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Abstract
Humans often show reduced social attention in real situations, a finding rarely replicated in controlled laboratory studies.
Virtual reality is supposed to allow for ecologically valid and at the same time highly controlled experiments. This study
aimed to provide initial insights into the reliability and validity of using spherical videos viewed via a head-mounted display
(HMD) to assess social attention. We chose five public places in the city of Würzburg and measured eye movements of
44 participants for 30 s at each location twice: Once in a real environment with mobile eye-tracking glasses and once in a
virtual environment playing a spherical video of the location in an HMD with an integrated eye tracker. As hypothesized,
participants demonstrated reduced social attention with less exploration of passengers in the real environment as compared
to the virtual one. This is in line with earlier studies showing social avoidance in interactive situations. Furthermore, we
only observed consistent gaze proportions on passengers across locations in virtual environments. These findings highlight
that the potential for social interactions and an adherence to social norms are essential modulators of viewing behavior
in social situations and cannot be easily simulated in laboratory contexts. However, spherical videos might be helpful for
supplementing the range of methods in social cognition research and other fields. Data and analysis scripts are available at
https://osf.io/hktdu/.
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Introduction

Social cognition research places great hope in virtual reality
(VR) to overcome limitations of laboratory studies and
resolve discrepancies between findings obtained within
restricted laboratory contexts and naturalistic situations
(Parsons et al., 2017; Risko et al., 2012; Rubo & Gamer,
2021; Zaki & Ochsner, 2009). These discussions are based
on the critique that social cognition research frequently
involves simplified stimuli that do not represent reality,
which is multimodal, dynamic, and contextually embedded
(Zaki & Ochsner, 2009). One area of research where
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these considerations became especially prominent in recent
years is the field of social attention. In general, attentional
shifts towards human beings due to their sole presence
in the visual field are well documented (Birmingham
et al., 2008a,b; End & Gamer, 2017; Großekathöfer et al.,
2020; Rösler et al., 2017). However, such preferred visual
exploration of conspecifics seems highly reduced in reality
(Horn et al., 2021; Laidlaw et al., 2011; Rösler et al., 2021).
As a consequence, researchers sought more appropriate
research designs that approximate real social environments
but at the same time still provide experimental control
(Risko et al., 2012; Risko et al., 2016). A solution
often discussed in this context is VR, since it allows for
multimodal, contextually embedded, and dynamic stimulus
presentation (Parsons et al., 2017). In principle, it can
enable researchers to observe natural viewing behavior in
the laboratory without losing experimental control.

The use of VR for examining social attention is a rather
recent development. It has not yet been extensively used

/ Published online: 16 December 2021

Behavior Research Methods (2022) 54:2286–2301

1 3

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-021-01724-0&domain=pdf
http://orcid.org/0000-0002-3445-9501
https://osf.io/hktdu/
mailto: jonas.grossekathoefer@uni-wuerzburg.de


to assess attentional prioritization of human beings (for
an exception, see Rubo & Gamer, 2021). An experimental
design that has been more frequently applied in this domain
concerns the examination of social attention in the real
world using mobile eye-tracking glasses and comparing
these findings to a presentation of video recordings on
a computer screen to either the same (Foulsham et al.,
2011) or another participant (Rubo et al., 2020). These
studies provided initial evidence that attentional allocation
towards human beings differs between laboratory and real-
life conditions. For example, Foulsham et al. (2011) found
generally low fixation probabilities on persons, which were
further reduced in real-life conditions when people were
near the observer or remained in the visual field for longer
durations. Although Rubo et al. (2020) did not confirm a
general avoidance of gaze towards conspecifics, they found
an increased exploration of people located in the observer’s
vicinity. This bias, however, was less pronounced in the real
world as compared to the laboratory situation.

Although such studies provide initial evidence for crucial
differences between laboratory and field conditions, they
are not without limitations. First, participants accomplished
different tasks in both contexts (e.g., walking around
vs. watching a video), which might induce different patterns
of visual exploration (e.g., for avoiding obstacles when
planning walking routes). Second, head and body movement
were restricted in the laboratory and it is well known
that saccadic eye movements differ substantially between
conditions with restrained as compared to unrestrained
head movements (for a review see Freedman 2008).
Third, previous studies involved presenting videos to
participants in the laboratory context that were recorded
by a head-fixed camera of the same or another participant
in the field. Thus, participants in the laboratory could
not freely decide where to orient their attention. All in
all, these limitations may restrict the generalizability of
findings and undermine conclusions that were based on a
direct comparison of visual exploration patterns between
laboratory and field conditions. Please note that although
some of these problems might be addressed by including the
video presentation into the real environment itself (Laidlaw
et al., 2011), other problems such as the limitation of the
field of view (FOV) to the previous recording condition
persist. Moreover, such settings might be limited to certain
experimental situations where a video playback in the
surrounding is not considered unnatural or strange.

In the current study, we designed a novel experimen-
tal setting to solve these issues and provide a rich and
ecologically valid viewing situation (Shamay-Tsoory &
Mendelsohn, 2019; but see Holleman et al., 2020 for a
critical comment). Specifically, we presented participants

with spherical videos1 of public places using a head-
mounted display (HMD) with an integrated eye tracker.
Such stimulation has several advantages compared to previ-
ous screen-based experiments. First, it enables participants
to actively and freely experience an environment includ-
ing unrestricted head movements and some degree of body
movement (e.g., turning around). Second, the participant’s
perspective is contextually embedded in the scene, i.e., she
cannot look behind the scene. Whereas in traditional screen-
based experiments, participants can evade the stimulation
by looking around, such behavior is impossible within the
HMD-based presentation of spherical videos. And third, the
currently proposed viewing situation enables experimental
control over the stimulation, which has been proposed to
be one major advantage of VR above field examinations
(Parsons et al., 2017).

Compared with 3D rendered virtual scenes, spherical
videos come with a number of advantages but also
have some limitations. The main advantage is that rich
naturalistic stimuli can be generated remarkably faster,
cheaper, and easier as compared to the extensive and costly
development of 3D worlds. This seems especially true when
these scenes include human beings. The main limitations
are that interactions with the virtual environment, scenes
that hurt physical laws (such as gravity), or scenes
with naturalistic 3D properties (i.e., including stereoscopic
vision) can hardly be realized with spherical videos.
Another challenging aspect for VR in general is movement.
Active, self-paced, and continuous movements are difficult,
costly, and demanding to include, even in 3D rendered
scenes. Since this is basically a form of interaction
with the environment, it is impossible to realize with
spherical videos. A prominent solution to overcome such
problems in 3D rendered scenes is passive movement (e.g.,
teleportation to a new location), which might also be
realized with multiple spherical videos to some degree.
After all, the decision on how to realize a VR scene
needs careful considerations but it seems plausible to
assume that being contextually embedded and empowered
to actively experiencing an environment should reduce
demand characteristics and elicit a more natural viewing
behavior.

1Spherical videos, also referred to as 360◦ videos, are videos recorded
with multiple cameras to cover the whole surrounding at a specific
location (see Methods section for more details). When we refer to
spherical videos in the current article, we imply its presentation
through an HMD with head tracking enabled. Please note that such
spherical videos can also be watched on standard monitors and
smartphones. Depending on the software, navigation is then enabled
through keyboard, mouse, or device movements.
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The current study aimed at examining the suitability
of spherical videos for investigating social attention, and
we were interested in better understanding the boundaries
of typical laboratory settings. Therefore, we specifically
compared visual exploration patterns of participants when
viewing spherical videos of five public places in the
laboratory to their behavior when visiting the same spots in
the real world. We chose to examine participants’ behavior
at several locations in order to ensure generalizability of
findings across situational characteristics and to permit
assessing the reliability of the current method by estimating
the consistency of viewing patterns across the different
locations in the video as well as the real-life condition.
Moreover, we specifically compared viewing behavior
between conditions to determine to what degree measures
of social attention generalize from the laboratory to field
contexts. Although we are convinced that the currently used
spherical videos have some advantages over previously used
stimulation conditions, they still differ from the real world
since participants cannot socially interact with pedestrians
in the video and do not have to follow certain social
norms when viewing the scenes in the laboratory (e.g.,
staring will not have consequences, Ellsworth et al. 1972).
Since both factors are suspected of playing a critical role
in attentional allocation towards conspecifics (Foulsham
et al., 2010; Laidlaw et al., 2011; see also, Gobel et al.,
2015 for a discussion on the dual function of gaze), we
expected a reduced amount of social attention in the real
world as compared to the viewing of spherical videos.
Finally, for exploratory purposes, we related the currently
observed viewing behavior to questionnaire data on autistic
personality and social anxiety traits.

Methods

Hypotheses, sample size, design specifications, and analysis
steps were preregistered before data collection on Aspre-
dicted.org (available at: https://aspredicted.org/p7a83.pdf).
In our study, we used a fully nested within-subjects design
with the factors environment (virtual environment vs. real
environment) and region of interest (ROI, person vs. object,
see below for further details).

Participants

The sample consisted of 44 participants (33 female; age:
M = 22.10 years; SD = 6.00 years) who were recruited via
the online participant pool of the University of Würzburg.
Students participated for course credit. All participants had
normal or corrected-to-normal vision by means of contact
lenses. Sample size planning was done using PANGEA

(Westfall, 2016) before collecting any data2. The planned
sample size allows for detecting the anticipated interaction
of interest with a medium effect (Cohens d = 0.3) at a
conventional level of α = .05 and an adequate power of 1 -
β = 0.87.

Stimuli and apparatus

The eye-tracking data were collected for five different loca-
tions in Würzburg, Germany. The participants experienced
the selected locations in two environments: in the virtual
environment (VE) through watching spherical videos in an
HMD and in the real environment (RE) by visiting the
location in reality (see Fig. 1).

Locations

The five locations in the city of Würzburg included
places located in rather quite side streets as well as more
crowded spots. On average, the number of pedestrians was
comparable between the VE (M = 10.60, SD = 6.23) and the
RE (M = 8.18, SD = 6.15).

Locations were visited in RE at the shortest route to keep
walking time minimal. During the experiment, the route
was used in two different directions, counterbalanced across
participants. The order of locations in both environments
was kept identical for each participant, resulting in only two
sequences of spherical videos in the VE.

Virtual environment

The stimuli for the VE were spherical videos recorded at
the five locations with a GoPro Omni camera mount of six
GoPro HERO4 black cameras. The six resulting videos were
then stitched together into a single spherical video for each
location using Kolor Autopano Pro (Version 4.2). The final
video had a total resolution of 3840 × 1920 pixels with 50
frames per second (FPS) and a duration of 15 s3. We added
an additional seven seconds of black screen (5 s at the start
and 2 s at the end) and the audio track of one camera to each
video.

Two videos from each location were used for each
participant resulting in 30 s of spherical videos per location.
The videos were projected on a virtual sphere rendered by
the 3D game engine Unity (Version 2018.2.18f1) onto an
HTC Vive. We used the HMD with HTC Vive’s default
internal rendering resolution of 3024× 1680 pixels (or 1512

2See the preregistration for details.
3Examples of the spherical videos from the different locations can be
watched at https://www.youtube.com/playlist?list=PLFO679j3PTW
pcFPRZ4i75 usOH7UwrQ4b.
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Fig. 1 Google Maps route the experimenter and participants walked to the five measurement locations (highlighted with yellow dots and
corresponding descriptive labels) in the real environment. Spherical videos were recorded at the identical locations for the virtual environment

× 1680 pixels per eye and display) at a refresh rate of
90 FPS. The HTC Vive provides a FOV of approximately
110◦ × 110◦ of visual angle at a typical distance of 10
mm from the eyes to the internal displays. Eye-tracking
data relative to the FOV were collected with an integrated
SensoMotoric Instruments (SMI) binocular eye tracker and
the SMI plug-in for Unity at a sampling rate of 250 Hz.

Real environment

Eye tracking in the RE was conducted using SMI Eye-
Tracking Glasses 2.1 with the iViewETG software at a
sampling rate of 60 Hz. The integrated camera recorded the
participants’ FOV at 30 Hz with a resolution of 1280 × 960
pixels. The FOV amounts to approximately 60◦ × 46◦ of
visual angle.

Procedure

Upon arrival, participants were welcomed and provided
written informed consent. To conceal the aim of the cur-
rent study and ensure that participants are not concentrating
on their own eye movements, the experimenter provided
erroneous information that we were interested in exam-
ining the suitability of the current devices for measuring

pupil width in different environments. Following the gen-
eral introduction, the participants started with one of the
environments. The starting environment was counterbal-
anced between participants as well as the specific route
they walked or the sequence of the spherical videos they
watched, respectively.4 Consequentially, measurements in
the RE were conducted directly at the five locations in
Würzburg and in the VE, measurements took place in a
laboratory of the University of Würzburg.

Virtual environment

For the virtual environment, we first equipped and
positioned participants with the HMD and headphones
in the laboratory. Before we started the sequence of
spherical videos, we asked participants to accomplish the
numerical validation as provided by the manufacturer SMI
as well as an external three-point validation (the average
distance between validation marks and the recorded gaze
points amounted to M = 1.91◦, SD = 1.42◦). Afterwards,
participants started watching the spherical videos while

4Incorporating the environment and the location that participants
started with into the analyses did not reveal statistically significant
effects of these factors. Thus, order effects do not seem to constitute a
source of error and were therefore neglected in the final set of analyses.
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being able to actively explore the environment with
unconstrained head and eye movements. Furthermore,
participants were allowed to move their body (e.g., to
turn around) but they were instructed not to walk. After
all spherical videos were played, we repeated the initial
validation procedure, to ensure that the device was still
properly calibrated (deviation between validation marks and
gaze coordinates: M = 1.28◦, SD = 0.66◦). Directly after
the exposure we assessed presence, i.e., the feeling of being
there in a VR using the Igroup Presence Questionnaire
(Schubert, 2003). Participants indicated a moderate feeling
of presence (M = 3.89, SD = 0.89) on a scale 0 to
6. Simulator sickness was assessed using the Simulator
Sickness Questionnaire (SSQ, Kennedy, Lane, Berbaum,
& Lilienthal, 1993). Participants reported absence of most
sickness symptoms and reached a total score of M = 27.97
(SD = 21.36) on a scale ranging from 0 to 235.62.

Real environment

For the real environments, we equipped participants
with mobile eye-tracking glasses. Additionally, we asked
participants to wear a baseball cap to reduce the influence
of direct sunlight. Before walking to the first location in
the real environment, the eye tracker was calibrated and
validated in the laboratory using a three-point validation
procedure (average distance between validation marks and
the recorded gaze points amounted to M = 2.65◦, SD =
2.93◦). Then the experimenter walked with the participant
to the first location of one of the two predetermined routes.
At every location, the eye tracker was again calibrated
using three predetermined landmarks. After calibration,
participants received the instruction to hold a notebook
for about 10 s in front of their face and thus cover the
camera of the eye tracker. This was required to further align
recording conditions between virtual and real environments:
It simulated a sudden trial onset and reduced the influence
of prior contextual information similar to the VE. On top, it
was also used as an objective starting point for data analysis
(see Image data processing below). Participants were further
told that the experimenter would move out of their sight and
were shown the direction of the hide-out. After answering
potential questions of the participant, the experimenter
asked them to bring the notebook in position and moved
away. Participants were given about 2 min to freely explore
the environment before the experimenter reentered the
FOV and ended the trial. Since the experimenter had
no further control over the behavior of the participant
when waiting in the hide-out (e.g., about the precise time
point when exploration of the surrounding started), we
deliberately chose a longer viewing time than in the VE to
ensure a sufficient amount of usable data. Note that during
active exploration of the environment, participants were not

allowed to walk to keep the situation as similar to the VE
as possible. During the recording, the experimenter tried
to overview the location from her hide-out and estimated
the number of pedestrians around the participant. For
crowded places where the experimenter lost track of the
total number of pedestrians, we set an upper limit of 20
pedestrians. Afterwards, the experimenter accompanied the
participant to the next location, and the procedure was
repeated. After the last location, the experimenter and the
participant returned to the laboratory where the eye tracker
was calibrated and validated once more to ensure that proper
recording quality could still be achieved (deviation between
validation marks and gaze coordinates: M = 2.16◦, SD =
1.79◦).

Questionnaires

After finishing measurements in both environments, we
asked participants to complete a brief demographic ques-
tionnaire, the Social Interaction Anxiety Scale (SIAS,
Stangier, Heidenreich, Berardi, Golbs, & Hoyer, 1999, M
= 20.30, SD = 8.57, Range = 8 to 41) and the Autism-
Spectrum-Quotient short version (AQ-k, Freitag et al., 2007,
M = 6.50, SD = 3.32, Range = 1 to 17). Upon completion of
the questionnaires, we disclosed the actual aim of the study
and explained that we measured gaze positions instead of
pupil responses. We then offered the opportunity to delete
the participants’ data upon request but no participant made
use of this possibility.

Image data processing

To analyze participants’ viewing behavior in both environ-
ments, we manually scored what participants were looking
at in their FOV. We tried to align data processing and anal-
ysis for both environments as closely as possible to permit
a direct comparison of gaze patterns between viewing con-
ditions. For that purpose, we first extracted individual video
frames from both environments. For image data processing,
we used Python (Version 3.7, Van Rossum & Drake, 1995)
with OpenCV (Heinisuo, 2019), NumPy (Oliphant, 2019)
and Pandas (The PyData Development Team, 2019). For the
VE, frames were extracted directly using Unity’s screenshot
function at 5 FPS at half of the internal monocular render-
ing resolution of the HMD (i.e., 756 × 840 pixels) resulting
in a total of 150 frames for each location. For the RE, we
first exported a video of the FOV as well as the log file for
each participant and location via the software BeGaze (Ver-
sion 3.7, SMI, 2017). Next, we extracted all frames at 5 FPS
from the videos using OpenCV (Heinisuo, 2019). We kept
150 frames from trial onset to cover a comparable time win-
dow as for the VE. Trial onset was exactly 15 frames, i.e., 3
s after the notebook vanished from the first of all extracted
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frames. The delay of 3 s was necessary for the camera to
adapt to the sudden change in lighting conditions due to the
removal of the notebook. The resulting frames had a reso-
lution of 1280 × 960 pixels. To prepare the extracted video
frames for manual scoring, we added a gaze point at the
respective gaze coordinates in form of a circle with a size
of 1◦ to the video frames using OpenCV (Heinisuo, 2019).
Accordingly, the frame of reference for the gaze coordi-
nates can be classified as head-centered (for more details
and a discussion on the use and terminology of frame of
references in eye-tracking research see Hessels, Niehorster,
Nyström, Andersson, & Hooge, 2018). These gaze coor-
dinates resembled the binocular gaze from a hypothetical
cyclopic eye, as internally processed by the SMI software.
Subsequently, two raters categorized the gaze points on a
total of 66,000 video frames (44 participants × 2 conditions
× 5 locations × 150 frames). Each rater scored one half
of the stimulus set using the following scheme: First, raters
categorized whether other persons were present in a given
frame. For frames with persons present, raters additionally
scored the gaze point as falling on one of three ROIs (per-
son, object, background). Scoring followed a hierarchical
assignment. If any part of the gaze point overlapped with
any part of a person, the ROI for the frame was scored as
person. If the gaze point was not scored as person but over-
lapped with an object that could be directly interacted with
(e.g., car, bike, sign, baby carriage), it was scored as object.
If the ROI was neither scored person nor object the gaze
point was scored as background (e.g., sky, crosswalk, build-
ings). Frames missing a gaze point (e.g., due to blinks or
recording difficulties) were categorized asmissing gaze. For
the analyses, we excluded all frames with missing gaze and
frames in which no persons were present. To ensure that
raters were consistent in their scoring, a subset of five partic-
ipants (i.e., 7500 frames) was scored by both raters, and we
assessed their interrater reliability. Cohen’s κ = .87 indicated
a good agreement between both raters.

In VE, 97% all frames included valid gaze points, from
which 73% of frames were further analyzed based on the
presence of persons. In RE in contrast, valid measures of
gaze points were only present in 58% of frames, from which
again 73% included persons. Thus, the final analyses were
based on 71% and 42% of data from the VE and RE,
respectively.

Data analysis

We used the programming language R (version 3.6, R
Core Team, 2020) for statistical analyses and numerical
data processing. Specifically, we relied on the functionality
provided by the tidyverse packages (Wickham, 2017) for
data processing. To conduct linear mixed models, we used
the afex package (Singmann, Bolker, Westfall, Aust, &

Ben-Shachar, 2019) as an interface for lme4 functions
(Bates, Mächler, Bolker, & Walker, 2015). Degrees of
freedom to calculate p values from the according t-
distribution for the linear mixed model were obtained using
the Sattertwhaite approximation (with afex via lmerTest
package, Kuznetsova, Brockhoff, & Christensen, 2017). To
calculate and plot the models’ estimated marginal means,
we used the emmeans package (Lenth, 2020). We used the
conventional threshold of α = .05 for determining statistical
significance. All analysis scripts and data are available at
https://osf.io/hktdu/.

Confirmatory analysis

To test the main hypothesis that social attention differs
between VE and RE, we calculated the average gaze
proportion on each ROI as a function of the environment
for each participant and conducted a linear mixed model
on these proportions using the fixed effects environment
and ROI (ROI: persons or objects). Please note that the
background ROI was dropped since all proportions sum up
to 1 and thus the background information is redundant. The
random effect structure for this Model 1 included random
intercepts for participant ID and followed the preregistered
a-priori restricted model. Although it would have been
possible to also include a random intercept for location, we
decided to rather rely on a parsimonious account and kept
the preregistered model simple but suitable to address our
research question. This approach seemed adequate given
the small number of locations (Judd, Westfall, & Kenny,
2012) and it followed conventions used in the field (i.e., 2
× 2 ANOVA designs on data aggregated across trials) as
well as considerations that the variance-covariance matrices
could be estimated precisely enough to avoid singularity
(Matuschek, Kliegl, Vasishth, Baayen, & Bates, 2017).

Additional models were built upon the preregistered
model but now included a maximum random effect structure
with respect to the newly added predictors as recommended
by Barr, Levy, Scheepers, and Tily (2013). First, we added
predictors for social anxiety (Model 2) and autism spectrum
traits (Model 3) to Model 1. For both new models, we
included all additional two-way interactions as well as the
three-way interaction of all factors. We used sum-to-zero
contrasts for categorical factors in all models. To test the
performance of the resulting models, we compared the log-
likelihood of Models 2 and 3 to the preregistered Model
1.

To analyze the consistency of viewing behavior across
the five locations in each environment, we calculated Cron-
bach’s α of gaze proportions using the psych package
(Revelle, 2019). The generalizability across both environ-
ments was assessed by correlating average viewing prefer-
ences between VE and RE. Finally, to estimate the stability
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of viewing patterns between identical locations viewed in
VE and RE, we calculated correlations between gaze pro-
portions at each location and pooled them using Fisher
z-transformations. All these analyses were accomplished
separately for visual exploration of persons and objects,
respectively, and the whole pattern of correlations was visu-
alized using a correlation matrix including all pairwise
Pearson correlation coefficients r for gaze proportion at
each location in each environment for each ROI.

Exploratory analysis

For exploratory purposes, we conducted an additional linear
mixed model (Model 4) including the number of pedestrians
at the locations as a continuous fixed effect (min = 1, max
= 20, standardized to M = 0 and SD = 1) and location as
an additional random effect. Again, we initially specified
the full random effects structure as in Models 2 and 3.
As the full model did not converge, we pruned the model
stepwise which resulted in a restricted model that included
only uncorrelated random slopes for locations.

Finally, in order to elucidate general differences in visual
exploration behavior between RE and VE, for example
regarding the center bias relative to the FOV (Tatler, 2007),
we plotted a smoothed density map (Gaussian kernel with a
standard deviation of 1◦ of visual angle) of gaze positions
relative to the FOV for a central viewing region spanning
60◦ × 46◦ for both environments across all participants.

Results

Comparison of social attention between real and
virtual environment

To test our main hypothesis, we conducted the preregistered
linear mixed model on gaze proportions with environment
(RE vs. VE) and ROI (person vs. object) as fixed effects
and participant ID as random effect.5 This analysis revealed
significant main effects for environment and ROI that were
qualified by significant interaction of both factors (see
Table 1). Overall, participants tended to look more on
objects than on persons, but the significant interaction effect
indicates that this was only true for the RE (MRE,object =
0.13, SDRE,object = 0.05, MRE,person = 0.07, SDRE,person =
0.06, t(129) = 4.03, p = .001) but not for the VE (MVE,object

= 0.28, SDVE,object = 0.05, MVE,person = 0.30, SDVE,person

5Since the residuals of the linear mixed model were not normally
distributed, we ensured the validity of the present analysis by
additionally calculating a robust linear mixed model (Koller, 2016).
This robust model provided almost identical parameter estimates
(see Table S1 in the supplementary material) and thus supports our
interpretations.

= 0.11, t(129) = -0.99, p = .758). These findings confirm
our primary hypothesis that social attention is reduced in
the real world. Furthermore, the main effect of environment
describes a general tendency of fewer gazes on persons
and objects - and thus an increased amount of background
exploration - in the RE as compared to the VE (see Fig. 2A).

Consistency of viewing behavior within and across
environments

In a first step, we assessed the consistency of gaze
proportions on persons and objects, respectively, within
each environment. Figure 3A illustrates that gaze on persons
was more stable across locations in the VE (lower left
triangle) as compared to the RE (upper right triangle).
This difference was also evident in measures of internal
consistency, which were substantially higher for the VE
(Cronbach’s α = .75, 95% CI [.64, .86]) compared to RE
(Cronbach’s α = .38, 95% CI [.32, .44]). By contrast,
no such consistency was evident in gaze on objects (see
Fig. 3B) and we obtained low values of Cronbach’s α in
both, the VE (Cronbach’s α = .29, 95% CI [.24, .34]) and
the RE (Cronbach’s α = -.03, 95% CI [-.08, .03]). In order
to estimate the generalizability of viewing patterns across
VE and RE, we first calculated the correlation between
average gaze proportions across locations between both
environments. Although the correlation was positive for
gaze proportions on persons (r = .22, 95% CI [−.08,
.48], t (42) = 1.46, p = .153) but close to 0 for objects
(r = .01, 95% CI [−.29, .30], t (42) = 0.04, p = .965),
both correlations were not statistically significant and 95%
confidence intervals overlapped. In a second step, we only
focused on the correlation of gaze proportions between
identical locations in the VE and the RE (see the highlighted
diagonal in the lower right of Fig. 3A and B). Although
the average correlation was again descriptively higher for
gaze on persons (r = .11) than on objects (r = .01), values
are generally low, which indicates that viewing behavior
differed between environments.

The spatial distribution of gaze coordinates within the
FOV also indicates strong differences between VE and RE
(see Fig. 4). Whereas gaze points mostly clustered below the
horizon in the RE and showed a larger spread on the vertical
axis, they were vertically more centered slightly above the
horizon in the VE.

Influence of personality traits

To exploratively test the influence of relevant personality
traits on viewing patterns, we separately extended our
preregistered Model 1 with the standardized scores of the
SIAS (Stangier et al., 1999) and the AQ-k (Freitag et al.,
2007) as fixed factors. The linear mixed model conducted
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Table 1 Estimated coefficients for the preregistered Model 1 with environment and ROI as fixed and participant ID as random effects for the
prediction of gaze proportions

Estimate SE Df t p

Intercept 0.20 0.01 43 31.00 < .001

Environment (RE) −0.10 0.01 129 -18.01 < .001

ROI (object) 0.01 0.01 129 2.15 .033

Environment (RE) × ROI (object) 0.02 0.01 129 3.55 .001

The linear mixed model is based on sum-to-zero contrasts. RE real environment, ROI region of interest

to examine the influence of social anxiety (Model 2) did
supply only weak evidence that social anxiety influences
gaze proportions. Specifically, the three-way interaction
between ROI, environment, and social anxiety just failed
statistical significance (see Table 2). Interestingly, the
previously estimated coefficients were very robust and
did not change substantially with the inclusion of SIAS

scores (see Fig. 5). The linear mixed model incorporating
autistic traits (Model 3) showed the same weak influence on
gaze proportions (see Table 3). Again, previously observed
effects were very robust (Figure 5).

Ratio log-likelihood tests between our preregistered
model and the additional models considering individual
differences in social anxiety and autistic traits supported
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our impression that model performance did not benefit from
including personality factors. The additional parameters in
the two latter models did not significantly increase model
performance (see Table 4).

Relevance of the number of persons present in a
scene

In general, the average number of pedestrians was
comparable between the VE (M = 10.60, SD = 6.23) and
the RE (M = 8.18, SD = 6.15), but there was substantial
variability between locations, both in the RE (Min = 4,Max
= 20) as well as the VE (Min = 4.40, Max = 19.07). In
an additional exploratory analysis, we examined to what
degree this number of persons who were present at a given
location affects viewing behavior. We therefore added the
number of pedestrians to the previously specified Model 1.
This value was constant for every video shown in the VE but

was estimated individually by the experimenter in RE. The
newly specified linear mixed Model 4 included locations as
an additional random effect and the number of pedestrians
in the environment as an additional fixed effect, plus all
interaction terms. The maximum model, including random
intercepts for location and random slopes for the number of
pedestrians at each location, did not converge. Therefore, we
estimated the model suppressing the correlations between
the random intercepts for location and random slopes for
pedestrians6. Most interestingly, the two-way interaction
between environment and ROI was substantially reduced in
this model and did not remain statistically significant (see
Table 5 and Fig. 5). This was probably due to the strong
three-way interaction between ROI, environment, and the
number of pedestrians. Figure 2B shows that in the VE, a
high number of pedestrians was associated with enhanced

6See supplementary material for further details.
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gaze on persons as compared to objects, but this pattern
flipped when only a few people were around. Qualitatively,
such a pattern was also evident in the RE, but it was much
less pronounced, and gaze proportions on persons never
exceeded gaze proportions on objects.

Discussion

In the current study, we directly compared viewing behavior
in real and virtual environments with a specific focus on
social attention using spherical videos as a novel stimulation
technique. In general, our results support previous findings
(Foulsham et al., 2011; Laidlaw et al., 2011; Rubo
et al., 2020) of a reduced attention towards conspecifics
in the real as compared to the virtual environment.
Extending previous studies, these results were obtained
even when closely matching the laboratory environment
to reality by using spherical videos recorded at the
same locations that were also visited in the real world.
These conditions allowed participants to freely explore and
actively experience naturalistic stimuli in the laboratory
while being contextually embedded in the environment.
Since we observed reduced social attention in the real
environment even in such closely matched conditions and
a low correlation of gaze proportions on persons between
both environments, our results indicate that the possibility
to socially interact with other persons is the main driver of
these differences between conditions. It thus seems sensible
to assume that a real confrontation with conspecifics
enhances the activation of social norms (e.g., not staring at
others) and thus results in a reduced overt visual exploration
of other persons in real life. This hypothesis is also
supported by the observed modulation of this effect by the
number of pedestrians in the surroundings. Whereas gaze
on other individuals increased strongly with the number
of pedestrians in the virtual environment, this effect was
substantially weaker in the real world. Collectively, these
findings indicate that it is not sufficient to focus on aspects
of the viewing situation (e.g., active exploration, contextual
embedding) to enhance the generalizability of laboratory
findings on social attention to the real world. The main
aspect that modulates attention towards conspecifics seems
to be the actual presence of other persons and the associated

Table 2 Estimated coefficients for the Model 2 with environment, ROI and SIAS as fixed and participant ID as random effects for the prediction
of gaze proportions

Estimate SE Df t p

Intercept 0.20 0.01 42 30.88 < .001

Environment (RE) −0.10 0.01 126 −18.40 < .001

ROI (object) 0.01 0.01 126 2.20 .030

SIAS −0.01 0.01 42 −0.82 .418

Environment (RE) × ROI (object) 0.02 0.01 126 3.62 < .001

Environment (RE) × SIAS −0.01 0.01 126 −1.44 .153

ROI (object) × SIAS −0.01 0.01 126 −1.63 .105

Environment (RE) × ROI (object) × SIAS 0.01 0.01 126 1.97 .052

The linear mixed model is based on sum-to-zero contrasts. RE real environment, ROI region of interest, SIAS standardized sum score of the Social
Interaction Anxiety Scale
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Table 3 Estimated coefficients for the Model 3 with environment, ROI and AQ-k as fixed and participant ID as random effects for the prediction
of gaze proportions

Estimate SE Df t p

Intercept 0.20 0.01 42 31.18 < .001

Environment (RE) −0.10 0.01 126 −18.04 < .001

ROI (object) 0.01 0.01 126 2.16 .033

AQ−k 0.01 0.01 42 1.23 .226

Environment (RE) × ROI (object) 0.02 0.01 126 3.55 .001

Environment (RE) × AQ−k 0.00 0.01 126 −0.32 .748

ROI (object) × AQ−k 0.00 0.01 126 0.85 .398

Environment (RE) × ROI (object) × AQ−k 0.01 0.01 126 1.61 .110

The linear mixed model is based on sum-to-zero contrasts. RE real environment, ROI region of interest, AQ-k standardized sum score of the
Autism-Spectrum-Quotient short version
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Table 4 Model comparison of the preregistered model with the models including personality traits

Coefficients AIC BIC LogLik deviance chi Df p

Model 1 6 −412.83 −393.81 212.42 −424.83

Model 1 - Model 2 10 −414.23 −382.52 217.11 −434.23 9.4 4 .052

Model 1 - Model 3 10 −409.91 −378.21 214.96 −429.91 5.08 4 .279

AIC Akaike information criterion; BIC Bayesian information criterion; Df Residual degrees of freedom

possibility for an interaction (cf. Zaki & Ochsner, 2009;
Risko et al., 2016). These findings call for an enhanced
focus on social interactions in social cognition research
(Jaegher, Paolo, & Gallagher, 2010).

In addition to these variations of social attention between
real and virtual environments, we also observed more
general differences in viewing behavior between contexts.
Interestingly, attention towards conspecifics seems to be
more stable across locations in the virtual than the real
environment and measures correlated only weakly between
conditions. This could indicate that attentional preferences
that were recently described for several semantic features
and visual properties (de Haas, Iakovidis, Schwarzkopf,
& Gegenfurtner, 2019; Linka & de Haas, 2020; Rubo &
Gamer, 2018) are more robust in laboratory than in real-
life conditions and do not necessarily generalize from the
laboratory to field contexts. Regarding gaze on objects,
we neither found a stability of gaze proportions within
each environment nor between conditions but this finding
might also be attributed to the rather broad categorization
of objects that neglected specific object classes (e.g., cars,
symbols, text) or dimensions (e.g., static vs. moving or
artificial vs. natural objects).

We also observed general differences in the spatial
distribution of gaze coordinates within the FOV between
virtual and real environments (see Fig. 4). In both cases, a
center bias (Tatler, 2007) was evident which is consistent

with previous research using mobile eye-tracking in the field
(Foulsham et al., 2011, Ioannidou, Hermens, & Hodgson,
2016) and stationary eye-tracking during video viewing
(e.g., Tseng, Carmi, Cameron, Munoz, & Itti, 2009).
However, this center bias was much more pronounced
in the virtual environment where participants showed a
substantially reduced spread of gaze points along the
vertical axis. The reasons for this discrepancy remain
elusive. On the one hand, it might be related to the
HMD itself since wearing such device was novel to most
participants (only 7% of the current sample indicated some
previous experience with virtual reality). On the other hand,
it could also result from an interaction between head and eye
movements (Einhäuser et al., 2007) since participants were
free to move their head in both environments. Unfortunately,
tracking head movements could not be accomplished with
the currently used eye-tracking glasses, which precludes a
detailed analysis of differences between conditions. Thus,
it remains unclear whether participants more strongly relied
on head movements to visually explore their surroundings in
the virtual environment or whether the observed enhanced
center bias in this condition indeed reflects less exploration.
Furthermore, in the real environment, gaze was more
concentrated below a relative horizon. Interestingly, this
is compatible with results from studies with walking
participants (e.g., Foulsham et al., 2011 or Matthis, Yates,
& Hayhoe, 2018) even though participants were not allowed

Table 5 Estimated coefficients for the Model 4 with environment, ROI and number of pedestrians as fixed and participant ID and location as
random effects for the prediction of gaze proportions

Estimate SE Df t p

Intercept 0.20 0.01 4.84 14.08 < .001

Environment (RE) −0.09 0.00 129.67 −19.43 < .001

ROI (object) 0.02 0.00 811.74 3.73 < .001

Pedestrians 0.01 0.01 2.26 1.21 .337

Environment (RE) × ROI (object) 0.01 0.00 811.74 1.74 .082

Environment (RE) × Pedestrians −0.05 0.00 811.74 −11.26 < .001

ROI (object) × Pedestrians 0.00 0.00 545.23 0.85 .394

Environment (RE) × ROI (object) × Pedestrians 0.03 0.00 811.74 7.05 < .001

Model 4: The linear mixed model is based on sum-to-zero contrasts. RE real environment, ROI region of interest. The number of pedestrians
was included as a standardized value with M = 0 and SD = 1. Location was included as additional random effect including uncorrelated random
intercepts and random slopes by pedestrians
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to walk in the current study. Although speculative, this
could indicate that the real environment primed participants
to engage in a more active mode of visual exploration
that includes planning for potential walking movements.
Taken together, these general differences between viewing
conditions highlight the need for future studies to elucidate
these aspects in more detail before uncritically translating
experimental paradigms to VR environments and assuming
comparability to field conditions.

Regarding the influence of personality traits on gaze
proportions, we neither observed significant effects of social
anxiety nor of autism spectrum traits. This contrasts with
previous studies that documented reduced attention towards
faces or eyes of conspecifics in individuals with high
autism spectrum (Hessels, Cornelissen, Hooge, & Kemner,
2017, Laidlaw et al., 2011) or social anxiety traits (Howell,
Zibulsky, Srivastav, & Weeks, 2015, Rubo et al., 2020),
respectively. Note, however, that some studies did not
observe general effects of such traits but rather only for
specific situations, e.g., an effect of social anxiety on gaze
at people in the vicinity of the observer (Rubo et al., 2020).
Moreover, other studies failed to observe effects of social
anxiety or autism spectrum traits on measures of social
attention in real environments (e.g., Rösler et al., 2021; Horn
et al., 2021; Vabalas & Freeth, 2015). The current findings
might therefore be attributed to a genuine absence or a
very small effect of personality traits on viewing patterns,
which could not be reliably detected with the limited sample
size of the current experiment. Alternatively, such effects
might only surface in more heterogeneous samples that also
include participants with clinically relevant autism spectrum
or social anxiety symptoms.

Although our study has several strengths including a
close matching of laboratory and field conditions regarding
data acquisition and analysis, it also comes with some
limitations. First, scene presentation in the laboratory was
somewhat restricted by technical limitations of the HMD.
For example, the display resolution degraded the degree of
detail of objects and pedestrians in the distance. However,
we do not believe that these limitations had a major impact
on the results of this study since the videos were short,
novel and interesting and therefore effectively captured
participants’ attention. No participant complained about the
presentation quality or spontaneously mentioned problems
with the HMD. We believe that these technical limitations
will also become weaker as this technology matures.
Second, most of the participants were not experienced
with VR and this novelty might lead to certain viewing
biases. However, as the current results are comparable
with previous findings obtained in other settings (Foulsham
et al., 2011; Rubo et al., 2020) and since we observed
more consistent instead of more variable viewing patterns
in the virtual environment, we suspect these biases to be

rather small. Third, our research design involved walking
to the locations in the real environment and consequently,
participants had prior information about the location before
the actual trial began. This difference to the VE could
hardly be eliminated but we tried to reduce its impact by
choosing well-known locations in the city of Würzburg,
Germany, that should be familiar to most participants.
Moreover, to align recordings conditions between virtual
and real environment, we required participants to use a
notebook to cover their sight before starting measurements
in the RE. This procedure was implemented to reduce
the influence of contextual information and to simulate a
sudden trial onset similar to the VE. Fourth, although we
tried to match presentation conditions in virtual and real
environments as closely as possible, some environmental
factors were beyond experimental control. Apart from
weather conditions and daytime, this mainly applied to
the number and behavior of pedestrians at the different
locations. However, the average number of pedestrians was
comparable between both environments and we explicitly
considered the variability across locations in an exploratory
statistical analysis that also revealed a crucial influence of
this factor on measures of social attention. Fifth, reality
is multimodal. Within our setup, we tried to account for
this by including visual and auditory stimulation in the
virtual environment (Zaki & Ochsner, 2009). Although
we suggest that these two modalities are most important
for generating a sense of presence, it seems interesting
for future research to stimulate additional senses (e.g.,
olfaction) and improve the audiovisual stimulation (e.g., by
including 3D sound). A final limitation might be the lack
of body representation in the virtual environment. Body
representation seems to enhance presence in virtual reality
(Sanchez-Vives & Slater, 2005) but because of technical
limitations, participants could not see their own body within
the currently used spherical videos. Although none of the
participants articulated irritations regarding the missing
body, it seems interesting but also ambitious for future
research to include a rendering of the own body into the
virtual environment. While such procedure might enhance a
feeling of presence, it also certainly requires an additional
experimental phase to familiarize participants with this new
situation.

Besides these limitations and the differences between
virtual and real environments that were observed in the
current study, we see great potential in the use of spherical
videos as stimuli for social cognition research. Compared
to 3D virtual reality environments, spherical videos are
comparatively cheap and easy to generate. These videos
can be presented using HMDs to allow for natural head
and body movements and permit the acquisition of eye-
tracking data that is not deteriorated by quickly changing
light or weather conditions that can be encountered
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in real-life environments involving mobile eye-tracking
(Niehorster, Cornelissen, Holmqvist, Hooge, & Hessels,
2017). Since our results indicate that the possibility for
social interaction seems important for modulating social
attention, it might be an interesting approach for future
research to script spherical videos in order to effectively
simulate such interaction. Although such approach seems
demanding since the observer’s behavior is difficult to
predict and would therefore require a precisely orchestrated
scene, some basic aspects of social attention might well
be simulated with such scripted videos. For example, a
crucial aspect of social interaction is eye contact (Ellsworth
et al., 1972; Wirth, Sacco, Hugenberg, & Williams, 2010),
which could be simulated by purposefully looking into
the camera at defined time points during the recording
of the spherical video. Furthermore, it has been shown
that social status is relevant for gaze allocation (Foulsham
et al., 2010) but in this study, participants watched a
group discussion on a desktop monitor “as if they were
in the room”. Spherical videos could further enhance the
external validity of such study designs. As another example
to test the influence of norms, one can think of a setup
similar to Risko and Kingstone (2011). They concealed
the fact that they recorded eye movements by apparently
switching off the eye tracker. This manipulation resulted
in a substantial change in viewing behavior, presumably
caused by a shift in social norms. Similarly, Cañigueral,
Hamilton, and Ward (2018) also showed that wearing
an eye tracker itself alters viewing behavior. Assuming
compliance with ethical considerations, an HMD setup
holds the opportunity to completely conceal eye-tracking.
It is easy to implement with an HMD since the built-
in eye tracker is usually not recognizable by laypersons.
All in all, we feel that we have only touched the surface
of what is possible with the usage of spherical videos
for social cognition research. At the same time, several
limitations of (interactive) eye tracking with unrestrained
head movements are addressed (cf. Valtakari et al., 2021).
We believe that this technique offers great potential for
many research questions, especially since accessibility
increases with the availability of spherical cameras and
HMDs with included eye-tracking devices.

To sum up, this study examined the reliability and
validity of spherical videos for examining social attention
and it provided evidence for a reduction of gaze on other
persons in real life as compared to laboratory conditions
even when closely matching both environments. Viewing
behavior was largely unaffected by social anxiety and
autism spectrum traits but was modulated by the number
of persons in the scene, especially when viewing spherical
videos. In addition to these findings, we also observed
general differences between virtual and real environments
with respect to the stability of viewing patterns across

locations and the spatial distribution of gaze proportions
within the field of view. Despite these discrepancies, we
believe that the use of HMDs and especially spherical
videos holds great promise for social cognition research
since they allow for a multimodal, contextually embedded,
and dynamic stimulus presentation (Parsons et al., 2017;
Risko et al., 2016; Zaki & Ochsner, 2009). However,
the simulation of potential or actual social interactions
in controlled laboratory research remains a challenging
problem where, as discussed, spherical videos are only of
limited help.
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and realness. Zeitschrift Fü,r Medienpsychologie, 15, 69–71.

Shamay-Tsoory, S. G., & Mendelsohn, A. (2019). Real-life neu-
roscience: an ecological approach to brain and behavior
research. Perspectives on Psychological Science, 14(5), 841–859.
https://doi.org/10.1177/1745691619856350.

Singmann, H., Bolker, B., Westfall, J., Aust, F., & Ben-Shachar, M. S.
(2019). Afex: Analysis of factorial experiments. Retrieved from
https://CRAN.R-project.org/package=afex.

Stangier, U., Heidenreich, T., Berardi, A., Golbs, U., & Hoyer, J.
(1999). Die erfassung sozialer phobie durch die social interaction

anxiety scale (SIAS) und die social phobia scale (SPS). Zeitschrift
Für Klinische Psychologie Und Psychotherapie, 28(1), 28–36.
https://doi.org/10.1026//0084-5345.28.1.28.

Tatler, B. W. (2007). The central fixation bias in scene viewing:
Selecting an optimal viewing position independently of motor
biases and image feature distributions. Journal of Vision, 7(14), 4.
https://doi.org/10.1167/7.14.4.

The PyData Development Team (2019). pandas. Retrieved September
22, 2020, from http://pandas.pydata.org.

Tseng, P. H., Carmi, R., Cameron, I. G. M., Munoz, D. P., &
Itti, L. (2009). Quantifying center bias of observers in free
viewing of dynamic natural scenes. Journal of Vision, 9(7), 4–4.
https://doi.org/10.1167/9.7.4.

Vabalas, A., & Freeth, M. (2015). Brief report: Patterns of
eye movements in face to face conversation are associated
with autistic traits: Evidence from a student sample. Jour-
nal of Autism and Developmental Disorders, 46(1), 305–314.
https://doi.org/10.1007/s10803-015-2546-y.

Valtakari, N. V., Hooge, I. T. C., Viktorsson, C., Nyström, P., Falck-
Ytter, T., & Hessels, R. (2021). S, Eye tracking in human
interaction: Possibilities and limitations. Behavior Research
Methods. https://doi.org/10.3758/s13428-020-01517-x.

Van Rossum, G., & Drake, F. L. Jr.. (1995). Python tutorial Vol. 620.
Amsterdam: Centrum voor Wiskunde en Informatica.

Westfall, J. (2016). Pangea: Power analysis for general ANOVA
designs. Retrieved from https://github.com/jake-westfall/pangea.

Wickham, H. (2017). Tidyverse: Easily install and load the ’tidyverse’.
Retrieved from https://CRAN.R-project.org/package=tidyverse.

Wirth, J. H., Sacco, D. F., Hugenberg, K., & Williams, K. D.
(2010). Eye gaze as relational evaluation: Averted eye gaze
leads to feelings of ostracism and relational devaluation.
Personality and Social Psychology Bulletin, 36(7), 869–882.
https://doi.org/10.1177/0146167210370032.

Zaki, J., & Ochsner, K. (2009). The need for a cognitive neuroscience
of naturalistic social cognition. Annals of the New York Academy
of Sciences, 1167(1), 16–30. https://doi.org/10.1111/j.1749-6632.
2009.04601.x.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

2301Behav Res  (2022) 54:2286–2301

1 3

https://doi.org/10.3389/fnhum.2012.00143
https://doi.org/10.1177/0963721415617806
https://doi.org/10.1371/journal.pone.0182037
https://doi.org/10.1016/j.jbtep.2020.101600
https://doi.org/10.1038/s41598-018-22127-w
https://doi.org/10.1111/bjop.12453
https://doi.org/10.1111/bjop.12396
https://doi.org/10.1038/nrn1651
https://doi.org/10.1177/1745691619856350
https://CRAN.R-project.org/package=afex
https://doi.org/10.1026//0084-5345.28.1.28
https://doi.org/10.1167/7.14.4
http://pandas.pydata.org
https://doi.org/10.1167/9.7.4
https://doi.org/10.1007/s10803-015-2546-y
https://doi.org/10.3758/s13428-020-01517-x
https://github.com/jake-westfall/pangea
https://CRAN.R-project.org/package=tidyverse
https://doi.org/10.1177/0146167210370032
https://doi.org/10.1111/j.1749-6632.2009.04601.x
https://doi.org/10.1111/j.1749-6632.2009.04601.x

	Reality in a sphere: A direct comparison of social attention in the laboratory and the real world
	Abstract
	Introduction
	Methods
	Participants
	Stimuli and apparatus
	Locations
	Virtual environment
	Real environment

	Procedure
	Virtual environment
	Real environment

	Questionnaires
	Image data processing
	Data analysis
	Confirmatory analysis
	Exploratory analysis


	Results
	Comparison of social attention between real and virtual environment
	Consistency of viewing behavior within and across environments
	Influence of personality traits
	Relevance of the number of persons present in a scene

	Discussion
	References




