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Abstract
In experimental settings, characteristics of presented stimuli influence cognitive processes. Knowledge about stimulus 
features is important to manipulate or control the influence of stimuli. To date, there are a lack of standardized data incor-
porating such information for complex abstract stimuli. Thus, we provide norms for a database of 400 abstract and complex 
stimuli. Grey-scaled fractals were rated by 512 participants on the stimulus features of abstractness, animacy, verbalizability, 
complexity, familiarity, favorableness, and memorability. Moreover, 111 participants labeled the fractals, enabling us to 
calculate indices of naming agreement and modal names. Overall, the results confirmed high abstractness and low verbal-
izability of the provided stimuli. To establish external validation for selected stimulus features, we evaluated (a) classifier 
probability of a deep neural network labeling the fractals, negatively correlated with ratings of abstractness and positively 
with verbalizability and naming agreement; (b) data compression rate of fractal image files, positively correlated with the 
rating of complexity; and (c) performance of 212 participants in a recognition-memory task, positively correlated with the 
rating of memorability. The present work fills the gap of a standardized database for abstract stimuli and provides a database 
with valid norms for abstract and complex stimuli based on ratings and external validation measures. This database can be 
used to control and manipulate these stimulus features in experimental settings using abstract stimuli. Such a database is 
essential in experimental research using abstract stimuli for instance to control for verbal influence and strategy or to control 
for novelty and familiarity.

Keywords Norms · Standardization · Abstract stimuli · Complex stimuli · Visual stimuli

Visual stimuli are essential to experimentally investigate 
perceptual or cognitive processes. Such stimuli show high 
individual variation in various features such as perceptual 
salience and shape on a perceptual level, but also in familiar-
ity or meaningfulness on a conceptual level. These features 
are known to influence perceptual and cognitive processes 
(cf. Brodeur et al., 2010). To control or manipulate such 
influence in experimental designs, several collections with 

visual stimuli have been standardized by providing informa-
tion about individual stimulus features (e.g., Brodeur et al., 
2010; Moreno-Martínez & Montoro, 2012; Nishimoto et al., 
2010; Snodgrass & Vanderwart, 1980). To investigate cogni-
tive processes without eliciting semantic concepts, abstract 
visual stimuli are useful, partly because they impede verbal 
strategy-use. To our knowledge, no standardized database 
for complex abstract stimuli currently exists. Thus, the aim 
of the present study was to fill this gap by standardizing a 
set of 400 complex abstract fractals.

One of the most used databases with concrete, meaning-
ful visual stimuli consist of black-and-white line drawings. 
They are standardized for the stimulus features familiarity, 
image agreement, name agreement and visual complexity 
(Snodgrass & Vanderwart, 1980). Several recent databases 
with more realistic stimuli provide information about stim-
ulus features (i.e., norms) for photo images (e.g., Brodeur 
et al., 2010; Brodeur et al., 2014; Moreno-Martínez & 
Montoro, 2012). For example, Moreno-Martinez and Mon-
toro additionally standardized typical linguistic features of 
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the images, such as age of acquisition, lexical frequency, 
and manipulability. Brodeur et al. (2010, 2014) provided 
further norms especially essential for visual stimuli, such 
as object agreement and viewpoint agreement.

In contrast to concrete stimuli, almost no standardized 
information for abstract stimuli features exists. A data-
set of standardized abstract line drawings (i.e., droodles) 
was created by Nishimoto et al. (2010). The droodles were 
standardized along four features which were assessed by 
rating (1) the appropriateness of given labels, (2) the 
appropriateness of generated labels, (3) label variability 
(participants were asked to label the droodles, then the 
response disagreement across participants was calculated), 
and (4) relationships between pairs of droodles. Memory 
performance was then assessed in a cued recall task. 
Results showed that memory performance was correlated 
with the ratings for relationships between pairs, but with 
no other features.

As is the case for concrete line drawings and complex 
pictures, abstract line-drawings and abstract complex stimuli 
may also be differentially processed (i.e., Bellhouse-King 
& Standing, 2007; Brodeur et al., 2014). Thus, the droodles 
standardized in Nishimoto et al. (2010) can serve as an 
optimal abstract counterpart to concrete line drawings (i.e., 
Snodgrass & Vanderwart, 1980) but it might be difficult to 
compare and contrast them with concrete complex images 
(i.e., Brodeur et al., 2010). Other studies used more com-
plex abstract stimuli such as photographs of snowflakes of 
Bentley and Humphreys (1962; e.g., Bellhouse-King & 
Standing, 2007; Maguire et al., 2003). However, no norms 
are provided for these databases.

Abstract stimuli are useful in various fields of research. 
The use of verbal strategies influences visual processing on 
perceptual and cognitive levels (i.e., Lupyan, 2012; Schooler, 
2002). Thus, one possible field of application of abstract 
stimuli is the investigation of visual processing without ver-
bal influence, such as in mental rotation (e.g., Smith & Dror, 
2001) or in memory (e.g., Murphy & Hutchinson, 1982; 
Ovalle-Fresa et al., 2021; Ward et al., 2013). In such studies, 
abstract stimuli are assumed to be meaningless. However, 
when stimuli are intended to be abstract, they can neverthe-
less be perceived as meaningful to different degrees during 
perceptual or cognitive tasks (cf. Lupyan, 2012). In one 
study, geometric shapes varying in the degree of meaning-
fulness were presented (Voss et al., 2010). Conceptual prim-
ing effects and enhanced amplitude of FN400 brain poten-
tials (i.e., electrophysiological frontocentral brain activity 
presumably related to semantic processing and familiarity) 
were found for stimuli previously rated as more meaningful, 
but not when they were rated as meaningless. These results 
underline the importance of knowledge about individual 
features of abstract stimuli, such as the degree to which a 
stimulus elicits meaning. Thus, for research utilizing abstract 

stimuli, information about stimulus features such as abstract-
ness or verbalizability are essential.

Another field of application of abstract stimuli is research 
on the development of familiarity for certain stimuli by 
repeatedly presenting completely novel stimuli. Here, 
abstract stimuli are often used to control for novelty across 
participants (e.g., Chen et al., 2006). Similarly, when the 
involvement of long-term memory in specific tasks is the 
target of investigation, abstract stimuli are used to control 
for pre-existing memory representation of a stimulus (e.g., 
Nishiyama & Kawaguchi, 2014). Abstract stimuli have also 
been used to explore the role of familiarity in recognition-
memory performance to control for familiarity and novelty 
(cf. Leynes et al., 2019; Voss et al., 2012). In such studies, 
it is assumed that abstract stimuli are unfamiliar to partici-
pants. Based on the high individual variation of familiar-
ity in concrete stimuli (cf. Brodeur et al., 2010), it can be 
assumed that perceived familiarity varies between abstract 
stimuli. However, in contrast to concrete stimuli, no database 
including norms about perceived familiarity of individual 
complex abstract stimuli exists.

In the present study, we aimed to respond to the need for a 
standardized database of abstract and complex stimuli. Thus, 
we created a new database with images of abstract fractals 
and provided norm values for each fractal (e.g., Mandelbrot, 
1983). To reduce the amount of semantic or verbalizable 
information in the stimuli from color, luminance, contrast 
and spatial frequency, the fractals were grey-scaled, approxi-
mately isoluminant and similar in spatial frequency. Exam-
ple fractals are shown in Fig. 1.

First, we assessed norms for seven stimulus features via 
a rating questionnaire and given names in a labeling ques-
tionnaire. Norms for verbalizability and abstractness are 
of particular interest in abstract stimuli. Additionally, we 
assessed norms for the stimulus features animacy, complex-
ity, familiarity, favorableness and memorability, which were 
previously applied in existing databases with concrete visual 
stimuli (cf. Brodeur et al., 2010). Given names from the 
labeling questionnaire were used to evaluate indices of nam-
ing agreement (modal agreement): the modal name agree-
ment (MNA, cf. Brodeur et al., 2010), the Shannon’s index H 
(i.e., H value, cf. Brodeur et al., 2010; Shannon, 1948), and 
the Simpson’s Diversity Index (i.e., D value, Simpson, 1949). 
The indices of naming agreement conceptualize actual ver-
balizability and thus provide additional insight about ver-
balizability of the fractals. We expected higher agreement 
in choosing a specific label for fractals (i.e., higher naming 
agreement) when fractals are easier to verbalize and lower 
naming agreement when fractals are harder to verbalize. 
Accordingly, we expected higher naming agreement for 
fractals with higher verbalizability ratings and vice versa.

Moreover, the names from the labeling questionnaire 
allowed us to obtain the modal name (i.e., label chosen with 
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highest percentage per fractal). In line with our assumption 
that the fractals are abstract and thus not contain semantic 
content per se, we were not specifically interested in the 
semantic content of the modal names. Rather, the fractals 
provide more room for semantic interpretation than concrete 
objects and we assumed that participants associated sali-
ent configurational content of the fractals with preexisting 
semantic concepts to label them. Hence, modal names point 
to salient visual information of the stimuli. If several fractals 
result with equal modal names, it allows to detect underly-
ing categorical structures in the database, based on visual 
similarity.

For external validation of abstractness and verbalizability, 
we obtained classifier probability resulting from classifica-
tion of the fractal images with a deep neural network (DNN; 
cf. King et al., 2019). The applied DNN, AlexNet, is trained 
to recognize and label objects in images1 (Krizhevsky et al., 
2012). The rationale behind this approach is based on evi-
dence that AlexNet encodes similar information as human 
brain regions further down the ventral stream (i.e., object 
recognition in the inferotemporal cortex) (cf. Horikawa & 
Kamitani, 2017a; Horikawa & Kamitani, 2017b; Jozwik 
et al., 2017; Mohsenzadeh et al., 2019; Wen et al., 2018). 
We expected classifier probability of the DNN to correlate 
negatively with abstractness and positively with verbaliz-
ability to externally validate the ratings of the two stimulus 
features. Correspondence between the classifier probability 
of the DNN with the indices of naming agreement would 
further support the use of the DNN for external validation 
of verbalizability and abstractness.

To externally validate complexity, we calculated the data-
compression ratio using a standard zip algorithm for each 
fractal. This approach takes advantage of the fact that a file 
with highly structured and repetitive content can be com-
pressed to a lower size than a file with unstructured content 

(cf. Casali et al., 2013; Lempel & Ziv, 1976; Sarasso et al., 
2014). Implementing the zipping procedure on image files 
thus addressed the visual complexity of the fractals. We 
expected a positive correlation between the zip ratio and 
complexity if the rating provides a valid measure.

To externally validate memorability, we conducted a 
recognition-memory task in which 60 of the standardized 
fractals were presented. According to the meta-memory lit-
erature, adults are generally good at predicting their memory 
performance (e.g., Rhodes & Tauber, 2011). Since actual 
memory performance for the fractals might be of interest in 
memory research, we used empirical data of performance in 
a memory task as testable measure. We expected a positive 
correlation between recognition-memory performance and 
the rating of memorability to confirm its external validity.

Method

Participants

For the rating questionnaire, we aimed for a minimum of 20 
ratings per fractal (i.e., stopping criterion). A total of 793 
questionnaires contained data. From this dataset, we first 
excluded incomplete questionnaires (i.e., not all presented 
fractals rated, N = 268), then duplicates (N = 5; i.e., only 
the first questionnaire from the same participants identi-
fied by initials and date of birth was included), participants 
younger than 16 years (N = 3) and, finally, complete test 
runs by the experimenter (N = 5). The final sample for the 
rating questionnaire included in the analyses thus consisted 
of 512 German-speaking participants with an average age 
of 36 years (SD = 14 years, min = 16, max = 78), 352 were 
women and 461 were right-handed.

For the labeling questionnaire, we set the stopping cri-
terion in terms of time and limited data collection to one 
month. We obtained a new sample of 313 questionnaires 
in total, from which we excluded duplicates (i.e., in case of 
several attempts from the same participant, oldest attempts 
were removed, N = 178, because older attempts often only 

Fig. 1  Examples of fractals provided in the database

1 AlexNet was trained across subsets of the ImageNet (ILS-
VRC-2010) with 1000 categories consisting of about 1000 images 
each (cf. Russakovsky et al., 2015).
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contained few responses), incomplete questionnaires (i.e., 
less than 30% valid responses, where 100% corresponded 
to at least 200 fractals N = 24). The final sample for the 
labeling questionnaire consisted of 111 German-speaking 
participants with an average age of 41 years (SD = 12 years, 
min = 20, max = 72), 85 were women and 26 men. Three 
were ambidexter and seven left-handed.

For external validation of memorability, we employed a 
recognition-memory task with a new sample. Sample size 
was determined by the number of participants who took part 
in a master thesis project.2 A total of 381 participants com-
pleted the recognition memory task. We first excluded 26 
duplicates, then data from 52 participants with a response 
accuracy lower than 60% and, finally, data from 91 par-
ticipants completing non-German versions of the task. The 
final sample for the recognition-memory task included in 
the analyses consisted of 212 German-speaking participants 
with an average age of 37 years (SD = 17 years, min = 19, 
max = 82), 132 were women and 195 were right-handed.

The study was approved by the local ethics committees 
of the University of Bern and the UniDistance Suisse. All 
participants were informed about the goal of the experiments 
and that they could withdraw at any time during the experi-
ment before they consented to participate. For the rating 
questionnaire and the recognition memory task, participants 
were recruited in social media channels or via e-mail. For 
the labeling questionnaire, participants were recruited from 
the participants-pool of the UniDistance Suisse (including 
students and non-students) and acquaintances of the authors 
or research assistants. Psychology students from the Uni-
Distance Suisse received a contribution to course credits 
for participation.

Materials

An initial pool of 800 fractals was created by an Internet 
search applying the search-term ‘fractal’. The fractals were 
first resized to 380 x 380 pixels and then grey-scaled with 
Irfan View (Version 4.41; see www. irfan view. com). Next, 
spatial frequency and luminance were averaged across 
the initial pool by means of matching luminance and spa-
tial frequency with “The SHINE toolbox” (Willenbockel 
et al., 2010). This procedure was applied across each whole 
image (including fore and background) in ten iterations and 
included iteratively structural similarity (SSIM) index opti-
mization. For the current standardization study, 400 fractals 
were randomly chosen from the initial pool. For external val-
idation with the recognition task, 60 fractals were randomly 

chosen from the 400 fractals and randomly assigned to two 
lists. A zip-folder with the 400 fractals is available for down-
load on OSF (direct link to the stimuli: https:// osf. io/ c8atx/).

The rating questionnaire was programmed and presented 
online in SosciSurvey (www. sosci survey. de). Each fractal 
was accompanied with seven statements (in German) related 
to the stimulus features abstractness (“The image is abstract. 
It seems to depict something, that doesn’t exist.”), animacy 
(“The image is animated. It seems to depict something alive 
[compared to something lifeless]”), complexity (“The image 
is complex. It has a lot of details and a complicated struc-
ture.”), familiarity (“The image is familiar. It seems famil-
iar, as if I would already know it.”), favorableness (“The 
image is beautiful. I like it.”), memorability (“The image is 
memorable. I can imagine that I could remember it well.”), 
verbalizability (“The image is verbalizable. I can name the 
stimulus with a clear term.”). The instruction was to rate 
each statement on a Likert scale from 1 (“not at all”) to 7 
(“completely”) with the corresponding radio button.

The labeling questionnaire was programmed and pre-
sented online with lab.js (www. lab. js. org/; Henninger et al., 
2021). Each fractal was accompanied by an empty text field. 
Participants were instructed to enter for each fractal the first 
name that came to their mind, but to refrain from entering 
“fractal”, “pattern”, or “abstract picture”.

The recognition task was programmed and presented 
online with lab.js (Henninger et al., 2021). It consisted of a 
learning and a recognition phase. During the learning phase, 
either the 30 fractals from list A or list B, respectively, were 
presented. List selection was randomized between partici-
pants. The instructions were to rate symmetry of each fractal 
with a keypress (“Y” = symmetric, “N” = asymmetric) and 
to memorize the fractals for subsequent recognition. During 
the recognition phase, all fractals from both lists A and B 
were presented. The recognition question was to indicate 
by keypress if a fractal was old (“Y”; i.e., presented during 
learning) or new (“N”; i.e., not presented during learning). 
The confidence rating was assessed with the respective num-
ber key (“1” = guess, “2” = relatively confident, “3” = very 
confident).

Procedure

The rating questionnaire, the labeling questionnaire, and 
the recognition task were conducted in three independent 
online studies and based on different participant samples. All 
studies began with an information page where participants 
confirmed their consent and completed a short demographic 
questionnaire. The recognition task was followed by an addi-
tional questionnaire which is not relevant for the present 
study and hence not further discussed.

In the rating questionnaire, 20 out of the 400 fractals 
were randomly selected for each participant and presented 

2 Due to the correlational main hypothesis (not related to the present 
project), the aim of the master thesis was to test 320 participants or as 
many as possible over the duration of 2 months.
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in randomized order. A trial consisted of the presentation 
of one fractal accompanied by the seven statements about 
the stimulus features. Positions of the statements were ran-
domized in each trial. There was no time restriction and 
participants could not click on the “next” button before all 
statements were rated.

In the labeling questionnaire, participants chose to label 
either 200 or 400 fractals. When 200 fractals were chosen, 
they were randomly selected out of the 400 fractals without 
replacement. Presentation order was always randomized. 
One fractal was presented per trial, accompanied by a text 
field. Participants had to enter a suitable name into the text 
field and could move to the next trial by clicking on the 
“next” button or pressing the “enter” key. When no name 
was entered, the next trial was initiated after 15 s.

The recognition task started with the learning phase fol-
lowed by the recognition phase. During the learning phase, 
30 fractals were presented in randomized order. A trial 
started with the central fixation cross displayed for 1 s, fol-
lowed by the fractal presented at the center of the screen for 
1 s. Next, the learning question (i.e., is the fractal symmetric 
or not) was presented for a maximum of 10 s, or until par-
ticipants made a keypress (“Y” = yes, “N” = no). During 
the recognition phase, the 30 old fractals (i.e., presented dur-
ing learning) and 30 new fractals (i.e., not presented during 
learning) were presented in a random temporal sequence. 
Each trial started with a central fixation cross presented 
for 1 s. After that, the fractal appeared at the center of the 
screen for 1 s. Next, the recognition question was presented, 
and participants indicated by keypress if the fractal was old 
(“Y”) or new (“N”). After keypress or a maximum of 10 s, 
the confidence rating was shown and participants pressed a 
key to indicate how confident they were about the response 
in the recognition question (“1” = guess, “2” = relatively 
confident, “3” = very confident). The next trial was initiated 
by keypress or after 10 s elapsed.

Analyses

The alpha-level was set to .05 for all statistical analyses. 
All correlational analyses are based on Pearson correlations 
if not mentioned otherwise. T tests and Mann–Whitney U 
tests are two-tailed. As a measure of effect size, we report 
Cohen’s d or r. We interpreted the effect sizes r accord-
ing to Cohen (1988): an r larger than .1 was interpreted as 
low effect, between .3 and .5 as medium effect and greater 
than .5 as large effect. R-packages and Matlab toolboxes are 
reported in the corresponding parts of the analyses. Scripts 
are available via Open Science Framework (OSF), https:// 
doi. org/ 10. 17605/ OSF. IO/ CKFMV or directly on Bitbucket, 
https:// bitbu cket. org/ refre sa/ fract als_ stand ardiz ation/ src/ 
master/.

Labeling questionnaire To obtain maximal consensus 
between responses of the labeling questionnaire, we applied 
an automated text-mining approach. The exact preprocess-
ing steps are listed in the supplemental information (Sup-
plementalInformation.pdf). We replaced different expres-
sions of "have no name" or "no image presented" (in case 
of technical problems) with the unique labels "noidea" and 
"noimg", respectively. No responses, “noidea” and “noim-
age” responses were regarded as invalid responses, partici-
pants with more than 70% invalid responses were removed 
from the analyses (100% relating to at least 200 fractals). 
We preprocessed the valid responses by removing stop 
words (i.e., words with only grammatical but no contextual 
function) and unifying the spelling. Spelling correction was 
completed by comparing each word with the Leipzig Cor-
pora (gsw-ch_web_2017, including Swiss German words, 
deu_wikipedia_2016 and deu-com_web_2018 including 
German words; (cf. Goldhahn, Eckart, & Quasthoff, 2012), 
https:// worts chatz. uni- leipz ig. de/ de). The first preprocessed 
word of a response was then used as label. We considered 
singular and plural forms of the same word, such as “flower” 
and “flowers”, as two different labels, because they point to 
perceptually distinct identities of the fractals.

We then used the labels to calculate indices of naming 
agreement and to evaluate the modal name per fractal. For 
each fractal, the MNA was calculated as percentage of par-
ticipants using a specific label after excluding invalid 
responses (cf. Brodeur et al., 2010). The highest percentage 
per fractal was used as MNA, higher MNA thus indicates 
higher naming agreement. The H value (Brodeur et al., 
2010; Shannon, 1948), which in contrast to the MNA con-
siders all alternative labels and their frequencies, was calcu-
la ted per  f racta l  according to  the  equat ion 
H =

∑k

i=1
P
i
log2

�

1

P
i

�

 . In this equation, k represents the num-
ber of different labels provided for a specific fractal after 
excluding invalid responses and Pi represents the proportion 
of responses for a specific label of a given fractal without 
invalid responses. The H value ranges from 0 to 1: if all 
participants chose the same label for a fractal, its H value is 
0, if almost all participants chose the same labels and only 
few alternative labels are chosen with low frequencies, the 
H value approaches 0. The H value is 1 when a fractal is 
labeled with two equally frequent labels. Moreover, the H 
value decreases for fractals with less and less frequently cho-
sen alternative labels and increases for fractals with more 
alternative labels and more frequently chosen alternative 
labels. Lower H values thus correspond with higher naming 
agreement. We also calculated the Simpson’s Diversity 
Index (i.e., D value, Simpson, 1949) per fractal, which again 
considers the alternative responses, according to the equa-
tion D =

∑ n(n−1)

N(N−1)
 . In this equation, n is the total number of 

responses for a specific label of a particular fractal and N is 
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the total number of responses across all labels for a particu-
lar fractal. The D value ranges from 0 to 1 and can be inter-
preted as probability that two randomly picked labels are the 
same. Lower D values thus correspond to lower naming 
agreement. An index of 0 reflects that every response for a 
fractal represented a unique label. An index of 1 reflects that 
all responses represented the same label. The label with the 
highest MNA (the label chosen with highest percentage) was 
then identified as modal name. In case of several labels with 
equal MNA, we chose the label with highest appearance 
across all fractals as modal name to optimize categorical 
information from similar modal names. In the norm table 
(file fractals_norms.csv on OSF, https:// doi. org/ 10. 17605/ 
OSF. IO/ CKFMV), the indices and the MNA are provided 
for each fractal. In addition, the labels with equal MNA but 
lower appearance in the whole database are listed as “alter-
native modal names”.

DNN classifier probability To externally validate abstract-
ness and verbalizability, we obtained classifier probabil-
ity resulting from classification of the fractal images with 
AlexNet, a DNN trained to recognize and label objects in 
images (Krizhevsky et al., 2012). AlexNet consists of eight 
layers, starting with five convolutional layers followed by 
three fully connected layers. Critical for our purpose is the 
output of the last fully connected layer, which is fed into 
a 1000-way softmax regression. AlexNet selects the label 
with the highest log-probability across all 1000 class labels 
as ‘correct label’ and we use this highest log-probability 
value as classifier probability (cf. Krizhevsky et al., 2012). 
Probability values range from 0 to 100. A probability of 
100 would thus reflect that this class label was selected with 
a maximum probability, whilst the other class labels were 
selected with null probability. A probability of 70, for exam-
ple, would reflect that this specific class label was selected 
with a relatively high probability, whilst some of the other 
labels were selected with a total probability of 30 (i.e., the 
uncertainty of 100–70 is distributed across the other 999 
class labels).

Zip ratio To externally validate complexity, we calculated 
the zip ratio for each fractal as the compressed file size of 
each fractal image, divided by the file size of the uncom-
pressed fractal image. A zip ratio of one means that a frac-
tal could not have been compressed because of its highly 
unstructured content, indicating high complexity. A zip ratio 
near zero indicates that a fractal could have been compressed 
to a high extend, due to redundant information in the file, 
indicating low complexity. To this end, we zipped the fractal 
images as .bmp files using the R-package zipr (Csárdi et al., 
2020) with the highest compression level of nine. Eventu-
ally, the deflate algorithm, an improvement of the Lempel-
Ziv-77 algorithm (Ziv & Lempel, 1977), was applied.

Recognition memory Performance in a recognition memory 
task served to externally validate memorability. We thus cal-
culated d-prime for a given fractal across subjects. D-prime 
was obtained by calculating the normalized hit rate (HR) 
minus the normalized false alarm rate (FAR). To avoid HR 
of 1 and FAR of 0, we calculated corrected hit rates, HR = 
(Hits + 0.5) / (total old + 1), reflecting the rate of fractals 
correctly recognized as old, and false alarm rates, FAR = 
(FAs + 0.5) / (total new + 1), reflecting the rate of fractals 
incorrectly identified as old (cf. Snodgrass & Corwin, 1988). 
Higher d-prime values indicate that a given fractal was better 
recognized. We also calculated criterion C for each fractal, 
C = (normalized HR + normalized FAR) / 2, to obtain a 
measure of response bias. A criterion C of zero indicates 
no bias, negative values reflect a bias to “no” responses and 
positive values to “yes” responses.

Results

In the current article, we provide an overview of the norms 
from the rating and the labeling questionnaires, as well as 
of external validation measures, as averages across all 400 
fractals. Stimulus-specific norms are provided in the file 
fractals_norms.csv, which can be downloaded from OSF, 
https:// doi. org/ 10. 17605/ OSF. IO/ CKFMV.

Rating questionnaire

Descriptive statistics of the averaged ratings per stimulus 
feature are shown in Table 1. Each fractal was rated across 
seven features based on a Likert scale from 1 (“not at all”) 
to 7 (“completely”). The highest mean scores were observed 
for abstractness (M = 4.65, SD = 0.62) and complexity (M = 

Table 1  Descriptive statistics of the averaged ratings and of indices 
of naming agreement (across 400 fractals)

Modal name agreement is abbreviated with MNA. H value is also 
known as Shannon’s index, D value is also known as Simpson’s 
diversity index

Questionnaire Feature / Index M SD Min Max

Rating Abstractness 4.65 0.62 2.60 5.92
Animacy 3.83 0.70 2.08 6.00
Complexity 4.56 0.69 2.28 6.20
Familiarity 3.12 0.68 1.70 5.33
Favorableness 3.74 0.69 2.04 5.30
Memorability 3.85 0.76 1.61 5.83
Verbalizability 3.18 0.77 1.62 5.92

Labeling MNA 11.4 8.60 2.33 81.10
H value 1.92 0.19 0.48 2.19
D value 0.03 0.05 0.001 0.66
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4.56, SD = 0.69), confirming the high abstractness and com-
plexity of the fractal stimuli in the database. Complemen-
tary, verbalizability (M = 3.18, SD = 0.77) and familiarity 
(M = 3.12, SD = 0.68) were the stimulus features with the 
lowest mean ratings, indicating that the fractals are difficult 
to label and depict novel (unfamiliar) content. The density 
distributions and boxplots of the averaged ratings are shown 
in Fig. 2a. Approximately normal density distributions for 
animacy, favorableness and memorability were observed. 
However, density distribution of abstractness and complex-
ity was skewed towards higher scores, familiarity, and ver-
balizability towards lower scores.

Next, we calculated inter-item correlations (Pearson’s r) 
to investigate how ratings for individual stimulus features 

were related. Correlation coefficients with their 95% con-
fidence intervals are shown in Table 2, the corresponding 
scatterplots can be found in Supplemental Fig. 1 (Supple-
mentalInformation.pdf). The analyses revealed weak to 
strong correlations for all stimulus features, except for the 
negligible correlation between favorableness and complex-
ity, r(400) = – .04, p = .404. Abstractness was correlated 
with all six other features, whereas the strongest correlations 
were observed with verbalizability, r(400) = – .73, p < .001, 
and with familiarity, r(400) = – .68, p < .001, indicating that 
fractals rated as more abstract were perceived as less ver-
balizable and less familiar. For verbalizability, we observed 
strong correlations with familiarity, r(400) = .84, p < .001, 
favorableness, r(400) = .60, p < .001, and memorability, 
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r(400) = .81, p < .001, indicating that fractals with higher 
verbalizability ratings were also rated as more familiar, more 
favorable, and more likely to be remembered.

Reliability for the features was estimated with an internal 
consistency analyses using a permutation split-half correla-
tion procedure by means of the R package splithalf (Parsons, 
2020). Using 5000 random splits, based on the responses per 
fractal and feature (i.e., splitting across the participants), 
the Spearman-Brown corrected reliability estimates were  rSB 
0.67, 95% CI [0.63, 0.72] for abstractness,  rSB 0.79, 95% CI 
[0.76, 0.81] for verbalizability,  rSB 0.79, 95% CI [0.77, 0.72] 
for complexity,  rSB 0.74, 95% CI [0.70, 0.77] for familiarity, 
 rSB 0.74, 95% CI [0.70, 0.78] for favorableness,  rSB 0.73, 
95% CI [0.69, 0.77] for animacy,  rSB 0.80, 95% CI [0.77, 
0.83] for memorability. Overall, these values indicate good 
internal consistency for all features.

Labeling questionnaire

In the labeling questionnaire, we assessed a total of 33883 
valid labels. Each fractal was presented on average 92 times 
(median = 92, min = 82, max = 101), resulting in an aver-
age of 84.7 valid labels (median = 85, min = 69, max = 96) 
and an average of 7.32 invalid labels (i.e., no responses, no 
idea, no image, median = 7, min = 0, max = 23) per fractal. 
A total of 8655 different labels were used across all fractals. 

The most common labels across all fractals were snail (“Sch-
necke”, N = 551), flower (“Blume”, N = 521), and spiral 
(“Spirale”, N = 445). Correspondingly, from totally 178 dif-
ferent modal names (i.e., the most often chosen label for a 
fractal) in the database, the most frequent modal names were 
snail (N = 30), flower (N = 26), and spiral (N = 15). The 
twenty most frequent modal names are depicted in Fig. 3. As 
groups of fractals resulted in equal modal names, the modal 
names can be used to detect underlying categorical structure 
in the database.

Descriptive statistics for the naming agreement indi-
ces across all fractals are provided in Table 1, density dis-
tributions and boxplots are shown in Fig. 2b. All indices 
indicated low naming agreement on average. As visible 
in Fig. 2b, one fractal (SHINEd_fractal_1738) resulted in 
remarkably higher naming agreement than the others. All 
results reported in this study include that fractal but were 
virtual identical when the fractal was excluded.

Naming agreement for the fractals in our database was 
lower compared to the pictures of 467 meaningful objects 
in the BOSS database reported in Brodeur et al. (2010): 
Mann–Whitney U tests indicated significantly higher 
MNA (indicating lower naming agreement) for the fractals 
(median = 8.52, min = 2.33, max = 80 81.11) than for the 
objects in the BOSS database (median = 59, min = 13, max 
= 100), U =2999.5, z = 24.59, p < 0.001, r = 0.84. The 
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Fig. 3  The 20 most frequent modal names in the database. Modal 
names were identified as the label with highest MNA (i.e., given with 
highest percentage) per fractal. Note that we considered singular and 
plural forms of the same word as two different labels, because these 

point to visually distinct identities of the fractals. Modal names on the 
y-axis reflect English translations with the German word in parenthe-
ses
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same analysis revealed significantly higher H values (indi-
cating lower naming agreement) for the fractals (median = 
.97, min = 0.48, max = 2.19) than the meaningful objects in 
the BOSS database (median = 1.58, min = 0, max = 6.04), 
U = 111305, z = 4.87, p < 0.001, r = 0.17. These results 
indicate that, compared to pictures of meaningful objects, 
the abstract fractals in the database receive lower agreement 
on the labels.

Next, we were interested if the indices of naming agree-
ment were related to the responses of the rating question-
naire. As verbalizability, abstractness and familiarity 
presumably reflect how well a fractal can be named, we 
expected greater naming agreement to be substantially 
related to higher verbalizability, lower abstractness, and 
higher familiarity. Higher MNA and H values indicate higher 
naming agreement, we thus expected a positive correlation 
for these two indices with verbalizability and familiarity and 
a negative correlation with abstractness. As higher D values 
indicate lower naming agreement, we expected D values to 
correlate negatively with verbalizability and familiarity and 
positively with abstractness. Coefficients of Spearman cor-
relations with their 95% confidence intervals are shown in 
Table 2, the corresponding scatterplots are provided in Sup-
plemental Fig. 2 (SupplementalInformation.pdf). The analy-
ses revealed medium correlations between the different indi-
ces and verbalizability, rhoMNA(400) = .38, rhoH value(400) 
= – .44, rhoD value(400) = .44, all ps < .001, and small to 
medium correlations between the indices and abstractness, 
rhoMNA(400) = – .24, rhoH value(400) = .32, rhoD value (400) = 
– .29, all ps < .001, and between the indices and familiarity, 
rhoMNA(400) = .32, rhoH value(400) = – .39, rhoD value (400) 
= .17 all ps < .001. As expected, the correlations indicate 
higher naming agreement for fractals with higher ratings for 
verbalizability and familiarity and for fractals with lower 
ratings for abstractness. The same analyses further revealed 
small to medium correlations between indices of naming 
agreement and all other ratings, ranging from small effects 
for animacy (rhos ≥ .15) to medium effects for memorability 
(rhos ≥ .35), cf. Table 2.

External validations

DNN classifier probability We computed DNN classifier 
probability with the AlexNet on https:// pjred die. com/ darkn 
et/ image net/ (Krizhevsky et  al., 2012). For comparison 
with meaningful stimuli, we additionally estimated clas-
sifier probability of AlexNet for two sets of naturalistic 
object images: we selected 930 grey-scaled stimuli from 
the BOSS database (Brodeur et al., 2010, 2014) and 2400 
colored stimuli from the THINGS database (Hebart et al., 
2019). For comparison with naturalistic but meaningless 
stimuli, we used stimuli from the Brodatz’s texture database 
(Abdelmounaime & Dong-Chen, 2013). Here, we used the 

112 normalized grey-scaled texture images. We expected 
lower classifier probability for the fractals than for the other 
stimuli. Distribution densities and boxplots of classifier 
probability of a DNN are depicted in Fig. 4a. Due to devia-
tions from normal distribution, we report non-parametric 
statistics for analyses including the classifier probability 
values. The DNN labeled the 400 fractals with a mean clas-
sifier probability of 22.52 (median = 17.5, SD = 17.76, min 
= 3.39, max = 96.55). A Mann–Whitney U test indicated 
that classifier probability for the labeling of fractals were 
significantly lower than for the naturalistic objects from the 
BOSS database (median = 33.18, min = 6.35, max = 99.99), 
U = 97246, z = 13.82, p < .001, r = 0.38, and from the 
THINGS database (median = 38.73, min = 4, max = 100), 
U = 229184, z = 16.76, p < .001, r = 0.32. Classifier prob-
ability for fractals was also significantly lower than for the 
naturalistic textures from the Brodatz database (median = 
36.39, min = 3.86, max = 98.94), U = 12530, z = 7.13, p 
< .001, r = 0.32. These results indicate that the fractals are 
significantly more difficult to label for a DNN than images of 
naturalistic objects and textures. Classifier probability also 
differed between the two object databases, U = 989118, z = 
5.10, p < .001, r = 0.09, with lower classifier probability for 
the BOSS than for the THINGS images.

We were interested in a potential relation between DNN 
classifier probability and naming agreement. If higher DNN 
classifier probability was related to indices pointing to 
greater naming agreement, the DNN and the human sample 
would identify similar fractals as harder to label and simi-
lar fractals as easier to label. We observed small Spearman 
correlations between the DNN classifier probability and the 
indices, with rhoMNA(400) = .12, p = .015, rhoH value(400) 
= – .15, p = .002, and rhoD value(400) = .15, p = .002, indi-
cating that fractals classified with lower classifier probabil-
ity also resulted in lower naming agreement and vice versa. 
Scatterplots of the correlations are shown in Supplemental 
Fig. 3 (SupplementalInformation.pdf). Only three fractals (< 
1%) received the same label from the DNN and the human 
sample, indicating that virtually no overlap existed between 
the labels given by the DNN and the modal names resulting 
from the labeling questionnaire.

Next, we aimed to validate the ratings of abstractness and 
verbalizability. To do this, we calculated Spearman correla-
tions between DNN classifier probability and the stimulus 
features rated in the questionnaire. Scatterplots can be found 
in Supplemental Fig. 3 (SupplementalInformation.pdf). We 
observed the expected positive correlation with verbaliz-
ability, rho(400) = .26, p < .001, and negative correlation 
with abstractness, rho(400) = – .10, p = .042. These results 
indicate that fractals with high ratings for verbalizability 
were also classified with high probability by the DNN and 
fractals with lower abstractness ratings were classified with 
lower probability. The same analyses with the other stimulus 
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features revealed weak correlations with classifier probabil-
ity, all rhos(400) ≥ .15, all ps ≤ .003, except for animacy, 
rho(400) = – .01, p = .874 (cf. Fig. 5a).

Zip ratio The zip ratio was used as external validation of 
complexity. The boxplot and density distribution of the zip 
ratios are depicted in Fig. 4b. The average zip ratio across 
all fractals was .80 (SD = .01), indicating predominantly 
complex visual structures in the fractals. Visual inspec-
tion confirmed that fractals with lower zip ratio consisted 
of larger contiguous areas of the surface filled in the same 
shade. Complementary, fractals with higher zip ratio gen-
erally consisted of smaller contiguous areas of the surface 
filled in the same shade.

To externally validate the rating for complexity, we calcu-
lated Pearson correlations with the zip ratio. Scatterplots are 
shown in Supplemental Fig. 4 (SupplementalInformation.
pdf). We were mainly interested in the relationship between 
the zip ratio and complexity, where we observed a correla-
tion as predicted, r(400) = .25, p < .001, indicating higher 
zip ratios in fractals with higher ratings for complexity. The 
zip ratio further correlated negatively with abstractness, 
r(400) = – .17, p < .001, and positively with familiarity, 
r(400) = .13, p = .008, and animacy, r(400) = .13, p = .009, 

indicating that fractals with higher zip ratios revealed lower 
ratings for abstractness and higher ratings for familiarity 
and animacy. No significant correlation with favorableness, 
memorability and verbalizability was observed, all rs(400) 
≤ .09, all ps ≥ .074, indicating that the ratings for these 
stimulus features were not significantly related to the zip 
ratio (cf. Fig. 5b).

Recognition memory To obtain a measure for external 
validation of memorability, we used 60 of the fractals as 
stimuli in a yes/no recognition-memory task. Here, we report 
d-prime and criterion C, reflecting memory performance 
and response bias, respectively. Further analyses on HR and 
FAR are provided in the Supplemental Information (Sup-
plementalInformation.pdf, pp. 7). Correlation coefficients 
and confidence intervals including memory measures are 
shown in Table 3 and Fig. 5c, the scatterplots can be found 
in Supplemental Fig. 5 (SupplementalInformation.pdf).

Averaged d-prime across fractals was 1.13 (SD = 0.51), 
indicating more correctly recognized fractals than false 
alarms. To externally validate the rating of memorability, we 
calculated Pearson correlations. We were mainly interested 
in the correlation between the rating for the stimulus feature 
memorability and actual memory performance (d-prime), 
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where we expected a positive correlation. Our prediction 
was confirmed with a positive correlation between memo-
rability and memory performance, r(60) = .36, p = .004, 
indicating that higher ratings for memorability are indeed 
associated with higher performance in a recognition task. 
Furthermore, memory performance correlated negatively 
with animacy, r(60) = – .42, p = .001, indicating higher 
memory performance for fractals with lower animacy rat-
ing, but not with the rest of the stimulus features, all rs(60) 
≤ .10, all ps ≥ .126.

Averaged criterion C was 0.27 (SD = 0.37), indicating 
a slight overall tendency for “yes” (i.e., “old”) responses. 
No correlation between criterion C and memorability was 
observed, r(60) = – .23, p = .078. Criterion C was negatively 
correlated with familiarity, r(60) = – .28, p = .033, animacy, 

r(60) = – .29, p = .024 , and complexity, r(60) = – .29, p = 
.026. These results indicate that fractals with higher ratings 
for familiarity, animacy and complexity were slightly asso-
ciated with higher tendency for “no” responses and fractals 
with lower ratings in these stimulus features with a lower 
tendency for “yes” responses.

Discussion

The aim of the present study was to create a standardized 
database of complex abstract stimuli. We provide 400 
grey-scaled fractals with norms which are specifically rel-
evant for meaningless stimuli, namely verbalizability and 
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Fig. 5  Correlation coefficients of the ratings for abstractness and ver-
balizability (a), complexity (b), and memorability (c) with the ratings 
for the stimulus features. The features of interest for external valida-

tions are represented with larger points. Error bars represent 95% 
confidence intervals
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abstractness. Additionally, we established norms for stimuli 
features such as animacy, complexity, familiarity, favorable-
ness, and memorability, as well as modal names and indices 
of naming agreement, which have been assessed in previ-
ous research with meaningful stimuli (e.g., Brodeur et al., 
2010). We complemented the norms with external validation 
measures, obtained by computational methods to estimate 
verbalizability/abstractness and complexity of the fractals 
and by empirical data in a separate memory experiment.

Low verbalizability and high abstractness of the frac-
tals database was confirmed in several analyses. First, we 
observed the expected high ratings for abstractness and low 
ratings for verbalizability, indicating that the provided data-
base includes abstract stimuli which are difficult to verbal-
ize overall. Second, indices of naming agreement revealed 
generally very low naming agreement for the fractals, 
which was remarkably lower than naming agreement for 
meaningful stimuli in the BOSS database (Brodeur et al., 
2010). We observed medium correlations between naming 
agreement and abstractness as well as low to medium cor-
relations between naming agreement and verbalizability 
because fractals with higher naming agreement were rated 
higher in verbalizability and lower in abstractness. The par-
ticipants were thus able to differentiate between different 
degrees of abstractness and verbalizability, which were also 
reflected in naming agreement. These values now facilitate 

the determination of the exact degree of abstractness and 
verbalization for each stimulus.

Classifier probability values from the DNN AlexNet 
(cf. King et al., 2019) served for external validation of the 
abstractness and verbalizability ratings. Mean classifier 
probability was significantly lower for the fractals than for 
meaningful stimuli (i.e., photographs of objects and textures), 
indicating that the DNN could label meaningful stimuli with 
higher probability compared to the fractals in the present data-
base. Comparing the labels given by the DNN with the modal 
names of the human sample revealed virtually no overlap. An 
explanation is that the labels available to AlexNet are only 
a small subset of the labels available to humans. However, 
classifier probability was related with the indices for naming 
agreement from the labeling questionnaires, indicating that 
fractals classified with lower probability also received lower 
naming agreement. Although the effect sizes were small, this 
relation supports the use of the DNN classifier probability as 
external validation measure for verbalizability and abstract-
ness. The external validation with the DNN probability value 
was confirmed for both features, although numerically better 
reflecting verbalizability (approaching a medium effect, rho 
= .26) than abstractness (low effect, rho = – 0.10). This is 
not surprising, as the goal of the DNN is to name (i.e., to 
verbalize) the content of the images, rather than to rate the 
abstractness of image contents. Taken together, the present 
database provides reliable information about the stimulus 
features abstractness and verbalizability of individual frac-
tals. This is especially important when testing with abstract 
stimuli, as previous research revealed that participants tend to 
induce meaning into meaningless stimuli, such as minimal-
istic geometric shapes (cf. Lupyan, 2012; Voss et al., 2010).

Furthermore, the average ratings for complexity, as for 
abstractness, were high compared to the other features. 
Thus, the fractals in the database were generally perceived 
as complex visual stimuli. Complexity ratings were exter-
nally validated by means of zip ratios, as complex files can 
be compressed to a lower level than less complex files (cf. 
Casali et al., 2013; Sarasso et al., 2014). Note that lower 
zip ratios indicate that a file was compressed to a higher 
extend. Visual inspection revealed that fractals with lower 
zip ratios generally consisted of larger contiguous areas of 
the surface in the same shade, a visual structure that might 
be perceived as less complex. Complementary, fractals with 
higher zip ratios generally had more fine-grade perceptual 
structures with smaller contiguous areas of the surface in 
the same shade, a visual structure that might be perceived 
as more complex. Accordingly, the zip ratio was positively 
correlated with complexity, approaching a medium effect (r 
= .25), indicating that fractals with higher complexity rat-
ings indeed consist of a more complex structure. Information 
about complexity of individual visual stimuli is of impor-
tance in experimental research, as it influences for instance 

Table 3  Means, standard deviations, and correlations with confidence 
intervals for memory measures and ratings for the stimulus features 
(averaged across the 60 fractals)

M and SD are used to represent mean and standard deviation, respec-
tively. The correlation values represent Pearson’s r. Values in square 
brackets indicate the 95% confidence interval for each correlation. * 
indicates p < .05. ** indicates p < .01

Feature M SD 1 2

1. d-prime 1.13 0.51
2. Criterion C 0.27 0.37 .28*

[.02, .50]
3. Memorability 3.90 0.65 .36** – .23

[.12, .57] [– .46, .03]
4. Abstractness 4.56 0.63 .02 .11

[– .23, .28] [– .15, .36]
5. Animacy 3.82 0.71 – .42** – .29*

[– .61, – .18] [– .51, – .04]
6. Complexity 4.50 0.68 – .20 – .29*

[– .43, .06] [– .50, – .04]
7. Familiarity 3.19 0.68 .08 – .28*

[– .18, .32] [– .49, – .02]
8. Favorableness 3.70 0.61 .08 – .24

[– .18, .32] [– .47, .01]
9. Verbalizability 3.19 0.71 .15 – .19

[– .11, .39] [– .42, .07]
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early perception (e.g., Bradley et al., 2007) and also higher 
cognitive performance such as memory (e.g., Eng et al., 
2005; Murphy & Hutchinson, 1982).

Ratings of memorability revealed medium average rat-
ings across all fractals, with high variability between frac-
tals. The ratings for memorability were externally validated 
with actual performance in a memory task. For this task, 60 
fractals were randomly selected from the present database. 
Correlational analyses revealed medium-sized relations (r = 
.36) between the norms for the perceived memorability and 
the actual recognition-memory performance. These results 
confirm validity of the ratings for memorability. Thus, the 
present database provides norms to manipulate or control 
abstract stimuli with respect to their memorability. This 
specifically allows to control for task-difficulty in memory 
tasks based on stimulus selection and might be interesting in 
research comparing memory performance between different 
age groups (e.g., Brehmer et al., 2012) or clinical samples 
(e.g., Whittington et al., 2006).

Ratings for the stimulus feature familiarity in the pre-
sented database were generally low. This observation is in 
line with our assumption that the semantic or conceptual con-
tent of the fractals in the current database is very restricted. 
Information about familiarity of visual stimuli is essential 
for different levels of cognitive processing (cf. Gernsbacher, 
1984; Kamas & Reder, 1994): previous research revealed 
faster responses to familiar than to unfamiliar stimuli in vis-
ual search tasks (e.g., Wang et al., 1994 or in naming tasks 
(e.g., Alario et al., 2004; Ralph et al., 1998). With regards 
to memory, repeatedly presented stimuli are supposed to be 
perceived as more familiar and enhance short-term memory 
performance in some studies (e.g., Mayer et al., 2011; Xie 
& Zhang, 2017), but not in others (e.g., Chen et al., 2006). 
In our study, familiarity was not related to performance 
(d-prime) in a recognition-memory task. Hence, our data-
base of standardized fractals might serve as a useful tool for 
an approach to solve the reported inconsistencies in this field.

It is noteworthy that we observed correlations beyond 
our specific predictions (i.e., unspecific correlations, cf. 
Fig. 5). A potential reason for these unspecific correlations 
is that the fractals are generally hard to verbalize, whereas 
some of the fractals’ configurational content consists of 
salient shapes, which are easier to verbalize. Thus, verbal-
izability might also influence the ratings of other features. 
For instance, if the configurational content of a fractal 
consists of a salient shape, e.g., spiral, its verbalizability 
rating will be higher and in conjunction also its other rat-
ings such as memorability, familiarity or even complexity, 
compared to fractals with less salient configurational con-
tent. In line with this assumption, naming agreement, rep-
resenting actual verbalizability, was at least weakly related 
to all feature ratings. However, there are also alternative 
explanations for the observed unspecific correlations. 

Classifier probability of AlexNet revealed unspecific cor-
relations with all ratings except animacy. The medium 
correlation with complexity implies that classifier prob-
ability of AlexNet was lower for fractals with high com-
plexity ratings. This might be in line with the fact that the 
DNN processes increasingly complex image information 
in every layer, resulting in image classification in the last 
layer (e.g., Jozwik et al., 2017; Wen et al., 2018). Moreo-
ver, low- to medium-sized correlations revealed that the 
DNN was more confident with fractals rated as more famil-
iar, favorable, or memorable. Together with the relation 
between DNN classifier probability and indices of naming 
agreement from the labeling questionnaire, these correla-
tions could be interpreted as support for the assumption of 
AlexNet as a model for human object recognition. The zip 
ratio revealed low unspecific correlations with abstractness, 
animacy and familiarity. Crucially, images can be zipped to 
a lesser degree when they contain less structured or more 
irregular information. Fractals could be zipped to a higher 
degree when abstractness was rated higher, thus certain 
regularities or repetitive patterns in image structures might 
be perceived as more abstract. In contrast, fractals that 
could be zipped to a lesser degree, were associated with 
higher animacy or familiarity ratings. Higher familiarity 
ratings for more irregular stimuli might thus reflect our 
experience with a highly irregular perceptual environment 
in everyday life. Memory performance showed one unspe-
cific correlation with animacy. This medium-sized effect 
indicated worse memory performance for fractals with 
higher animacy ratings. This finding is surprising, since it 
contradicts the animacy effect usually observed in memory 
for meaningful stimuli, but also for nonwords (for a review 
see Nairne et al., 2017). Notably, the alternative explana-
tions for the unspecific effects are post hoc explanations 
and, hence, must be confirmed in future studies. However, 
they are broadly consistent with the literature.

Complementing the norms, we provide the modal name 
for each fractal. The modal name reflects the label given 
with highest percentage for a fractal, i.e., the name for which 
highest consensus between participants was achieved. In 
total, we obtained 178 different modal names. The most 
frequent modal names were snail, flower, spiral, water, star, 
waves, stair, tunnel, forest, rose, each given to at least ten 
fractals. As the fractals contain semantic content to a very 
low degree, the modal name rather reflects the configura-
tional content of the fractals, such as salient shapes. There-
fore, we assume that fractals with equal modal names point 
to similar configurational content and thus group in catego-
ries of visual similarity. Fractals with similar modal names 
are less distinct than fractals with different modal names. 
The modal names hence point to underlying categorical 
structures in the database and allow to create stimulus sets 
with distinct or similar fractals.
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With the present study, we provide a standardized data-
base of abstract and complex stimuli with valid norms for 
relevant stimulus features such as abstractness, animacy, 
complexity, familiarity, favorableness, memorability, and 
verbalizability as well as indices of naming agreement. 
This is essential in research investigating, for instance, 
visual processing as independently as possible from verbal 
influences. In research presenting abstract stimuli as novel 
stimuli, information about the stimulus feature of familiar-
ity is crucial. For memory research, the stimulus feature of 
perceived memorability could be used to control for task 
difficulty. Moreover, the modal names of the fractals point 
to salient configurational content such as shape and equal 
modal names for multiple fractals can thus be used as indi-
cators for underlying categorical structures of the database. 
Ultimately, our standardized database offers wide-ranging 
possibilities for conducting experimental research with 
abstract stimuli under controlled stimulus-based conditions.
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