
https://doi.org/10.3758/s13428-021-01737-9

Introducing the Prototypical Stimulus Characteristics Toolbox: Protosc

S. M. Stuit1   · C. L. E. Paffen1 · S. Van der Stigchel1

Accepted: 27 October 2021 
© The Author(s) 2021

Abstract
Many studies use different categories of images to define their conditions. Since any difference between these categories is a 
valid candidate to explain category-related behavioral differences, knowledge about the objective image differences between 
categories is crucial for the interpretation of the behaviors. However, natural images vary in many image features and not 
every feature is equally important in describing the differences between the categories. Here, we provide a methodological 
approach to find as many of the image features as possible, using machine learning performance as a tool, that have predictive 
value over the category the images belong to. In other words, we describe a means to find the features of a group of images 
by which the categories can be objectively and quantitatively defined. Note that we are not aiming to provide a means for 
the best possible decoding performance; instead, our aim is to uncover prototypical characteristics of the categories. To 
facilitate the use of this method, we offer an open-source, MATLAB-based toolbox that performs such an analysis and aids 
the user in visualizing the features of relevance. We first applied the toolbox to a mock data set with a ground truth to show 
the sensitivity of the approach. Next, we applied the toolbox to a set of natural images as a more practical example.
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Introduction

Many types of experiments compare behavioral or neuro-
physiological responses to variations of visual stimuli. With 
all else being equal, the variations in the stimuli are then 
considered the source of any possible difference between 
these responses. When, for example, two conditions con-
sist of differently oriented Gabors, interpretation is not that 
difficult since these conditions will only differ along one 
dimension: orientation. However, when using natural or 
other forms of complex images, these may differ on many 
known and unknown dimensions, including local and global 
contrast, local and global orientation, luminance, color, and 
so on. In fact, many studies have demonstrated image prop-
erty differences as confounding factors when interpreting 
results (see the following for example: Stein, Awad, Gayet, 
& Peelen et al., 2018; Gayet et al., 2019; Purcell et al., 1996; 
Purcell & Stewart, 2010; Savage et al., 2013; Savage & Lipp, 
2015; Moors, Boelens, van Overwalle & Wagemans, Moors, 

Boelens, et al., 2016a; Moors, Wagemans, & de-Wit, L., 
2016b; Gelbard-Sagiv, Faivre, Mudrik & Koch, Gelbard-
Sagiv et al., 2016; Heyman & Moors, 2014; Willenbockel 
et al., 2010). One way to deal with this potential problem is to 
equate the stimulus content of categories of images as much 
as possible (see Willenbockel et al., 2010 for a toolbox that 
does just that). However, since such an approach changes 
the image content in a way that alters the appearance of 
the images, another approach is to quantify the image dif-
ferences with the aim of finding the source of any possible 
difference in the responses to them. The goal of Protosc is 
to provide an easy-to-use means to identify and describe 
the differences in the stimuli that have predictive value of 
their category and may relate to and/or cause differences 
in behavioral and neurophysiological responses to different 
image categories, which does not require previous knowl-
edge of feature selection and machine learning.

Protosc automates the extraction of features from 
images reflecting either the Fourier magnitude spectrum, 
Fourier phase spectrum, Histograms of Oriented Gradi-
ents (HOG), color value distributions, pixel intensities or 
a combination of these. Note that HOG and pixel inten-
sity features are highly spatially specific and the Fourier 
phase spectrum to a lesser degree so, while the Fourier 
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magnitude spectrum and color value distributions are 
position-invariant. The feature space of interest can be 
exploratory or hypothesis-driven. For example, Campbell 
and Robson (1968) showed that contrast sensitivity is a 
function of spatial frequency: contrast detection sensitiv-
ity showed a peak sensitivity around 1 degree per visual 
angle, with sensitivity dropping for both higher and lower 
spatial frequencies. Furthermore, in 1972, Appelle showed 
that discrimination sensitivity is greater for cardinal ori-
entations than for oblique orientations, a sensitivity dif-
ference referred to as the “oblique effect”. As such, more 
contrast energy around 1 degree per visual angle or for 
cardinal orientation in one category of images compared to 
another may bias the results due to a sensitivity difference. 
To provide insight into the relevant differences between 
categories, our approach focuses on machine learning-
based feature selection via multiple methods simulta-
neously. Specifically, while two of the four methods for 
selection aim to find relevant combinations of features by 
finding the most probable features of the images that most 
likely lead to high cross-validated performance, the other 
two methods select features at random. The benefit of the 
random selection methods is that they provide insight into 
the degree to which the image categories differ. In other 
words, high performance based on randomly selected fea-
tures suggests extensive differences between the catego-
ries. Via this route, we aim to provide a more complete 
view of differences between the categories without testing 
every possible combination of features. Note that the clas-
sification models used in this toolbox do not include deep 
learning models. This is because deep learning models 
will, by definition, create their own features (Deng & Yu, 
2014), and we aimed to keep the features as easy to inter-
pret by the user as possible.

Here, we present a toolbox for automatically analyz-
ing the image content of two or more image categories. 
Our approach uses feature selection and machine learning 
algorithms to objectively find features of the images that 
have predictive value over the predetermined categories 
the images belong to. This approach ranks image features 
using the performance of classification models, meaning 
the interactions between the different features that help to 
separate categories will also be taken into account. The 
main goal is to allow insight into how the categories dif-
fer. However, the significant features can be taken into 
account when interpreting behavioral differences based 
on the used categories (i.e. as covariates). This toolbox 
is implemented in a MATLAB environment. We will start 
by focusing on the main approaches used in the toolbox, 
namely, image processing and feature selection based on 
classification performance. Next, we will demonstrate the 
sensitivity of the approach. Finally, we will highlight the 
usability of the toolkit.

Methods

Terminology

Category or Class: A set of images that are grouped 
together by a user. For example, a set of images of angry 
faces.

Feature Space: A qualitative description of an image. 
For example, the image can be described in terms of its spa-
tial frequency contents.

Feature: A quantitative or numeric description of an 
image in a subpart of a feature space. For example, a specific 
orientation in a specific location of the image (this would be 
an example of a feature of the HOG feature space).

Example: A description of a single image in terms of a 
label and all its feature scores.

Label: Numerical indication of the category an example 
belongs to.

Set: Collection of individual examples of images consist-
ing of scores on all features and a label.

Fold: A fold refers to one out of k steps of k-fold cross-
validation. There, the data are separated into training data 
and test data k times such that every example is part of the 
test data once. The test data are often referred to as the hold-
out data, since they are kept separate from the training data 
to avoid a model being trained with prior knowledge of the 
data on which it will be used to decode.

Protosc version

The following methods are based on version 1.03 of Pro-
tosc, which can downloaded from the Protosc Open Science 
Framework (OSF) page (https://osf.io/f6nbu/files/) as 
protosc_v1.03.zip.

Image processing methods

Images of different categories can be loaded from multiple 
directories (with each directory corresponding to a differ-
ent category), from a single directory (by supplying addi-
tional information about filename criteria for each condi-
tion). Color images can be converted to grayscale if desired. 
Otherwise, color images can be dealt with as RGB values 
or converted to cie l*a*b*. From the 3D image-matrices, 
users can select which layer(s) they want to include in the 
analysis (for example, they can choose to only continue with 
the a* layer or the combination of the R and B layers). The 
user can choose whether they want the feature values that 
will be extracted from different layers to be treated inde-
pendently from each other during feature selection or to 
link them together during selection. Linking them together 
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means that they are always tested and included or excluded 
together even though they may receive different weights in 
a support vector machine (SVM). Next, the selected layers 
can be converted to the image features of interest.

Fourier‑related feature space

Images can be converted to Fourier magnitude features with 
or without phase information or phase information only. 
When extracting Fourier magnitudes without phase, the 
absolute values of the two-dimensional fast Fourier trans-
form (FFT2.m from MATLAB) of each image are used. 
The magnitude spectrum is subsequently down-sampled 
by taking the sum of all values corresponding to a particu-
lar spatial frequency and orientation range. Note that this 
down-sampling serves two purposes: For one, it reduces 
the total number of features, meaning the analyses requires 
less processing power. Second, it disrupts the influence of 
phase information, meaning the contrast values also lose all 
indirect spatial specificity. As such, the spatial frequency 
analysis focuses only on global contrast differences between 
categories. Default settings down-sample the spectrum into 
24 equal-sized spatial frequency bands and 16 orientation 
bands, resulting in 384 sections. Each section then holds 
the sum of the magnitudes that were within that area. When 
extracting Fourier magnitudes with phase or phase informa-
tion only, the images are downscaled to 25×25 pixels (using 
the default settings) before extracting both the phase and 
the associated magnitude. Phase and magnitude are always 
linked together during feature selection.

HOG feature space

HOG values reflect the presence of edges, per orientation, 
for each location of an image (Dalal & Triggs, 2005). As 
such, HOG values can capture the structure within an image. 
The default settings that the toolbox uses creates HOG fea-
tures for 9 unsigned (meaning dark to light edges and light 
to dark edges are pooled together) orientations in non-over-
lapping 10×10 pixel sections of the image. We chose to use 
a non-overlapping section for simplicity when visualizing 
results. The default resolution (10×10) was chosen to be able 
to capture small structures in the images.

Color distributions feature space

When extracting color distributions, for each layer of the 
image, the probability of values in that layer for falling 
within one of 25 bins is estimated. We suggest to first con-
verted the images to cie l*a*b*. Note that with this methods, 
the linking of features from different layers is meaningless 
and therefore they will not be linked together in the feature 
selection analysis irrespective of the settings given.

Pixel intensities feature space

To avoid an extremely large feature-space when extract-
ing pixel intensities, the images are first down-sampled 
to 25×25 pixels. Other than that, no transformations are 
made other than converting the two- or three-dimensional 
image to a one-dimensional vector required for the feature 
selection procedure.

Data splitting for feature selection 
and cross‑validation

The feature selection algorithm estimates feature relevance 
using k-fold cross-validation. Per default, k is set to 10. 
This means that the feature selection algorithm will be 
repeated k times with a different subset of the data (one 
fold) serving as holdout data that is only used for cross-
validation and thus not for feature selection. Only the 
remaining k − 1 folds are used to select features. There, 
these remaining k − 1 folds are pseudo-randomly split into 
a training set (default 50% of the data that are not used for 
the hold-out set) and a validation set. This split is pseudo-
random since the training data use an equal number of 
examples for each class. This was implemented to make 
sure training is unbiased. Note that, to reduce the possi-
bility of overfitting the data to a specific set of examples, 
a new pseudo-random split into training and validation 
data is extracted for each step in the procedure where a 
feature is selected. Note that, for smaller data sets, few 
data remain as holdout data per fold, making it more dif-
ficult to get accurate performance indicators. In that case, 
an alternative approach can be used where, for each fold, 
50% of the data are assigned to the training set and the 
remaining data are used for the holdout set.

Univariate feature ranking and correlated features

The first step in the feature selection procedure is to score 
each feature based on the differences between categories 
within that feature. The default settings calculate the chi-
square statistic using Kruskal–Wallis analysis of vari-
ance. Starting with the highest-ranking feature, Protosc, 
per default, checks which features explain at least 25% of 
each other’s variance and groups those features together. As 
with linking features together describe above, this grouping 
means that they are always tested and included or excluded 
together even though they may receive different weights in 
an SVM. Note that including instead of excluding corre-
lated features may not be ideal for decoding performance. 
However, instead of optimizing decoding performance, 
Protosc aims at finding and weighing relevant features, and 
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correlated features should therefore be included together 
since the information they represent likely overlaps.

Feature selection procedures

The feature selection procedures aim to find the features 
of the images that have predictive value over the predeter-
mined categories the images belong to. Note that, if more 
than two categories of images are used, Protosc looks for the 
features that best separate all categories and does not differ-
entiate between features relevant for one pairwise category 
comparison versus another. The feature selection algorithm 
creates four selections of features which are subsequently 
trained on the training data with cross-validation perfor-
mance estimated on the holdout data. The four selections 
are based on a filter method and a wrapper method (Kohavi 
& John, 1997) as well as two random selections. When using 
a filter method, we selected the features with a p-value lower 
than 0.01, based on Kruskal–Wallis analysis of variance. 
However, if no features are selected this way, we first rank 
the chi-square score and test, within the training data, how 
many of the top-ranking features result in the highest cross-
validated performance within the training data. Note that this 
approach will always include features with monotonically 
decreasing chi-square scores. The wrapper approach does 
not have this restriction. For the wrapper approach, we use 
a custom-built stepwise inclusion algorithm where inclusion 
is based on machine learning performance. Details of the 
wrapper are described in the next paragraph. The algorithm 
continues until it has selected the same amount of features 
as the filter selection. Finally, two additional feature sets 
are suggested as well. These last two sets contain the same 
number of features, but here the features are selected either 
randomly or pseudo randomly. Specifically, a “random” 
selection simply selects a random selection of features for 
training. A “pseudorandom” selection selects a random col-
lection of the features that are not part of either the current 
wrapper selection or the current filter selection. These last 
two selections are included as backup options for when the 
wrapper and/or filter selection(s) fail to predict the holdout 
data well, which could, for example, be due to overfitting on 
the training data or by a too narrow search space. Moreover, 
performance of the random selection can aid with inter-
pretation of the feature selection performance since high 
decoding performance based on random selection indicates 
an easy decoding problem where many features are relevant. 
The four sets of features are next used to train classification 
models using all current training and validation data. The 
classification method used here can be selected by the user 
(default settings use a linear support vector machine; this 
classifier does not have to be the same classifier as used 
for the wrapper feature selection process). Note that the 
data used for training are again balanced to contain equal 

representations of each class. The models are then cross-
validated on the holdout data. As a reference, performance 
based on all features, referred to as a full model, is also 
estimated.

Wrapper method

To take into account potential interactions between features 
that help separate, and thus decode, image categories, a step-
wise feature inclusion algorithm, referred to as a wrapper, is 
used. The wrapper adds clusters of correlated features until it 
has selected the same amount of features as the filter selec-
tion. To do so, each time the wrapper tries to add features to 
the selection, it first estimates a reference for performance 
using the currently selected features by training on the train-
ing data and testing on the validation data. If no features are 
yet selected, one divided by the number of classes is used as 
a reference performance. Next, using the same training and 
validation data, it tests the degree to which the addition of 
a feature (or cluster of features) changes performance. Note 
that it does not test the addition of all remaining features. 
The wrapper only searches the n features with the highest 
rankings. Here, n is referred as the search space size and is, 
on default, set to two times the maximum amount of fea-
tures to be included in the selection. For each iteration of the 
wrapper, this process is repeated four times, and the average 
change in performance based on the addition of a cluster of 
correlated features in the search space is calculated. The 
features that increase performance are sorted in descend-
ing order and the top n features are included in the wrapper 
selection. Here, n is set to 25% of the maximum amount of 
features to be included. When the size of the wrapper selec-
tion first exceeds 75% of the maximum amount of features 
to be included, each cluster of features is tested for its rel-
evance. Specifically, clusters of features are removed one by 
one, and if removal results in an increase in performance, it 
is removed from the wrapper selection Figs. 1 and 2.

Comparisons to chance performance

To estimate a distribution of chance performance, for each 
fold and for each method’s selection of features, 25 models 
are trained and tested based on shuffled category labels. The 
result is a distribution of k times 25 times 4 values forming a 
distribution of chance performances used for a permutation 
test. The probability of the performance for each of the four 
methods of selection is subsequently based on this distribu-
tion. However, the main interest is in the features that were 
associated with low-probability chance performance, not the 
individual performances associated with these four mod-
els. Concerning the individual features, the corresponding 
null-hypothesis is that there are no features of relevance for 
separating the classes. To test for features of relevance, we 
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first collect all features associated with performance above 
the 99th percentile. We choose the 99th percentile to cor-
rect for using four methods of selection. Note that not all 
features are tested an equal number of times. Therefore, to 
take into account the number of times a feature has been 
tested and the associated regression to the mean, a feature is 
determined as relevant when the average performance asso-
ciated with the feature is higher than the maximum value in 
control distributions that also takes into account regression 
to the mean. This means that for features used only once, 
performance needs to exceed the maximum of the permuta-
tion test distribution. However, if the feature has been used, 
for example, ten times, we create a new control distribution 
that takes k times 25 times four averages of ten values from 
the original permutation test distribution and the features 
average should exceed the maximum in that distribution. 
Note that this means that features that are not consistently 
chosen have a more conservative criterion. Furthermore, this 
separation between testing the performances associated with 
a particular method of feature selection and performance 
associated with a particular feature makes it possible to find 
significant features even when a particular method for fea-
ture selection fails to reach significance.

Results

Analysis 1: Comparison to ground truth and similar 
methods

To test whether the algorithm actually finds the features of 
relevance, we created a mock data set of 400 features with 

two classes and 250 examples per class. Each feature was 
filled with values drawn from a normal distribution with 
a mean of 0. Prior to manipulating the data as described 
next, both classes held the same values per feature but the 
corresponding values were assigned to different examples. 
This was done to ensure there were no differences in the 
distributions per class as a whole. Note that, with splitting 
the data into training and tests sets during k-fold cross-val-
idation, differences in a feature can now arise even when 
there were none. We next randomly selected 25 features and 
increased all values for those features in class one. These 
increases reached from .5 to .25 standard deviations of the 
distribution in 25 linear steps. Using this mock data set, we 
applied the Protosc approach to the selected features. For 
comparison and using the same folding as used with the Pro-
tosc approach, we also applied (1) feature selection via the 
t-test approach at multiple criteria (uncorrected for multiple 
comparisons: p < 0.05, p < 00.01 and p < 00.001, which is 
the same criterion as Protosc) to suggest significant features 
and (2) the methods recommend by MATLAB for feature 
selection (MATLAB's adaptation of neighborhood compo-
nent analysis with regularization [fscnca]). Feature selection 
via all methods was repeated 30 times, each with new mock 
data. The full procedure was repeated for 50 and 100 manip-
ulated features. With the exception of the t-test approach at 
a criterion of p < 00.05 in the 25 relevant features condition, 
Protosc detects the most relevant features even when it uses a 
more stringent criterion. While all t-test versions are robust 
against false alarms, Protosc does occasionally make a false 
alarm. The average number of false positives, however, stays 
below 1. Although fscnca resulted in a very high number of 
false positives, hyper-tuning of the tolerance for inclusion 
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Fig. 1   Examples of different features (from left to right: HOG, Fourier magnitudes, Fourier phases, pixel intensities and color value distribu-
tions, with the color values on the x-axis and the percentages on the y-axis) extracted form an example image (top).
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would have decreased this value. Still, the overall percentage 
of relevant features detected for the MATLAB approach was 
relatively low with 52% (Table 1). Protosc had the overall 
highest detection performance (76%) with the t-test approach 
at the same criterion as Protosc (p < 00.001) having the low-
est detection performance (44%; Table 1). Taken together, 
these results show high sensitivity with low false detection 
for finding relevant features using the Protosc approach.

Analysis 2: Example with face images

For a second demonstration of the toolkit, we analyzed faces 
from the NimStim face set (Tottenham et al., 2009). This 

face set has images of facial expression with, among others, 
open and closed mouths. We used the state of the mouth 
to label the images and used independent HOG and spatial 
frequency analyses to test whether we can find the features 
that represent the difference between an open and a closed 
mouth. Based on the file names, 291 images were included in 
category 1: open mouth, whereas 282 images were included 
in category 2: closed mouth. A total of eight different emo-
tional expressions were represented in each category. First, 
Protosc located the face area using the Viola-Jones algo-
rithm (Viola & Jones, 2001) and took the area annotated as 
the face plus an additional 20% as our face images. Note that 
at this point the images have different dimensions, so next 

Fig. 2   Feature selection methods. Schematic representation of the 
feature selection methods used in in Protosc. (1) Visual representation 
of the feature set. As a comparison to feature selection performance, 
all of the available features will be used to train and test a model 
referred to as the Full model. (2) A random collection of features 
(indicated by the red bars) is selected for as the random selection. (3) 
The features are ranked based on chi-square scores. The top of the 

ranking is used to determine the filter model. (4) A search space is 
defined from the top-ranking features and the features in this search 
space are tested for inclusion into the wrapper selection through an 
iterative process until enough features have been selected for the 
wrapper model. (5) From the residual features, unused by the wrapper 
or filter selections, a random selection is made for a pseudorandom 
selection.
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it scaled all images to 200×200 pixels using bicubic inter-
polation. We then ran separate analyses for three features 
spaces: Fourier magnitudes (based on grayscale version of 
the images) to test for global contrast differences, color value 
distributions to test for global color differences and HOG 
feature to test for spatially specific edge contrast differences. 
Note that we ran the analyses separately since the weight 
associated with a specific feature is not independent of the 
other features it is simultaneously tested with. That means 
that if one feature space is far superior to another feature 
type in its decoding accuracy, but both contain relevant fea-
tures, the weights associated with the inferior feature space 
may become inflated.

Results for face stimuli

Results show 17 features based on Fourier magnitudes, 0 
relevant features based on color value distributions, and 172 
relevant features based on HOGs. Criterion for relevance 
was set at p < 00.001. Average performance associated with 
the relevant Fourier features was 57% (SD: 0.7%), and for 
the HOG feature average performance associated with the 
relevant features was 74% (SD: 3.1%). The relevant Fourier 
features are found in the medium to high spatial frequencies 
reflecting horizontal edges in the images (Fig. 3a). Although 
the relevant HOG features are found mainly in the lower cen-
tral part of the image, where we would expect them, many 
other locations are reflected by the relevant features as well, 
some even falling outside the face and likely are based on the 
hair of the persons in the images (Fig. 3b). These latter areas 
are not of interest when comparing open to closed mouths 
and the results would at least show that cropping the faces 
is essential when using this set of images.

Using the toolbox

The current toolbox was created for a MATLAB environ-
ment and is fully compatible with versions 2019 and later. 
The tool will also work with MATLAB 2017a through 
2018b, with the exception that the app will not display toolt-
ips. Protosc requires the Control System Toolbox, Image 
Processing Toolbox, Statistics and Machine Learning Tool-
box, Computer Vision Toolbox, Parallel Computing Tool-
box, MATLAB Parallel Serve and Polyspace Bug Finder. 
Note that the toolbox will also work without the Parallel 
Computing Toolbox and the MATLAB Parallel Server, just 
slower. Furthermore, when using MATLAB 2020 and up, 
MATLAB Parallel Server and Polyspace Bug Finder are not 
required. All syntax is platform-nonspecific and has been 
tested on both a PC running Windows 7 and MacBook run-
ning OSX Mojave. Protosc can be downloaded from OSF 
(https://osf.io/f6nbu/) and added to the MATLAB path. The Ta
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Protosc OSF page further contains a wiki including detailed 
information about the use of the toolbox, as well as instruc-
tional and explanatory videos and a tutorial.

The main method to use the toolbox is via its app (open 
with protosc_app.m). The interface of the app (Fig. 4) 

guides the user to select and load image, to choose the 
basic settings and to run the analyses. Relevant outputs of 
the analysis are gathered in a struct that can be cast to the 
MATLAB workspace. Alternatively, protosc_template.m 

A) Fourier

0

50

100

%

B) HOG

0

50

100

%

Fig. 3   Results analysis 2. Figure 3a visualizes the Fourier magnitude 
results, 3b the HOG results. Colors reflect the weights of the features, 
which in turn reflect their average associated machine learning per-
formance (as percentage correct). Figure  3a shows that medium to 
high spatial frequencies, from horizontal edges in the images, have 
predictive value concerning the state of the mouth. Figure 3b shows 

that many local edge contrasts in the images have predictive value 
over the state of the mouth in the image set used, even outside of the 
face area, suggesting many of these features may play a confounding 
role when comparing behavioral responses between open and closed 
mouthed faces.

Fig. 4   Interface of the Protosc app. The app can be opened via 
protosc_app.m. The app aids the user to select the images of inter-
est, choose the more basic settings and select an analysis of interest. 

Alternatively, protosc_template.m creates a new script with a tem-
plate for the analyses where all settings can be adjusted by the user.
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open a creates a new script with a template for the analyses 
to be adjusted by the user.

Categories based on behavior

Although the standard functionality of this toolbox is built 
for decoding predetermined image categories, categoriza-
tion of the images can also be done by participants in an 
experiment. For example, the task for a participant may be 
to indicate whether a neutral face appears more happy or 
more sad. The experimenter can then place all the images 
responded to with “more happy” in one directory and 
all the images responded to with “more sad” in another 
directory, and test which features best predict the response 
of the participant. However, creating the two directories 
per participant is not the most efficient way. To assign 
behavior-based responses to images and test for features 
that have predictive value for the given responses, the user 
can create an Excel file containing one column of numeri-
cal labels and one column of filenames and supply it to 
protosc_ImageFileList_CustomLabels.m. The Excel file 
should contain numerical labels in column A and filename 
including the full path of the file in column B. Supplying 
the Excel file as input to protosc_ImageFileList_Custom-
Labels creates a file list that can be subsequently used to 
load the associated images.

Furthermore, the analysis does not need to be based 
on a singular images. For example, the toolbox was used 
in Stuit et al. (2021), where participants selected one of 
two images using an eye movement. Since two images per 
trial were used, the feature differences for each image pair 
were calculated and assigned a label that reflected which 
image the participant selected with an eye movement. A 
coding example to create feature differences is supplied 
in the tutorial (found here: https://osf.io/f6nbu/files/) and 
on the OSF wiki (https://osf.io/f6nbu/wiki/Analyses%20
based%20on%20behavior/).

After the analysis

To facilitate the user creating an overview of the used meth-
ods and gathered results, Protosc supplies functions to auto-
matically write a text file containing a methods section based 
on the used settings and features included in the analyses 
via protosc_report_methods.m. Likewise, protosc_report_
results.m provides an overview of the results. Finally, when 
significant feature are found, and the user wants to, for exam-
ple, use the features as covariates in a subsequent analysis, 
protosc_report_feature_table writes an .xlsx file with the 
image filename in column A and the significant features in 
the subsequent columns.

Discussion

In this paper, we introduced and outlined the Protosc tool-
box. The aim of the toolbox is to allow any researcher 
using predetermined conditions defined by visual stimuli 
to find out exactly how their categorized images differ 
from each other in terms of image features. Specifically, 
our approach aims to find as many as possible features that 
have predictive value over the category the image belongs 
to. Having this information will allow researchers to better 
understand what may have caused a dependent measure 
to differ between conditions. Note that finding features 
that have predicative value concerning their image cat-
egory does not necessarily mean that an experiment was 
confounded by stimuli differences. Whether or not some-
thing is a confound depends on the interpretation of the 
results with respect to the used methods, as well as the 
causal relations between differences between categories 
and observed behavior. Having a detailed overview of the 
features can help to avoid confounded conclusions since 
these differences can be taken into account either in sub-
sequent analyses or in the discussion.

To evaluate the current methodological approach, we 
first demonstrated the performances on a mock data set 
with manipulated features. We found that our approach 
results in a higher percentage of relevant features found 
relative to comparable methods while maintaining a low 
false positive rate. However, this toolbox was created with 
natural images in mind, so naturally we aimed at demon-
strating performance on those as well. Note, however, that 
there is no clear ground truth for which features should 
be selected by the algorithm. We compared, using the 
NimStim face set, faces with open mouths to those with 
closed mouths based on Fourier magnitudes and HOGs. 
Although the Fourier magnitudes are not spatially spe-
cific, the HOGs are spatially specific, meaning that within 
natural images, centering the object of interest is recom-
mended. There we found differences in global spatial fre-
quency contrasts as well as local edge contrast differences 
outside of the face relevant for separating the two classes, 
but these are likely irrelevant for a researcher comparing 
responses to open and closed mouth faces.

One of the more difficult aspects related to the cur-
rent feature selection approach is the interpretation of 
the selected features. More specifically, are they the only 
features that determine differences between categories? 
The answer is not very straightforward. Although our 
first analysis on the mock data set shows that around 70% 
of the relevant features are consistently detected, we do 
not know the degree to which this generalizes to natural 
images due to the lack of a ground truth. The problem here 
is the immense degrees of freedom in making models with 
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feature selection. To get an exact answer to the question 
of whether the selected features are most relevant would 
be nearly impossible. First of all, the number of possible 
combinations of features is so large that training and test-
ing all possible models would take very, very long. In fact, 
using only 50 possible features, assuming one second of 
calculation per model, would take about 6×10119 years 
to calculate. So calculating performance for all possible 
combinations of features, using images of 200×200 pix-
els and the default feature extraction settings, would take 
a number of years that MATLAB calculated as infinite. 
And honestly, who has that kind of time? However, there 
is another reason that getting all relevant features is near 
impossible. The features selected are based on a sample of 
images representative of its predetermined category. Many 
more examples of that category are likely to exist. For 
example, when comparing dogs to cats, one will not use 
all earthly images of dogs and compare them to all existing 
images of cats. As such, the selected features will always 
be biased towards the differences between categories in 
the training data. With this in mind, our focus has been 
on optimizing the algorithm to relatively quickly extract 
a subset of features that proves relevant to separate the 
categories empirically.

In our approach, each fold is allowed to create mod-
els composed of different features relative to the previous 
fold. This means that, if one of the four feature selection 
approaches results in significant performance, the images 
can be decoded via that method, but the features used to 
achieve that may differ. As such, there is no unified “best” 
combination of features. For the significance of the features, 
even though their performances are dependent on the fea-
tures they are combined with, each one is tested in isolation, 
so likewise, there is no unified “best” combination. There-
fore, the analysis results do not provide insight into which 
interactions between features best separate the categories. To 
overcome this, the function protosc_find_feature_combina-
tions compares the performance of a features in combination 
with another feature, to that of the performance without the 
second feature. The function does this for each combination 
of the relevant features and returns a list of feature combi-
nations where the combined performance is larger than two 
times the standard deviation of all tested combinations.

The current advances in, and popularity of, machine 
learning makes these methods more and more accessible. 
Here, we aim to contribute to this availability. However, we 
also aim to shift some of the focus from high performance 
to other outputs of such procedures. For that reason, our 
approach is not so concerned with the absolute performance 
of the generated classification models. Instead, our focus is 
on the features that are consistently associated with above-
chance classification of two or more categories of images 
used as conditions in an experiment. We all know that any 

difference between conditions can be a possible source of 
a resulting behavioral effect. Increasing our understanding 
of how exactly two or more conditions differ in terms of 
their image content should therefore help us understand the 
source of the effect. As such, this approach should allow 
researchers to define conditions more freely, meaning with 
unmanipulated, and thus natural, images.
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