .9960 (.0033)
3,000 34.8135 (0.3744) .9970 (.0024) 0.0133 (0.0026) .9955 (.0031)
3,500 51.6800 (0.3214) .9976 (.0018) 0.0142 (0.0024) .9967 (.0025)
4,000 73.7489 (0.4880) .9980 (.0017) 0.0154 (0.0026) .9973 (.0021)
4,500 100.7430 (0.6465) .9981 (.0012) 0.0171 (0.0026) .9975 (.0020)
5,000 133.6307 (0.7956) .9984 (.0012) 0.0185 (0.0027) .9979 (.0017)
5,500 172.5596 (0.9153) .9984 (.0013) 0.0201 (0.0046) .9981 (.0013)
6,000 219.2720 (0.9102) .9984 (.0012) 0.0207 (0.0073) .9983 (.0014)
6,500 274.7532 (1.0997) .9984 (.0011) 0.0207 (0.0070) .9983 (.0012)
7,000 336.2905 (1.6212) .9986 (.0010) 0.0207 (0.0064) .9985 (.0012)
7,500 414.2110 (5.8583) .9989 (.0008) 0.0232 (0.0065) .9985 (.0011)

Table 3  Mean of S indices obtained in the second simulation study using three sample splitting methods. Standard deviations are given in paren-
thesis. (The largest mean per condition is printed in bold)

Values printed in bold are the largest mean value of index S for each condition
h: communality level; r: number of factors; m: number of variables.

Condition Random Sampling Duplex Splitting Solomon Splitting

Overall .9578 (.0657) .9600 (.0749) .9658 (.0576)
h = large .9650 (.0608) .9629 (.0817) .9722 (.0520)
h = wide .9505 (.0695) .9571 (.0674) .9594 (.0619)
r = 1 .9574 (.0621) .9549 (.0901) .9714 (.0461)
r = 2 .9579 (.0674) .9640 (.0625) .9635 (.0609)
r = 3 .9581 (.0678) .9615 (.0671) .9618 (.0649)
m/r = 10 .9551 (.0585) .9610 (.0612) .9631 (.0511)
m/r = 20 .9591 (.0677) .9587 (.0818) .9669 (.0590)
m/r = 30 .9594 (.0710) .9603 (.0812) .9676 (.0627)
N = 100 .8779 (.1002) .8849 (.1186) .8987 (.0881)
N = 200 .9303 (.0719) .9355 (.0841) .9420 (.0672)
N = 400 .9735 (.0259) .9759 (.0425) .9801 (.0200)
N = 800 .9870 (.0145) .9867 (.0318) .9904 (.0109)
N = 1,600 .9932 (.0083) .9918 (.0250) .9951 (.0060)
Normal responding .9677 (.0559) .9729 (.0521) .9734 (.0501)
Extreme responding .9478 (.0729) .9471 (.0905) .9582 (.0633)
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Second simulation study

The simulation study intended to assess the extent to which 
the random splitting of samples, the Duplex method and 
the Solomon method provide equivalent subsamples in 
terms of Communality Ratio (index S). The assessment was 
designed for various scenarios with different communality 
levels, number of variables per factor, number of factors in 
the population, sample size, and response extremeness. In 
general terms, the design attempted to mimic the conditions 
expected in empirical applications, and so provide realistic 
choices.

Study design

We specified two levels of communality in the population 
model (large: salient loadings randomly and uniformly 
drawn from the range [.55 - .88]; and wide: salient load-
ings randomly and uniformly drawn from the range [.20 - 
.88]). There were 1, 2 and 3 factors in the population and 
10, 20, and 30 variables per factor. For each factor model 
at hand, a population of 10,000 continuous responses were 
simulated following a normal distribution, and the simulated 
responses were categorized to a 5-point response format 
so that there were two response style conditions: normal 
distributed responding (the thresholds used to categorize 
data were [.05, .26, .74, .95]; and extreme responding (the 
thresholds used to categorize data were [.05, .10, .15, .25]). 
Extreme responding represents situations in which responses 
are mainly in one of the extreme response categories, and 
few participants use the whole range of categories: this is 
quite usual for psychological tests.

From each population of responses, samples of different 
sizes were uniformly drawn. The sizes of the samples were: 
100, 200, 400, 800, and 1,600. Once these samples became 
available, they were split into two subsamples using the three 
methods assessed, and the S index was computed for each 
pair of subsamples.

To summarize, the study was based on a 2×3×3×5×2 
design with 1,000 replicas per condition. The independent 
variables were: (1) communality: wide and high; (2) number 
of factors in the population model: from 1 to 3; (3) number 
of variables per factor (10, 20, and 30); (4) size of sam-
ples (100, 200, 400, 800, and 1,600); (5) response style: 
normal distributed responding, and extreme responding. To 
avoid unrealistic situations, the study was not fully crossed: 
for example, with the conditions N=100, r=3, and m/r=30 
(where,r is the number of factors, and m is the number of 
variables), the number of measured variables (i.e., responses 
to items) would be 90, while for the subsamples (i.e., the 
number of participants) it would be 50. This is an unrealistic 
situation in applied research. In total, the number of samples 
generated and split during the study was 168,000.

Results of the second simulation study

The first outcome of note was that the Duplex splitting algo-
rithm failed to converge on 137 occasions (0.08%), and no 
optimal splitting was reported. These failures were quite 
systematic when data sets were being analyzed in which the 
population factor model was unidimensional, the communal-
ity high, and the response style extreme responding. With 
these 137 samples, random sampling and Solomon had no 
difficulties, and obtained subsamples in which the mean of 
the S index was .875 and .922, respectively. These prob-
lematical samples are not included in the analysis reported 
below.

In general, random sampling was the method that per-
formed worse. It should be said that its performance was 
hardly affected by the independent variables, except sam-
ple size and response style. When sample size was large 
(N equal to 800 or larger), it performed slightly better than 
Duplex. In samples in which the response style was extreme 
responding, it clearly performed less well (but still slightly 
better than Duplex splitting). It performed worse in small 
samples.

In general, Duplex was between the other two meth-
ods, but variability was larger, which makes the method a 
bit unreliable: that is to say, it provided optimally equiva-
lent subsamples, and, at the same time, the least equiva-
lent subsamples. The most favorable situations for Duplex 
were when it had to deal with samples that were large, and 
when the response style was normal responding. When the 
response style was normal distributed responding, it also 
performed well.

Solomon splitting performed systematically better than 
the other two methods. In comparison, it seems the best 
option when samples are related to a unidimensional fac-
tor model, when communalities are high, when samples are 
small, and when the response style is extreme responding. 

Fig. 2  Computing time needed by Duplex in the simulation study
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It is also always the method that shows the lowest levels of 
variability, which means that it is the most reliable option.

Analyses of real datasets

In this section, we study the performance of the random 
splitting method, Duplex and Solomon in twelve real data-
sets, all of which have a sufficiently large sample.

Datasets

The twelve datasets analyzed by our research group over the 
last thirty years are revisited for the purposes of this study. 
Most of the samples are the same as the ones used for previ-
ous publications. In some cases, we have done further work 
with the related test, and the sample used here is larger than 
when first published. We aimed to collect datasets with dif-
ferent numbers of items (between 9 and 100). In addition, we 
wanted the number of factors selected for the factor model 
to be in a wide range (1 to 7 factors). The characteristics of 
the datasets are the following:

 1. MSPSS is a 12-item instrument that measures the per-
ceived adequacy of social support (for details see Cal-
derón et al., 2021). The study sample comprised 925 
patients with cancer (60.3% females), aged between 24 
and 85 years (Mean: 59.0; Standard deviation: 12.2).

 2. BAI is 24-item test that was developed to assess belief 
in astrology (for details see Chico & Lorenzo-Seva, 
2006). The participants were 743 undergraduates 
studying Psychology and Social Sciences at university 
(84.1% females), aged between 18 and 60 years (Mean: 
21.7; Standard deviation: 4.3).

 3. RAS is a Spanish version of the Reducer-Augmenter 
Scale that has 61 items (for details see Piera et al., 
1993). There were 1,156 participants (37.2% females), 
aged between 16 and 53 years (Mean: 21.2; Standard 
deviation: 4.2).

 4. SDMQ is a 9-item instrument that assesses the per-
spective of physicians and how they share decision 
making with patients (see Calderón et al., 2021). It has 
two dimensions: (1) the information and explanations 
given by the physician, and (2) the choice of the best 
treatment option for the patient. The sample consisted 
of 520 individuals (67.1% female), aged between 26 
and 85 years (Mean: 59.2; Standard deviation: 12.2).

 5. SAS is a 24-item instrument that assesses statisti-
cal anxiety (for details see Vigil-Colet et al., 2008). 
The test has three scales: (1) examination anxiety, (2) 
asking for help anxiety, and (3) interpretation anxi-
ety. There were 459 participants (76% females), aged 

between 18 and 55 years (Mean: 21.6; Standard devia-
tion: 3.5).

 6. EPIA is a 57-item inventory from the Spanish vali-
dation of the Eysenck Personality Inventory, which 
measures personality. It has three scales: (1) extraver-
sion-introversion, (2) neuroticism-stability, and (3) 
social desirability. The sample was collected during 
the study by Piera et al. (1993) for purposes of valid-
ity, and consisted of 756 participants (24.2% females), 
aged between 16 and 53 years (Mean: 20.7; Standard 
deviation: 3.6).

 7. BSWQ is a 12-item questionnaire for the self-assess-
ment of individual differences in language switching 
(for details see Rodriguez-Fornells et al., 2012). The 
test has four scales: (1) L1-Switch, which measures 
the tendency to switch to Spanish (L1); (2) L2-Switch, 
which measures the tendency to switch to L2 (Catalan); 
(3) contextual switch, which indexes the frequency of 
switches in a particular situation or environment; and 
(4) US, which measures the lack of awareness of lan-
guage switches. The participants were 582 Spanish–
Catalan bilingual university students (75.1% women) 
with a mean age of 21.7 (3.5) years.

 8. PSYMAS is a 25-item questionnaire that assesses psy-
chological maturity in adolescents and consists of three 
subscales: (1) work orientation, (2) identity, and (3) 
autonomy (for details see Morales-Vives et al., 2012). 
The participants in the study were 691 high school stu-
dents (56.5% females), between 15 and 18 years old 
(Mean: 16.5; Standard deviation: 0.9).

 9. I-DAQ is a 27-item questionnaire that measures aggres-
sive behaviors and has five factors: (1) physical aggres-
sion, (2) verbal aggression, (3) indirect aggression, 
(4) social desirability, and (5) acquiescent responding 
(for details see Ruiz-Pamies et al., 2014). There were 
882 participants in the present study (61.7% females), 
between 18 and 68 years old (Mean: 27; Standard devi-
ation: 7.2).

 10. MBRQ is a 22-item questionnaire that measures the 
musical reward experience and can be decomposed 
into five reliable factors: (1) musical seeking, (2) 
emotion evocation, (3) mood regulation, (4) social 
reward, and (5) sensory-motor (for details, see Mas-
Herrero et al., 2012). The questionnaire was admin-
istered via an internet application to 758 participants 
(53 % females, and 14 % professional musicians) who 
responded voluntarily (age range: 18-78 years old 
(Mean: 33.9; Standard deviation: 10).

 11. FFPI is a 100-item test that measures personality traits. 
It has six dimensions: (1) extraversion, (2) agreeable-
ness, (3) conscientiousness, (4) emotional stability, (5) 
openness to experience, and (6) acquiescent respond-
ing (for details see Rodríguez-Fornells et al., 2001). 
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The Spanish sample consisted of 567 undergraduate 
college students (84.7 females) enrolled in an introduc-
tory psychology course. The mean age for this group 
was 19.3 years (Standard deviation: 2.8).

 12. OPERAS is a 40-item personality test that has seven 
dimensions: (1) extraversion, (2) agreeableness, (3) 
conscientiousness, (4) emotional stability, (5) open-
ness to experience, (6) acquiescent responding, and 
(7) social desirability (for details see Vigil-Colet et al., 
2013). The participants in the present study are 5,503 
(52.1% females), and they were between 11 and 95 
years old (Mean: 31.3; Standard deviation: 14.8).

Methods compared

For each of the twelve samples, we computed how the three 
methods split the samples. In order to assess how equivalent 
the subsamples were, we computed the Communality Ratio 
(i.e., S index) described above. We carried out the random 
split method 10 times for each sample and then the mean and 
standard deviation of the values of index S.

Results

Table 4 shows the main characteristics of the samples dis-
cussed, plus the KMO of the overall sample. For the random 
sampling method, the table shows the mean and the stand-
ard deviation of the values of index S after the 10 trials. 
For Duplex and Solomon, the table shows the KMO indices 
obtained in each subsample, and the S index.

In most of the samples (11 out of 12), the KMO indi-
ces of the subsamples were lower than the KMO value of 
the original sample. This means that, as individuals with a 
response pattern that best accounted for the common vari-
ance are accurately distributed among the subsamples, these 
individuals are not so well represented in the subsamples (at 
least not as they were in the original sample), and the KMO 
value of each subsample is lower than in the original sam-
ple. The only sample in which the subsamples had a KMO 
value similar to that of the original sample (no difference 
until the third decimal digit) is the one for OPERAS, which 
was so big (N=5,503 individuals) that even after distribut-
ing the best individuals between the samples, there were 
still so many of them in each subsample that the KMO value 
remained unchanged. The conclusion is that very large sam-
ples help to obtain equivalent subsamples with KMO values 
similar to the KMO value of the whole sample.

The outcomes of the random splitting method show that 
although optimally equivalent subsamples in terms of S were 
obtained in each dataset, non-optimally equivalent subsam-
ples were also obtained. When subsamples are not optimally 
equivalent, one of the subsamples can have a KMO index that 
is even larger than that of the total sample, while the other 
subsample has a KMO index that is very low. For example, 
the KMO value of the SDM dataset was .8722, while some 
of the KMO values observed for subsamples were .7481 and 
.9004, respectively. This means that one of the samples was 
assigned most of the individuals with a response pattern that 
best accounted for the common variance, while the other sub-
sample was largely assigned the individuals with response 

Table 4  KMO indices obtained in the illustrative datasets after using three sample splitting methods. (The maximum value of index S for each 
sample is printed in bold.)

Values printed in bold are the largest value of index S for each sample analysed
r: number of factors; m: number of items; N: Sample size; S: Communality ratio index

Scale r m N Total sample Random splitting 
(S)

Duplex Splitting Solomon Splitting

Mean Sd First half Second half S First half Second half S

MSPSS 1 12 925 .8685 .9683 .0207 .8531 .8591 .9930 .8594 .8615 .9975
BAI 1 24 743 .9435 .9891 .0091 .9333 .9372 .9958 .9304 .9360 .9940
RAS 1 61 1,156 .8354 .9825 .0090 .8187 .8271 .9898 . 8203 .8227 .9971
SDM 2 9 520 .8722 .9508 .0280 .8538 .8813 .9688 .8606 .8705 .9886
SAS 3 24 459 .9298 .9827 .0082 .9084 .9242 .9829 .9118 .9153 .9961
EPIA 3 57 756 .7815 .9643 .0123 .7515 .7658 .9813 .7403 .7654 .9672
BSWQ 4 12 582 .8381 .9700 .0191 .8100 .8126 .9968 .8006 .8152 .9821
PSYMAS 5 25 691 .7489 .9601 .0283 .7117 .7396 .9623 .7087 .7363 .9625
I-DAQ 5 27 882 .8576 .9733 .0118 .8311 .8425 .9865 .8355 .8356 .9999
MBQR 5 22 758 .8456 .9665 .0197 .8336 .8373 .9956 .8273 .8288 .9983
FFPI 6 100 567 .8880 .9770 .0112 .8069 .8172 .9874 .7937 .8233 .9641
OPERAS 7 40 5,503 .8894 .9939 .0045 .8828 .8881 .9941 .8833 .8842 .9991
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patterns due to specific variance. The S index values were 
worse than those obtained by the other methods.

The Solomon method provided more equivalent sub-
samples than Duplex: in 8 samples (out of 12), the S index 
showed the best outcome. A t-Student test for depend-
ent samples was conducted in order to test the difference 
between (1) the mean of S values obtained in the 10 times 
random splitting, and (2) the S values obtained by Solomon. 
Differences were significant in comparison to those obtained 
with random splitting (t-Student=4.40; P < .01).

Finally, Solomon performed slightly better than Duplex 
in terms of the S index (means of .987 and .986, respec-
tively). In addition, the Solomon method still provided the 
best S values on eight occasions. It should be pointed out 
that Solomon performed best with the two largest samples. 
As the differences between Duplex and Solomon were not 
significant (t-Student=0.499; P = .628), all the conclusions 
drawn for Duplex can also be drawn for Solomon.

Solomon implementation in statistical 
packages

We implemented Solomon method in three different statisti-
cal programs, and made it available at the web page of our 
university (http:// www. psico logia. urv. cat/ en/ tools/). The 
utilities developed are:

1. The R script “solomon.r”. It is a script that uses only 
native functions in R, so no packages needs to be down-
loaded to use it. In order to use it, the researcher has to 
store participants’ responses in a text file, update the 
name of the input and output files, and to execute the 
script. In the output file, the first column indicates the 
assignment of each row to one or the other subsample.

2. The SPSS script “solomon.sps”. Again, in order to use it the 
researcher must have participants’ responses in a SPSS data 
file, and to execute the script. A new data file is generated 
with the first variable indicating the assignment of each row.

3. Finally, we implemented Somolon method in our pro-
gram to compute factor analysis, that can be downloaded 
free from the site (http:// www. psico logia. urv. cat/ media/ 
upload/ domain_ 2082/ arxius/ Utili tats/ factor/ index. html). 
To help the researcher to use Solomon method insight 
FACTOR, a video tutorial is also available at the web site.

Discussion

We studied three methods for splitting samples into two 
halves. The most popular one nowadays (the random split-
ting method) is based on the hope that a random procedure 
will help to provide two equivalent samples.

The first simulation study showed that Solomon is the 
quickest at splitting samples, and that it takes substantially 
less time than Duplex when the sample is large. The second 
simulation study revealed that Solomon generally provided 
the best optimally equivalent samples, and the lowest vari-
ability. It must be said that all the methods gave acceptable 
results when the sample was large. At the same time, the 
most difficult situation to deal with is when the response 
style is extreme responding. When it is, most of the partici-
pants in the sample show similar responses around a few 
response categories, and at the same time some participants 
use categories at the other end of the response scale. With 
such complex samples, Solomon was the most accurate 
method.

In our study with real datasets we showed that even when 
equivalent samples were obtained with Duplex and Solo-
mon, random splitting can provide subsamples that are not 
so optimally equivalent in terms of the quality of the cor-
relation matrices. Of course, random splitting could be used 
differently from the way we used it: a number of subsamples 
could be randomly split until a high value of Communality 
ratio index (S) value is obtained. However, this approach is 
not optimal from the point of view of computing time. In 
addition, even when a reasonable S value is obtained in this 
way, there is no way of knowing if a better split could be 
obtained with the data.

If the advice given by de Rooij and Weeda (2020) in the 
context of multiple regression analysis is adapted to factor 
analysis, researchers may: (1) repeat the random splitting 
of the sample several times (they use 200 repetitions as the 
default); (2) assess the cross-validation of the factor model 
in each repetition; and (3) compare the performance of the 
different factor models tested in different cross-validation 
analyses. While not impossible, however, this approach does 
not seem very practical in the context of factor analysis.

Duplex is a method that was developed in the context of 
multiple regression analysis. While it can be used in the con-
text of factor analysis, the outcome of our simulation study 
shows that it is very slow when the sample is large. And the 
analysis of real data shows that samples need to be large 
to obtain subsamples that are not just equivalent with each 
other, but which also have a KMO index similar to the one 
in the original sample. For these reasons, the method does 
not seem to be truly optimal in the context of factor analysis.

Solomon, which is well adapted to the context of fac-
tor analysis, is our alternative proposal for splitting sam-
ples in such a way that subsamples are equivalent. It is also 
fast. The simulation study shows that it is much faster than 
Duplex, and that the sample size does not substantially 
impact its performance. In addition, the second simulation 
study and the analysis of real datasets show that Solomon 
provides subsamples that are as equivalent as the ones pro-
vided by Duplex. It must be said that, when analyzing the 
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set of real datasets, the equivalence of the samples provided 
by Solomon was slightly better, but the difference was not 
significant.

Our explanation describes how Solomon can be used to 
provide two equivalent subsamples. However, in some situ-
ations researchers aim to have more groups. For example, 
Davies et al. (2021) divided their sample of N=2,033 par-
ticipants into three. Solomon can be adapted to obtain more 
than two subsamples. When there is an even number of sub-
samples, Solomon has to be applied a number of times: first, 
it has to be applied to the main sample; and, second, it has 
to be applied to each subsample as many times as needed in 
order to obtain the number of subsamples required. If there 
is an odd number of subsamples, then our procedure can 
be adapted slightly. For example, if three subsamples are 
required (as was the case in Davies et al., 2021), once the 
individuals are sorted by their value in di, triplets of con-
secutive individuals should be selected and each participant 
in the triplet assigned to a different sample.

In other situations, external variables are taken into con-
sideration. For example, Del Rey et al., (2021) randomly 
split their sample into two halves, controlling for the gender 
variable. This can also be done using Solomon: the sample 
should the split into two groups by gender, and these two 
samples then split again using Solomon to obtain two equiv-
alent subsamples of women, and two equivalent subsamples 
of men. Subsequently one subsample of women and one sub-
sample of men should be joined to form a single subsample, 
and the process repeated with the other two subsamples to 
form a second single subsample. For complex controlling 
variables that involve more than two groups of individuals 
(for example, if an individual has to be assigned to a subsam-
ple of one of the groups defined by the variable LGBTI), the 
procedure would be similar. In this case, however, it would 
be advisable to have a large sample in which the proportion 
of individuals in each group of the controlling variable is 
representative of their proportion in the population.

Our aim was to propose a splitting method that is inde-
pendent of the factor model proposed by the researcher in 
the subsamples. As a bound of the dimensions considered to 
split the dataset, we have proposed Solomon based on Kai-
ser’s rule: this means that the sample is split on the basis of 
the variance due to the number of dimensions that Kaiser’s 
rule suggests. As this is an arbitrary decision, the researcher 
could propose other bounds. For example, if the researcher 
has an idea of how many factors will be extracted for the 
factor model (based on previous research, or empirical evi-
dence), then this number of factors could be used to split 
the dataset. Whatever the number of dimensions used by the 
researcher, however, we would advise not to use more factors 
than the ones suggested by Kaiser’s rule.

A final word about sample size. As Osborne and Fitzpat-
rick (2012) pointed out, sample size is important in studies 

that focus on subsamples. Our analysis of real datasets 
showed that the value of the KMO in the original sample is 
only maintained if the equivalent subsamples are also large. 
If a large number of subsamples is required, then the size of 
the whole sample must also be very large. In addition, if the 
analyses of the different subsamples converge to the same 
conclusions (i.e., the acceptance of a particular factor model 
in the population), it would be advisable to join the subsam-
ples again in order to estimate the parameters of the model. 
When estimating factor reliabilities and scores, for example, 
it is advisable to use a sample that is as large as possible. The 
reason for this is that these estimates also need a consider-
able number of factor model parameters in the population to 
be estimated (this is the case of the ORION reliabilities and 
scores, Ferrando & Lorenzo-Seva, 2016). All these estimates 
will be more stable, and therefore more credible, if they are 
based on the largest sample the researcher has available (that 
is to say, the whole sample).

Solomon should be easy to implement in statistical pack-
ages as long as principal component analysis is available. 
The example that we provide in our page site in R and 
SPSS should help other researchers to implement it in other 
packages.
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