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Abstract
We collected visual and semantic similarity norms for a set of photographic images comprising 120 recognizable objects/
animals and 120 indoor/outdoor scenes. Human observers rated the similarity of pairs of images within four categories of 
stimuli—inanimate objects, animals, indoor scenes and outdoor scenes—via Amazon's Mechanical Turk. We performed 
multidimensional scaling (MDS) on the collected similarity ratings to visualize the perceived similarity for each image 
category, for both visual and semantic ratings. The MDS solutions revealed the expected similarity relationships between 
images within each category, along with intuitively sensible differences between visual and semantic similarity relationships 
for each category. Stress tests performed on the MDS solutions indicated that the MDS analyses captured meaningful levels 
of variance in the similarity data. These stimuli, associated norms and naming data are made available to all researchers, and 
should provide a useful resource for researchers of vision, memory and conceptual knowledge wishing to run experiments 
using well-parameterized stimulus sets.
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Introduction

Visual perception allows humans to understand their imme-
diate environment, navigate the world safely and build con-
ceptual knowledge. Arguably the most complex and impor-
tant feat of visual perception is the recognition of objects and 
scenes. Whether attempting to find something in a crowded 
closet or trying to orient oneself in an unfamiliar forest, the 
ability to perceive and interpret a wide variety of real-world 

objects and scenes is crucial for completing daily tasks and 
for survival. In keeping with the central role of object and 
scene perception in human existence, there is an abundance 
of psychological research that uses object and scene stimuli 
to investigate the perceptual and cognitive processes under-
lying these abilities (Ashby, Prinzmetal, Ivry, & Maddox, 
1996; Duncan & Humphreys, 1989; Jiang, Lee, Asaad, & 
Remington, 2015; Tresch, Sinnamon, & Seamon, 1993).

For lower-level visual perception, studies frequently 
involve precise and quantitative manipulation of the degree 
of similarity between different visual stimuli. Much has been 
learned about how individual neurons or even whole cor-
tical regions represent simple stimulus properties, by pre-
senting stimuli that vary systematically in edge orientation 
(e.g., Hubel & Wiesel, 1962, 1968), color (e.g., Brouwer & 
Heeger, 2009; Dow & Gouras, 1973; Solomon & Lennie, 
2007), or motion direction (e.g., Geisler, Albrecht, Crane, 
& Stern, 2001; Rodman & Albright, 1989). Phenomena such 
as attention and perceptual learning have also been fruitfully 
investigated by exploiting well-defined stimulus-similarity 
continua (e.g., Treisman, 1991; Yang & Maunsell, 2004). 
Such research has been possible because low-level visual 
image properties like edge orientation, color and motion are 
easy to define and quantify.
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Analogously to lower-level vision research, our under-
standing of high-level vision can be greatly advanced by 
using stimuli that vary systematically along quantifiable 
dimensions relating to high-level properties of objects and 
scenes. However, this is difficult to do in practice, because 
it is much harder to define and measure these high-level 
properties. We cannot simply decompose objects and 
scenes into their low-level image features and assume 
that these features capture the critical essence of the rep-
resentations driving object and scene recognition, much 
less that they reliably capture the conceptual content of 
the stimuli (Martin, Douglas, Newsome, Man, & Barense, 
2018; McClelland & Rogers, 2003; but see Greene & 
Oliva, 2009; Joubert, Rousselet, Fize, & Fabre-Thorpe, 
2007; Oliva & Torralba, 2001 for evidence that scene 
recognition may in part depend on summary statistics). 
Moreover, when a research question requires knowledge 
of the perceptual similarity relationships between stimuli, 
mathematical measures of stimulus properties have been 
found not to predict human perceptions of similarity in 
a straightforward way, for both low-level and high-level 
stimulus properties (Busey, 1998; Cheung, 2016; Hopper, 
Finklea, Winkielman, & Huber, 2014; Larkey & Markman, 
2005; Li, Liang, Lee, & Barense, 2020; Robertson, 1977; 
Schurgin, Wixted, & Brady, 2020).

A solution often adopted by researchers wishing to under-
stand the perceptual similarity evoked by low-level stimulus 
properties is to gather empirical ratings of subjective simi-
larity. In such studies, participants typically use a numeri-
cal scale to report how similar they perceive two items to 
be, repeatedly for many pairs of items (e.g., Busey, 1998; 
Caramazza, Hersh, & Torgerson, 1976; Hopper et al., 2014; 
Li et al., 2020). Some studies employ alternative methods 
such as requiring participants to “drag and drop” stimuli 
into screen locations that reflect perceived similarity rela-
tionships (Kriegeskorte & Mur, 2012). Most studies of per-
ceived similarity allow the authors to use some variant of 
multidimensional scaling (MDS) to construct a perceptual 
similarity map of the evaluated stimulus set, in which items 
are laid out in a two-dimensional (2D) array with locations 
that best reflect the perceived “distances” between them.

Many existing stimulus databases provide color images of 
objects and scenes, for example, the Massive Memory Picture 
Database (Brady, Konkle, Alvarez, & Oliva, 2008; Konkle, 
Brady, Alvarez, & Oliva, 2010), the Amsterdam Library of 
Object Images (Geusebroek, Burghouts, & Smeulders, 2005), 
the revised Snodgrass and Vanderwart object pictorial set 
(Rossion & Pourtois, 2004; Snodgrass & Vanderwart, 1980), 
the Bank of Standardized Stimuli (Brodeur, Dionne-Dostie, 
Montreuil, & Lepage, 2010), the SUN database of scene 
images (Xiao, Ehinger, Hays, Torralba, & Oliva, 2014; Xiao, 
Hays, Ehinger, Oliva, & Torralba, 2010), and the Nature Scene 

Collection (Geisler & Perry, 2011). However, we are aware of 
no publicly available scene image database that is associated 
with published empirical similarity ratings, and only a few such 
object image sets (Hout, Goldinger, & Brady, 2014; Migo, Mon-
taldi, & Mayes, 2013). Importantly, the object similarity studies 
we found report perceptual similarity for object images within 
the same basic-level category (e.g., the similarity relationships 
between a set of butterfly images) but not between objects with 
different basic-level identities (e.g., perceived similarity between 
a tiger and a lion, or a tiger and a whale). Yet, the perceived 
similarity between images from different basic-level categories 
of objects or scenes may be an important research design con-
sideration. As one example, memory researchers may wish to 
systematically investigate the effects of stimulus-relatedness on 
memory for visual images. More generally, many research ques-
tions within visual cognition may require experimental designs 
that group items into sets that minimize visual or semantic 
interference either within or between sets; for this, stimulus-
relatedness must be known.

The goal of the present study was to provide object and scene 
image databases that are accompanied by naming data, empiri-
cal similarity ratings, both visual and semantic, and similarity 
maps constructed from those ratings. We collated four stimu-
lus sets: inanimate objects, animals, indoor scenes and outdoor 
scenes, each containing 60 images (240 images in total). All 
stimulus images were color photographs. We collected ratings 
of visual and semantic similarity within each image category 
and performed MDS to analyze the similarity ratings data. 
MDS is an exploratory data analysis technique that allows 
spatial visualization of the similarity relationships between the 
items in a set (Mugavin, 2008); it has been used extensively in 
studies of perception (Jaworska & Chupetlovska-Anastasova, 
2009). The similarity ratings are used to construct a matrix from 
which a spatial map of the relationships between all items is 
derived, usually in two or three dimensions. A short distance 
between two items in the map means that the two items are 
similar, whereas a long distance means that they are dissimilar. 
We used MDS to visualize the relationships between the images 
in each stimulus set, for both visual and semantic perceived 
similarity. We make the stimuli (along with source attributions 
where available), naming data, ratings data and similarity maps 
available at https://osf.io/smk25/, so that researchers may use 
these stimuli in any experiments for which stimulus-relatedness 
information is useful.

Methods

Participants

A total of 765 participants were recruited via Amazon’s 
Mechanical Turk (MTurk). Previous research has shown 
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that MTurk workers are more representative of adults in 
the United States than in-person recruited participants 
(Berinsky, Huber, & Lenz, 2012; Buhrmester, Kwang, 
& Gosling, 2011), and in visual cognition tasks, the data 
collected from MTurk have been shown to closely match 
data collected in a lab environment (Brady & Alvarez, 
2011; Brady, Shafer-Skelton, & Alvarez, 2017; Brady & 
Tenenbaum, 2013). All participants were located in the 
United States and were over 18 years old. For each of the 
four image categories (i.e., animals, inanimate objects, 
indoor scenes, outdoor scenes), we created all possible 
image pairs (1770 pairs) and randomized those pairs into 
seven groups (see Procedures). Each group of images was 
bundled into a single Human Intelligence Task (HIT) on 
MTurk. For each HIT, ratings were collected from at least 
10 participants (see Table 1). A participant was allowed 
to complete ratings for more than one HIT, with the con-
straint that no two HITs on the same stimulus set could 
be performed by the same participant. All participants 
provided informed consent before starting the experiment 
and were compensated $2 for their participation. A total 
of 199 participants were excluded from the data analy-
sis because they failed to pass the attention test that was 
embedded as part of the experimental design (see Proce-
dures) or because they entered the same response for all 
questions (a response that “passed” the attention tests, 
but was inappropriate for most other questions). Previ-
ous work indicates that an exclusion rate of 26% is not 
unusual for MTurk studies employing similar screening 
methods (Thomas & Clifford, 2017).

To collect naming data, an additional 14 participants were 
recruited from the University of Massachusetts-Amherst 
community and the community of authors D.M.W.S. and 
R.A.C. and were compensated $15 per hour of participation.

Stimulus materials

The stimulus image set contained 240 unique images in 
four categories: 60 inanimate objects, 60 animals, 60 
indoor scenes and 60 outdoor scenes. Inanimate objects 
(e.g., printer) and animals (e.g., zebra) were color photo-
graphs taken mostly from the online databases of Konkle 
and Oliva (https://konklab.fas.harvard.edu/#; Konkle & 
Caramazza, 2013; Konkle & Oliva, 2012). We replaced 
any images that were deemed too low-resolution with 
higher-resolution photographs of the same object or animal 
taken from an internet search. All objects and animals were 
placed on white backgrounds and resized to a standard size, 
slightly smaller than the size of the background (600×600 
pixels), to eliminate any large differences in image size. We 
aimed for a relatively heterogeneous set of animals and set 
of inanimate objects (e.g., including both large and small, 
with a range of animal taxonomic orders and a range of 
object functions), to span a range of stimuli that are visu-
ally and semantically distinguishable for the purposes of 
memory studies.

Scene images, both indoor (e.g., living room) and out-
door (e.g., volcano) were also color photographs. Most of 
the scene pictures were taken from Ross, Sadil, Wilson and 
Cowell (2018), but several images from this original set were 
removed and replaced with another item in cases where an 
image was deemed too semantically related to another image 
in the set (e.g., tennis court and volleyball court). The final 
sets of scene images (both indoor and outdoor) contained 
no image pairs with overlapping context (e.g., there were 
no two beaches or two tennis courts). All scene images were 
then resized to a standard size (600×800 pixels) to eliminate 
any large differences in image size. Again, for each category 
of scenes we aimed to find a relatively heterogeneous set of 

Table 1  Summary of similarity rating participant sample size

Participant sample sizes by category and rating type. Values in “Recruited,” “Eliminated” and “Analyzed” columns are the number of partici-
pants that reached each stage of data collection. “Mean n ratings” reflects the average number of participants, across HITs, who rated any given 
image pair within an image category and similarity rating type combination. For example, on average, 10 participants rated each of the image 
pairs within the animal-visual group. A very small number of collected ratings were "mis-clicks" with the mouse, which resulted in no recorded 
numerical value (110 out of a total of 141,600 ratings, or 0.078% of the collected data).

Image category Similarity rating Recruited Eliminated Analyzed Mean n ratings

Animal Visual 81 11 70 10
 Semantic 81 11 70 10

Inanimate object Visual 87 17 70 10
 Semantic 87 17 70 10

Indoor scene Visual 115 45 70 10
 Semantic 97 26 71 10.1

Outdoor scene Visual 105 35 70 10
Semantic 112 37 75 10.7
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Fig. 1  MTurk similarity rating trial examples. Participants were asked 
to rate either the visual (a) or semantic (b, c) similarity between two 
images presented on the screen. Instructions for rating the visual sim-
ilarity were identical for all four image categories; however, instruc-

tions for rating the semantic similarity differed by the examples given 
in the second sentence for animals/objects (b) versus indoor/outdoor 
scenes (c).
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exemplars that would be reasonably distinguishable from 
each other and elicit distinct, unique names.

Procedures

For similarity ratings, for each category of 60 images (ani-
mals, inanimate objects, indoor scenes and outdoor scenes), 
there were 1770 possible pairs of images (“60 choose 2” 
combinations, in mathematical terms). The 1770 pairs were 
divided into seven groups: six groups of 253 trials, plus one 
group of 252 trials. The 1770 image pairs were assigned ran-
domly to the seven groups, to avoid any systematic ordering 
such as, for example, all image pairs that contain a printer 
being assigned to Group 1 within inanimate objects. An 
additional 10 attention-check trials were embedded within 
each image-pair group to track whether participants were 
paying attention across the trials. Attention-check trials pre-
sented two identical images, such that only a "highly simi-
lar" response (“5”) would be appropriate. The 10 attention-
check trials were randomly interleaved between the regular 
trials in each image-pair group, yielding a total of 263 (or 
262) trials within each image-pair group. Each set of 263 
(or 262) trials comprising a group of image pairs and 10 
attention-check trials was described as a "task" or a "HIT" 
on Amazon MTurk. Each HIT had a 20-minute time limit. 
A very small number of HITs were collected after Amazon 
MTurk instituted a change to the maximum allowed length 
of a HIT, such that these HITs were constrained to contain 
fewer trials than in our original design. To collect this last 
batch of data, we conducted more HITs with fewer trials per 
HIT, and this is reflected in the indoor semantic and outdoor 
semantic rows of Table 1.

Within each HIT, participants saw a series of trials in 
which they were asked to rate the similarity between two 
pictures presented on the screen, based on either semantic or 
visual properties of the images (Fig. 1). For visual similar-
ity ratings, participants were asked “How visually similar 
are the following two pictures? Please only make judgments 
based on how much the pictures look alike.”1 For semantic 
similarity ratings, participants were asked “How semanti-
cally similar are the following two pictures? Please only 

make judgments based on how much the pictures have to do 
with each other.” Ratings were made using a numerical scale 
from 1, not similar at all, to 5, highly similar. Participants 
responded by checking the box of the corresponding value. 
After a box was checked, the next trial was presented. After 
finishing all trials in the HIT, participants submitted their 
ratings by clicking the submit button.

Each worker was assigned a unique ID number by 
Amazon MTurk, which enabled restrictions on how par-
ticipants were allowed to complete multiple HITs. There 
were four stimulus sets (animals, inanimate objects, 
indoor scenes and outdoor scenes) and two rating types 
(visual, semantic). No participant was allowed to rate 
a given pair of images twice, meaning participants (1) 
could not complete a particular HIT more than once (say, 
the HIT containing image pairs #1-253 for “inanimate 
object-visual” ratings) and (2) could not complete both 
kinds of ratings for a particular set of image pairs (say, 
the HIT containing image pairs #1-253 for “inanimate 
object-visual” ratings and the HIT containing the same 
pairs for “inanimate object-semantic” ratings). An addi-
tional constraint (imposed incidentally for convenience) 
is that participants who had completed ratings of one 
type (either visual or semantic) for a set of image pairs 
in a given category were unable to complete ratings of 
the other type for any set of image pairs in that category. 
Outside of these constraints, participants were allowed 
to complete multiple HITs, always providing ratings 
for stimulus pairings that they had not previously been 
exposed to.

We collected at least 10 ratings per image pair 
(Table 1). To assess whether a dataset of size 10 rat-
ings is adequate to provide a stable MDS solution, we 
conducted simulation analyses. In brief, we sampled 
subsets of the full dataset that steadily increased in size 
and asked how much the addition of one extra rating 
changed the MDS solution at each dataset size (see Sup-
plementary Information). The simulation results for the 

Table 2  Similarity rating descriptive statistics

Image category Similarity rating Mean ratings Standard 
deviation

Animal Visual 1.53 0.88
Semantic 1.76 1.06

Inanimate object Visual 1.27 0.63
Semantic 1.37 0.80

Indoor scene Visual 1.60 0.92
Semantic 1.62 1.09

Outdoor scene Visual 1.47 0.81
Semantic 1.63 1.07

1 We did not explicitly instruct participants to exclude any prior vis-
ual knowledge of the real-world objects that the pictures depict, such 
as size. This was intentional, because we assume that in most studies 
employing the images, no such instructions to exclude real-world vis-
ual knowledge will be issued. Thus, we expect visual ratings to reflect 
an "organic" mixture of prior visual knowledge (e.g., a hippopotamus 
usually looks much larger than a crab) and current visual input (e.g., 
in which the hippopotamus and crab pictures project the same size 
image onto the retina), which will most accurately index the similar-
ity of visual representations formed in response to these images in 
later studies.
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2D case are presented in Supplementary Figure 1, and 
they imply that the MDS solutions would not be greatly 
modified by continuing to collect more ratings beyond 10 
per image pair (other dimensionalities are also presented 

in the Open Science Framework (OSF) project at https://
osf.io/smk25/).

Following the online collection of similarity rat-
ings, we obtained naming data from 14 in-person 

Table 3  Inter-rater reliability as measured by Kendall’s coefficient of concordance (W)

Kendall’s coefficient of concordance (W) by image category, similarity rating and HIT. HITs 1 through 6 had 10 raters and 253 image pairs; HIT 
7 had 10 raters but only 252 image pairs. The mean value in the last column reflects Kendall’s W for each category and rating type, averaged 
across the seven HITs.

Image category Similarity rating HIT 1 HIT 2 HIT 3 HIT 4 HIT 5 HIT 6 HIT 7 Mean

Animal Visual .46 .46 .39 .39 .41 .47 .44 .43
Semantic .51 .51 .42 .49 .40 .56 .38 .46

Inanimate object Visual .39 .22 .33 .31 .31 .36 .27 .38
Semantic .28 .18 .30 .26 .31 .27 .30 .27

Indoor scene Visual .35 .27 .27 .37 .25 .33 .23 .30
Semantic .30 .16 .21 .35 .36 .22 .29 .27

Outdoor scene Visual .44 .30 .31 .41 .32 .28 .26 .33
Semantic .39 .33 .34 .30 .34 .27 .24 .32

Fig. 2  Visualization of the 2D MDS solution for animal-visual similarity ratings
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participants. Each of the 240 images was presented 
across eight blocks of 30 trials. Blocks alternated 
between two broad image categories—animal/inani-
mate objects and indoor/outdoor scenes—and the cat-
egory of the initial block was counterbalanced across 
participants. We informed participants that they would 
be naming animate and inanimate objects, and indoor 
and outdoor scenes, and we requested that they pro-
vide specific and identifiable labels, avoiding more 
generic identifiers such as “wild animal” or “store.” 
Image presentation was self-paced, such that the next 
image did not appear until participants submitted their 
response for the current image. Formal or quantitative 
analyses of these data were not of primary interest, but 
the raw data and “counts” of supplied names for each 
image have been made available at the OSF repository. 
Not only do these data provide normative names for 
all of the stimuli, but the “spread” of names for each 
image offers an additional qualitative assessment of 
whether it was consistently identified.

Statistical analysis

Multidimensional scaling (MDS) Data analyses were 
performed using R (R Core Team, 2016) and the sma-
cof package for multidimensional scaling (de Leeuw & 
Mair, 2009). For all stimulus sets (inanimate objects, 
animals, indoor scenes, outdoor scenes), we used the 
similarity ratings to create distance matrices for visual 
and semantic ratings separately, yielding eight matrices 
(four stimulus sets by two rating types). The similarity 
ratings were transformed into distance ratings by sub-
tracting the original pairwise similarity ratings from 5, 
which yielded perceptual distance values ranging from 
0 to 4 (e.g., a similarity level of 1 becomes a “perceptual 
distance” of 4; a similarity level of 5 becomes a “percep-
tual distance” of 0). Next, we averaged these perceptual 
distance values across participants and used the resulting 
average distance matrix for each category-rating combi-
nation as the input for non-metric MDS analysis (Kruskal 
& Wish, 1978).

Fig. 3  Visualization of the 2D MDS solution for animal-semantic similarity ratings
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Dimensionality of the MDS space and scree plots of stress 
level Because MDS involves a reduction in dimensional-
ity of the original data, it can be helpful to find the opti-
mal dimensionality for representing the data. The optimal 
dimensionality of an MDS solution is usually determined 
by a scree plot, which displays the stress level of an MDS 
solution at each level of dimensionality assayed. Stress is 
the value that is optimized in finding the MDS solution, 
and it provides a measure of the mismatch between the 
Euclidean distances between each pair of stimuli in the 
MDS solution and the corresponding distances in the 
empirical data (Kruskal & Wish, 1978). A higher stress 
value indicates a poorer fit between the distances in the 
empirical dataset and the distances in the MDS solu-
tion, and stress is invariably higher for MDS solutions of 
lower dimensionality. However, in choosing the dimen-
sionality there is a trade-off: although stress decreases 
as the number of dimensions increases, it is harder to 
interpret the data visualization offered by MDS in higher 
dimensions.

For each of the eight category-rating combinations 
(e.g., inanimate objects-visual), we calculated six differ-
ent MDS solutions with dimensionalities from 2 to 7. We 
created scree plots showing the normalized stress level 
(Kruskal & Wish, 1978; Takane, Young, & de Leeuw, 
1977) at each dimensionality of MDS solution, for each 
category-rating combination. To conveniently visual-
ize stimulus-relatedness, we constructed maps based 
upon the 2D MDS solutions for each category-rating 
combination.

Monte Carlo simulations to determine the validity of 
MDS solutions Although stress level provides a measure 
of how well an MDS solution fits the raw distance data, 
low stress level per se is not a guarantee that the MDS 
solution has found a meaningful interpretation of the 
similarity relationships in the empirical data. Therefore, 
we performed a Monte Carlo simulation, sampling ran-
dom similarity ratings, to test how the stress levels of 
MDS solutions generated from random ratings compare 

Fig. 4  Visualization of the 2D MDS solution for inanimate object-visual similarity ratings
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to the stress levels we observe in the empirical MDS 
solutions (Hout et al., 2014). If the MDS solution for 
the empirical data has identified meaningful similar-
ity relationships, then the empirical stress levels will 
fall in the extreme left-hand tail of the null distribution 
generated by the Monte Carlo simulations. To gener-
ate a Monte Carlo null distribution with characteristics 
that resembled the empirical distribution, but in which 
meaningful relationships were obliterated, ratings were 
randomly sampled with replacement from the pool of 
141,600 empirical ratings (this total reflects 10 ratings 
of 1770 image pairs in each of the eight category-rat-
ing combinations). For each simulation, we sampled 
10 ratings for each image pair (to simulate 10 partici-
pants) and assigned them randomly to the image pair 
labels. The 10 ratings per image pair were then averaged 
together before being entered into the MDS analysis, 
and the stress level of the resulting MDS solution was 
computed. This whole process was carried out 1000 
times to construct a density plot of stress levels from 

random data that contain no meaningful similarity 
relationships.

Results

Similarity rating descriptive statistics

The mean and standard deviation of participant similar-
ity ratings within each condition is provided in Table 2. 
Participants tended to use the lower end of the rating 
range, corresponding to a judgment of "dissimilar." This 
is perhaps unsurprising since all image pairs (except on 
attention check trials) comprised two items from differ-
ent basic-level categories (e.g., a hippo and a crab, rather 
than two crabs). However, violin plots of all similarity 
ratings shown in Supplementary Figure 3 demonstrate 
that participants did use the full range of ratings across 
all image pairs.

Fig. 5  Visualization of the 2D MDS solution for inanimate object-semantic similarity ratings
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Additionally, we assessed inter-rater reliability via 
Kendall’s coefficient of concordance (W) across image 
category, similarity rating and HIT (Table 3). Kendall’s 
W averaged over all 56 groups was .34 (SD = .09) and 
ranged between .16 and .56. Chi-square tests revealed that 
inter-rater reliability was statistically significant across all 
groups (p < .001), indicating that participants provided 
similar ratings when comparing the same image pair.

Multidimensional scaling solutions We performed MDS 
with dimensionalities 2 through 7 for all eight category-
rating combinations (e.g., animals-visual, indoor-semantic, 
etc.). The full MDS solutions at all six dimensionalities 
for all eight category-rating combinations are provided at 
https://osf.io/smk25/. To visualize the results of MDS, we 
plotted the 2D solutions for all eight category-rating com-
binations, in Figs. 2, 3 ,4 ,5 ,6 ,7 ,8 and 9. Each plot shows 
all 60 stimuli in the set (e.g., all animals in Fig. 2) located 
in a 2D map such that the physical distances between 

images on the plot reflect the distances between images in 
the 2D MDS solution derived from the similarity ratings 
data. Inspection of two 2D solutions derived from the same 
set of images via different ratings—for example, animals 
rated visually and animals rated semantically in Figs. 2 and 
3, respectively—reveals that participants were following 
instructions, and that the MDS solution identified mean-
ingful relationships. For instance, the seahorse was rated 
as being close to the snail, frog and lizard in the visual 
ratings MDS solution, whereas it was grouped with other 
sea animals, such as the starfish and crab, in the semantic 
ratings MDS solution.

Scree plots of stress levels

Figure 10 displays scree plots showing the normalized stress 
level (Kruskal & Wish, 1978; Takane et al., 1977) at each 
dimensionality of MDS solution for each category-rating 
combination. The scree plots indicate, as expected, that 

Fig. 6  Visualization of the 2D MDS solution for indoor scene-visual similarity ratings

2373Behavior Research Methods  (2022) 54:2364–2380

1 3

https://osf.io/smk25/


greater dimensionality leads to lower stress. However, for 
all category-rating combinations, even the 2D MDS solution 
has a stress level well below 0.3762 (Table 4), indicating 
a good fit between the proximities between images in the 
MDS solution and the rating distances in the empirical data 
(Sturrock & Rocha, 2000). This suggests that the 2D visu-
alizations for all stimulus image categories may be sufficient 
to represent the similarity relationships between the images. 
However, we nonetheless make the MDS solutions for all 
dimensionalities available at https://osf.io/smk25/.

Monte Carlo simulations to assess MDS solutions

We created MDS plots from randomly generated similar-
ity ratings to produce a null distribution of stress levels 
for the scenario where there is no meaningful similarity 
information in the data. Figure 11 shows, for the case 
of 2D MDS solutions, the distribution of stress levels 
associated with MDS solutions derived from randomly 
sampled similarity ratings, generated via bootstrapping. 
In this figure, the highest stress level from among all 
eight category-rating conditions (namely, indoor scenes-
semantic ratings, with a stress level of 0.110 for the 2D 
MDS solution), is displayed as a vertical red line. As seen 
in the figure, the stress level in our empirical MDS solu-
tion is far below the lower tail of the null distribution that 
was generated by sampling similarity ratings randomly. 
This indicates that the empirical MDS solution explains 
much more of the variance in the images' similarity rela-
tionships than the MDS solutions applied to randomly 
sampled image-pair ratings, suggesting that the empirical 

Fig. 7  Visualization of the 2D MDS solution for indoor scene-semantic similarity ratings

2 This cutoff reference for stress was obtained from Table 2 of Stur-
rock & Rocha (2000). The authors propose that random similarity 
matrices, which have no structure to the relationship between items, 
should produce a “worst-case stress value when scaled” (p. 51). 
Accordingly, the first percentile of a distribution of non-metric MDS 
stress values generated from 587,200 random similarity matrices can 
be used as an upper limit for stress values generated by nonrandom, 
structured matrices with the same number of items and scaled in the 
same number of dimensions. In the present case of 60 items and two 
dimensions, that first percentile cutoff value is 0.376.
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MDS solution captures meaningful similarity structure 
not present in the randomly sampled data. The analogous 
simulations for MDS solutions in 3D to 7D are shown in 
Supplementary Figure 2.

Discussion

The goal of this study was to provide visual image stimu-
lus sets with accompanying naming data, and quantitative 
similarity metrics for both visual and semantic judgments. 
We provide these stimulus sets and metrics for use by psy-
chologists and cognitive scientists running empirical studies 
involving objects and scenes.

The similarity data were collected through MTurk via 
pairwise ratings, in which participants judged the simi-
larity of two simultaneously presented stimuli. Alter-
native means of collecting similarity data include the 
spatial arrangement method (SpAM; Goldstone, 1994), 
which includes single- and multi-arrangement methods, 

inverse MDS (Kriegeskorte & Mur, 2012), free-sorting 
(Coxon, 1999) and others. One disadvantage of the pair-
wise method is that the number of pairings increases 
rapidly (quadratically) with the number of stimuli in the 
set. In a lab environment, it is difficult to obtain enough 
participants, or enough ratings per participant, to collect 
sufficient data for all pairwise ratings. Alternative meth-
ods often require fewer trials than pairwise ratings, but 
each has its own disadvantages, such as precluding the 
discovery of similarity structures in more than two dimen-
sions for the single-arrangement method, or limiting the 
data to binary similarity measures (same versus different 
category) for free-sorting (Kriegeskorte & Mur, 2012). 
Further, because each of our stimulus categories contained 
60 stimuli, this would yield an unreasonable number of 
images for the single-arrangement SpAM method (spa-
tially arranging by comparing each image with 59 others 
simultaneously). However, 60 items yield only 1770 pairs, 
which is a manageable number for pairwise ratings when 
many participants can be recruited via MTurk.

Fig. 8  Visualization of the 2D MDS solution for outdoor scene-visual similarity ratings
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We validated the MDS solutions derived from the 
empirical similarity ratings in two quantitative ways. First, 

we verified that stress levels for all MDS solutions fell 
into a range typically taken to indicate good agreement 
between similarity relationships in the data and relation-
ships in the MDS solution. Second, we ran Monte Carlo 
simulations and revealed that the distances between items 
in our MDS solutions corresponded to the actual distances 
between items in our empirical ratings data to a greater 
degree than would be expected from a random sampling 
of similarity ratings. Finally, we also validated the MDS 
solutions qualitatively, by visual inspection. Inspection of 
the 2D MDS solutions in Figs. 2 through 9 reveals that the 
perceptual and conceptual similarity spaces are intuitive 
and sensible. Further, the differences between the percep-
tual (visual) and conceptual (semantic) similarity maps 
for a given stimulus category revealed discrepancies that 
were entirely expected. For example, the inanimate objects 
were clustered in the visual condition according to color 
or global form, but in the semantic condition according to 
their function or the environment in which they are typi-
cally found (Figs. 4 and 5).

Table 4  Summary of stress levels for MDS solutions in two dimen-
sions

Stress levels reflect the degree of correspondence between ideal item 
distances (produced by the MDS solution) and actual item distances 
(in the empirical data). A stress level at or below 0.376 indicates an 
excellent degree of correspondence.

Category, rating combination Stress level

Animal, visual 0.057
Animal, semantic 0.052
Inanimate object, visual 0.082
Inanimate object, semantic 0.089
Indoor scene, visual 0.109
Indoor scene, semantic 0.110
Outdoor scene, visual 0.089
Outdoor scene, semantic 0.093
Average 0.085

Fig. 9  Visualization of the 2D MDS solution for outdoor scene-semantic similarity ratings
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We also examined whether the dataset size of 10 rat-
ings was sufficient to attain a stable MDS solution that 
would not change substantially with the collection of 
further ratings (see Supplementary Information). For 
this, we conducted “subsampling” analyses in which 
we sampled subsets of the full dataset that systemati-
cally increased in size. Our approach was to measure 

the distance between pairs of MDS solutions that were 
created from pairs of datasets that differed in size by one 
rating (i.e., n ratings versus [n+1] ratings). Our goal was 
to identify the size of dataset at which incorporating an 
additional rating into the dataset produced a negligible 
change in the MDS solution and/or “diminishing returns” 
in terms of eliminating any residual distance between the 

Fig. 10  Scree plots for each category-rating combination. For all 
eight combinations of image category (animal, inanimate object, 
indoor scene, outdoor scene) and similarity rating type (visual, 
semantic), the level of stress (y-axis) decreased as the dimensionality 

of the MDS solution (x-axis) increased. However, even at two dimen-
sions, all MDS solutions have stress levels below 0.12, indicating that 
they fit the empirical data well.
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MDS solutions derived from datasets that differ by one 
rating. As seen in Supplementary Figure 1 (the results for 
2D MDS solutions) and on the OSF repository (results 
for 3D through 7D solutions), the extent to which the 
MDS solution is altered by adding an additional rat-
ing stabilizes at a low asymptote by the time the data-
set reaches a size of 10 ratings, for all category-rating 
combinations in the 2D through 5D MDS solutions. We 
suggest that researchers wishing to use MDS solutions 
with dimensionalities 6D or 7D consult the Supplemen-
tary Information and the “Subsampling Analysis” figures 
at https://osf.io/smk25/ to determine the stability of the 
MDS solution for the dataset of interest at the desired 
dimensionality. We reiterate that inter-rater reliability 
was high for all category-rating combinations and that, 
for all MDS dimensionalities, stress levels were signifi-
cantly below those of MDS solutions for randomly sam-
pled data. These additional “subsampling” analyses sim-
ply provide a guide as to which dimensionality of MDS 
solution may be optimally stable for a given dataset.

We make all stimuli, naming data, ratings data and the 
full MDS solutions for both visual and semantic ratings 
available to other researchers, at the following OSF website: 

https://osf.io/smk25/. We hope that this provides a valuable 
set of visual stimuli for experiments involving objects and 
scenes in which the similarity between different instances is 
critical to the experimental design.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13428- 021- 01732-0.
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