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Abstract
In complex tasks, high performers often have better strategies than low performers, even with similar amounts of practice.
Relatively little research has examined how people form and change strategies in tasks that permit a large set of strategies.
One challenge with such research is identifying strategies based on behavior. Three algorithms were developed that track the task
features people use in their strategies while performing a complex task. Two of these algorithms were based on task-general,
machine-learning classifiers: a support vector machine and a decision tree algorithm. The third was a task-specific algorithm.
Data from several strategies in a complex task were simulated, and the algorithms were tested to see how well they identified the
underlying features of the simulated strategy. The two machine-learning classifiers performed better than the task-specific
algorithm. However, the two classifiers differed on how well they identified different types of strategies. The first two studies
show that the ability of these algorithms to recover the underlying strategy depends on the complexity of the strategy relative to
the quantity of performance data available. If the underlying strategy changes too frequently, then the performance of the
algorithms suffers. However, results from the third study show that it is possible to use these algorithms to track strategy changes
that occur in a task. The fourth study examines performance on data from human participants. This approach to tracking strategy
exploration may enable further development of theories about how people search for and select effective strategies.
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To improve performance in complex tasks, experts develop
and use task-specific strategies (Schunn et al., 2005). A strat-
egy is a sequence of actions performed to solve a problem or
accomplish a task. Strategy use and changes in strategy use
have been examined in areas such as skill acquisition, prob-
lem-solving, and decision-making. However, one impediment
to investigations of strategy development is that many of the
tasks used to examine strategies are too complex or too sim-
ple. On one end of the spectrum are simple tasks that permit
only a few strategies and lack the potential to investigate how
people explore large spaces of strategies. On the other end are
tasks with sufficient complexity to support a larger space of
possible strategies, in which it is difficult to identify the strat-
egies that people are using and when they are using them.
Here we provide a method to identify strategies by using ma-
chine learning classifiers to analyze behavior in a task to

determine the key features that are guiding the strategy-
driven choices that people make.

The general theoretical framework guiding this work on
identifying strategies is that people develop strategies by
selecting features from the task environment to drive their
decisions about what to do next (Lovett & Schunn, 1999). A
task that presents several features that can be used in combi-
nation permits a large space of strategies to be developed and
evaluated. Strategy choice is then based on the success, or
utility, of that strategy as applied to similar problems in the
past (Anderson et al., 2004; Lovett & Anderson, 1996; Lovett
& Schunn, 1999). If the success rates of strategies are low
enough, then the task may be re-represented to include addi-
tional features to compose new strategies. In simple tasks,
there are few features to choose from, so selecting additional
features can be straightforward. However, in more complex
tasks, the act of identifying additional features and forming
strategies based on those features is a significant problem that
has received little attention.

Searching through the space of strategies can be considered
a problem-solving activity where the search for a new strategy
operates in a secondary problem space separate from the orig-
inal task. These kinds of dual space searches have been pro-
posed to account for rule induction and scientific reasoning
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(Klahr & Dunbar, 1988; Simon & Lea, 1974). In a recent
category induction study, Prezenski et al. (2017) presented
evidence that the search for a category rule was systematic
in that participants appeared to use a heuristic to generate
simpler one-feature rules before more complex multi-feature
rules. However, the space of possible category rules in this
research was relatively small.

In prior research, the most common approach to examining
strategies is to identify a critical task performance measure
that can discriminate between two previously identified strat-
egies that, in some cases, have been explicitly taught to par-
ticipants. For example, in an isomorph of Luchins’ water jug
problems called the Building Sticks Task, the first move char-
acterizes which of two strategies the participant is using
(Lovett & Anderson, 1996; Schunn et al., 2001). In a study
of Space Fortress strategy adaptation, researchers first taught
and trained one flight control strategy before modifying the
environment and examining the impact on the flight control
strategy (Moon et al., 2013). In this case, the proportion of the
time spent in a particular region of the screen determined if
participants continued to use the original strategy or adopted a
modified strategy.

Another approach to examine strategies is to generate data
from cognitive models performing a task using various strat-
egies and examining how human data match these models
(Chen et al., 2015; Zhang & Hornof, 2014). However, devel-
oping cognitive models can require a great deal of time and
task-specific knowledge. These approaches are therefore cost-
ly and are not likely to generalize well to other tasks without
building a new model for each possible task strategy. Further,
if a participant uses a novel strategy not implemented within
the model, then this procedure cannot identify the participant’s
strategy.

A related line of work on the strategies that people use in
decision-making tasks has led tomultiple algorithms for track-
ing strategy use in these tasks. Many of these decision-making
strategies focus on simplifying the decision, using strategies
referred to as heuristics (Gigerenzer & Gaissmaier, 2011). For
example, a take-the-best heuristic would only examine the
most valid, or predictive, feature and ignore the rest. Several
techniques have been developed that can analyze a set of
decisions among a pair of alternatives and determine the heu-
ristic being used (Hilbig & Moshagen, 2014; Lee, 2016; Lee
& Newell, 2011). Most recently, a Bayesian approach has
been put forward that uses multiple sources of information
to identify the decision heuristic being used and can further
identify heuristic changes (Lee et al., 2019).

However, there are two characteristics that differentiate
these decision-making heuristic approaches from the one we
describe in this paper. First, the stimuli in these decision-
making studies are carefully designed to discriminate between
decision-making heuristics based on the choice made on a pair
of stimuli in a two-alternative choice task (e.g., Walsh &

Gluck, 2016). The machine-learning approach described in
this paper is tested on data that occurs naturally in a complex
task in which participants select from several stimuli on any
trial, and there is no guarantee it is possible to discriminate
between strategies based on the choice a participant makes on
any given trial because multiple strategies could yield the
same choice. Second, the decision-making research focuses
on identifying which of a small set of well-known heuristics
such as take-the-best, weighted-additive, or tally is being used
by a participant. These heuristics are focused on how partici-
pants make use of available features in a decision but not on
which features are used. For example, these methods would
identify the participant as using the take-the-best heuristic but
are not concerned with which feature is the best one being
used because the stimuli have been designed in such a way
that the researcher knows which cue is the most predictive
cue.

Here we describe a method that determines which combi-
nation of the many task features is incorporated in a partici-
pant’s strategy while simultaneously identifying whether
higher or lower values of a feature are preferred in the strategy.
For example, instead of reporting that the participant is using a
weighted-additive heuristic, our method reports that the par-
ticipant used feature1 as the primary feature and feature2 as a
secondary feature. Furthermore, increasing values on feature1
may make an option more likely to be selected, and increasing
values on feature2 make an option less likely to be selected,
which is referred to here as the valence of the feature.
Depending on the task, determining the actual features used
and how they affect decisions are both important for under-
standing how people search for an effective strategy. For these
reasons, previous strategy identification methods are not ap-
plicable to the problem we address here.

The methods described here produce a list of feature va-
lences ordered by importance. This list of features and their
valences does not specify the exact process bywhich someone
combines multiple features to make a decision. In that sense, it
is not a perfect description of the strategy being used.
However, measuring strategies in this manner defines an ab-
stract space of feature/valence combinations in which many
aspects of the similarity of strategies are captured.

Complex tasks that allow for a large space of strate-
gies require a method for tracking the features that peo-
ple are using in their strategies. This paper presents a
method using machine-learning classifiers, along with a
more task-specific algorithm, for tracking a participant’s
strategy over time as they perform a task. The process
begins by training machine-learning classifiers to predict
the action that a participant will take, then the trained
classifier can be analyzed to identify the features used
in making that prediction. The predictive features are
then assumed to be the same ones that the person was
using.
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The goal of the present set of studies was to simulate strat-
egies that people might use in a task with a complex space of
strategies and then to evaluate the algorithms’ ability to recov-
er those strategies. The first three studies use simulations
performing a task to examine whether these methods are suc-
cessful at recovering the strategy features that the simulations
are known to be using. The fourth study examines how these
methods perform on human data. Note that only the first three
studies permit accuracy values to be computed. We cannot be
certain what strategies people are using as they perform the
task, but we can examine how well the identified strategy
explains the observed behavior in the task.

We used a modified version of the Abstract Decision
Making (ADM) task (Joslyn & Hunt, 1998). The original
ADM research demonstrated that it predicted performance
on air traffic control and emergency dispatch tasks (Joslyn &
Hunt, 1998). Amodified version of the task has also been used
to examine individual differences in a multitasking situation
with interruptions (Bai et al., 2014). The variant used in the
current research has been modified to increase the space of
possible strategies that participants can use to select the next
subtask to work on, and this variant is referred to as the stra-
tegic ADM (sADM).

In all variants of the ADM task, choices made in the past
influence the current set of alternatives to choose from, but
random factors influence the evolving task state as well. To
ensure that our classifiers were accurately tracking task strat-
egies, an ACT-R model (Anderson et al., 2004) was devel-
oped to perform the sADM task. Within the ACT-R model, a
range of strategies was implemented. The ACT-R model con-
sistently uses the strategy and therefore provides data with a
known strategy for comparison with the output of strategy
tracking algorithms. The complexity of the model’s strategy
can be controlled, and it is also possible to insert a controlled
amount of noise into the model’s behavior to examine the
performance of the strategy-tracking algorithms in the pres-
ence of noise. This approach provides a means to evaluate the
algorithms and their ability to identify the underlying strategy
that generated the data.

sADM task description

The sADM task comprises two interleaved activities: selecting
an object to work on and processing that object by sorting it
into a bin based on its attributes. This structure mimics real-
world tasks such as emergency dispatch, where there are mul-
tiple tasks one could work on and each task requires a set of
actions to complete it before moving on to the next task
(Joslyn & Hunt, 1998). In the sADM, an object is selected
from a queue and processed by querying its attributes one at a
time and then sorting it into one of four bins based on those
attributes. Additional objects appear in the queue either after

an object has been sorted or during the sorting process (i.e.,
interrupting the flow of the sorting process). Figure 1 summa-
rizes the basic structure of the task.

The sADM task requires participants to sort objects into
one of four different bins, depending on the object’s attributes.
Prior to beginning work on the task, participants memorize the
attributes associated with each of the four bins so they can
correctly sort objects. For example, bin 1 might accept only
large, yellow triangles, and bin 2 might accept only small,
orange octagons. The interface is text-based and controlled
via five keys on the keyboard. Each object is identified by
an arbitrary CVC name, and the participant must execute a
series of keystrokes to query the attributes of the object before
sorting. For example, a participant might select the object
DAX from the example queue of objects shown in Fig. 2.
After selecting DAX, the participant then presses keys to que-
ry the object’s color (yellow), then another query identifies its
size (large), and finally a third query to identify its shape
(triangle). Based on these object attributes, which must be
held in working memory, the participant now knows that the
object belongs in bin 1 and can execute a series of key presses
to sort it. Some objects require querying and sorting on one set
of attributes (visual-based attributes) and others require que-
rying and sorting on two sets of attributes (sound-based attri-
butes in addition to visual-based attributes). Objects that re-
quire two levels of querying and sorting therefore require
about twice as long to process.

Each task block lasts 6 min, and the goal is to score asmany
points as possible. In addition to the attributes that must be
queried to enable sorting, objects also have a set of perfor-
mance features that affect the current score. These features

Fig. 1 A conceptual depiction of the sequence of actions in the sADM
task. An object is selected for processing from the object queue. Each
object has features shown in the queue that affect the performance score.
Object attributes must be queried, and the results held in working
memory. The object must be sorted into the bin that matches its
attributes. Finally, new objects may appear during or after sorting, and
the process repeats until the time limit is reached
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include point values, penalties, and deadlines and are shown
directly in the task interface in the queue as shown in Fig. 2.
Sorting the object correctly awards the participant the point
value of the object. Sorting the object into the wrong bin
subtracts the object’s point value from the current score.
Every object has a deadline and a timer that counts down from
that deadline to zero. Every time the counter reaches zero, the
counter resets to the deadline and the penalty value for that
object is deducted from the current score. This penalty for
elapsed deadlines applies to all objects in the queue, including
the object that is being processed by the participant. Therefore,
performance depends on utilizing strategies that take into ac-
count multiple, dynamically changing factors (e.g., points,
deadline, time until the object’s next deadline).

The queue of objects initially starts with 1–3 objects, and
each time an object is successfully sorted, 0–3 new objects
appear probabilistically. The task adjusts the probability of
new objects arriving so that the queue grows to contain ap-
proximately 7–12 objects. Objects can also occasionally ar-
rive, as an interruption, while the participant is processing an
object. When this interruption occurs, the participant must
choose whether to continue processing the current object or
switch to the interrupting object.

The best way to maximize performance is to sort as many
high-point objects before their deadline and to prevent high-
penalty objects from remaining in the queue and accumulating
penalties. By manipulating the distribution of points, penalty
values, and deadlines in the object queue, the task can be
manipulated such that distinct strategies are needed to maxi-
mize a participant’s total score. Selection strategies used to
select objects from the queue are therefore critical to perfor-
mance. In the queue, the participant can see the object’s name,
deadline, point value, penalty value, and how many seconds
remain before the deadline elapses again. These object fea-
tures, along with the position of the object in the queue, are
the features that can guide one’s selection strategy.
Determining a participant’s selection strategy for the sADM

task is the primary focus of the strategy identification algo-
rithms discussed here.

Strategy tracking algorithms

We developed and compared three different algorithms for
extracting strategies from the sADM object-selection data.
Two algorithms use standard machine-learning classifiers im-
plemented using the scikit-learn library (Pedregosa et al.,
2011): a linear support vector machine (SVM) and a decision
tree (DT) classifier. A third algorithm, the Every Strategy (ES)
algorithm, was implemented to compare these task-general
classifiers to one that has more knowledge of the sADMqueue
structure. A general description of the approach taken with
each of these algorithms is presented here, but the full details
can be found in the Python code available at https://osf.io/
qfxpr/. For a more thorough but approachable introduction
to machine learning classifiers and the scikit-learn library that
would be recommended to adapt the provided code to differ-
ent tasks, see Géron (2019).

These selection strategy classification algorithms take
as input a list of the objects on each queue presented to
a participant, including all the object features, and
whether each object was selected from the queue.
Each sADM task block yields a list of objects that ap-
peared in the queue for each selection that a participant
made and nine features for each object: points, deadline,
time until deadline, penalty value, the number of sorting
levels required, whether work on the object was
interrupted, position in the queue, selection distance,
and the queue number. When a participant begins object
selection, the middle object in the queue is initially
highlighted and they move the selector up or down
using key presses before selecting an object. The selec-
tion distance is the minimum number of times the se-
lector has to be moved to reach an object.

Fig. 2 Sample queue showing object features available in the sADM task. The last two columns do not appear explicitly in the queue that participants
see; they are implicit in their position in the queue
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The queue number indicates which queue the object was on
when a selection was made (i.e., first, second, etc.), and it is a
feature that is only used to group together all objects that
appeared on the same queue. For example, there may have
been nine objects present on the queue when a participant
made their fourth selection. These nine objects would all have
a queue number of four. The category label that the classifi-
cation algorithms are being trained to predict is a binary value
(selected/unselected), and the algorithms are trained to predict
whether a given object would be selected or not based on the
object’s features. Note that these classifiers do not explicitly
identify the strategy being used for object selection. A second
step is needed to extract the strategy embodied in each trained
classifier.

After the classifier was trained to predict which objects a
participant selected, it was analyzed to determine the features
present in that participant’s strategy. A strategy is represented
as a series of features ordered by importance and their valence.
Valence here means whether higher or lower values on that
feature were more likely to be selected (e.g., higher point
values were more likely to be selected). For example, a strat-
egy represented as [Points+, Deadline-] means that a higher
point value was the most important feature, but the participant
also preferred lower deadline values. Valence is considered
because across participants or even task blocks within a par-
ticipant, we have found evidence that the same feature was
used with opposite valence.

Machine learning classifiers

A discussion of the details of SVM and DT classifiers is be-
yond the scope of the current paper, but a general characteri-
zation of the how the algorithms make a classification deci-
sion is presented because of the implications for the types of
selection strategies that might best be tracked by each algo-
rithm. Both classifiers use different techniques to learn to cat-
egorize instances of selected and unselected objects from the
sADM selection data.

Because objects persist from one selection to the next (with
the exception of objects selected and correctly sorted), classi-
fiers are given distinct object states that represent the charac-
teristics of each object as it appeared on a specific queue when
a selection was made. Even though the same object name may
be present in the queues for multiple selections that the par-
ticipant makes, each of these is a distinct object state because
the values of the object’s features relative to the feature values
of other objects in a queue may change from selection to
selection. Each object state includes information about all fea-
tures for the object (e.g., points, deadline, time in queue) that
define a point in a multidimensional feature space.

Note that the object’s absolute feature values are not very
useful in determining whether the object will be selected or
not. For example, an object with a point value of 300 might be

the lowest point value in one queue or the highest in another.
To simplify the learning process, features are contextualized
within each queue by scaling all features within a given queue
onto a 0 to 1 scale. The object in a queue with the highest point
value will have a 1 after scaling, while the lowest will have a
value of 0. This scaling is illustrated by the set of queues
presented on the left side of Fig. 3. This method of scaling is
important because these classifiers treat each object as a sep-
arate piece of data to be trained on and classified. They do not
make a selection of one object from a queue of objects.
Instead, each object from each queue is a separate instance
to be labeled as either selected or unselected.

The SVM classifier divides up this multidimensional fea-
ture space by separating the selected and unselected objects
with a hyperplane. The DT classifier builds a hierarchical set
of rules to classify objects as selected or unselected (e.g., if the
object has the highest point value, then it is selected, if not
then if it has the lowest deadline then it is selected, otherwise it
is not selected). Therefore, the DT classifier represents a par-
ticipant’s strategy as a sequence of binary decisions, while the
SVM classifier represents the strategy as a hyperplane. The
components of the DT or the location of the SVM hyperplane
in the feature space can be analyzed to determine the impor-
tant features of a participant’s strategy. Figure 3 presents an
example of this process applied to three queues in which the
difference between the results of applying the SVM and DT
classifiers can be seen.

Given that each queue has several objects and only one will
be selected, there are more unselected than selected objects in
the training data. A trivial solution is to classify all objects as
‘unselected.’ This solution accurately classifies all unselected
objects and only makes errors on the smaller number of se-
lected objects. To avoid this trivial solution, both the DT and
SVM algorithms include mechanisms to balance the contribu-
tion of both selected and unselected objects on the resulting
trained classifier using the class_weight parameter in the
scikit-learn library for these classifiers. Conceptually, setting
this class_weight parameter to ‘balanced’, as was done here,
results in the classifier being penalized for a mistake using a
weight that is proportional to the number of selected and un-
selected objects. Because there are more unselected than se-
lected objects, the classifier is penalized more for classifying
an object as unselected if it was selected by the participant
than for classifying an object as selected when it was not
actually selected. In other words, this weighting avoids the
trivial solution of classifying all objects as unselected because
the classifier is heavily penalized for classifying selected ob-
jects as unselected.

Following this feature scaling, the data are split into three
cross-validation folds such that the classifier is trained on two-
thirds of the data and produces a prediction accuracy on the
other third. The basic unit of data is the queue number (i.e., a
queue of objects). All objects from each queue are semi-
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randomly placed into one cross-validation fold so that objects
from multiple selection queues are not spread across folds.
The process is semi-random because the selection queues
from a block are divided up into those that occur in the first,
second, and third 2-min portion of the 6-min block. Each of
the three cross-validation folds will contain one third of the
data from each third of the block. This constraint was included
so that any strategy differences that occurred over time in the
block would be represented in each cross-validation fold. This
process is illustrated with the training and testing folds shown
in Fig. 4.

Traditional machine learning applications of these classi-
fiers have the primary goal of maximizing prediction accuracy
on novel data. However, our goal is to identify the decision-
making strategy that a participant was using. Therefore, the
cross-validation process was not used to maximize accuracy,
but it was instead used to tune hyperparameters of the classi-
fiers. These hyperparameters control how complex the classi-
fier is allowed to be, which in this data translates into the
number of object features used to classify the data. The more
features used to classify the data means that the resulting strat-
egy includes more object features.

Fig. 3 A visual example of applying SVM and DT algorithms to three
sample queues. On the left are three queues of objects from three
consecutive selections such that the object selected on a prior queue is
not present on a later queue with one or more new objects also appearing
on the subsequent queue. The queues only include the points and deadline

features for the sake of illustration. The final two columns present these
two features after scaling all the features in a queue to a 0–1 scale. The
two graphs plot these scaled features and illustrate how the SVM and DT
algorithms divide the data into selected and unselected regions

Fig. 4 In this example, a task block containing nine queues worth of
object selection data is split into three cross-validation folds with consec-
utive queues being labeled Q1, Q2, and so on. Note that each queue
contains multiple objects. Shading indicates fromwhich third of the block
the data come from. Three separate classifiers are trained on a training
fold and then tested on the testing fold, which contains data that was not

used for training the classifier. A range of values for key hyperparameters
was looped over and the best-performing classifier based on a combina-
tion of accuracy on the test fold and agreement of the three classifier
instances was selected as the best representation of the strategy for that
task block
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A grid search is performed for each hyperparameter, and
the weighted average of prediction accuracy and strategy
agreement is used to select the best-performing
hyperparameters. Strategy agreement is determined by com-
paring the features extracted from each cross-validation fold,
with perfect agreement occurring when all folds yield the
same strategy. Again, strategies are represented as an ordered
list of features and their valence. The primary purpose of this
approach is to allow the complexity of the strategy to vary so
long as all three folds yielded the same strategy. This approach
allows for the most complex strategy supported by the data to
be extracted from the data.

A good representation of a participant’s strategy should lead to
a prediction about which object that participant will select from a
queue of objects. Because each classifier simply classifies each
object in each queue as selected or not selected, the classifier
might report that none of the objects were selected or that multiple
objects were selected. To test the classifiers’ ability to predict
selection from a queue, testing accuracy was calculated by
predicting which object would be selected from a queue as op-
posed to allowing the classifier to individually classify each object
as selected or not selected. Both the DT and SVM classes in the
scikit-learn library have a method that allows for a probability to
be generated instead of a binary classification. For all the objects
in a queue, the classifiers rank ordered the objects that would be
selected according to their predicted probability of being selected.
A rank order accuracy score was calculated by the formula:
(queue_size - rank) / (queue_size - 1). Here queue_size is the
number of objects in the queue and rank is the rank order assigned
to the object that the participant picked. This rank accuracy score
has a maximum value of 1 when the participant’s selection
matches the classifier’s top ranked object and has a minimum of
0when the participant picks the object ranked last by the classifier.
The expected value of this rank accuracy score if the classifier
assigned ranks randomly would be 0.5.

This rank accuracy score was used instead of a binary ac-
curacy score so that the accuracy score would keep some
sensitivity to a participant’s underlying strategy even if the
participant did not always pick the optimal object under a
strategy. For example, a participant might pick the second
highest point value because of an error or it was close enough
to the maximum point value object (i.e., satisficing behavior).

Finally, the prediction accuracy, using the rank accuracy
score, was compared to the accuracy expected if the algorithm
had selected randomly, and a strategy is only reported if the
predictive accuracy is significantly above chance levels at α =
.05. This mechanismwas provided to limit reporting a strategy
when there is little evidence for a strategy.

DT details

The DT classifier was trained on each cross-validation fold
with all features available for incorporation into the tree. An

additional level of the tree can only be added if it would
improve the purity of the leaf nodes by a value of N (the value
of the min_impurity_decrease parameter in the scikit-learn
implementation). This parameter essentially controls how
much of an improvement in classification accuracy has to
occur for adding an additional decision node to the tree. This
parameter was the only hyperparameter of the DT classifier,
and its value was determined as described above with a grid
search ranging from values of 0.005 to 0.25. Values closer to 0
yield more complex trees. This parameter has a maximum
value of 0.5, but a value of 0.25 was used for the upper bound
because values above 0.25 were never optimal on any of the
data (simulated or human) this approach was applied to.

The resulting DT was analyzed by examining both the
importance of the object features it used for classification
and the valence of those features. The importance of the fea-
tures was determined using the existing feature_importances_
attribute of the DT object. The valence is determined by ana-
lyzing the node in the tree where the feature appears to deter-
mine whether higher or lower values are associated with more
selected than unselected objects. If a feature appears in more
than one node on the tree, then the valence is marked as am-
biguous because determining the overall impact of the feature
is much more complex when it appears more than once.

SVM details

Because the SVM classifier does not have the same type of
complexity-based hyperparameter as the DT, a recursive fea-
ture elimination (RFE) approach was taken. In RFE, all features
are first used to train the SVM on the training set of a cross-
validation fold, then the least important feature is dropped, and
the process continues until there is only one feature remaining.
At each iteration of the RFE process, the initial training data is
again split using a three-fold cross-validation process so that a
testing accuracy measure can be returned for each iteration of
RFE. The classifier that is returned from this process is the one
with the highest testing accuracy. For example, if the RFE
process found that two features (e.g., points and deadline) led
to the highest test set accuracy, then the SVM using these two
features is the resulting classifier.

One problem with this RFE process is that accuracy will
increase for each feature that was part of the participant’s strat-
egy, but as additional features are added, accuracy will plateau
(not decrease). To obtain a pattern in accuracies with a clear
peak, a complexity penalty was added to the testing method by
subtracting a constant from the accuracy score for each feature
added to the model. This complexity penalty parameter was
used in a grid search with a range of 0.01 to 0.10. SVMs also
have a C parameter that balances the margin between the data
and the hyperplane and the misclassification rate. This param-
eter was also included in the grid search with a range of .01 to
100. As described earlier, the goal of this grid search was to
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identify the classifier that produced the highest weighted aver-
age of predicted accuracy on the test set and agreement of
strategy features across the cross-validation folds.

The resulting SVM was analyzed to determine the impor-
tant strategy features. The absolute magnitude of the coeffi-
cients of the support vector (i.e., hyperplane) were used to
rank order the importance of the features and the sign of the
coefficients was used to determine the valence of the features.
As a two-dimensional example, in Fig. 3, the slope of the line
(i.e., support vector) provides information on the relative
weighting of the points and deadline feature in the strategy
captured by that SVM classifier.

ES algorithm

The DT and SVM classifiers can only be trained to classify
whether a given object will be selected. The testing of these
classifiers has to use a probability to pick an object from a
queue as described earlier. The ES algorithm was developed
as an alternative approach that learned to select one object
from a queue of objects. It therefore has more task-
specificity built into it.

Even though the sADM task provides the ability to explore
a large strategy space, it is possible that people use fairly
simple strategies. The ES algorithm uses a brute force method
to determine selection strategy, but it limits the potential com-
binatorial problem by only considering strategies with at most
two features and weighting each feature equally. For every
object selection decision, the ES algorithm ranks all objects
in the queue based on every possible strategy that includes one
or two features. If a strategy contains two features, then the
algorithm sums the rankings for the individual features to
create a final ranking. The algorithm then selects the object
with the highest rank. If two or more objects have the highest
rank, then the algorithm selects one of the objects randomly.
Similar to the other classifiers, the test accuracy for each strat-
egy is then calculated by comparing the objects selected by the
algorithm with the objects selected by the participant.

The same cross-validation approach used with the
machine-learning classifiers is used with the ES algorithm.
When determining which strategy was used by the participant,
the ES algorithm reports which strategy had the highest rank
order accuracy for the training set. This algorithm was includ-
ed to see if it performed better with smaller amounts of data in
some of the simulations in which noise was added.

Three parameter recovery studies were conducted to com-
pare the algorithms. The first study examines both simple and
more complex strategies using multiple features. The second
study examines the performance of the algorithms when noise
is added to the selection process, and the third study examines
the possibility of tracking strategy changes as they happen
during performance of a task.

Study 1: Evaluation of ability to detect simple
and more complex strategies

This first set of simulations and analyses was conducted to
assess the ability of each of the three algorithms to detect the
selection strategy used by different simulations. A set of sim-
ulations was implemented using a range of strategies includ-
ing single-feature strategies, a strategy that used a feature non-
linearly, and two different methods of combining two features
in a selection strategy. Two primary questions are addressed
with these simulations. First, do all the algorithms accurately
identify the strategy? Second, how much data is necessary to
identify strategies in this range of complexity? This second
question is relevant to establishing a lower bound on how
quickly a strategy could be identified if the goal was to track
which strategies participants were using while performing the
task. An additional issue explored in this study is the influence
of the hyperparameter values on the accuracy of the
algorithms.

Method

For all the simulations, the objects that appear in the sADM
task were set so that their feature values were drawn from a
uniform distribution with points ranging from 50 to 550, dead-
line ranging from 20 to 75 s, penalty ranging from – 150 to –
35. In addition, half of the objects required one level of sorting
and half required two levels. All other features of an object
depend on these initial features and the dynamics of how the
task unfolds as the simulated participant interacted with it. For
example, time until deadline is a dynamic feature that depends
on the deadline and how long the object has been in the queue.

Five single-feature variants, based on the same fundamen-
tal ACT-R model, were developed. Four of these variants
always picked the highest-ranked object based on a single
feature: highest points, lowest deadline, lowest time until
deadline, and lowest penalty value. The fifth single-feature
strategy picked the first object highlighted by the interface
when going to select an object (i.e., the object in the middle
of the queue).

Besides these single-feature strategies, three more complex
strategy models were also implemented. First, a model that
used the time until deadline feature non-linearly was imple-
mented. If the time until deadline was 8 s or less, then lower
values were preferred, but if the time until deadline was great-
er than 8 s then higher values were preferred. This strategy
allows for objects that are nearest to their deadline to be sorted,
but if the object has plenty of time until its deadline, then
longer times would be preferred to allow time for handling
interrupting objects if they occur during sorting. While the
simulated participant always ignored interrupting objects for
simplicity of implementation, human participants will often
switch to interrupting objects before resuming sorting the
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original object. This strategy was included as a potentially
effective strategy that used a feature in a nonlinear manner.

Two other complex strategies were implemented that com-
bined the points and deadline features in either a weighted or
thresholded manner. These combination strategies were se-
lected based on an analysis of heuristics reported in the
multi-attribute decision-making literature (e.g., weighted ad-
ditive, take the best) (Gigerenzer & Gaissmaier, 2011). A set
of weighted combination strategies was used that produces a
weighted sum of the point and deadline values. Accounting
for the distribution of point and deadline values noted above,
three different weighted strategies were implemented. The
first weighted points and deadline equally and is referred to
as the deadline=points weighted strategy. The second
weighted points more than deadline in an approximately
60/40 weighting referred to as the points+deadline
weighted strategy, and the third reversed this to a 40/60
weighted strategy referred to as the deadline+points
weighted strategy. A range of weightings was explored
to ensure that the classifiers were sensitive to a range
and not one specific weighting. More extreme weightings
that greatly prefer one feature over another (e.g., 80/20
points over deadline) are not likely to be distinguishable
from a single-feature points strategy because of the lim-
ited number of selections in which a single-feature strat-
egy would lead to a different selection than a strategy
heavily weighted toward the points feature.

A set of threshold combination strategies was also imple-
mented similarly to the weighted strategies where the
deadline=points thresholded strategy has roughly equal con-
tributions of both features, the deadline+points thresholded
strategy has a greater contribution of the deadline feature,
and the points+deadline thresholded strategy has a greater
contribution of the points feature. The deadline=points strate-
gy selected the highest point value if there was an object over
300 points (300 is the mean point value from the uniform
distribution of 50–550), and if there were no objects above
that threshold, then the lowest deadline object was selected.
The deadline+points strategy selected the highest point value
if there was an object over 250 points, and if there were no
objects above that threshold, then the lowest deadline object
was selected. The points+deadline strategy selected the
highest point value if there was an object over 400 points,
and if there were no objects above that threshold, then the
lowest deadline object was selected. Just as in the weighted
strategies, there are some thresholded strategies that could be
indistinguishable from a single feature strategy. For example,
a strategy that selected based on points as long as there was an
object worth more than 100 points on the queue would almost
always select the object with the highest point value. Given
that each object has a value ranging from 50 to 550 points, the
probability that all objects in the queue fall in the 50-to-100-
point range is small.

These variants were examined to ensure that the strategy
identification techniques could correctly recognize distinct
strategies at different levels of complexity. All strategies were
simulated for 60 6-min blocks of the sADM task. Each block
was an independent set of data to detect the selection strategy
being used by the model.

Results

The classifiers were assessed on two primary measures. First,
as described earlier, a feature importance analysis can be done
on each classifier to determine the features and their valence
(i.e., are higher or lower values for a feature preferred). A
simple binary scoringmeasure was used to assess the accuracy
of the classifiers in determining the actual features used in the
strategy. If the results of the classifier feature analysis process
returned only the correct features and their correct valence,
then the strategy was determined correctly. Otherwise, the
strategy was not determined correctly. The proportion of
blocks for which the correct strategy was identified was the
primary measure used to examine the classifiers’ ability to
determine the correct strategy and is referred to as strategy
feature accuracy.

A second measure was the mean prediction accuracy of the
classifier on the test set during the three-fold cross-validation
process used to train the algorithms.While the strategy feature
accuracy measure described in the last paragraph focuses on
whether the underlying features present in the strategy are
identified, this prediction accuracy measure assesses whether
the object that was selected from the queue of objects can be
accurately predicted by the classifier. For all the objects in a
queue in the test set, the classifiers rank ordered the objects
that would be selected according to their predicted probability
of being selected. This rank order score, defined earlier, was
the measure of predictive accuracy, and is the only measure
available when applying the classifiers to human data because
their strategy is not known.

The mean prediction accuracy and proportion of time the
correct strategy was identified for each strategy for each algo-
rithm are shown in Table 1. For the single-feature strategies,
all three classifiers performed at ceiling. Prediction accuracy
was occasionally below 100% because there were infrequent
ties in the data (e.g., two objects have the same point value).
For the two-feature strategies, the DT performed the best for
the strategy which involved combining the two features with a
threshold (e.g., if there is an object over 400 points, then use
points, otherwise use deadline). The SVM performed better
than the DT for the weighted combinations of features.
Finally, the DT performed best for the nonlinear points strat-
egy where extreme high and low point values were preferred
over mid-range point values. Based on these results and the
underlying compatibility in the implementation of the DT and
SVM classifiers, the outputs of these classifiers can be
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combined and the classifier with the highest prediction accu-
racy can be chosen to determine the strategy. The last column
of the table shows strategy feature accuracy when the outputs
of these two classifiers are combined. This combined algo-
rithm can sometimes yield feature accuracy values above or
below the performance of DT or SVM algorithms alone be-
cause the algorithm with the highest predictive accuracy of
each block is selected and not the algorithm with the highest
feature recovery accuracy because only the predictive accura-
cy would be available for human data. For example, the com-
bined classifier generally does better at detecting both features
of the weighted strategies than the SVM or DT alone.

The proportion of time the correct strategy was identified
and predictive accuracy both focus on assessing the perfor-
mance of the classifiers for the different strategies tested. A
secondary aim of this set of simulations was an assessment of
how much data would be needed to accurately identify the
strategy a hypothetical participant was using in the task. The
approach used here was to run the classifiers only on the first
N object selections of each block of the task. The total number
of selections in a block of data ranged from 36 to 39, and
therefore N was varied from 15 to 35 in increments of five
and whether the correct strategy features were identified was
examined for each N.

For the single-feature strategies, all classifiers extracted the
correct features 95–100% of the time with only the first 15
selections and all reached 100% with 20 selections. For the
more complex strategies, Table 2 shows the proportion of time
the correct strategy was identified for each amount of data for
each classifier. The nonlinear strategy is not shown in Table 1
for the ES or SVM because they never identified the correct
strategy. From Table 2, it appears that all classifiers benefit

from increasing amounts of data on the more complex strate-
gies with performance leveling out around 30–35 selections.

The final issue examined the sensitivity of the DT and
SVM classifiers to changes in hyperparameters. In particular,
the algorithms use a grid search over a space of
hyperparameters to find the value of the hyperparameters that
maximize prediction accuracy and agreement on the strategy
features across cross-validation folds. Because the eventual
goal is to examine human data with these algorithms and
strategy feature accuracy is not available on human data from
the task, this analysis focused on how prediction accuracy was
affected by the hyperparameter values. Strategy feature accu-
racy is also shown to demonstrate that these two measures are
often correlated. For the DT classifier, the minimum impurity
hyperparameter value is plotted against accuracy for the sim-
ple strategies in Fig. 5 and the more complex strategies in Fig.
6. There appears to be an optimal range for this
hyperparameter between 0.025 and 0.125. The SVM had
two hyperparameters (C and penalty). The SVM strategy ac-
curacy results are plotted for these hyperparameter values in
Fig. 7 for the simple strategies and Fig. 8 for the complex
strategies. These figures show some hyperparameter values
do not perform well, but there is a large space of
hyperparameters that perform well in both classifiers.

Discussion

For simple, monotonic, single-feature strategies, all the clas-
sifiers performed well, requiring minimal data and showing
little sensitivity to hyperparameter values. However, signifi-
cant differences emerged when slightly more complex strate-
gies were examined. Two methods of combining multiple
features were examined: threshold and weighted. For the

Table 1 Mean rank accuracy and accuracy at recovering the strategy features for each algorithm

Strategy DT SVM ES Combined DT/SVM

Rank Acc Feature Acc Rank Acc Feature Acc Rank Acc Feature Acc Feature Acc

Deadline 1.00 (.002) 1.00 1.00 (.002) 1.00 1.00 (.002) 1.00 1.00

First item 1.00 (0) 1.00 1.00 (0) 1.00 1.00 (0) 1.00 1.00

Penalty 0.99 (.005) 1.00 1.00 (.004) 1.00 1.00 (.004) 1.00 1.00

Points 1.00 (.003) 1.00 1.0 (.001) 1.00 1.00 (.001) 1.00 1.00

Time until deadline 0.94 (.03) 1.00 0.94 (.05) 1.00 0.94 (.04) 0.97 1.00

deadline = points threshold 0.96 (.03) 0.93 0.87 (.05) 0.07 0.87 (.04) 0.20 0.93

deadline + points threshold 0.96 (.03) 0.92 0.90 (.05) 0.03 0.88 (.06) 0.03 0.92

points + deadline threshold 0.95 (.03) 0.85 0.90 (.04) 0.12 0.88 (.05) 0.12 0.85

points = deadline weighted 0.87 (.05) 0.93 0.95 (.02) 0.97 0.90 (.03) 0.58 1.00

deadline + points weighted 0.87 (.04) 0.73 0.94 (.03) 0.75 0.90 (.03) 0.45 0.92

points + deadline weighted 0.86 (.05) 0.75 0.94 (.04) 0.82 0.90 (.04) 0.65 0.93

time until deadline nonlinear 0.85 (.06) 0.87 0.68 (.02) 0 0.53 (.08) 0 0.87

Note. Standard deviations are in parentheses. The combined classifier is shaded to highlight that it performs at least as good as any of the other classifiers
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Table 2 Strategy feature accuracy by number of selections included in the data

Classifier Strategy Number of Selections

15 20 25 30 35

DT deadline=points threshold 0.20 0.48 0.78 0.88 0.92

deadline+points threshold 0.50 0.80 0.90 0.90 0.93

points+deadline threshold 0.07 0.12 0.42 0.52 0.80

deadline=points weighted 0.23 0.48 0.58 0.73 0.83

deadline+points weighted 0.12 0.38 0.58 0.68 0.75

points+deadline weighted 0.12 0.40 0.53 0.63 0.80

time until deadline nonlinear 0.28 0.58 0.78 0.78 0.80

SVM deadline=points threshold 0.02 0.05 0.12 0.13 0.20

deadline+points threshold 0.07 0.08 0.03 0.03 0.05

points+deadline threshold 0.02 0.02 0.02 0.07 0.08

deadline=points weighted 0.50 0.73 0.78 0.87 0.85

deadline+points weighted 0.40 0.53 0.65 0.68 0.67

points+deadline weighted 0.55 0.73 0.72 0.78 0.85

ES deadline=points threshold 0.05 0.05 0.10 0.15 0.13

deadline+points threshold 0.03 0.07 0.02 0.02 0.07

points+deadline threshold 0.00 0.02 0.03 0.10 0.10

deadline=points weighted 0.37 0.43 0.45 0.58 0.62

deadline+points weighted 0.20 0.38 0.45 0.45 0.48

points+deadline weighted 0.35 0.45 0.57 0.62 0.67

Combined DT/SVM deadline=points threshold 0.18 0.48 0.78 0.88 0.92

deadline+points threshold 0.52 0.80 0.88 0.88 0.93

points+deadline threshold 0.05 0.10 0.40 0.52 0.82

deadline=points weighted 0.57 0.75 0.85 0.90 0.92

deadline+points weighted 0.38 0.62 0.75 0.80 0.88

points+deadline weighted 0.55 0.78 0.80 0.83 0.95

time until deadline nonlinear 0.28 0.58 0.78 0.78 0.80

Fig. 5 Mean prediction accuracy for the DT hyperparameter for the single-feature strategies
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threshold strategy, the DT classifier performed the best, and
for the weighted strategy, the SVM classifier performed the
best. This result is consistent with how the two underlying
data structures represent the classification process.

The DT creates a tree of if-then rules to correctly classify an
sADM object as selected or not, while the SVM separates
selected and unselected objects with a hyperplane. The hyper-
plane in a linear SVM in two dimensions is a line that is
equivalent to a weighting between two features. This finding
supports the expectation that the match between the strategy
and the type of classifier is important. The more similar the
classifier’s representation of the strategy is to the strategy in
the simulation, the better the classifier captures the strategy.

The nonlinear strategy was also designed to be something
that a linear SVM or the ES strategy should not be able to
capture, and the only classifier that performed well on this
strategy was the DT. It is possible that a nonlinear SVMmight
do well on this strategy, but then the problem becomes ana-
lyzing the SVM to provide a human-readable representation
of the strategy.

Given these results, it should be possible to take a multi-
classifier approach to strategy identification. For example, the
DT and SVM classifiers could both be used on a set of data,
and then the cross-validated prediction accuracy could determine
which of the two classifiers should be analyzed to identify the
strategy. In the data examined in this study, the combination of

Fig. 6 Mean prediction accuracy for the DT hyperparameter for the more complex strategies

Fig. 7 Mean prediction accuracy for the SVM hyperparameters for the single-feature strategies
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the DT and SVM classifiers performed well on all strategies
examined.

One limitation of this study is that the ACT-R model was
perfectly consistent in its adherence to a given strategy.
However, people are likely to deviate from this level of con-
sistency, introducing noise into the data. The second study
addresses this possibility by examining two different types
of noise that can be introduced into the data to determine
how sensitive the classifiers are to noise.

Study 2: Strategy detection in the presence
of noise

This second set of simulations examines how well the strategy
detection algorithms handle noise in the selection data. People
may not always select the object that perfect execution of a
selection strategy would demand. Lapses of attention or press-
ing the wrong key will lead to selections that deviate from the
ideal selection strategy. Two different types of noise were
simulated to examine the performance of the algorithms in
less-than-ideal circumstances.

First, random noise was added to a single-feature strategy at
varying levels by having the model select according to the strat-
egy at times and randomly other times. Levels of randomness
were varied from 10 to 90% of selections being random. In ad-
dition, random selections were added to the more complex two-
feature selection strategies with levels of randomness ranging
from 10 to 50% of selections. A second type of noise was also
examined inwhich themodel simulated a formof satisficing. For
example, under a points strategy, instead of always selecting the
highest point value object, the satisficing version of the strategy
just picked an object that had a sufficiently high point value (e.g.,
within 50 points of the highest point value in the queue).

Method

All aspects of the simulation method were identical to Study 1
except for introducing noise into the simulated selection strate-
gies. Random noise was added to the points selection strategy
used in Study 1 at varying levels by manipulating the utility of
two productions controlling the choice between the points strat-
egy and a strategy that randomly selected an object. The result
was that it was possible to control how often the model selected
randomly or selected based on the points strategy. Simulations
were run with random selections being made 10, 30, 50, 70, or
90% of the time. In addition, a model was run with the random
selection strategy only to determine if the classifiers would
correctly report that no strategy was being used.

Randomnoisewas also added to the deadline=pointsweighted
and deadline+points threshold strategies from Study 1. For these
two strategies, selections were random 10, 30, or 50% of the time.
Higher levels of noise were not examined with these more com-
plex strategies because it was expected that even moderate
amounts of noise would make the two-feature strategies difficult
to identify. In addition, given the lack of large differences between
different weightings or thresholds in Study 1, only these two
examples of the complex strategies were used in this study.

Finally, a satisficing version of the points strategy was used
in which the model selected an object within 50 points of the
highest object in the queue. For example, if the queue
contained objects worth 100, 200, 325, and 350 points, then
this satisficing strategy would have selected either of the latter
two objects with equal likelihood. A similar satisficing strate-
gy was also implemented for the deadline=points weighted
and deadline+points threshold strategies. For the thresholded
combination, the satisficing object was within 50 points if
points was used or 5 s if deadline was used. For the weighted
combination, the satisficing object was withing 10 of the
weighted combination of the features.

Fig. 8 Mean prediction accuracy for the SVM hyperparameters for the more complex strategies
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Results

The accuracies for detecting the correct features for the simple
and complex strategies with noise are shown in the left half of
Fig. 9. The predictive accuracies using the rank accuracy metric
are shown in Fig. 10. For the simple strategy, most of the
classifiers performed well until the noise level exceeded 70%.
However, they did not fare as well on the more complex strat-
egies with noise. Performance fell into the 60–70% range even
with only 10% random noise. The ES and SVM performed the
best on the weighted strategy, while the DT performed better on
the threshold combination strategy.When the classifiers did not
identify both features correctly, the majority of the time (>
75%) they identified one of the two features. The combination

of the DT and SVM classifiers performed as well as either of
the DT or SVM alone on all strategies.

The lower accuracies might be due to needing more data to
detect the strategy in the presence of noise. To test this possi-
bility, the data were aggregated into 30 pairs of blocks instead
of 60 single blocks, and the classifiers were run on these pairs
of blocks. The results in the right half of Figs. 9 and 10 show
higher accuracies for pairs of blocks, which is consistent with
the idea that the classifiers could still detect the more complex
strategies with some random noise given additional data.

While random noise interfered with strategy detec-
tion, the classifiers did about the same with satisficing
strategies as they did with the smallest amount of ran-
dom noise. These results are presented in Fig. 11, and
the predictive accuracies using the rank accuracy metric

Fig. 9 Strategy feature accuracy with varying levels of random noise. For the threshold strategy, the DT and combined lines are identical

Fig. 10 Predictive rank accuracy with varying levels of random noise
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are shown in Fig. 12. Again, the right half of the fig-
ures show that with more data, the classifiers perform at
higher levels, approaching performance on the complex
strategies without noise.

On the random strategy, all classifiers correctly reported
that there was no apparent strategy between 95 and 100% of
the time. This range is to be expected given that the mecha-
nism for detecting whether there is a strategy is whether there
is evidence that the prediction accuracy is above chance rates
with p < .05.

An analysis of the influence of the hyperparameters was
also carried out, as in Study 1. The DT accuracy results were
similar, showing the best accuracies for the minimum impuri-
ty increase parameter between .025 and .125. The SVM re-
sults were also similar. For the simple strategy, penalty

decreased accuracy at low values of C, but it increased accu-
racy at high values of C. The complex strategies were only
above 0 at values of C of 10 or less with higher accuracy at
lower values of the penalty.

Discussion

For a single-feature strategy, most of the classifiers performed
well even with up to 70% of the selections being made ran-
domly. The more complex two-feature strategies were more
difficult to identify even with relatively low levels of random
noise. However, a more realistic form of “noise” in human
selection data may arise from satisficing. In the satisficing
models, a “good enough” object consistent with the strategy
can be selected even though it may not have been the optimal

Fig. 11 Mean strategy feature accuracy with satisficing strategies

Fig. 12 Mean predictive rank accuracy with satisficing strategies
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object. This kind of behavior might arise in people from taking
a satisficing approach or by making an error in picking the
optimal object. Under these satisficing strategies, the com-
bined DT/SVM classifier always identified the correct
single-feature strategy and did so about 70% of the time with
two-feature strategies.

The classifiers all benefitted from having more selection
data when identifying the two-feature strategies under the
presence of noise. However, this was only true for strategies
that the classifiers can represent. As noted before, the SVM
and ES classifiers cannot represent the threshold version of the
two-feature strategy well, so providing additional selection
data did not help in these cases.

Anothe r f ind ing was tha t a s imi la r range of
hyperparameters yielded the best-performing classifiers in
both this study and the first study. This result has the practical
effect that a smaller range of parameters could be examined in
the grid search, and this reduction would lead to reduced com-
putation time in running the classifiers. This computational
consideration would be most important when the classifiers
were used to identify strategies in real time during perfor-
mance of the task. For example, it would be possible to iden-
tify a participant’s strategy and modify the task or intervene in
some other way, depending on the purpose of the study.

Based on the results presented so far, it is possible to
formulate some general recommendations for use of this
method. The combined DT/SVM classifier generally
performs as well as or better than any of the other
approaches. As can be seen in Figs. 9 and 11, there
are a few instances where a single classifier does per-
form better but the combined classifier is always within
5% of the maximum strategy feature accuracy in these
cases. Therefore, this combined classifier as described
here and documented in the available code would be
the recommended approach. Another recommendation
is to apply the method to tasks with at least 30–40
decision trials. If strategies using two or more features
in the presence of significant selection noise or
satisficing is anticipated, then increasing the number of
decision trials will likely yield better results (e.g., using
pairs of blocks as in results shown Figs. 9 and 11).

Cutoffs should be established based on the classifica-
tion accuracy reported by the classifier so that a research-
er can be reasonably confident that participant strategies
have been identified accurately. Figure 13 shows a com-
parison between the classification accuracy of the com-
bined DT/SVM classifier and the proportion of time all
features for a tested strategy were correctly identified.
This figure includes all strategies tested in Studies 1 and
2. The classifier is highly accurate without noise, and a
cutoff of 0.80 accuracy results in at least 67% of the
blocks having all features correctly identified. Below this

cutoff, it is more likely that the classifier only identified
some of the features in the strategy.

This approach to examining strategies based on task data
will be successful to the degree that the strategies people are
using are simple and consistent enough to be captured by the
amount of data available in the task. One form of inconsisten-
cy arises because people might change their strategy within a
block of data. The next study examines the possibility of run-
ning a modified version of the SVM and DT classifiers over
the time course of one block in which one or more strategy
switches take place.

Study 3: Strategy detection over time

This set of simulations examined modified versions of the
SVM and DT classifiers that continuously predict future se-
lections as new selections occur over time. This allows a de-
termination of whether the classifiers can detect a change of
selection strategy within a block of the sADM task. Another
purpose is to explore the possibility of running these strategy
identification algorithms concurrently with the task in order to
allow for interventions in the task based on the detected strat-
egy. For example, it might be useful to prompt a participant
that the strategy being used is not a high-performing strategy
or that a strategy change just made will lead to worse
performance.

The primary issues investigated in this study are the com-
plexity of the strategy that can be identified and the frequency
of strategy switches that can be tracked. As shown in the prior
studies, detection of a single-feature strategy is relatively easy

Fig. 13 Proportion of blocks where the combined DT/SVM classifier
correctly identified all features in a strategy by the classifier’s cross-
validated accuracy. When applying the classifier to human data, only
the cross-validated accuracy is known. The dashed line corresponds to
a recommended threshold for estimating when the strategy has been cor-
rectly identified
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and requires a minimal amount of data. However, a two-
feature strategy requires more data, and it will therefore be
more difficult to track more complex strategies if frequent
strategy switches occur. In this study, we examined 1–3 strat-
egy switches during a block of the sADM task with one- and
two-feature strategies to address how strategy complexity and
switching frequency impact the ability to identify a strategy.

Method

The DT and SVM classifiers were modified to identify strat-
egies based on selections that occurred over time. For every
selection within a block, the classifiers would attempt to iden-
tify the strategy from prior selections within the block and
would then predict the next few selections. Instead of the
three-fold cross-validation process used in the first two stud-
ies, the training fold was composed of past selections and the
testing fold was composed of the next five selections. Five
testing selections were used as a compromise between being
able to detect strategy shifts quickly and being able to provide
some limited range of prediction accuracy values to be used in
identifying the best-performing set of features.

As an example of this tradeoff, consider the point in a block
after 20 selections have occurred and in which a strategy
change occurred on the 21st selection. With a testing window
of five samples at the 20th selection, then the first 15 selec-
tions can be used to train the classifier and the next five for
testing. These selections used the same strategy so the classi-
fier would have a very good chance of detecting a single-
feature strategy with 15 selections to train on. The classifier’s
performance is assessed on selections 16–20 and performs
well, so a stable strategy is reported. However, starting on
the 21st selection, a strategy change has occurred. The classi-
fier now has 16 training selections and five testing instances
(one of which will not be predicted well by the prior strategy).
Fast forwarding to the 25th selection, the classifier now has 20
training selections with the old strategy and five testing selec-
tions with a new strategy. Prediction accuracy will be very
low, and a strategy change could be identified because of the
decrease in accuracy. With a shorter testing window (e.g., 3),
the strategy change could have been identified earlier.
However, the classifier might often perform reasonably well
on three selections just by chance, making it more difficult to
have confidence in the strategy reported by the classifier.
Conversely, with a testing window of ten selections, it will
take longer to identify a strategy switch and a switch occurring
at the end of a block might not be detected at all. For this
reason, a testing window of five selections was used as a
reasonable tradeoff between these considerations.

As in the earlier studies, a grid search was used to identify
the best-performing classifier parameters. The classier-
specific hyperparameters (e.g., min impurity decease for DT)
and the training window size (5, 10, 15, 20, 25, and 30 past

selections) were used. Larger training windows increase the
training data, which should increase the odds of identifying
the correct strategy if the strategy did not change. However,
after a strategy change, a smaller training window should per-
form better because it is less likely to contain selections from
two strategies. The same ranges of hyperparameters were used
as in the prior two studies. All of the details can be found in the
code for these simulations on the OSF site at https://osf.io/
qfxpr/.

In Studies 1 and 2, the hyperparameters were selected
based on a weighted average of strategy agreement across
cross-validation folds and prediction accuracy. However,
without multiple folds, strategy agreement across multiple
folds cannot be computed, so the classifiers maximized test
set accuracy along with a 5% complexity penalty for every
feature included after the first. This complexity penalty helped
to prevent overfitting to the training data by making sure that
any feature added to the strategy had to lead to an increase in
prediction accuracy of at least 5%.

The strategies implemented in the simulations included
one, two, or three strategy switches at equally spaced inter-
vals, all between single feature strategies. For example, the
points-deadline switch model switched from a points-driven
selection strategy to one where the lowest deadline is selected
at the mid-point of the block. A points-deadline-penalty strat-
egy was examined for the two switches, and a points-deadline-
points-deadline strategy was examined for the three switches.
In addition, another model was implemented that started with
a points+deadline weighted strategy and switched to a points
strategy. This final model was used to examine whether a two-
feature strategy could be identified with only a small set of
training instances prior to a strategy switch. It was expected
based on the results of Study 1 that this would be challenging
to do with little training data. Each of the strategies was sim-
ulated for 60 blocks of sADM task performance, as in the prior
studies. Given that the ES did not perform better than the
SVM or DT strategies, it was not modified to identify strategy
changes over time.

Results

To investigate the frequency of strategy switches that could be
identified, data from three different strategy switching fre-
quencies were simulated. These strategies were always simple
single-feature strategies. The principal outcome measure was
whether the feature was correctly identified at each selection
within a block. The top left panel of Fig. 14 shows that all
classifiers did well at identifying a single strategy switch by
correctly picking up on the correct strategy feature both before
and after the switch. As in the prior studies, a combination of
the DT and SVM classifiers was also tested by selecting which
classifier had the highest prediction accuracy, and this com-
bined classifier also performed well.
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As shown in the top right panel of Fig. 14, all classifiers
also performed well with two strategy switches. Finally, with
three strategy switches in one block, a strategy change is being
made after every nine selections. The bottom left panel of Fig.
14 shows that the classifiers perform best on the initial strate-
gy, but then accuracy drops off to 50% or below on the second
and third strategies. Here the SVM classifier did better than
the DT, including identifying the final strategy shift. There are
barely enough selections after the third strategy switch to de-
tect the fourth strategy.

From the results of Study 1, it was expected that the clas-
sifiers would struggle to identify a two-feature strategy. The
bottom right panel of Fig. 14 shows that the classifiers identi-
fied the two-feature strategy about 50–75% of the time. In the
middle of the block, this model switched to a one-feature
strategy, at which point the classifiers both did well. The
SVM did better than the DT at detecting the complex strategy.
The complex strategy was a weighted combination of the

points and deadline features, which is consistent with the per-
formance of the SVM on this strategy in Studies 1 and 2.

The final aspect of the classifiers examined is whether the
grid search over possible training windows showed the ex-
pected pattern of using the maximum allowable windowwhen
the strategy had been stable for a period of time and then
dropping to a smaller training window after a strategy change.
This adaptive training window should allow the classifier to
avoid contaminating the training data with multiple strategies
by allowing it to select a window which maximizes prediction
of future selections in the training window. Figure 15 shows
the training window size selected by the classifiers for each of
the same strategy switch scenarios for which strategy feature
accuracy is shown in Fig. 14. Following a strategy switch, the
training window does drop and then increase as the new strat-
egy is used consistently for future selections. The pattern is
less clear in the bottom right panel where the classifiers strug-
gle to identify the more complex two-feature strategy initially.
In particular, the SVM seemed to benefit from a longer

Fig. 14 Strategy feature accuracy for three different strategy switching frequencies and a complex to simply strategy switch

Fig. 15 Optimal training window for the different strategy switching simulations
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training window after switching from the complex weighted
strategy to the single feature strategy. This result may be be-
cause the single feature was a component of the weighted
feature strategy and the underlying representation of the SVM.

Discussion

The results show that it is possible to use this strategy identi-
fication approach to dynamically identify strategy shifts.
However, there are limits on the complexity of the strategy
that can be identified with frequent strategy switches that con-
sequently reduce the amount of relevant data for training. If
people switch strategies too frequently or use more complicat-
ed selection strategies even at low levels of strategy switching,
then this approach will probably not yield good data on
strategies.

Therefore, it is important to consider the nature of the task
when deciding whether this approach to strategy identification
will yield good results. This approach will perform best when
the ratio of training data to strategy switches is relatively high
(e.g., above 30 selections for every strategy switch in the
sADM task). Alternatively, this approach works well if strat-
egies are constrained to be based on a single feature in which
case the ratio of training data to switches can be lower (e.g., 10
in the sADM). The sADM task is a good candidate for this
approach because a high degree of consistent strategy use over
time is required to evaluate the effectiveness of one’s strategy.
Because the choice to select one object means other objects
are not selected and potentially accrue a penalty, then the full
impact of a strategy is only known in the task over the next
few minutes. Also, time-pressured decision-making, as in the
sADM, should limit the complexity of the decision-making
strategy used (Oh et al., 2016). To the degree that other tasks
share this property, then this approach should also be success-
ful at identifying strategy switches in those tasks.

This approach to examining strategy switches can be used
to illuminate strategies beyond classifying full blocks of trials
as in Studies 1 and 2. In some blocks where the classifier
reported only a partial strategy or no strategy for the entire
block, it could be that participants used multiple strategies. To
examine this possibility, the combined SVM/DT algorithm
can be used. This algorithm is trained and makes predictions
about selections over time so that it is possible to determine
strategy changes if they do not occur too frequently. As in the
top row of Fig. 14 for the simulated data, it is possible to
identify periods of performance where the classifier returns a
consistent strategy before shifting to a different one. A crite-
rion of four or more consecutive time points with the same
strategy is recommended as an indication that a stable strategy
had been identified. This criterion is recommended to reduce
the chance that the identification ofmany strategy shifts would
simply be caused by noise or lack of variability in the attri-
butes of the objects on the queue during a set of selections. For

those blocks identified as having more than one strategy and a
single-block classifier accuracy lower than 0.8, the strategies
identified by the time-based classifier could be used provided
they yield a higher classifier accuracy. Complex strategies
with multiple features could show up as strategy switches
using the time-based classifier, and therefore the single-
block classifier would be better at identifying those.
However, if a participant was really using multiple features
in a single strategy over the entire block, then the non-
time-based classifier would be expected to perform well.
This approach for combining the single-block and time-
based classifiers was adopted in the examination of hu-
man data in Study 4.

Study 4: Examining performance on human
data

The prior three studies used simulations so that the strategy
being used was known. However, the intent is to apply these
algorithms to identify strategies from human data. Given the
success of the algorithms in these parameter recovery studies,
if the algorithms also show high predictive accuracy on hu-
man data, then they are likely accurately identifying the strat-
egies that participants are using. This study illustrates the util-
ity of these algorithms on human data.

A subset of data from a multi-session study with the sADM
task was examined using the combined DT/SVM classifier
and the time-based version of this same classifier. Because
the strategies that participants were using are not known, a
criterion for performance of the algorithm has to be selected
as discussed earlier. In this study, the value recommended in
Fig. 13 was used (i.e., classifier accuracy of 0.8). Predictive
accuracy values above this level are likely to capture partici-
pants’ strategies with values below this likely only capturing a
portion of the task features participants are using.

Method

Participants There were 64 participants (aged 18–33 years,
mean = 21.0 years, 44 females) who were students or staff
fromMississippi State University and were paid for participa-
tion. The research was approved by the Mississippi State
University Institutional Review Board.

Procedure Participants completed two sessions of the sADM
task over 2 days. During the first session, participants com-
pleted a task tutorial followed by a practice block of the task in
which they had to successfully sort three objects in order to
proceed. They then completed eight blocks of the sADM task.
In the second session conducted 2–5 days later, there was a
brief set of instructions reminding them about how the task
worked followed by 12 blocks of the sADM task. The primary
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focus of the larger study was on how participants’ strategies
changed with practice on the task, including how they
responded to changes in the nature of the task. The data re-
ported here include the first eight blocks from the second
session, each lasting 345 s. The final four blocks of this second
session (i.e., blocks 9–12 of this session) included manipula-
tions that promoted strategy shifts within a block, so they were
not used to evaluate the performance of the algorithms.

Results

The combined DT/SVM classifier was used for this study
because of its higher accuracy relative to the other classifiers
in the prior studies. There were 512 blocks of sADM perfor-
mance data, and a histogram of predictive accuracy is shown
in Fig. 16. As a reminder, this classifier determines a single
strategy for the entire block. Sixty-seven percent of the blocks
had a strategy with predictive accuracy above 0.8 indicating a
good likelihood of determining the strategy used by the par-
ticipant in that block. For 8% of blocks, no strategy could be
determined (i.e., the classifier reports that predictive accuracy
is not significantly different from chance). For the remaining
25% of the blocks, the strategy determined by the classifier
may only capture a portion of the features used by the partic-
ipant. In addition, the mean number of features identified for
each strategy was 1.29, SD = 0.61.

The approach for combining time-based and single-block
classifiers described earlier was used to examine whether
blocks for which the single-block classifier reported low ac-
curacymight be blocks where participants switched strategies.
The mean number of strategies identified per block by the
time-based classifier was 1.41, SD = 0.82. The proportion of
blocks identified as having a single strategy was 56%, which

is a bit lower than the 67% of blocks estimated to have a
complete strategy identified by the single-block classifier.
For the blocks in which more than strategy was identified,
the predictive accuracy of the time-based classifier was com-
pared to that of the single-block classifier. As shown in Fig.
17, for these multi-strategy blocks, the time-based classifier
that allows for multiple strategies generally had higher predic-
tive accuracy as the predictive accuracy of the single-block
classifier decreased below the 0.8 threshold.

For those blocks identified as having more than one strat-
egy and a single-block classifier accuracy lower than 0.8, the
predictive accuracy of the single-block classifier was replaced
with that of the time-based classifier. This approach was taken
because complex strategies with multiple features could show
up as strategy switches using the time-based classifier.
However, if a participant was really using multiple features
in a single strategy over the entire block, then the single-block
classifier would be expected to perform well. With that
change, the percent of blocks likely to have the full strategy
identified increased to 75% (compared to 67% assuming a
single strategy), with another 18% likely to have a partially
identified strategy (compared to 25%), and 7% having no
strategy identified (compared to 8%). Being able to identify
some strategy changes therefore produces a modest improve-
ment in the ability to identify the strategies that participants
are using.

It may be that many of the blocks with lower predictive
accuracies come from a subset of participants because of an
inconsistent use of the strategy, more satisficing behavior, or
frequent shifting between strategies. Figure 18 shows that
most of the blocks for which no strategy could be identified
come from a small set of participants. Another subset of

Fig. 16 Distribution of cross-validation predictive accuracy for the com-
bined DT/SVM classifier on 512 blocks of human sADM task perfor-
mance. A value of .5 (chance performance for the rank order metric used)
is assigned for blocks for which no strategy could be determined

Fig. 17 A comparison of predictive accuracy for the time-based and non-
time-based classifier for blocks where the time-based classifier indicated
multiple strategies were used. A line with a slope of 1 is included so that
points falling above the line indicate better performance by the time-based
classifier
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participants has a complete strategy identified in all blocks,
and about two thirds of the participants have a complete strat-
egy identified on 75% or more of the blocks.

The sADM is designed such that employing a consistent
strategy allows one to evaluate the performance of that strat-
egy. Because of the time that it takes to accumulate informa-
tion about how a strategy does at minimizing the penalties that
accrue, it should be difficult to select a high performing strat-
egy if one switches between strategies too frequently.
Therefore, consistent strategy use is both good for task perfor-
mance and for the classifiers being used to identify strategies.
If this line of reasoning is true, then there should be a positive
correlation between predictive accuracy of the classifiers and
performance in the sADM. This correlation was .32 (p = .01),
supporting the hypothesis that some portion of the participants
on the left half of Fig. 18 may be inconsistent strategy users
(or frequent strategy shifters) who perform less well on the
sADM.

Discussion

The analysis of the human data in this study indicates that the
algorithms that were developed are likely to be useful in ex-
amining human strategy use in tasks such as the sADM. The
fact that the sADM encourages consistent strategy use for
good task performance is certainly a factor in considering
the other types of tasks that it would be possible to examine
with this approach. However, having some measure of strate-
gy use determined by task behavior is a prerequisite to being
able to examine a number of interesting questions about strat-
egy development, selection, and adaptation in complex tasks.

General discussion

The results presented in these four studies show that using
machine learning classifiers to identify the strategies that

participants are using is promising. The first study showed
that one- and two-feature strategies could be examined within
a complex task with high accuracy using the amount of data
that a participant would generate in 6min of task performance.
The second study showed that the classifiers handled random
noise and satisficing behavior well when given twice as much
task performance data. The third study showed that it would
be possible to track strategy shifts across time using the same
approach. The key conditions necessary for this approach to
work is to have enough task performance data to identify
strategies at the expected level of complexity. If participants
are routinely using more than two features in their strategy,
then additional task data would be required. We did not test
more complex strategies in this paper because we have found
no evidence that human participants in the sADM consistently
use such complex strategies. For example, the mean number
of features identified by the algorithms in Study 4 was 1.29
with less than 5% of identified strategies including more than
two features. This is likely because of the time-pressured na-
ture of the sADM encouraging simpler strategies, as has been
found in prior research on time-pressured decision-making
(Oh et al., 2016). It may also be possible to gain some insight
into the strategies that participants are using by asking them to
report the features they are using, but the degree to which
participants can accurately report these details is itself an open
question. Therefore, the approach taken here was to use sim-
ulations with known strategies to examine the degree to which
this approach could recover the features used in the simulated
strategies.

The general approach is to train a classifier to maximize
predictive accuracy and strategy feature agreement across
cross-validation folds. The results show that maximizing a
weighted average of these values identifies the strategy being
used in the simulated data. One potential concern with these
studies is that these results will only generalize to human data
to the degree that the strategies that have been simulated
match the kinds of strategies that people use. The strategies

Fig. 18 An examination of how many blocks from each participant had a complete, partial, or no strategy identified by the DT/SVM classifiers. Each
vertical bar is one participant, and they are ordered from left to right by increasing mean predictive accuracy
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that were simulated were selected based on an analysis of
heuristics reported in the multi-attribute decision-making lit-
erature (e.g., weighted additive, take the best) (Gigerenzer &
Gaissmaier, 2011). Many of the strategies used were simply
implemented in Lisp code inside ACT-R, so the limitations of
computation that can occur in productions in ACT-R is not an
issue. The ACT-Rmodel was used because it existed for other
purposes, and the constraints of this cognitive architecture did
not play a role in which strategies were selected or
implemented.

The results of Study 4 demonstrate that the method has
both strengths and limitations in identifying human strategies.
First, for most participants, the algorithm likely captured all or
some features being used in their strategies. This study also
found that several participants were likely using multiple se-
lection strategies within a block of the task, even though this
strategy switching was not advantageous on the sADM task.
Prior work on the development of strategies in children has
found significant trial-by-trial variability in strategy use even
if there is a dominant strategy used in most trials (Siegler,
1991). It is likely that the approach described here would
identify the dominant strategy but show lower predictive ac-
curacy, similar to the results of Study 2, where random noise
was added to the selection data. In Study 3, identification of a
strategy even with the classifier that operates over trials re-
quired some number of consecutive trials on which the same
strategy was used. Whether a task encourages consistent strat-
egy use from trial to trial is therefore an additional consider-
ation in whether this classifier-based method is appropriate.

The underlying implementation of the classifiers also
played a role in the ability to accurately identify different
strategies. For example, the SVM performs well on the
weighted additive strategies because of its separation of se-
lected and unselected objects using a hyperplane. Perfect ad-
herence to a weighted additive strategy generates data that is
perfectly separable by a hyperplane. The DT is more suited to
strategies where participants may use more of an if-then
threshold to select objects. In our results, capturing the best
of both classifiers was relatively straightforward so that the
results of the classifier with the highest predictive accuracy
could identify the strategy.

Other types of machine learning algorithms may also be
advantageous to consider in this type of approach. For exam-
ple, recurrent neural networks have been shown to enable
prior context or state information to inform future predictions
of the network (e.g., Elman, 1990). In the sADM task, the
queue from the previous selection usually is similar to the
queue on the prior selection. Only one object has likely been
removed and some new objects added in addition to other
task-related changes that occur with the passage of time need-
ed to sort an object. Algorithms which can track state-related
information over time may be useful in these kinds of tasks,
and participants may partially plan future selections as well.

By contrast, the classifiers used here treat each selection as an
independent event. Future work could explore more complex
algorithms such as recurrent networks, but the decision to start
with SVM and DT classifiers was made in order to have the
ability to produce a description of the strategy as an ordered
list of features with valences. Accomplishing this goal with
many machine learning techniques is itself a challenging re-
search problem related to the concept of explainable artificial
intelligence (Barredo Arrieta et al., 2020).

The final point of discussion is to what degree this
method can be used with other tasks. All that should be
required is that the task has an outcome that is based on
some strategy, and all the features that could be used in
making the decision are logged along with the result of
the decision. While different tasks may need to scale
the data differently than was done in the case of the
sADM, after this step the algorithms should be able to
report the features that were used in the decision along
with their valence. Therefore, the DT and SVM ap-
proach should be fairly general, with minimal work
needed to function on data from another task.

There are several recommendations for use of this
method. As discussed at the end of Study 2, using the
combined DT/SVM classifier consistently led to results
often better than either the DT or SVM classifier alone
and in other cases closely approximating the perfor-
mance of the individual classifiers. Using the combined
classifier’s reported classification accuracy at a value of
0.8 should provide reasonable confidence that the
strategy’s features and valences were correctly identi-
fied. For classification accuracy below this level, using
the time-basedDT/SVM classifier to examine evidence
for strategy switches may allow for the identification
of the strategy switches as in Study 4. Hyperparameter
values were explored in Studies 1–3, and our recom-
mendation is to use the range of values documented in
this paper and in the available code. The algorithm
searches within this range, so it is not necessary for
the researcher to specify or customize these values.
The only benefit to modifying these values would be
to reduce the space searched over to save processing
time. However, parameters in the code parallelize the
computation such that on modern multi-core/thread pro-
cessors there is unlikely to be a large time savings by
customizing these hyperparameter values. We have used
the combined DT/SVM classifier to track strategies and
have found that processing a block of sADM data takes
about 20–30 s on a six-core processor. These estimates
are of course dependent upon the underlying hardware.

In conclusion, this approach to identifying strategies
from data generated during strategic decision-making in
a complex task has been demonstrated to work reason-
ably well on simulated data. This method should enable
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the examination of strategy selection and strategy mod-
ification behavior in tasks with a reasonably complex
space of potential strategies. These developments have
the potential to open new empirical opportunities to fur-
ther develop theories about how people create and adapt
their strategies in complex environments.
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