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Abstract
Multilevel data structures are often found in multiple substantive research areas, and multilevel models (MLMs) have been
widely used to allow for such multilevel data structures. One important step when applying MLM is the selection of an
optimal set of random effects to account for variability and heteroscedasticity in multilevel data. Literature reviews on current
practices in applying MLM showed that diagnostic plots are only rarely used for model selection and for model checking.
In this study, possible random effects and a generic description of the random effects were provided to guide researchers
to select necessary random effects. In addition, based on extensive literature reviews, level-specific diagnostic plots were
presented using various kinds of level-specific residuals, and diagnostic measures and statistical tests were suggested to
select a set of random effects. Existing and newly proposed methods were illustrated using two data sets: a cross-sectional
data set and a longitudinal data set. Along with the illustration, we discuss the methods and provide guidelines to select
necessary random effects in model-building steps. R code was provided for the analyses.

Keywords Diagnostic plots · Level-specific residuals · Mixed-effects model · Multilevel model · Random effect selection

Introduction

In multiple substantive research areas, data are often
collected from clusters (e.g., Raudenbush & Bryk, 2002;
Snijders & Bosker 1999). As an example, a random
sample of hospitals (clusters) is selected, and then
patients (observations) from the selected hospitals are
randomly sampled. Furthermore, it is common to have
a longitudinal design in which individuals (clusters) are
observed over time (observations). To account for between-
cluster variation, a multilevel model (MLM, e.g., Goldstein,
2003) has been widely applied. An MLM for continuous
outcomes is also referred to as a random effect model (Laird
& Ware, 1982), a hierarchical linear model (e.g., Bryk &
Raudenbush, 1992), a linear mixed-effects model (LMM,
e.g., McCulloch et al. 2008), a random regression model
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(Bock, 1983), or a random coefficient model (e.g., de Leeuw
& Kreft, 1986; Longford 1993).

In MLM specifications, the between-cluster variation is
represented by random effects such as a random intercept
and a random slope of a covariate. In the MLM literature,
a quantity is considered random if it varies over clusters
within a population, in which case the set of observed
clusters can be interpreted as a random sample (e.g.,
Snijders & Bosker 1999, Section 4.2). The random intercept
can be considered to model random variation across
clusters, and the random slope can be used to model random
variation of a covariate effect within the population of
clusters. The primary interest of many MLM applications
is in the estimation of fixed effects and their standard
errors (Raudenbush & Bryk, 2002, p. 253), although
we acknowledge that random effects (e.g., individual
differences) can be of interest in other MLM applications.
In many cases, the interest in random effects is auxiliary, to
obtain accurate standard errors for the fixed effects. When
necessary random effects are not included in MLM to model
all sources of variability and heteroscedasticity in the data,
standard errors of the fixed effects of interest are typically
negative biased (see Longford 1993, pp. 53–56 for technical
details). This bias leads to overestimating the statistical
significance of the fixed effects.

/ Published online: 1 March 2022

Behavior Research Methods (2022) 54:2178–2220

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-021-01709-z&domain=pdf
mailto: sj.cho@vanderbilt.edu


Inclusion of a random intercept is often justified by
a sufficiently large intraclass correlation (ICC, Shrout &
Fleiss, 1979) based on an unconditional MLM (i.e., a
random intercept model without any covariates). After
including the random intercept, the next step is to investigate
whether covariate effects need to be included, with a fixed
effect and possibly with random effects as well (i.e., random
slopes). In addition to the random intercept and random
slopes, other kinds of random effects have been discussed
to model heteroscedasticity (as described in detail below),
although these random effects are rarely considered in
practice. It is common to compare candidate models with
different random effects (e.g., random intercept vs. random
intercept-slope model) and to select a model based on
likelihood ratio tests (LRT).1

As a supplement to LRT in selecting random effects,
diagnostic plots such as a residual plot, a scatter plot, and a
normal probability plot can be used. These diagnostic plots
can be used to explore missing random effects not captured
by the model. For example, a scatter plot of residuals versus
fitted values can be used to explore heteroscedasticity in
residuals (variance changes within clusters). A non-random
pattern in the plot such as a wedge-shaped pattern can
be indicative of heteroscedasticity (e.g., Pinheiro & Bates,
2000, p. 341). In addition, the diagnostic plots can be
used for assessing model assumptions in MLM such as
homogeneity of residual variance, linearity, and normality
of residuals. Model checking through diagnostic plots can
be informative when selecting random effects. For instance,
a diagnostic plot can be used to explore heteroscedasticity in
residuals when considering adding a random effect to model
heteroscedasticity. In the statistics literature for LMM,
different kinds of residuals and diagnostic plots have been
suggested for model selection and model checking (e.g.,
Galecki & Burzykowski, 2013, pp. 264–266, pp. 339–346;
Pinheiro & Bates, 2000, Ch. 4). However, our literature
review of current practices in using MLM shows that the
diagnostic plots in selecting random effects and model
checking are rarely used (also noted in Claeskens [2013, p.
442] and O’Connell et al. [2016, p. 99]).2

We identify the following problems in the current
practices of using diagnostic plots mostly based on residuals
for random effect selection in MLM applications in the
social sciences. First, to the best of our knowledge, there

1To review current practices of using diagnostic plots and model
selection methods regarding random effects, 72 papers were randomly
selected from nine APA journals through the PsychINFO database. We
found that random effects were selected based on LRT (33%), Wald
test (26%), goodness-of-fit statistics (13%), information criteria (2%),
and pseudo R-square (2%). Twelve papers (17%) did not consider a
model selection regarding random effects.
2Of the 72 papers we reviewed, there was one paper which presented
a diagnostic plot to investigate autoregressive effects.

are no publications in which an exhaustive list of random
effects has been presented. It is not easy for substantive
researchers to be aware of all possible random effects to
be considered for model selection. Second, level-specific
residuals have been developed in the statistics literature
on LMM (Hilden-Minton, 1995; Loy & Hofmann, 2014;
Pinheiro & Bates, 2000; Verbeke & Lesaffre, 1997) which
have not been introduced in MLM textbooks for the social
sciences (e.g., Goldstein, 2003; Hox, Moerbeek, & van de
Schoot, 2018; Longford, 1993; Raudenbush & Bryk, 2002;
Snijders & Bosker, 1999).3 Substantive researchers are not
always aware of the available range of options. Third,
the scaling of residuals (standardized vs. unstandardized)
and the definitions of conditional vs. marginal residuals
are possible sources of confusion. For example, Snijders
and Bosker (1999, p. 129) suggested using unstandardized
(individual-level) residuals to check the linearity effect of
(an individual-level) covariate, whereas Hox, Moerbeek,
and van de Schoot (2018) used standardized (individual-
level) residuals to check the linearity. As far as we know,
it has not been discussed what kind of residuals (e.g.,
unstandardized vs. standardized; conditional vs. marginal)
should be used when. Fourth, many of the model diagnostics
are graphical in nature, and interpretations of patterns in
diagnostic plots can be subjective (McCullagh & Nelder,
1989, pp. 392–393). To enhance the detection of visual
patterns in the diagnostic plots, it has been suggested
to consider including smoothing functions in the plot
(e.g., Snijders & Berkhof, 2007). For instance, the scatter
plot of (individual-level) residuals versus a covariate can
be smoothed using spline functions (Snijders & Bosker,
1999). However, statistical tests for the patterns are rarely
conducted. To summarize, unanswered questions are (a)
what kind of residuals should be used for different kinds
of diagnostic plots when selecting all necessary effects and
checking model assumptions (as information to select a
set of the random effects), and (b) how should the visual
patterns in the diagnostic plots be tested.

Purpose of the current study

The purpose of the current study is to overcome the
problems we listed above. Specifically, first, possible
random effects which can be included in the model are
presented and a generic description of those random effects
is provided. Second, an extensive literature review on

3Exceptionally, O’Connell, Yeomans-Maldonado, and McCoach
(2016) listed conditional and marginal residuals for education
researchers. In this study, we added one more kind of residual called
independent residuals, based on extensive reviews in the statistics
literature.
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residuals and diagnostic plots in LMM and MLM literature
is conducted for model selection regarding random effects
and for model checking. The review is based on four
LMM texts (Faraway, 2016; Galecki & Burzykowski,
2013; Pinheiro & Bates, 2000; Verbeke & Molenberghs,
2000) and 9 MLM texts, handbooks, edited books, and
book chapters (Finch, Bolin, & Kelley, 2014; Goldstein,
2003; Hox et al., 2018; Longford, 1993; Raudenbush &
Bryk, 2002; Singer & Willett, 2003; Snijders & Bosker,
1999; Snijders & Berkhof, 2007; O’Connell, Yeomans-
Maldonado, & McCoach, 2016). Third, specific kinds of
residuals and diagnostic plots are presented to explore
random effects and to check model assumptions, and
inference methods are also presented to test patterns in
diagnostic plots. Finally, in addition to diagnostic plots, we
will also propose diagnostic measures to select an optimal
set of random effects. All these proposed methods are
presented and illustrated for a two-level design involving
individual- and cluster-level units. Hereafter, we refer to
the individual level as level 1 and the cluster level as
level 2 throughout this paper. Generalizability to other
multilevel designs will be discussed. Parameter estimation
of MLMs is conducted using the popular nlme R package
(Pinheiro, Bates, DebRoy, Sarkar, & R Core Team, 2020).
We chose the nlme package because it allows all kinds
of random effects we discussed in this paper to be
modeled. The R code used in this paper is presented
in Appendix A.

The rest of this paper is organized as follows. In “Different
kinds of random effects in multilevel models”, we describe
MLMs for cross-sectional and longitudinal data, list all
kinds of random effects in MLM, and describe model-buil-
ding steps. In “Illustrative data sets”, two empirical data sets
are described for illustration. In “Level-specific residuals”,
the literature review on the types of residuals in MLM is
presented. In “Diagnostic measures, diagnostic plots, and
statistical tests”, we suggest diagnostic measures, list
diagnostic plots for random effect selection and model
assumption checks, and discuss reasons for the kind of
residuals to be used in diagnostic plots. In addition, we
present statistical inference on patterns in the diagnostic
plot. In “Illustration”, we illustrate the proposed methods
using two empirical data sets. Finally, we end with a
summary and a discussion.

Different kinds of random effects
in multilevel models

In this section, we describe MLMs for cross-sectional and
longitudinal data, list all kinds of random effects in MLM,
and describe the model-building steps to be used in the
selection of a set of random effects.

Multilevel models

An MLM with design matrices as in LMM is written as

yj = Xjβ + Zjbj + εj , (1)

where j is an index for (non-overlapping) clusters; yj

is a vector of continuous responses; Xj is the design
matrix of the fixed effects; Zj is the design matrix of the
random effects; β is the vector of fixed effects; bj is the
vector of random effects; and εj is the vector of random
residuals. The random effects are assumed to follow a
multivariate normal distribution, bj ∼ MV N(0, �), where
� is a variance-covariance matrix of the random effects.
In addition, the random residuals are assumed to follow
a multivariate normal distribution, εj ∼ MV N(0,Rj ).
The residual variance-covariance matrices Rj can be
decomposed into two independent components, a variance
component (σ 2) and a correlation component (Rj ):

Rj = σ 2Rj . (2)

For the cross-sectional data, the residual variance-
covariance matrices are assumed to have a homoscedastic
conditional independent structure:

Rj = σ 2Rj = σ 2Inj
, (3)

where nj is the cluster size (i.e., the number of level-1
units within a cluster j ). However, for the longitudinal data
in which outcomes are collected repeatedly from the same
individuals (i.e., clusters), it is common to model correlated
errors (Galecki & Burzykowski, 2013; Pinheiro & Bates,
2000, Section 5.3.1; Verbeke & Lesaffre, 1997):

Rj = σ 2Rj = σ 2�jCj�j , (4)

where �j is a diagonal matrix with nonnegative diagonal
elements and Cj is a correlation matrix. The �j allows
for heteroscedasticity of observations within individual
(cluster) j and Cj allows for correlation between the
observations within the individual (Galecki & Burzykowski,
2013, p. 179). Various kinds of correlation matrices Cj

can be specified for longitudinal data such as uniform
correlation and correlations with an autoregressive (AR)
component of order p and a moving average (MA)
component of order q (ARMA(p, q)), or a continuous-time
autoregressive process (Pinheiro & Bates, 2000).

The conditional distribution, fy|b(yj |bj ), of yj given bj

is multivariate normal, with mean and variance written as:

E(yj |bj ) = Xjβ + Zjbj (5)

and

V ar(yj |bj ) = σ 2Rj . (6)
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The marginal distribution, fy(yj ), of yj , is obtained
by integrating out the random effects bj from the joint
distribution of y and bj :

fy(yj ) =
∫

fy|b(yj |bj )fb(bj )dbj , (7)

where fy|b(yj |bj ) is the conditional distribution and fb(bj )

is the density of the unconditional distribution of bj . The
marginal distribution is also multivariate normal, with mean
and variance written as:

E(yj ) = Xjβ (8)

and

V ar(yj ) = σ 2Vj = σ 2ZjDZ′
j + σ 2Rj , (9)

where D is the variance-covariance matrix of random
effects, bj .

Random effects in MLM

We will use different elements to describe different kinds of
random effects: (a) data modes and (b) the unit of random
effect, and (c) the unit of variation.

Data modes Each of the levels in a multilevel structure is
considered as a source of variation (Longford, 1993, p. 18).
Data modes refer to kinds of units which may be a source
of variation (Coombs, 1964). For example, students and
schools are data modes and at the same time they are the
levels in the two-level design in which students are nested
within schools.

Unit of random effect and unit of variation The unit of
random effect (UR) is a covariate of a mode (e.g., students)
which induces variation across the units of (mostly but
not always) another mode (e.g., schools), denoted as unit
of variation (UV ). For example, the gender of students (a
covariate of students) may induce an effect that is random
across schools (another mode than students). For the two-
level data, the UR can be (a) all data entries (i.e., the
1-constant), (b) a level-1 covariate (x(1)), and (c) a level-
2 covariate (x(2)). The UV is the set of elements across
which the random effect of the UR varies. The UV can
be individuals (e.g., students) and clusters (e.g., schools) in
cross-sectional two-level data, and time points (e.g., weeks
or years) and individuals (e.g., students) in longitudinal
two-level data. For example, age (UR) can vary across
students (UV ). Together, the paired notions of UR and UV

define a random effect. For notation, we propose UR|UV ,
inspired by random effect specifications in the lme4 (Bates,
Maechler, Bolker, & Walker, 2015) and nlme R packages.

For two-level data as an example, there are four kinds of
random effects:

• Random intercept: The effect of the 1-constant can
vary across clusters at level 2 (e.g., schools in a cross-
sectional design, individuals in a longitudinal design).

• Random slope: The effect of a level-1 covariate (x(1))
varies across clusters at level 2.

• Random effects with different variances to model
heteroscedasticity: In general, heteroscedasticity refers
to the pattern in which the variability of a variable is
unequal across the range of values of a second variable
that explains or predicts it.

– An effect of a level-1 covariate (x(1)) can vary
across units of level 1.

Level-1 heteroscedasticity is heteroscedas-
ticity of the random residuals (εj in Eq. 1).
For a continuous level-1 covariate (x(1)), the
number of levels in the level-1 covariate should
be less than the number of level-1 observa-
tions. For a categorial level-1 covariate (x(1)),
the variances of random residuals (σ 2) are
modeled depending on the level of the cat-
egorical level-1 covariate which allows for
heteroscedasticity. For example, gender as a
level-1 covariate can create heterogeneity in
that the variance across individuals of one gen-
der may be different from the variance across
individuals of the other gender.

– An effect of a level-2 covariate (x(2)) can vary
across units of level 2 (i.e., clusters). As an
example of heteroscedasticity, the variance of
schools may be different depending on public
vs. private as categories of a level-2 covariate.

Table 1 shows a list of all possible random effects in
the two-level data, using our proposed notation UR|UV for
random effects. For the two-level cross-sectional data, level
1 (observation level) refers to individuals (e.g., students)
and level 2 (cluster level) refers to clusters (e.g., schools).
As shown in Table 1 (top), the following kinds of random
effects listed above are as follows:

• Random intercept: 1|clusters

• Random slope: x(1)|clusters

• Random effects with different variances to model
heteroscedasticity: Heteroscedasticity means that the
variance of the random effects is allowed to differ
depending on the values of the covariate in question.

– The effect of a covariate at level 1 varies across
level-1 observations: x(1)|individuals

– The effect of a covariate at level 2 varies across
level-2 clusters: x(2)|clusters

For the two-level longitudinal data, the level-1 units
are time points and the level-2 units are individuals. As
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Table 1 Different kinds of random effects in cross-sectional two-level
data (top) and in longitudinal two-level data (bottom)

Unit of Unit of Variation (UV )

Random Effect (UR) Individuals Clusters

1 1|clusters

x(1) x(1)|individuals x(1)|clusters

x(2) – x(2)|clusters

Unit of Unit of Variation (UV )

Random Effect (UR) time Individuals

1 1|individuals

x(1) x(1)|t ime x(1)|individuals

x(2) – x(2)|individuals

–Indicates that a random effect cannot be modeled

presented in Table 1 (bottom), the following kinds of
random effects listed above are as follows:

• Random intercept: 1|individuals

• Random slope: x(1)|individuals

• Random effects with different variances to model
heteroscedasticity:

– The effect of a covariate at level 1 varies across
level-1 observations: x(1)|t ime

– The effect of a covariate at level 2 varies across
level-2 clusters: x(2)|individuals

Model-building steps

In the literature, it has been discussed how to proceed
to check residuals. Either one starts with level 1 and
continues to level 2 (i.e., upward approach, Pinheiro &
Bates, 2000; Raudenbush & Bryk, 2002) or one starts from
the highest level and continues with each subsequent lower
level (i.e., downward approach, Langford & Lewis, 1998 for
outlier detection; Verbeke & Molenberghs, 2000). Snijders
and Berkhof (2007) supported the upward approach for
model assumption checking because level-1 residuals can
be studied unconfounded by the higher-level residuals while
the reverse is not possible (as noted in Hilden-Minton,
1995). However, the authors noted that checking level-
2 outliers first is more efficient than checking level-1
outliers. Our reasoning behind this higher efficiency is
that the number of clusters is smaller than the number
of observations. It is inefficient to evaluate which level-
1 units are outliers within a cluster that itself may be
identified as a level-2 outlier. In our perspective, the
argument of Hilden-Minton (1995) to work in the upward
direction for residuals and the argument of Snijders and
Berkhof (2007) to work downwards for outlier detection

are persuasive. Thus, we take the upward approach for
residual checking and the downward approach for outlier
checking.

In MLM applications, necessary random effects are often
selected in model building steps (e.g., Hox et al., 2018).
As mentioned earlier, model checking through diagnostic
plots can be informative when selecting random effects.
In the following model-building steps, we discuss how
both diagnostic plots and various tests of residuals can
be used. The goal of model-building is to develop a
parsimonious model that describes the data adequately
while remaining interpretable. In the model-building steps
below, we take a mixed approach including both (a) a
confirmatory hypothesis testing for covariate(s) related to
research questions and (b) an exploratory approach for the
other covariates not related to the research questions.

• Step 0: A preliminary descriptive analysis is conducted
without any modeling.

• Step 1: Random intercepts for the clusters are
introduced as the only model component.

• Step 2: Fixed effects of level-1 covariates of interest
are added to the random intercept model, such as the
fixed effect of time in the longitudinal model. When
the level-1 covariates are added to the random intercept
model, level-1 linearity and level-1 heteroscedasticity
can be explored. For the longitudinal data, correlated
errors across time points can be investigated.

• Step 3: Random effects of level-1 covariates (i.e.,
random slopes) are added.

• Step 4: Fixed effects of level-2 covariates are added
as well as their random effects (i.e., random effects to
model level-2 heteroscedasticity).

• Step 5: A model with random effects and fixed effects
of other covariates is selected based on goodness-of-fit
criteria.

While building the model, we will keep track of outliers,
influential points, and normality at level 1 and level 2,
mostly through diagnostic plots and in some cases by using
diagnostic measures we will introduce.

We suggest the following strategies, while going through
the consecutive steps:

• From Step 2 to Step 4, outliers, influential points, and
normality will be assessed to determine whether fixed
and random effects of the model need to be included in
the model.

• Outlying observations or clusters will not be removed
before Step 4, because the outlying nature of an
observation or cluster may change during the model
building process. However, because outliers may have
consequences for further steps, we will return to earlier
steps after removing outliers.
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• Non-normality will also be followed up in each step
without making definite assessments until Step 4 is
reached.

Illustrative data sets

Wewill use two empirical data sets in the following sections:
a two-level cross-sectional data set and a two-level longitu-
dinal data set, to illustrate level-specific diagnostic plots.

Example 1: two-level cross-sectional data (Math
data)

A two-level cross-sectional data set was chosen from
a popular MLM textbook (Kreft & de Leeuw, 1998;
see pp. 58–60 for data description). It can be freely
downloaded from http://www.bristol.ac.uk/cmm/learning/
mmsoftware/data-rev.html. The dataset includes 519 stu-
dents (level 1) nested within 23 schools (level 2) and an
average cluster size of approximately 23. ICC was .243 (=
26.124/(26.124+81.244)), based on the unconditional ran-
dom intercept model, which indicates that 24.3% of the total
variation in math scores was explained by between-school
variation. Rights (2019) considered the parents’ highest
level of education (i.e., level-1 covariate x

(1)
ij ) to predict

math scores. As in Rights (2019), a goal of analysis in
this paper is to predict math scores from parents’ highest
level of education (called parentHED hereafter as a pri-
mary covariate; ranging from 1 to 6). Rights (2019) applied
MLMs to the same dataset using random intercepts, random
slopes, and a random effect for level-2 heteroscedasticity.
As in Rights (2019), we consider the school-mean-centered
parent education as a level-2 covariate (x(2)

.j ) and deviations
of parent education from the level-2 covariate as a level-
1 covariate (x(1)

ij − x
(2)
.j ) for an unconflated random slope

and level-2 heteroscedasticity. In addition to parentHED
as a primary covariate, level-1 covariates include socio-
economic status of parents (ses), the number of hours of
homework done per week (homework; ranging from 0 to
6), and a student ethnicity covariate (white; 1=white and
0=non-white) as level-1 control covariates. Additional level-
2 covariates include education sector (public; 1=public
and 0=private), the percentage of ethnic minority students
in the school (percmin), and class size measured by the
student-teacher ratio (ratio) as level-2 control covariates.

Example 2: Two-level longitudinal data (Hamilton
depression [HD] data)

A longitudinal psychiatric data set was chosen, and the
data set has been used to illustrate the application of MLM

to longitudinal data (Hedeker, 2004). The data set can
be freely downloaded from https://stats.idre.ucla.edu/r/
examples/alda/r-applied-longitudinal-data-analysis-ch-7/.
The data set is originally from a study described in Reisby
et al. (1977). Reisby et al. (1977) investigated the longitudi-
nal relationship between imipramine (commonly prescribed
for the treatment of major depression) and desipramine
plasma levels. The study included responses of the Hamil-
ton depression (HD) rating scale (Hamilton, 1960) from
66 depressed inpatients. Lower HD scores indicate lower
degrees of depression. Among the 66 depressed inpatients,
29 were diagnosed with a nonendogenous depression asso-
ciated with tragic life events and 37 were diagnosed with
an endogenous depression not associated with any specific
event. This nonendogenous vs. endogenous group variable
(Endog) is considered a level-2 covariate.

In the study of Reisby et al. (1977), patients received
225-mg/day doses of imipramine for four weeks, following
1 week with a placebo: week 0 (start of placebo week),
week 1 (end of placebo week), week 2 (end of first drug
treatment week), week 3 (end of second drug treatment
week), week 4 (end of third drug treatment week), and
week 5 (end of fourth drug treatment week). Patients were
rated with the HD rating scale twice at week 0 (at the start
and end of week 0) and at the end of each week during
the four treatment weeks. In this longitudinal example, the
level-1 covariate Week is a primary covariate and the level-
2 covariate Endog is a control covariate. Forty-six of the
66 patients completed all responses at all time points, and
the number of patients with complete responses at each
week varied: 61 at week 0, 63 at week 1, 65 at week 2,
65 at week 3, 63 at week 4, and 58 at week 5. Patients
with missing HD scores were omitted prior to analysis and
only complete data were used. ICC due to clusters (i.e.,
patients) was 0.268 (= 13.929/(13.929 + 37.957)), based
on an unconditional random intercept model (i.e., a random
intercept model without any covariates). This indicates that
26.8% of repeated measures is explained by between-patient
variation.

Level-specific residuals

A residual is defined as the difference between the
observed value of the outcome variable and the fitted (or
predicted) value: Residual = Observed - Fitted Value (or
Predicted Value). A zero residual means that the selected
model explains or predicts the observation exactly and
non-zero residuals indicate model-data misfit. For MLM,
residuals can be specified at each level of the multilevel
data. Below, we describe various kinds of level-specific
residuals.
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Level-1 residuals

Ordinary least squares (OLS) regression for each cluster
separately has been recommended for the analysis of level-1
residuals by Hilden-Minton (1995). In fitting separate OLS
regression, random effects (random slopes) are treated as
fixed effects so that the level-1 residuals can be inspected
without being confounded by random effects and their
underlying assumptions.

For the case in which one does not use OLS for
each cluster, Hilden-Minton (1995) and Verbeke and
Molenberghs (2000, pp. 151–152) defined two kinds of
residuals in LMM:

• Conditional residuals: Conditional residuals are dis-
crepancies between the observed and fitted values, and
they indicate how much the observed values deviate
from the predicted regression line for a cluster j

ε̃C.j = yj − E(yj |b̃j ) = yj − Xj β̂ − Zj b̃j

Conditional residuals are obtained by conditioning on
the random effects.

• Marginal residuals: Marginal residuals measure how
a specific profile deviates from the estimated overall
population mean, which means conditioning on the
fixed effects only
ε̃M .j = yj − E(yj ) = yj − Xj β̂ = Zj b̃j + ε̃j

The marginal residuals include both the random effects
and level-1 errors.

Hilden-Minton (1995) considers a residual to be con-
founded when it depends on errors other than the one that it
is supposed to predict. Following this view, predicted con-
ditional residuals (ε̃C.j ) are confounded because the condi-
tional residuals are co-determined by the predicted random
effects (b̃j ) which themselves may deviate from the true
random effects. That is, if the predicted random effects (b̃j )
do not follow a normal distribution, the predicted condi-
tional residuals (ε̃C.j ) may not follow a normal distribution
even when the conditional residuals (εC.j ) follow a normal
distribution.

Residuals, whether conditional or marginal, can be raw
residuals or transformed residuals. Based on all these
distinctions, the following six types of residuals can be
considered:

• Raw residuals

– Conditional residuals: ε̃C.j

– Marginal residuals: ε̃M .j

• Standardized (or Pearson or internally studentized)
residuals: Scaling is implemented by using the esti-
mated standard deviation of the corresponding residuals
(̂σ ).

– Conditional residuals:
ε̃C.j
σ̂

– Marginal residuals:
ε̃M .j
σ̂

• Independent residuals4: For LMM with correlations
between residuals (level-1 error in longitudinal data),
orthogonalization is suggested to obtain approximately
independent residuals when the within-individual
variance-covariance model can describe the level-1
error adequately (e.g., Galecki & Burzykowski, 2013,
pp. 265–266). We assume that R̂j (the estimated cor-
relation of the residuals) is an adequate description
of the level-1 error. An adequate description is nec-
essary to yield independent residuals (e.g., Galecki &
Burzykowski, 2013, pp. 265–266).

– Independent conditional residuals: The inde-
pendent residuals can be calculated based on
the Cholesky decomposition of the estimate of
the residual variance-covariance matrix σ 2Rj

(Pinheiro & Bates 2000, p. 239). They can be
calculated as ε̃∗

C.j = (̂σ ÛC.j )
−1ε̃C.j , where

Û ′
C.j ÛC.j = R̂j .

– Independent marginal residuals: The indepen-
dent residuals can be calculated based on
the Cholesky decomposition of the estimate
of the marginal variance-covariance matrix
σ 2Vj (Schabenberger, 2004). They can be cal-
culated as ε̃∗

M .j = (̂σ ÛM .j )
−1ε̃M .j , where

Û ′
M .j ÛM .j = V̂j .

Standardization does not change the shape of the distri-
bution (which is not necessarily normal), but the mean is
transformed to a value of 0 and the standard deviation is
transformed to a value of 1. We recommend using standard-
ized residuals over unstandardized residuals because they
are independent of the scale of the observations and are
therefore easier to interpret.

For uncorrelated level-1 error models (e.g., the cross-
sectional example data set), conditional standardized
residuals are the same as conditional independent residuals,
and marginal standardized residuals are the same as
marginal independent residuals. For longitudinal data (e.g.,
the second example data set), level-1 errors are likely
correlated because repeated measures are from the same
individuals. For correlated level-1 error models mainly
in longitudinal data analysis, standardized residuals are
different from independent residuals. Because standard
regression diagnostics are for independent residuals, we
recommend using independent residuals for the correlated
level-1 error models.

4In the statistics literature, independent residuals are also known
as transformed or normalized residuals (e.g., Galecki and
Burzykowski, 2013).
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Random effects as level-2 residuals

The intercepts and slopes of level-1 covariates can vary
across the clusters at level 2. These random coefficients
are modeled as level-2 random effects and are considered
level-2 residuals (e.g., Longford, 1993, pp. 60–61). The
random effects (e.g., b̃j = [b̃0j , b̃1j ]′, where b̃0j is the
predicted random intercept and b̃1j is the predicted random
slope) reflect how much specific profiles deviate from
the population average profile (or discrepancies between
expected values based on level-1 fixed effects and fitted
values), b̃j = E(yj |b̃j , β̂) − E(yj |̂β).

The following kinds of level-2 residuals have been used:

• Empirical Bayes (EB) residuals: There are two main
prediction methods for the random effects b (Snijders
& Berkhof, 2007). The OLS method, which treats b
as fixed effects, and the EB method, which estimates
b as a conditional expectation given the data (yj ) and
parameter estimates (β̂). The relation between the level-

2 predicted data (ỹj =
∑

i ỹij

nj
, where ỹij is the level-1

predicted data and nj is the number of individuals for a

cluster j ) and EB residuals is b̃j = nj σ 2
b

(nj σ 2
b +σ 2)

ỹj , where

σ 2
b is a variance of a random effect and σ 2 is a residual

variance. The b̃j are called shrunken residuals because
the EB (b̃j ) is shrunken with decreasing nj (Goldstein,
2003, p. 22).

• Standardized EB residuals: Snijders and Berkhof
(2007) define the standardized level-2 residuals as
b̃

′
Cov(b̃)−1b̃, where Cov(b̃) is the marginal sampling

variance-covariance matrix.

What patterns in residuals indicate a goodmodel?

For a model to be considered adequate, the following
patterns should be observed in the level-specific residuals
and a scatter plot of the residuals vs. fitted values:

• There should be no systematic trend in residuals.
• No more than approximately 5% of standardized

residuals should have magnitudes greater than 1.96
(assuming that standardized residuals follow a standard
normal distribution for a large sample size).

• The residuals should be randomly scattered around
zero.

• The level-specific residuals should be normally dis-
tributed.

• The level-1 residuals (independent residuals for corre-
lated level-1 error models in longitudinal data) should
be independent of one another and independent of the
fitted (predicted) values, E(yj ; β̂, b̃j ).

Review of level-specific residuals in LMM andMLM
literature

We reviewed 13 texts, handbooks, edited books, and book
chapters in LMM and MLM literature to survey current
practices of inspecting level-specific residuals. Table 2
presents a summary.5 As shown in Table 2, for level-1 resid-
uals, conditional and marginal raw residuals, conditional
standardized residuals, and conditional independent resid-
uals have all been used in the LMM literature. However,
in the MLM literature, only conditional raw and standard-
ized residuals have been used. As also shown in Table 2
for random effects, unstandardized EB has been used in the
LMM literature, and unstandardized and standardized EB
have been used in the MLM literature.

Diagnostic measures, diagnostic plots,
and statistical tests

In this section, we present diagnostic measures to select a
set of random effects in model-building steps, level-specific
diagnostic plots based on literature reviews, and statistical
tests for patterns in the diagnostic plots.

Diagnostic measures

As a measure of difference between observed data and
model predicted values (i.e., absolute fit), the root mean
squared error (RMSE) is considered:

RMSE =
√∑

i

∑
j (dataij − fittedij )2

N
, (10)

where fitted values (E(yj ; β̂, b̃)) are calculated based on
the parameter estimates and predicted random effects from
a selected model and N is the total sample size (calculated
as N = njJ = nJ for a balanced design and N = ∑J

j=1 nj

for an unbalanced design). The RMSE is interpreted as the
standard deviation of the part of the data unexplained by
a model, (dataij − fittedij ). The normalized RMSE is the
proportion of the RMSE related to the range of the outcome
variable. Lower values of normalized RMSE indicate better
model-data fit. Because it is easier to interpret, we suggest
using the normalized RMSE to find an optimal set of fixed
effects and to present a model-data fit measure for the
selected model. The normalized RMSE can be obtained

5Although we mainly use the term of MLM instead of LMM
throughout this paper, we divide the literature into MLM and LMM
as far as inspecting residuals is concerned because MLM literature
presents practices of inspecting level-specific residuals in the context
of the social and behavioral sciences whereas LMM presents them in
the context of statistics.
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using the rmse(., normalized = TRUE) function
from the performance package in R (Lüdecke, 2020).

In addition to the RMSE for the unexplained variance
across the whole data set, we propose two measures
for the level-1 unexplained variability and for exploring
variability across clusters. They are based on the conditional
(standardized) residuals per cluster:

• The median within-cluster semi-interquartile range
of the residuals (median SIQR) across clusters. The
smaller the median is, the better the model captures
level-1 variability in the data.

• The SIQR of the within-cluster SIQRs (SIQR(SIQR))
across clusters. The smaller the SIQR(SIQR) is, the
smaller the heteroscedasticity is.
The median SIQR represents the unexplained variabil-
ity within clusters and is robust against outliers, while
the SIQR(SIQR) is a measure of heteroscedasticity and
is robust against outlying within-cluster unexplained
variability. The median and SIQR are used because they
are less sensitive to outliers than the mean and standard
deviation (SD).

Fixed effects of level-1 covariates are the major explanatory
factors of within-cluster variation. However, when the
linearity of the effects of level-1 covariates is violated,
one can further reduce the variation of the residuals
by adjusting for the effects for non-linear components.
Thus, a substantial reduction of the median SIQR is a
useful index for the inclusion of fixed effects of level-1
covariates and for investigating any non-linearity of such
effects.

Random effects of level-1 covariates (i.e., random slopes)
are an explanatory factor of differences in the variance
within clusters (i.e., level-1 heteroscedasticity). A steeper
slope can explain why a within-cluster variance is larger.
If a covariate has a steeper slope in a cluster, the covariate
has a stronger effect in that cluster, which implies more
variation in the outcome variable (unless compensated
by a smaller variation of the covariate). Random effects
of level-2 covariates can explain differences in between-
cluster variance (i.e., level-2 heteroscedasticity). Therefore,
a substantial reduction of the SIQR(SIQR) is a useful index
for the inclusion of random effects for level-1 and level-2
heteroscedasticity.

In addition to the median SIQR of the conditional
(standardized) residuals per cluster, median SIQR can be
calculated based on outcome variables to explore variability
in the outcome variable. RMSE is a global measure obtained
from various sources of variation, and therefore may be
less sensitive to one specific source of variation. However,
RMSE, which is calculated based on the variance of (data
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- fitted) may be oversensitive to outliers, whereas SIQR-
based measures obtained with median and interquartile
range are not. Therefore, we recommend the joint use of all
three: RMSE, median SIQR, and SIQR(SIQR).

Diagnostic plots

Below, different kinds of diagnostic plots are discussed and
organized by the model-building steps we introduced earlier.
For each kind of diagnosis, we included reviews of the
use of diagnostic plots in the LMM and MLM literature,
summarized in Tables 3 and 4, respectively. Based on
the literature reviews, commonly used diagnostic plots are
selected in the model-building steps (Step 1 to Step 4). We
will explain which residuals are most appropriate for each
diagnostic plot when selecting random effects and which
model assumptions can be checked. We use the Math data
to illustrate diagnostic plots in each of the model-building
steps (Step 0 to Step 4), except for a diagnostic plot of level-
1 errors which is only used for the longitudinal data. For
this diagnostic plot of the level-1 error, the HD data were
used for illustration. In this section we present the different
kinds of plots without making any model selection decisions
for the Math data. As mentioned earlier, checking level-
specific outliers, influential points, and normality can be
implemented in Step 2 to Step 4 (which will be illustrated
in the subsequent section.) However, we will wait with
diagnostic plots for checking outliers, influential points, and
normality until after other plots are presented from Step 0 to
Step 4.

Diagnostic plots in Step 0: A preliminary descriptive analysis
without anymodeling In Step 0, we consider two plots: (a)
a scatter plot of an outcome variable vs. a primary covariate
(related to a research question) and (b) a scatter plot of an
outcome variable vs. median SIQR to explore variability in
the outcome variable across clusters.

A main research question for the Math data is the
relationship between the math scores and the parents’
highest level of education (parentHED). Thus, the scatter
plot of the math scores vs. parentHED is considered.
As shown in Fig. 1 (Step 0 (a)), there appears to be an
approximately linear relationship between the math scores
and parentHED. To explore variability across clusters
(i.e., schools) in the math scores, SIQR of the conditional
standardized residuals was calculated for each of the
clusters, and a scatter plot of the math scores vs. SIQR was
made.6 As presented in Fig. 1 (Step 0 (b)), the SIQR varies
with the math score, suggesting that the variability of math

6Because there are 23 schools in the Math data, there are 23 SIQR
scores. The points represent the math scores of the individual students
from the cluster with a SIQR value indicated on the x-axis.

scores should be modeled as a function of the level of math
scores in a cluster.

Diagnostic plots in Step 1: Random intercept for the clusters
To investigate the necessity of including a random intercept,
box plots of conditional raw residuals have been considered
by Pinheiro and Bates (2000, p. 138). In the box plots,
we suggest using conditional standardized residuals to
aid interpretability of the scale because the estimated
standard deviation can be different depending on the
scale of the covariates. Grouping of residuals by cluster
can be indicative of a random intercept because they
indicate between-cluster differences and thus within-cluster
dependency.

Using the Math data, the following two models with and
without a random intercept were fit:

yij = β0 + εij (11)

and

yij = β0 + b0j + εij . (12)

Standardized residuals of the null model (11) and condi-
tional standardized residuals of the random intercept model
(12) were calculated. In Fig. 1 (Step 1 (a)), the residuals for
the same cluster tend to have the same sign, showing depen-
dency within clusters. After including a random intercept,
the mean of the residuals for clusters tends to be closer to 0
(presented by the horizontal line in Step 1 (b) of Fig. 1) than
before. As a way to quantify dependency in outcomes due to
clusters, the ICC was also calculated using the random inter-
cept model. The ICC value of .243 confirms the dependency
and validates the inclusion of a random intercept.

Diagnostic plots in Step 2: Fixed effects of level-1 covari-
ates. When the level-1 covariates are added to the random
intercept model, level-1 linearity and level-1 heteroscedas-
ticity can be explored using diagnostic plots. We checked
the linearity of level-1 covariate effects prior to investigating
heteroscedasticity to meet the assumption that the expected
value of the residuals was 0 (Snijders & Berkhof, 2007, pp.
148–149). If the assumption is not valid, the interpretation
of heteroscedasticity may be incorrect.

Level-1 linearity A scatter plot of level-1 residuals vs. level-
1 covariate is commonly used to explore the level-1 linear-
ity. The level-1 covariate has been plotted against different
kinds of the level-1 residuals in the literature: marginal
unstandardized (raw) residuals (Galecki & Burzykowski,
2013), conditional unstandardized residuals (Snijders &
Berkhof, 2007; Snijders & Bosker, 1999), and conditional
or marginal residuals (O’Connell et al., 2016).7 We recom-
mend using standardized residuals to aid interpretability of

7O’Connell et al. (2016) did not mention whether standardized or
unstandardized residuals were used.
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Fig. 1 Diagnostic plots for random effects selection in model-building steps
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the scale. In addition, we suggest using marginal level-1
residuals instead of conditional level-1 residuals because the
marginal level-1 residuals include all sources of variability
(random effects and level-1 errors) for the relation between
the level-1 covariate and outcomes (note that the marginal
level-1 residuals are residuals obtained after only remov-
ing the fixed effects rather than after removing the random
effects as well) (Santos Nobre & da Motta Singer, 2007).
When the assumption of level-1 linearity holds, the average
of the marginal standardized level-1 residuals is close to 0
and no systematic patterns in the residuals are found.

For parentHED (x(1)
ij ) as a continuous covariate in

Math data, level-1 linearity was investigated based on
standardized marginal residuals for a model with a random
intercept and a linear level-1 covariate (x(1)

ij − x
(2)
.j ) effect:

yij = β0 + β1(x
(1)
ij − x

(2)
.j ) + b0j + εij . (13)

Marginal standardized residuals were calculated and plotted
against the level-1 covariate. As shown in Fig. 1 (Step 2 (a)),
it appears that there was a slight cubic polynomial pattern
(which will be tested using statistical tests in the illustration
section).

Level-1 heteroscedasticity The most commonly used plot
to explore level-1 heteroscedasticity is a scatter plot of
residuals vs. fitted values (E(yj ; β̂, b̃)). Examples include
conditional unstandardized (raw) residuals vs. fitted values
(Faraway, 2016) and conditional standardized residuals
vs. fitted values (Hox et al., 2018; Goldstein, 2003;
Pinheiro & Bates, 2000).We recommend using standardized
residuals for interpretability. In addition, we recommend
using conditional level-1 residuals because they include
only the unexplained variance and level-1 heteroscedasticity
would show as unexplained variance. To check for level-
1 heteroscedasticity, we explore whether the average of
the conditional standardized level-1 residuals is close to 0
(E(ε̃C.j /σ̂ ) = 0) and whether there is a constant variance
across clusters (V ar(ε̃C.j /σ̂ ) = σ 2).

Using the Math data, conditional standardized residuals
were calculated based on the random intercept model with
a level-1 covariate (13). Fig. 1 (Step 2 (b)) presents possible
level-1 heteroscedasticity. In the figure, the means of the
conditional standardized residuals appear to be close to
0. However, the variance of the conditional standardized
residuals looks different across the range of fitted values.

Level-1 error for longitudinal data For longitudinal data,
AR and MA can be explored using an autocorrelation
function of the conditional standardized residuals from a
fitted model (Pinheiro & Bates, 2000, p. 2428). Use of the

8Pinheiro and Bates (2000, p. 245) also presented an autocorrelation
function of the conditional independent residuals to assess the
adequacy of a model with the level-1 error.

marginal residuals was advocated by Lesaffre and Verbeke
(1998) to investigate a within-person variance-covariance
matrix (V ar(yj ) = σ 2Vj = σ 2ZjDZ′

j + σ 2Rj [where D

is the variance-covariance matrix of random effects, bj ]).
We also recommend using marginal residuals because they
include the random effects necessary to investigate whether
the assumed covariance structure of the data (V ar(yj ))
does indeed fit the data. In addition, we suggest using
standardized residuals for interpretability. Autocorrelations
will be non-zero only in the presence of MA in the
autocorrelation function (e.g., Chatfield, 2004). Fig. 1 (Step
2 (c)) presents the autocorrelation function of the marginal
standardized residuals using the HD data.

A model can be selected among candidate models
with differing Cj in Eq. 4 based on model selection
methods, the Akaike information criterion (AIC, Akaike,
1974) and the Bayesian information criterion (BIC,
Schwarz, 1978). When the correlated level-1 error model is
selected, conditional or marginal independent residuals are
recommended in the following steps to have approximately
independent residuals, as residuals corrected for correlated
level-1 errors. For example, after modeling the level-1
error regarding AR and MA, we recommend presenting
an autocorrelation function of the marginal independent
residuals to check whether there are noticeable patterns in
the plot.

Diagnostic plot in Step 3: Random effects of level-1 covari-
ates (i.e., random slopes) are added The most common
diagnostic plot to explore random slopes is OLS regression
coefficients per cluster (Hox et al., 2018; Kreft & de Leeuw,
1998; Pinheiro & Bates, 2000; Raudenbush & Bryk, 2002;
Snijders & Berkhof, 2007). In the plot, cluster-to-cluster
variability in the OLS intercepts across clusters is indicative
of a random intercept and cluster-to-cluster variability in the
OLS slope of a level-1 covariate across clusters is indica-
tive of a random slope. Figure 1 (Step 3 (a)) shows 23 OLS
regression lines (one for each school) in Math data, which
suggests that the slope (and intercept) differs across schools.

Diagnostic plots in Step 4: Fixed effects of level-2 covariates
are added In Step 4, the potential inclusion of level-2
covariates, level-2 linearity, and level-2 heteroscedasticity
can be explored. In all plots listed below, standardized EB
residuals are recommended for interpretability.

Potential inclusion of level-2 covariate A scatter plot of
unstandardized EB of random slope vs. a potential level-
2 covariate (which is not included in the model yet) has
been used to identify the functional form of the relationship
between the potential level-2 covariate and the variable
of interest (Raudenbush & Bryk, 2002, p. 269; Snijders
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& Berkhof, 2007, p. 133). Systematic patterns in the plot
support the inclusion of the level-2 covariate in the model.

To illustrate this scatter plot, standardized EB of random
slope was calculated based on the following model for the
Math data with the cluster-mean-centered parentHED as
the level-1 covariate:

yij = β0+β1(x
(1)
ij −x

(2)
.j )+b0j +b1j (x

(1)
ij −x

(2)
.j )+εij . (14)

Standardized EB of the random slope was plotted against
the potential level-2 covariate, x

(2)
·j (the cluster mean of

parentHED), as shown in Fig. 1 (Step 4 (a)). In the figure,
the standardized EBs tended to be large in the middle range
of x

(2)
.j , which may support the inclusion of x

(2)
.j .

Level-2 linearity A scatter plot of unstandardized EB of
random slope vs. level-2 covariates has been used to check
the adequacy of the structure of those level-2 covariates
(Raudenbush & Bryk, 2002, pp. 269–270). When the linear
relationship between a level-2 covariate and the slope holds,
the EB of the level-2 random slope should be randomly
dispersed around 0 along the full range of the level-2
covariate.

To illustrate this scatter plot, standardized EB of random
slope was calculated based on the following model:

yij =β0+β1(x
(1)
ij −x

(2)
.j )+β2x

(2)
.j +b0j+b1j (x

(1)
ij −x

(2)
.j )+εij .

(15)

The standardized EB of the random slope was plotted
against the included level-2 covariate, x

(2)
.j . As shown in

Fig. 1 (Step 4 (b)), the standardized EB does not seems to
be random around 0, which may indicate that the level-2
linearity assumption may not hold.

Level-2 heteroscedasticity A scatter plot of unstandardized
EB of the random intercept (i.e., the level-2 residuals) vs.
the level-2 covariate has been used to investigate the level-
2 heteroscedasticity (Rights, 2019; Pinheiro & Bates, 2000,
p. 189). In the plot, level-2 heteroscedasticity is checked
by exploring whether the between-group variance depends
on the level-2 covariate. Differences in the variance as a
function of the level-2 covariate indicates heteroscedasticity.
Standardized EB of the random intercept was calculated
based on Eq. 15. In Fig. 1 (Step 4 (c)), it can be
observed that variability differed depending on the level
of the level-2 covariate, indicating the existence of level-2
heteroscedasticity.

For the following plots illustrating level-specific outliers,
influence points, and normality, level-1 residuals and
standardized EB were calculated based on a random
intercept model (Equation 12) using Math data:

Diagnostic plots for outliers There are two categories of
outlier detection methods for LMM. The first category

is a set of univariate outlier detection methods such as
detection based on z-scores of the outcome variable and the
IQR at each level of multilevel data. The second category
is a multivariate method such as Mahalanobis distance
(Mahalanobis, 1936). As reviewed in Table 5, Mahalanobis
distance has mostly been used at level 2. In this paper, we
use the univariate outlier detection method because of its
simple calculation using level-specific residuals.

Level-1 outliers The following plots can be used to detect
outliers at level 1: (a) residuals vs. fitted values based on
a selected model (e.g., O’Connell et al., 2016) and (b) box
plot of conditional unstandardized residuals. For the plots
(a) and (b), we recommend using conditional standardized
residuals for uncorrelated level-1 error models and using
conditional independent residuals for correlated level-1
error models (in longitudinal data). In plot (a), dispersed
points in the plot can be identified as outliers. In plot (b),
outliers can be detected based on the IQR. For the Math
data, level-1 outliers were not detected as shown in Fig. 2
(outlier, Level 1) because there were no points outside of the
whiskers.

Level-2 outliers The following plots can be used to
detect outliers at level 2: (a) A normal probability plot
of unstandardized EB for random effects (Galecki &
Burzykowski, 2013, p. 344; Longford, 1993). In the normal
probability plot, the data are plotted against a theoretical
normal distribution. In the plot, clusters which deviate
from the straight line indicate outliers. Similar to the
boxplots used for level-1 outlier detection, (b) box plots of
standardized EB can also be used to detect Level-2 outliers.
In the box plot, outliers can be detected for clusters outside
of the whiskers. Again, we recommend using standardized
EB for interpretability of the plots (a) and (b). For the Math
data, there was one cluster at the lower end which deviates
extremely from the straight line in the normal probability
plot as shown in Fig. 2 (outlier, Level 2 (a)). In addition,
the same cluster was outside of the whiskers in the box plot,
Fig. 2 (outlier, Level 2 (b)).

Diagnostic plots for influential points The Cook’s distance
for each observation (Cook, 1977) is often calculated
to detect influential data points. Cook’s distance of
an observation is defined as the squared standardized
difference between the estimates obtained with and without
the observation in question, with large values suggesting
possible influential data points. Demidenko and Stukel
(2005) presented a Cook’s distance for LMM.

Level-1 influential points The influence of an observation
on parameter estimates is examined by leaving out each
level-1 observation in turn and by recomputing parameter
estimates. Because Cook’s distance is in the metric of
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Fig. 2 Diagnostic plots for outliers, influential points, and normality checks

an F(p, N − p) distribution (where p is the number of
regression parameters excluding the intercept and N is the
number of observations), the median point, F0.5(p, N − p),
is used as a cut-off value to detect influential points (e.g.,
Bollen & Jackman, 1990). As another cut-off value, level-1
observations can be considered as highly influential points
when the level-1 Cook’s distance is larger than 1 for a large

sample size (Cook & Weisberg, 1982). In this study, we use
the cut-off value of 1 for the level-1 Cook’s distance because
the number of observations is often large in multilevel data.
For the Math data, there were no influential points at level
1 because there were no points with a Cook’s distance larger
than the cut-off value of 1 (see Fig. 2 [influ. points, Level 1
(a)]).
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Level-2 influential points At level 2, the influence of a
cluster on parameter estimates is examined by leaving
out each cluster in turn and by recomputing parameter
estimates. To our knowledge, a theoretical justification
of a cut-off value has not been proposed for the level-2
Cook’s distance. In practice, a cut-off value of 4 divided
by the number of clusters has been used to identify level-
1 influence points if the sample size is not very large (e.g.,
4059 individuals in Loy & Hofmann, 2014). We also use
the cut-off value of 4 divided by the number of clusters. For
the Math data, there were two influential points at level 2
(clusters), based on a cut-off value of .17 (= 4/23) (see
Fig. 2 [influ. points, Level 2 (a)]).

Diagnostic plots for normality

Level-1 normality The following approaches have been
used to check normality of level-1 residuals: (a) normal
probability plots for various types of residuals such as con-
ditional unstandardized residuals (Faraway, 2016; Pinheiro
& Bates, 2000), unstandardized EB conditional residuals
(Longford, 1993), conditional standardized residuals (Finch
et al., 2014; Galecki & Burzykowski, 2013; Goldstein,
2003; Hox et al., 2018; Snijders & Bosker, 1999), and
conditional independent residuals (Galecki & Burzykowski,
2013); (b) a scatter plot of conditional standardized resid-
uals vs. level-1 covariate by group with a limited number
of categories (Galecki & Burzykowski, 2013, p. 231); and
(c) histograms overlaid with a curve based on conditional
standardized residuals (Finch et al., 2014), conditional
unstandardized residuals (Longford, 1993) and conditional
or marginal standardized residuals (O’Connell et al., 2016).
The normal probability plot (plot (a)) is created with an
independent residual assumption. Thus, for level-1 corre-
lated errors, we recommend using conditional independent
level-1 residuals to obtain approximately independent resid-
uals for the normal probability plot. However, it is not nec-
essary to use the independent residuals for plots (b) and (c)
because of their descriptive purpose. In the plots (b) and (c),
standardized residuals are recommended for interpretabil-
ity. For level-1 uncorrelated errors, standardized residuals
are the same as independent residuals. Conditional residuals
can be used in all three kinds of plots, and they are preferred
over marginal residuals because in the conditional residuals
both fixed and random effects of the model are accounted
for. In the plot (a), straight lines indicate normality. In the
plot (b), the normality assumption seems reasonable when
there are no conditional standardized residuals (presented
on the y-axis) smaller than the 1st percentile of the stan-
dard normal distribution (−2.33) or larger than the 99th
percentile of the standard normal distribution (2.33) for a
level-1 covariate (on the x-axis) by groups. In the plot (c),

normality can be assumed when the shape of the distri-
bution in the histogram looks like the overlaid normal (or
bell-shape) distribution.

The plots (a) and (c) are illustrated using the Math data.
The plot (b) is not applicable to the data because there
are too many levels of the level-1 covariate. As shown in
Fig. 2 (normality, Level 1), small deviations from normality
were observed in the middle and toward the ends of the
distributions of the conditional standardized residuals.

Level-2 normality The following plots have been used
for checking normality of random effects: (a) normal
probability plots of unstandardized EB (Faraway, 2016;
Galecki & Burzykowski, 2013; Goldstein, 2003; Longford,
1993; Pinheiro & Bates, 2000; Snijders & Bosker, 1999) or
standardized EB residuals (Snijders & Berkhof, 2007) and
(b) histograms of unstandardized EB residuals (O’Connell
et al., 2016; Verbeke & Molenberghs, 2000). Mainly
unstandardized EB has been used in the plots, except in
one case where a normal probability plot of standardized
EB is used in Snijders and Berkhof (2007). We recommend
using standardized EB for interpretability. For the Math
data, deviations from normality were observed at the ends of
distributions of the standardized EB in both plots, as shown
in Fig. 2 (normality, Level 2).

Statistical tests

Interpreting patterns in diagnostic plots is subjective in
nature. Thus, in this subsection, we provide statistical tests
for a more objective interpretation.

Testing for randomness in residuals Bartels (1982) pro-
posed a rank version of the von Neumann’s (1941) ratio test
to test the null hypothesis that there is randomness in data
against the alternative hypothesis that there is trend in the
data. Bartels ratio test statistic is defined as

T =
∑I−1

i=1 (r[i] − r[i + 1])2∑I
i=1(r[i] − r̄)2

, (16)

where i is an index for level-1 observations (i = 1, . . . , I ),
r[1], . . . , r[I ] are ranks of the level-1 residuals ε̃1, . . . , ε̃I

in the diagnostic plots, and r̄ is the average rank based on
the number of residuals, (I +1)/2. The Bartels ratio test can
be used to test whether there is trend in the residuals of a
selected model.

Testing for autocorrelations in residuals After modeling
level-1 correlated errors in longitudinal data, the Durbin-
Watson test (Durbin & Watson, 1950) can be used to test
the null hypothesis of independent level-1 residuals against
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first-order serially correlated errors. The Durbin-Watson test
statistic is defined as

DW =
∑I

i=2(ε̃i − ε̃i−1)
2

∑I
i=1 ε̃2i

, (17)

where ε̃i is a calculated residual based on data, parameter
estimates, and predicted random effects.

Testing for homogeneity of variance across groups There
are various tests to test the homogeneity of variance in
residuals across groups defined by one or more factors
as in an analysis of variance (ANOVA) (see Wang et al.,
2016 for reviews). In this study, Levene’s test (Levene
et al., 1960) was selected as a commonly used test in social
and behavioral sciences (e.g., SPSS software, which uses
Levene’s test as the default). Wang et al. (2016) showed
via simulation studies that the Levene’s test maintained
adequate Type I error rates and power in various conditions.
When the number of levels for the level-1 and level-2
covariates is small, Levene’s test can be used to test level-1
and level-2 homogeneity, respectively. In addition, Levene’s
test can be used to test whether the variance of residuals
differs across clusters to confirm the necessity of including
a random intercept.

Testing for smooth functions in the diagnostic plots
Smooth functions can be plotted to observe patterns in the
diagnostic plots, such as plotting level-1 (marginal stan-
dardized) residuals vs. level-1 covariate for testing level-1
linearity (Fig. 1 [Step 2 (a)]), level-1 (conditional stan-
dardized) residuals vs. fitted values for testing level-1 het-
eroscedasticity (Fig. 1 [Step 2 (b)]), standardized EB of
the random intercept vs. level-2 covariate for testing level-
2 linearity (Fig. 1 [Step 4 (b)]), and standardized EB of
the random slope vs. level-2 covariate for testing level-2
heteroscedasticity (Fig. 1 [Step 4 (c)]).

The univariate smooth function fh(x) of a covariate x is
a weighted sum of a set of basis functions defined over the
covariate x:

fh(x) =
K∑

k=1

γhkbhk(xh), (18)

where k is an index for a basis function (k = 1, . . . , K),
xh is a covariate for a smooth function h, γhk is a basis
coefficient, and bhk(x) is the kth basis function for smooth
function h. Because the fh(x) can be confounded with
the intercept, a model is estimated with an identification
constraint that the sum of the function fh over the observed
covariate values is 0 (i.e.,

∑
v fh(xhv) = 0 for each h with

v as a subscript for observations). For the univariate smooth
function (fh(x)), a cubic regression spline (CRS, Wood,
2017) and a thin plate regression spline (TPRS;Wood, 2017,

5.5.1) are commonly used splines that can be implemented
using the mgcv R package (Wood, 2019).

To test whether a smooth function fh(x) is distinguish-
able from zero, the following null hypothesis can be tested:
H0 : fh(x) = 0 for all x in the range of interest. A test
statistic for fh is

Tr = f̂′hV
−
fĥ
fh, (19)

where r is the rounded effective degrees of freedom (edf ) of
fh and V−

fh
is a rank r pseudo-inverse of Vfh

calculated
as XVγ X′ (where X are basis functions and Vγ is the
variance-covariance matrix for γ̂ ). Each f̂h is approximately
multivariate normal,

f̂h ∼ MV N(fh,Vfh
), (20)

where fh is the vector of fh(x) evaluated at the observed
covariate values. Under H0, the test statistic Tr follows a
Chi-square distribution (Tr ∼ χ2

r ) with r = edf (Wood,
2012). When H0 is rejected, one can conclude that there
is a pattern (linear or nonlinear) in the data or residuals.
The edf can be referred to when investigating whether
the relation between a covariate and the outcome (e.g.,
residuals) is linear or nonlinear (Wood, 2017). The higher
the edf , the wigglier the estimated smooth function is. An
edf of 1 indicates a linear effect of a covariate on the
outcome, an edf of 2 indicates an approximately quadratic
effect of a covariate on the outcome, and an edf of 3
indicates an approximately cubic effect of a covariate on
the outcome. Smooth functions have confidence intervals,
which are obtained by taking the quantiles from the
posterior distribution of the fh (Marra & Wood, 2012).

Normality The normality assumption of level-1 residuals
and univariate EB (in our case, EB of the random intercept)
can be tested using the Shapiro–Wilk normality test. When
a selected model includes more than one random effect
(e.g., random intercept and random slope), the multivariate
normality of the random effects can be tested. Amultivariate
normality test such as Mardia’s test can be considered to test
the multivariate normality assumption of the random effects
(e.g., see Farrell, Salibian-Barrera, & Naczk, 2007; von Eye
& Bogat, 2004, for the details of the test).

Illustration

In this section, uses of diagnostic plots based on level-
specific residuals, diagnostic measures, and statistical tests
of the patterns in the diagnostic plots are illustrated
in a model-building strategy using cross-sectional and
longitudinal empirical data sets. R code is provided for each
step in Appendix A.
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Example 1: Two-level cross-sectional data (Math
data)

Steps 0 and 1 (A Preliminary Descriptive Analysis and
Random Intercepts for the Clusters) and their results are
discussed and reported earlier (see the Diagnostic Plots
subsection). Below, Steps 2–5 are illustrated. Table 6
presents a summary of analyses and results.

Step 2. Fixed effects of the level-1 covariate of
interest

As mentioned earlier, a goal of analysis using the math
data set is to predict math scores from parents’ highest level
of education (parentHED). In Step 2, the fixed effect of
the level-1 covariate of interest, the cluster-mean-centered
parentHED (x(1)

ij − x
(2)
·j ), is added to create Model 1:

yij = β0 + b0j + β1(x
(1)
ij − x

(2)
·j ) + εij , (21)

where β1 is the fixed effect of the cluster-mean-centered
parentHED. The addition of the fixed effect of the level-1
covariate lowered the median SIQR from 0.790 in the Null
Model Random to 0.679 in Model 1. This result indicates
that Model 1 better captured the level-1 variability in the
data than Null Model Random.

Level-1 linearity Cluster-mean-centered parentHED was
plotted against the marginal standardized residuals obtained
from Model 1 to examine whether the relationship between
cluster-mean-centered parentHED and math scores is
strictly linear. As shown in Fig. 3 (Step 2 (a)), there is
a nonlinear relationship between the cluster-mean-centered
parentHED and the marginal standardized residuals at the
extreme values of the cluster-mean-centered parentHED,
indicating that (x

(1)
ij − x

(2)
·j ) may have a non-linear (square

and/or cubic) relationship with math scores. To test these
higher-degree effects of (x

(1)
ij − x

(2)
·j ) on math scores, an

alternative version of Model 1 including the square and
cubic effects of (x

(1)
ij − x

(2)
·j ) called Model 1a, was tested:

yij = β0j + b0j + β1(x
(1)
ij − x

(2)
·j ) + β2(x

(1)
ij − x

(2)
·j )2

+β3(x
(1)
ij − x

(2)
·j )3 + εij , (22)

where β1, β2, and β3 are the linear, square, and
cubic (respectively) fixed effects of the cluster-centered
parentHED. Neither of the higher order (square and cubic)
terms in Model 1a were found to be statistically significant,
having p values of .2397 and .4529, respectively. In
addition, a smooth curve fitted to predict marginal
standardized residuals of Model 1 as a function of cluster-
centered parentHED (using the mgcv package in R)
showed that a smooth curve is not needed (F = 1.627,
edf = 10.6, p value= .077). Based on these results,

linearity was assumed, and Model 1 was used instead of
Model 1a, with only the linear term for (x

(1)
ij − x

(2)
·j )

included.

Level-1 heteroscedasticity The fitted values of Model 1
were plotted against the conditional standardized residuals
to explore the level-1 heteroscedasticity, as presented
in Fig. 3 (Step 2 (b)). The conditional standardized
residuals were distributed around 0 along the continuum
of fitted values, meaning that homoscedasticity can be
assumed. In addition, a Levene’s test showed that the
conditional standardized residuals were not significantly
heteroscedastic (p value= .098).

Level-2 outliers If any level-1 or level-2 units are detected
during the model building process (up to Step 4) as being
both outlying and influential, these level-1 and/or level-2
units will be removed from the data, as they are expected
to influence the resulting parameter estimates in a way
that disagrees with the rest of the data (Hilden-Minton,
1995; Langford & Lewis, 1998). To detect level-2 outliers,
a normal Q-Q plot of the standardized EB of the intercept
for Model 1 was plotted against a theoretical normal
distribution in Fig. 3 (Step 2 (c)). The standardized EB
of the intercept were largely normal, with no standardized
EB falling outside of the 95% confidence bands. The
standardized EB of the intercept for all level-2 units ranged
from -1.665 to 2.253. Based on these results, no level-2 units
were considered to be outliers.

Level-2 influential points There were two level-2 influential
points, having Cook’s distances exceeding the cutoff of
0.1739 = 4/23 for a sample size of 23 schools, as shown in
Fig. 3 (Step 2 (d)).

Level-1 outliers To detect level-1 outliers, the fitted values
from Model 1 were plotted against the conditional
standardized residuals (see Fig. 3 [Step 2 (e)]). No
outliers were detected as having unusually high conditional
standardized residuals. The largest observed conditional
standardized residual was 2.751, which although large is not
unexpected given the large number of level-1 units (519).

Level-1 influential points No level-1 influential points were
detected, as no point had a Cook’s distance greater than the
cut-off value of 1 in Fig. 3 (Step 2 (f)). The highest Cook’s
distance detected was 0.0195.

Level-1 normality A normal Q-Q plot as presented in
Fig. 3 (Step 2 (g)) was generated to examine whether
the conditional standardized residuals of Model 1 were
normally distributed. The Q-Q plot shows that the
conditional standardized residuals were mostly normal, with
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Fig. 3 Diagnostic plots for random effects selection in the two-level cross-sectional data (Math data)

some deviations from normality in the lower extreme (with
conditional standardized residuals falling slightly outside
the 95% confidence bands). A Shapiro–Wilk test indicated
that conditional standardized residuals were significantly
non-normal (p value = .0022), which as shown in the

normal Q-Q plot above is due to deviances from normality
in the extreme observations. However, a histogram of
conditional standardized residuals of Model 1 overlaid a
normal curve shows that this deviance from normality is not
large (see Fig. 3 [Step 2 (h)]). To conclude, level-1 normality
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was assumed because, although the p value was small, the
deviance from normality was too small to give up on the
normality assumption.

Level-2 normality A normal Q-Q plot was generated to
examine whether the standardized EB of the intercept of
Model 1 were normally distributed, as presented in Fig. 3
(Step 2 (c)).

Step 3. Random effects of the level-1 covariate of
interest

In this step the random effect (i.e., random slope) of
the level-1 covariate (x(1)

ij − x
(2)
·j ), the cluster-mean-

centered parentHED, is added to the Null Model Random
(Equation 12) to create Model 2:

yij = β0+b0j +β1(x
(1)
ij −x

(2)
·j )+b1j (x

(1)
ij −x

(2)
·j )+εij , (23)

where b1j is the random slope of the cluster-mean-centered
parentHED. The addition of the random effect of the
level-1 covariate lowered the median SIQR from 0.679
in Model 1 to 0.627 in Model 2, but it increased the
SIQR(SIQR) from 0.121 in Model 1 to 0.143 in Model
2. These results indicate that Model 2 better captured the
level-1 variability in the data (by having a smaller median
SIQR), but was slightly more heteroscedastic (by having a
larger SIQR(SIQR)). The small difference in SIQR(SIQR)
is likely influenced by the small number of level-2 units, as
will be discussed in Step 5.

To show the variability in the effect of x
(1)
ij − x

(2)
·j

across schools, the ordinary least squares (OLS) regression
line predicting math scores with cluster-mean-centered
parentHEDwas plotted for each school, as shown in Fig. 3
(Step 3 (a)). Variability in intercepts across schools in this
plot is indicative of the need for a random intercept (b0j ),
whereas variability in slopes across schools in this plot is
indicative of the need for the random slope (b1j ).

Level-1 heteroscedasticity and level-specific outliers, influ-
ential points, and normality As in Step 2, level-1 het-
eroscedasticity, level-1 and level-2 outliers and influential
points, and level-1 normality were checked by examining
the conditional standardized residuals and standardized EB
of the intercept of Model 2. In addition, level-2 normality
and multivariate normality were checked by examining the
standardized EB of the intercept and slope of Model 2.

The conditional standardized residuals of Model 2
were distributed around 0 along the continuum of fitted
values, indicative of level-1 homoscedasticity. This was
further supported by a Levene’s test showing that the
conditional standardized residuals were not significantly
heteroscedastic (p value = .139). One level-1 outlier
was detected with a conditional standardized residual of

2.797, though no level-1 units (including this outlier) were
influential, with a maximum Cook’s distance of 0.0229.
One influential level-2 unit was detected with a Cook’s
distance of 0.237 (> 0.174), though no level-2 outliers
were detected, with all standardized EB of the intercept
ranging from -1.615 to 2.352. A normal Q-Q plot of the
conditional standardized residuals of Model 2 (plotted to
evaluate level-1 normality) resulted in a pattern similar to
Model 1. As a result, level-1 normality is assumed for
Model 2.

Normal Q-Q plots were generated to examine whether
the standardized EB of the intercept and slope were
normally distributed for Model 2 (the figure is not shown).
The standardized EB of the intercept were normally
distributed, with all standardized EB falling within the 95%
confidence bands. The standardized EB of the slope were
mostly normally distributed, with two level-2 units falling
outside the 95% confidence bands. To further examine
level-2 normality, histograms of the standardized EB of
the intercept and slope were plotted (the figure is not
shown). In both cases, level-2 normality was questionable
to investigate, as any potential non-normality could be the
result of the small number of level-2 units (23). Because
there were no drastic violations of level-2 normality (and
no exceptional outliers observed), level-2 normality was
assumed for Model 2.

Step 4. Fixed effects of a level-2 covariate of interest

In this step the fixed effect of the level-2 covariate x
(2)
·j , the

cluster mean of parentHED, was added to create Model 3:

yij=β0+b0j+β1(x
(1)
ij −x

(2)
·j )+b1j (x

(1)
ij −x

(2)
·j )+β2x

(2)
·j +εij ,

(24)

where β2 is the fixed effect of the cluster mean of
parentHED.

Potential inclusion of level-2 covariate To explore whether
the parentHED cluster means should be included in the
model, the level-2 covariate (which was not previously
included) was plotted vs. the standardized EB of the
random slope for Model 2 (Equation 23, which does not
include the level-2 covariate), as presented in Fig. 3 (Step
3 (a)). Standardized EB of the random slope had an
identifiable pattern (a negative linear trend) across the range
of parentHED cluster means, justifying the inclusion
of the cluster mean of parentHED in the model. After
including the cluster mean of parentHED in the model,
the standardized EB of the random slope for Model 3 was
plotted (see Fig. 3 [Step 4 (b)]). Although there was still a
negative linear trend in the standardized EB, the slope of
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this negative trend was reduced from −0.6035 (in Model 2)
to −0.3132 (in Model 3).

Level-2 linearity To examine whether the relationship
between the included parentHED cluster means and math
scores is strictly linear, a scatter plot of the standardized EB
of the random slope for Model 3 vs. the level-2 covariate
was generated (see Fig. 3 [Step 4 (c)]). The standardized
EB were not randomly dispersed around 0 along the full
range of the level-2 covariate, as would be expected if
the relationship between parentHED cluster means and
math scores was nonlinear. Instead, there was a significantly
negative linear trend (slope = −0.313, p value= .0337).
In addition, a third-degree smooth curve fitted to predict
standardized EB as a function of parentHED cluster
means (using the mgcv package in R) was found to be
significantly nonlinear (F = 3.545, edf = 1.720, p value=
.0325), which suggests that there is a nonlinear relationship
that needs to be included in the model. As Fig. 3 (Step 4 (c))
shows, there is a potentially nonlinear relationship between
parentHED cluster means and math scores in Model 3,
indicating that parentHED cluster means may have a non-
linear (square and/or cubic) relationship with math scores.
To test higher-degree effects of parentHED cluster means
on math scores, an alternative version of Model 3 including
the square and cubic effects of parentHED cluster means
(x(2)

·j ) on math scores, called Model 3a, was tested:

yij = β0 + b0j + β1(x
(1)
ij − x

(2)
·j ) + b1j (x

(1)
ij − x

(2)
·j )

+β2x
(2)
·j + β3(x

(2)
·j )2 + β4(x

(2)
·j )3 + εij , (25)

where β2, β3, and β4 are the linear, square, and cubic
(respectively) fixed effects of parentHED cluster means
on math scores. Both of the higher-order (square and cubic)
terms in Model 3a were statistically significant (p value=
.0255 and p value= .0282, respectively). A scatter plot
of the level-2 covariate vs. the standardized EB of the
random slope for Model 3a was generated to compare with
Model 3 (the figure is not shown.) The pattern observed
for Model 3a was almost identical to that observed for
Model 3 without the inclusion of the higher-order terms of
parentHED cluster means. These results indicate that the
original pattern observed in the plot of the level-2 covariate
vs. the standardized EB of the random slope for Model 3
was not caused by a strong nonlinear relationship between
math scores and parentHED cluster means. Because the
number of level-2 units is small (23), it is possible that the
results stem from a few clusters. The negative slope and
the nonlinearity may have been caused by two clusters with
more negative standardized EB (−1.970 and −1.451) than
the rest of the clusters. To examine this possibility, the level-
2 covariate vs. the standardized EB of the random slope for
Model 3 was plotted without these two clusters, as presented

in Fig. 3 (Step 4 (d)). The standardized EB without
these two clusters were much more consistently centered
around 0 along the full range of the level-2 covariate,
with a nonsignificantly positive intercept (intercept = 0.056,
p value= .858) and nonsignificantly positive slope (slope
= 0.036, p value= .727). Based on these results, it is
likely that the pattern observed was caused by the two
clusters, rather than being a systematic pattern in the data
indicative of level-2 nonlinearity. In addition, Model 3 had
a smaller RMSE (0.2028) than Model 3a (0.2033), and
Model 3 fits better than Model 3a based on BIC and AIC
(BIC= 3628.188 for Model 3 vs. BIC= 3772.394 for
Model 3a; AIC= 3598.728 for Model 3 vs. AIC= 3739.928
for Model 3a). Taking all of these results together, we
considered Model 3 to be preferable to Model 3a. Going
forward, Model 3 is used (rather than Model 3a) throughout
the model-building process.

Level-2 heteroscedasticity To explore the level-2 het-
eroscedasticity, a scatter plot of the standardized EB of
the random intercept for Model 3 vs. the level-2 covari-
ate was generated (see Fig. 3 [Step 4 (e)]). A Levene’s
test (F(21, 1) = 249.4, p value= .050) suggests that the
variance of the standardized EB is constant along the full
range of parentHED cluster means (indicative of level-2
homoscedasticity).

Level-2 outliers To detect level-2 outliers, a normal prob-
ability plot of standardized EB for the random intercept
was plotted against a theoretical normal distribution (the
figure is not shown). One cluster at the lower end deviated
extremely from the line in the normal probability plot. This
cluster can also be observed as an outlier of the box plot
of standardized EB (the figure is not shown). Similar plots
were created with standardized EB for the random slope. In
the normal probability and box plots, there were two deviate
clusters.

Level-2 influential points There were two level-2 influential
clusters, having Cook’s distances of 0.261 and 0.319,
exceeding the cutoff of 0.174 = 4/23 for a sample size of
23 schools (the figure is not shown). One of these influential
clusters (having a Cook’s distance of 0.261) was also the
level-2 outlier observed. Because this cluster drastically
differs from the rest of the data and is expected to influence
parameter estimates, this cluster was removed from the data.
Although a second cluster was found to have an influence
on parameter estimates (having a Cook’s distance of 0.319),
it was not found to be an outlier. This means that this cluster
is expected to influence parameter estimates in agreeance
with the rest of the data, and as a result it is not necessary to
remove this cluster from the data.
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Outlier removal Because this is the final step of the model-
building procedure regarding random effects, the single
level-2 outlying cluster was removed from the data. The
level-2 outlying cluster contained 19 level-1 units, meaning
that the resulting data set after removing this outlier
contained 500 (519 - 19) level-1 units and 22 (23 - 1) level-2
clusters.

A second iteration of Steps 1–4 was made with this
reduced data set. There were a few differences in the results
of Steps 1–4 in this second iteration. First, no level-1 outliers
were detected in Step 3 (as opposed to the single level-
1 outlier previously detected). Second, the higher-order
(square and cubic) terms in Model 3a in Step 4 were no
longer significant (p value = .1496 and p value = .1887,
respectively). Third, two level-2 influential points were
detected in Step 4, having Cook’s distances of 0.208 and
0.387, exceeding the cutoff of 0.182 = 4/22 for a sample
size of 22 schools. However, neither of these level-2 units
were found to be outliers, meaning that these clusters are
expected to influence parameter estimates in agreeance with
the rest of the data, and as a result their removal from
the data was not necessary. Fourth, several median SIQR
and SIQR(SIQR) values, as well as the ranking of these
values across models, differed between the two iterations.
These differing median SIQR and SIQR(SIQR) values are
presented and discussed below.

Level-2 normality Normal Q-Q plots were generated to
examine whether the standardized EB of the intercept and
slope for Model 3 were normally distributed (the figure
is not shown). The standardized EB of the intercept were
normally distributed, with all standardized EB falling within
the 95% confidence bands. The standardized EB of the
slope appeared non-normal, with four level-2 units falling
outside the 95% confidence bands at the lower extreme.
To further examine level-2 normality, histograms were
plotted for the standardized EB of the intercept and slope
(figures are not shown). The outlying standardized EB

of the slope at the lower extreme likely appear to be
outliers due to the small number of level-2 units (22, after
the outlying level-2 unit was removed). The four smallest
standardized EB of the slope ranged from -1.968 to -0.4438,
which although not large in magnitude were considered
outlying in the normal Q-Q plot because the other 19
standardized EB of the slope ranged from −0.1533 to
0.8252. Because these outlying standardized EB of the slope
were not drastically large in magnitude, and the potential
level-2 non-normality observed is explainable by the small
number of level-2 units, level-2 normality was assumed
for Model 3.

Level-1 outliers, level-1 influential points, and level-1 nor-
mality Similar plots were created to explore level-1 out-
liers, influential points, and normality as shown in Step
2. To detect any outliers, the fitted values from Model 3
were plotted against the conditional standardized residu-
als. No level-1 outliers were detected as having unusu-
ally high conditional standardized residuals. The largest
observed conditional standardized residuals were −2.751
and 2.704, which although large in magnitude are not
unexpected given the large number of level-1 units (519).
In addition, no level-1 influential points were detected,
as no point had a Cook’s distance greater than the cut-
off value of 1. The highest Cook’s distance detected was
0.01655.

Diagnostic measures and model selection from Steps 1–
4 In Table 7, the three diagnostic measures considered
for comparing models are RMSE, median SIQR, and
SIQR(SIQR), in addition to AIC and BIC. Based on the
AIC and BIC presented in Table 7, Model 3 was selected
as the best-fitting model regarding the level-1 and level-
2 fixed and random effects of parentHED. These results
agree with the analyses in Step 4 illustrating the importance
of the level-2 covariate of parentHED cluster means, a
parameter which was only included in Model 3. This added

Table 7 Model comparisons regarding diagnostic measures of Math data

Model Fixed Effects Random Effects RMSE AIC BIC LL Median SIQR SIQR(SIQR)

Null Intercept Intercept 0.2177 [4] 3671.709 [4] 3684.347 [4] -1832.854 0.797 [4] 0.160 [4]

1 Intercept, L-1 Intercept 0.2077 [3] 3628.927 [3] 3645.770 [3] -1810.464 0.673 [3] 0.115 [1]

2 Intercept, L-1 Intercept, L-1 0.2029 [2] 3618.717 [2] 3643.980 [2] -1803.358 0.627 [1] 0.123 [2]

3 Intercept, L-1, L-2 Intercept, L-1 0.2028 [1] 3598.728 [1] 3628.188 [1] -1792.364 0.650 [2] 0.133 [3]

L-1 and L-2 in the above table refer to the Level-1 and Level-2 covariates of parentHED, respectively; the values of median SIQR and
SIQR(SIQR) in the above table (as well as their rankings from lowest to highest) differ from those results described in Steps 1–4. This is because
the values presented in Steps 1–4 were obtained before the outlying level-2 unit was removed from the data, whereas the values presented in
the table above were obtained in the second iteration of Steps 1–4; numbers in brackets rank models from worst [4] to best [1] regarding each
evaluation measure
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complexity of Model 3 was motivated by AIC and BIC,
which still ranked Model 3 as the best model despite the
penalization for a larger number of parameters. The only
diagnostic measures for which Model 3 did not outperform
the other models was in median SIQR and SIQR(SIQR).
Model 3 had similar median SIQR to both Model 1 and
Model 2, indicating that these three models all captured the
level-1 variability in the data about equally well. Model 3
had the highest SIQR(SIQR) of the four models, indicating
that Model 3 had the highest heteroscedasticity of the four
models.9

The conditional standardized residuals of Model 3 had
no noticeable systematic trend, with residuals scattered
uniformly around zero. The lack of a systematic trend in
residuals is indicative of Model 3 adequately estimating
math scores without omitting a critical fixed or random
effect. A Bartels ratio test conducted on the conditional
standardized residuals of Model 3 showed that residuals
were not significantly nonrandom (T = 0.0823, n = 500,
p value= .5327). Histograms of the level-1 conditional
standardized residuals, the level-2 standardized EB of the
random intercept, and the level-2 standardized EB of the
random slope for Model 3 were plotted to evaluate the
normality of residuals (see Fig. 3 [Step 5 (a)]). The level-
1 conditional standardized residuals are clearly normally
distributed, and based on Shapiro’s test the conditional
standardized residuals are not significantly non-normal
(p value = .0936). The small number of level-2 units
makes it difficult to visually determine if the level-2
standardized EB of the random intercept and of the random
slope are normally distributed. Shapiro tests concluded
that the standardized EB of the random intercept are not
significantly non-normal (p value= .337), however, the
standardized EB of the random slope are significantly non-
normal (p value= .00148). A multivariate normality test
of the random intercept and the random slope, Mardia’s
test, suggested that there is evidence of non-multivariate
skewness (Statistic=11.762, p value= .019), but there is
evidence of multivariate kurtosis (Statistic=1.782, p value=
.075). To conclude, a multivariate normality is assumed
because the deviations are not large enough. After selecting
Model 3 with the level-1 and level-2 fixed and random
effects of parentHED, variants of Model 3 were tested
with additional level-1 and level-2 fixed effects of the other

9The values of SIQR for each school did not change very much from
Model 2 to Model 3, but they changed enough for the ranking of
SIQRs for the schools to change between models. Specifically, the 6th
smallest SIQR (the one that the first-quartile is largely dependent upon
for 22 schools) changed from 0.5461 (for schid= 25456) in Model 2
to 0.4958 (for schid=68493) in Model 3, whereas the median SIQR
and third-quartile SIQR stayed largely consistent betweenModel 2 and
Model 3. Because the first-quartile of SIQR was smaller in Model 3,
the SIQR(SIQR) increased.

variables in the data to determine which fixed effects were
significant when added to the model in Step 5.

Step 5. Model selection regarding fixed and random
effects

Level-1 fixed and random effects Each of the fixed effects
of the five additional level-1 variables (cluster-mean-
centered SES, cluster-mean-centered homework, cluster-
mean-centered white, cluster-mean-centered sex, and
cluster-mean-centered race) was added to the model one
at a time. If a fixed effect was significant (p value < .05), it
would remain included in the model for the remainder of the
model building procedure. For example, the fixed effect of
cluster-mean-centered (level-1) SES was added to Model 3
(with the pre-existing fixed effects β0, β1, and β2) to create
Model 4a:

yij = β0 + b0j +β1(x
(1)
ij −x

(2)
·j )+b1j (x

(1)
ij −x

(2)
·j ) + β2x

(2)
·j

+β3(SES
(1)
ij − SES

(2)
·j ) + εij , (26)

where β3 is the fixed effect of cluster-mean-centered SES. If
β3 is significant (p value < .05), the fixed effect of cluster-
mean-centered SES is kept in the model when testing
the next fixed effect (cluster-mean-centered homework).
However, if β3 is nonsignificant, the fixed effect of cluster-
mean-centered homework would be tested by adding it
to Model 3 (because the fixed effect of cluster-mean-
centered SES was not kept in the model). Of the five level-1
fixed effects tested, only the fixed effects of cluster-mean-
centered homework (p value < .001) and cluster-mean-
centered white (p value= .0172) were significant and
added to the model. A summary of the models tested is
presented in Table 8. Based on the results in Table 8, the
final model regarding the additional level-1 fixed effects
was Model 4c:

yij = β0 + b0j + β1(x
(1)
ij − x

(2)
·j ) + b1j (x

(1)
ij − x

(2)
·j )

+β2x
(2)
·j + β3(homework

(1)
ij − homework

(2)
·j )+

β4(white
(1)
ij − white

(2)
·j ) + εij , (27)

where β3 is the fixed effect of cluster-mean-centered
homework, and β4 is the fixed effect of cluster-mean-
centered white. The addition of the level-1 fixed effects of
cluster-mean-centered homework and white lowered the
median SIQR from 0.7013 in Model 3 to 0.627 in Model 4c.

Level-2 fixed effects A similar model-building procedure
was used to test the fixed effects of the thirteen additional
level-2 variables (public, ratio, percmin, sctype,
cstr, scsize, urban, region, SES cluster means,
homework cluster means, white cluster means, sex
cluster means, and race cluster means), with each fixed
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Table 8 Model comparisons with additional level-1 fixed effects of math data

Model L-1 Covariate Added p value RMSE AIC BIC LL Median SIQR SIQR(SIQR) Covariate Added

Model 3 – – 0.203 3598.728 3628.188 −1792.364 0.650 0.133 –

Model 4a ses 0.304 0.203 3597.795 3631.447 −1790.897 0.642 0.127 No

Model 4b homework* 2.13E-13 0.192 3547.865 3581.517 −1765.932 0.651 0.138 Yes

Model 4c white* 0.017 0.191 3542.501 3580.342 −1762.251 0.618 0.109 Yes

Model 4d sex 0.724 0.191 3543.134 3585.160 −1761.567 0.620 0.106 No

Model 4e race 0.800 0.191 3542.753 3584.779 −1761.377 0.618 0.113 No

*indicates that the effect was significant at the .05 level, and was added to the model

effect (if significant) being added to Model 4c one at a
time. None of the thirteen level-2 fixed effects tested were
significant when added to the model, with the smallest
p value observed being .0914 for region. A summary
of the models tested is presented in Table 9. None of
the additional level-2 covariates was significant. Based on
the results in Table 9, the final model with the additional
level-1 and level-2 fixed effects was Model 4c. The
parameter estimates of Model 3 (without the fixed effects of
homework and white) are compared to those of Model
4c to examine the impact of these added parameters on
parameter estimates, shown in Table 10. The estimates and
standard errors of the fixed and random effects that were
in both Model 3 and Model 4c were similar between the
two models. In addition, the residual SD decreased (from
8.507 in Model 3 to 8.031 in Model 4c), indicative of the
additional variability in math scores being accounted for
in Model 4c with the inclusion of the level-1 fixed effects
of cluster-mean-centered homework and white. Based
on these results, Model 4c was selected as the final model
regarding all level-1 and level-2 fixed and random effects
for all variables.

Evaluation of the selected model The residuals of Model
4c were examined to determine if Model 4c adequately
predicted math scores with the included level-1 and level-
2 fixed and random effects, and whether the residuals of
Model 4c are randomly and normally distributed. A scatter
plot of the conditional standardized residuals vs. fitted
values based on Model 4c was generated (see Fig. 3 [Step
5 (b)]). The conditional standardized residuals of Model
4c had no noticeable systematic trend, as residuals were
scattered uniformly around zero. The lack of a systematic
trend in residuals is indicative of Model 4c adequately
estimating math scores without omitting a critical fixed
or random effect. A Bartels ratio test conducted on the
conditional standardized residuals of Model 4c showed that
residuals were not significantly nonrandom (T = −1.0716,
n = 500, p value= .1422). Histograms of the level-1
conditional standardized residuals, the level-2 standardized

EB of the random intercept, and the level-2 standardized EB
of the random slope for Model 4c were plotted to evaluate
the normality of residuals (these plots are not shown in the
paper). The level-1 conditional standardized residuals are
clearly normally distributed, which was not contradicted by
a Shapiro’s test with a p value of .707. The small number
of level-2 units makes it difficult to visually determine if
the level-2 standardized EB of the random intercept and
of the random slope are normally distributed. Shapiro tests
concluded that the standardized EB of the random intercept
are not significantly non-normal (p value= .839), however,
the standardized EB of the random slope are significantly
non-normal (p value= .010). A multivariate normality test
of the random intercept and the random slope, Mardia’s test,
indicated that multivariate normality assumption is rejected
because of skewness (Statistic=11.973, p value= .018), but
not because of kurtosis (Statistic=0.979, p value= .332).

Answers to the research question As mentioned earlier,
the goals of analysis using the math data set was
to predict math scores from parents’ highest level of
education (parentHED). Estimates of Model 4c reported
in Table 10 were interpreted to answer this research
question. Controlling for the level-1 homework and
white covariates, the effect of the level-1 parentHED
(x(1)

ij − x
(2)
.j ) was 2.520 (SE=0.464, p value < 1e − 04)

and the effect of the level-2 parentHED (x(2)
.j ) was 4.549

(SE=0.647, p value < 1e − 04).

Example 2: Two-level longitudinal data (HD data)

Table 11 presents a summary of analyses and results.

Step 0. A preliminary descriptive analysis

The primary research interest is the relationship between
depression (measured with the HD rating scale) and the
effect of a drug over time (using the Week variable for
time). To begin, the HD rating was plotted over time (with
6 measurements taken over 5 weeks) for each of the two
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Table 10 Parameter estimate comparisons between Model 3 and Model 4c of math data

Covariate Model 3 Model 4c

EST SE EST SE

Fixed

Intercept 36.700 2.126 37.007 2.106

x
(1)
ij − x

(2)
.j 2.886 0.510 2.520 0.464

x
(2)
.j 4.653 0.653 4.549 0.647

homework – 2.098 0.275

white – 1.907 1.170

Random

SD Correlation SD Correlation

x
(1)
ij − x

(2)
.j x

(1)
ij − x

(2)
.j

Intercept 2.089 −0.241 2.166 −0.367

x
(1)
ij − x

(2)
.j 1.535 1.310

Residuals 8.507 8.031

- indicates not-modeled; EST in bold indicates significance at alpha=.05 level

groups (Endog = 0, left, and Endog = 1, right, based on
whether or not the depression was endogenous). Figure 4
(Step 0 (a)) shows a clear negative trend in HD rating over
time for both groups. The overlapping red (linear trend)
and blue (smooth curve) lines in the plots indicate that the
negative trend in HD rating was linear.

Step 1. Random intercepts for the clusters

In this step, HD rating (yij ) was modeled without any
covariates. The first null model (Null Model Fixed) includes
only a fixed intercept:

yij = β0 + εij , (28)

where yij is the HD rating for person j at time i, β0 is the
fixed intercept parameter, and εij is the random error10. The
second null model (Null Model Random) includes only a
random intercept:

yij = β0 + b0j + εij , (29)

where b0j is the random intercept parameter. The random
errors for Null Model Fixed and Null Model Random (εij )
are assumed to be distributed as N(0, σ 2Rj ), with Rj =
�jCj�j for �j = Inj

(with homoscedasticity) and Cj =
Inj

(with uncorrelated errors), where nj is the number of
observations for person j (1 ≤ nj ≤ 6).

To examine the multilevel nature of the data (with 6 mea-
surements nested within persons), the standardized errors
for Null Model Fixed and the conditional standardized

10εij is referred to as “random error” for the null models (without
covariates), and is referred to as “random residual” after covariates are
modeled.

errors for Null Model Randomwere plotted. For Null Model
Fixed, standardized errors varied across persons, as shown
in Fig. 4 (Step 1 (a)). The variability in standardized errors
across persons in Fig. 4 (Step 1 (a)) is indicative of the
multilevel nature of the data. Allowing the intercept to vary
across persons in Null Model Random resulted in the con-
ditional standardized errors, presented in Fig. 4 (Step 1
(b)). As shown in Fig. 4 (Step 1 (b)), conditional standard-
ized errors for each person are distributed more consistently
around 0 when the intercept is allowed to vary across per-
sons. An ICC = .268 (meaning that 26.8% of the variance in
HD scores is accounted for by the variability across persons)
supports the conclusion that the data are multilevel, and the
inclusion of a random intercept in the model is necessary.

Step 2. Fixed effect of level-1 covariate of interest

In this step the fixed effect of the level-1 covariate Week
(the linear effect of the drug treatment on HD ratings over
time) is added to Null Model Random to create Model 1:

yij = β0 + β1Week
(1)
ij + b0j + εij , (30)

where β1 is the fixed effect of Week(1)
ij , with Week(1)

ij = i

being the number of weeks (0 ≤ i ≤ 5) since person j

began the study.
Adding the fixed effect of the level-1 covariate Week

decreased median SIQR from 0.487 in Null Model Random
to 0.467 in Model 1 (indicating that Model 1 captured
level-1 variability better than Null Model Random), and
slightly decreased the SIQR(SIQR) from 0.178 in Null
Model Random to 0.176 in Model 1 (indicating that Model
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Fig. 4 Diagnostic plots for random effects selection in the two-level longitudinal data (HD data)
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1 had highly comparable level-1 heteroscedasticity to Null
Model Random).

Level-1 linearity Week was plotted against the marginal
standardized residuals of Model 1 to examine whether the
relationship between Week and HD ratings was strictly
linear. Figure 4 (Step 2 (a)) shows that there is a
linear relationship (the mean of the marginal standardized
residuals is approximately equal to zero) between Week
and the marginal standardized residuals, indicating that
there is no higher-order (e.g., square and/or cubic)
relationship between Week and HD ratings. In addition, a
smooth curve fitted to the marginal standardized residuals
was not found to be significantly nonlinear (F = 0.027,
edf = 1, p value= .941).

Level-1 heteroscedasticity Fitted values of Model 1 were
plotted against the conditional standardized residuals of
Model 1 to explore the level-1 heteroscedasticity, as shown
in Fig. 4 (Step 2 (b)). The conditional standardized residuals
were not evenly distributed around 0 across the full
range of fitted values, which is indicative of potential
heteroscedasticity. This was further supported by a Levene’s
test indicating that the conditional standardized residuals
were significantly heteroscedastic (F = 2.666, df = 5,
p value= .022).

Level-1 heteroscedasticity was included in the model to
create Model 1a. The inclusion of level-1 heteroscedasticity
changed the variance of the random residuals (εij ) from
being fixed as �j = Inj

(constant across time) in
Model 1 to being estimable parameters (allowing variance
to differ across time) in Model 1a. The fitted values of
Model 1a were plotted against the conditional standardized
residuals of Model 1a to investigate whether including level-
1 heteroscedasticity had an impact (this plot is not shown
in the paper). The conditional standardized residuals for
Model 1a appear more evenly distributed around 0 than
those of Model 1 (particularly for extreme fitted values).
A Levene’s test indicated that the conditional standardized
residuals were no longer significantly heteroscedastic (F =
0.262, df = 5, p value= .934). In addition, the
SIQR(SIQR) decreased from 0.176 for Model 1 to 0.160
for Model 1a, indicating that Model 1a had less level-1
heteroscedasticity than Model 1. Based on these results,
level-1 heteroscedasticity was assumed, and Model 1a was
used instead of Model 1 for the remainder of the model-
building process.

Correlated residuals ARs of the marginal standardized
residuals of Model 1a were plotted at each time lag to
explore whether the residuals of Model 1a are correlated,
as presented in Fig. 4 (Step 2 (c)). Solid lines in Fig. 4
(Step 2 (c)) represent the AR effects at each time lag,

with dotted lines indicating the 99% confidence intervals
centered at zero. There were significant AR effects at
time lags 2-4 for Model 1a. Variations of Model 1a
with different residual correlation structures (unstructured,
compound, ARMA(1,0), ARMA(2,1), and ARMA(2,2))
were modeled in an attempt to reduce AR. However, results
were unobtainable for Model 1a with the ARMA(2,1) and
ARMA(2,2) correlation structures, due to the coefficient
matrix being uninvertible (possibly due to overfitting).
Autocorrelations of the conditional independent residuals
for Model 1a with the unstructured, compound, and
ARMA(1,0) correlation structures were plotted to examine
the effectiveness of these correlation structures at reducing
AR (these plots are not shown in the paper).11 All three
correlation structures resulted in decreased AR at each time
lag, with all ARs falling within the 99% confidence intervals
centered at zero. Although the compound correlation
structure resulted in the smallest (or highly similar) AR at
each time lag among the correlation structures examined,
further analyses showed that the compound correlation
structure resulted in a large number of level-1 outliers, with
conditional independent residuals ranging from −13.026
to 12.576. Although none of these level-1 outliers were
influential enough to merit removal from the model,
they resulted in significant violations of level-1 normality.
For these reasons, the ARMA(1,0) correlation structure
(which had generally lower AR in the residuals than the
unstructured correlation structure) was selected instead.12

Note that all AR with the ARMA(1,0) correlation structure
were non-significant at the .01 confidence level, and the
level-1 outliers and level-1 normality are less problematic
with the ARMA(1,0) correlation structure than with the
compound correlation structure, as discussed below. The
version of Model 1a with the ARMA(1,0) correlation
structure, referred to as Model 1b, was used for the
remainder of the model-building process.

For the rest of the model-building process, conditional
independent residuals of the fitted models are used for
analyses instead of marginal standardized residuals, because
errors are now allowed to correlate with the inclusion of the
ARMA(1,0) structure in Model 1b.

Level-2 outliers To detect level-2 outliers, a normal Q-Q
plot of the standardized EB of the intercept for Model

11Conditional independent residuals were plotted instead of marginal
standardized residuals (which were plotted for Model 1a) because
errors are now allowed to correlate.
12Model 1a with ARMA(1,0) was also selected by AIC and
BIC of the three candidate models: Model 1a with unstruc-
tured, compound, and ARMA(1,0): Model 1a with unstruc-
tured (AIC=2244.172, BIC=2338.290), Model 1a with compound
(AIC=2286.203, BIC=2325.419), and Model 1a with ARMA(1,0)
(AIC=2242.170, BIC=2281.386).
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1b was plotted against a theoretical normal distribution,
presented in Fig. 4 (Step 2 (d)). The standardized EB of
the intercept were largely normal, with several standardized
EB falling slightly outside the 95% confidence bands. The
standardized EB of the intercept for all level-2 units ranged
from -0.864 to 1.098. Based on these results, no level-2 units
were considered to be outliers.

Level-2 influential points There were 13 level-2 influential
points, having Cook’s distances exceeding the cutoff of
0.0606 = 4/66 for a sample size of 66 persons (see Fig. 4
[Step 2 (e)]). The Cook’s distances of these influential
points ranged from 0.0857 to 0.242. However, none of these
influential level-2 units were considered to be outliers (as
these level-2 units had standardized EB of the intercept
ranging from −0.709 to 0.0246). Because these influential
points are not expected to influence parameters in a way that
disagreed with the rest of the data, removing these level-2
units from the data is not necessary.

Level-1 outliers The fitted values from Model 1b were
plotted against conditional independent residuals to detect
level-1 outliers. As shown in Fig. 4 (Step 2(f)), there were
6 level-1 units detected with high conditional independent
residuals, ranging in magnitude from 2.362 to 3.649.

Level-1 influential points No level-1 influential points were
detected as having a Cook’s distance greater than the cut-
off of 1. The highest Cook’s distance observed was 0.147,
as presented in Fig. 4 (Step 2 (g)). Because no level-1
unit (including those with large conditional independent
residuals) was expected to influence parameter estimates,
all level-1 units were considered acceptable to remain in the
data. If any of the outlying level-1 units had been found to
be influential as well, they would be marked for removal
from the data in Step 4 (if they were found to be influential
outliers in Step 4 as well).

Level-1 normality A normal Q-Q plot was generated to
examine whether the conditional independent residuals of
Model 1b were normally distributed (see Fig. 4 [Step 2 (h)]).
Conditional independent residuals appeared somewhat non-
normal in the extremes. In addition, a Shapiro–Wilk test
indicated that the conditional independent residuals were
significantly non-normal (W = 0.989, p value= .005).
A histogram of the conditional independent residuals was
overlaid with a normal curve to further examine normality
(this plot is not shown in the paper). The histogram showed
that the deviance from normality is not large. Therefore,
level-1 normality was assumed for Model 1b based on this
analysis.

Level-2 normality A normal Q-Q plot was generated to
examine whether the standardized EB of the intercept of
Model 1b were normally distributed (see Fig. 4 [Step 2 (i)]).
The resulting Q-Q plot shows that the standardized EB of
the intercept are mostly normal for Model 1b, with a few
standardized EB falling slightly outside the 95% confidence
bands. A histogram of the standardized EB of the intercept
was plotted to further examine level-2 normality (this plot
is not shown in the paper). The standardized EB of the
intercept showed no drastic deviations from normality (such
as outlying clusters with large standardized EB). Based on
these results, level-2 normality was assumed for Model 1b.

Step 3. Random effects of the level-1 covariate

In this step the random effect of the level-1 covariate Week
was added to Model 1b, creating Model 2:

yij = β0 + b0j + β1Week
(1)
ij + b1jWeek

(1)
ij + εij , (31)

where b1j is the random slope of Week(1)
ij . Note that

Model 2 still includes the random effect for level-1
heteroscedasticity and the ARMA(1,0) correlation structure.

Adding the random effect of the level-1 covariate Week
increased the SIQR(SIQR) from 0.117 in Model 1b to 0.174
in Model 2 (indicating that Model 2 had more level-1
heteroscedasticity than Model 1b). To explore this increase
in SIQR(SIQR), boxplots of the SIQR for persons were
plotted for Model 1b and Model 2, as shown in Fig. 4 (Step
3 (a)). The inclusion of the random effect of the level-1
covariate in Model 2 resulted in a few extreme outlying
SIQR, causing the interquartile range of SIQR to “expand”
at the upper end to include previously outlying SIQR. This
“expansion” resulted in an increase in the SIQR(SIQR) of
Model 2.

The ordinary least squares (OLS) regression lines
predicting HD rating with Week for each person were
plotted to show the variability in the effect of Week across
persons, as presented in Fig. 4 (Step 3 (b)). Variability in
the intercepts across persons is indicative of the need for the
random effect of the intercept (b0j ), whereas variability in
the slopes across persons is indicative of the need for the
random effect of the slope (b1j ).

Plots for level-1 and level-2 outliers, influential points,
and normality are not presented to save space. The plots are
similar to the plots shown in Fig. 4 (Step 2 (d) - (i)).

Level-2 outliers To detect level-2 outliers, a normal Q-Q
plot of the standardized EB of the intercept for Model 2
was plotted against a theoretical normal distribution. No
level-2 units (persons) were detected as outliers, with all
standardized EB of the intercept falling within the 95%
confidence bands. In addition, none of these level-2 units
were found to be outliers in a box plot of the standardized
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EB of the intercept. The standardized EB of the intercept for
all level-2 units ranged from -1.330 to 2.145. Based on these
results, no level-2 units were considered to be outliers.

Level-2 influential points There were three level-2 influen-
tial points, having Cook’s distances of 0.0635, 0.0779, and
0.114, exceeding the cutoff of 0.0606 = 4/66 for a sample
size of 66 persons. None of these level-2 influential points
were considered to be outliers (having standardized EB of
the intercept of 0.574, 1.373, and −0.770, respectively).
Because none of these influential points were outliers, their
removal from the data was not necessary.

Level-1 outliers The fitted values from Model 2 were
plotted against the conditional independent residuals to
detect level-1 outliers. There were 10 level-1 outliers
detected, with conditional independent residuals ranging in
magnitude from 2.116 to 3.893. They will be investigated
on how influential they are.

Level-1 influential points No level-1 influential points were
detected, as no point had a Cook’s distance larger than
the cut-off of 1. The largest Cook’s distance observed was
0.027. Because no level-1 unit (including those with large
conditional independent residuals) is expected to influence
parameter estimates, all level-1 units were considered
acceptable to remain in the data.

Level-1 normality A normal Q-Q plot was generated to
examine whether conditional independent residuals of
Model 2 were normally distributed. Conditional inde-
pendent residuals appeared somewhat non-normal in the
extremes, with several residuals falling outside the 95%
confidence bands. To further examine level-1 normality, a
histogram of the conditional independent residuals of Model
2 was overlaid with a normal curve. The Q-Q plot and his-
togram of the conditional independent residuals of Model 2
were highly similar to those for Model 1b, with no extreme
violations of level-1 normality detected. As a result, level-1
normality was assumed for Model 2.

Level-2 normality Normal Q-Q plots were generated to
examine whether the standardized EB of the intercept and
of the slope of Model 2 were normally distributed. The
resulting Q-Q plots show that the standardized EB of the
intercept and of the slope are mostly normal for Model
2, with only a few standardized EB of the slope falling
slightly outside the 95% confidence bands. Histograms of
the standardized EB of the intercept and of the slope were
plotted to further examine level-2 normality. The histograms
of standardized EB of the intercept and of the slope showed
no drastic deviations from normality (such as outlying

clusters with large standardized EB). Based on these results,
level-2 normality was assumed for Model 2.

A Mardia’s test was conducted to evaluate the multivari-
ate normality of the standardized EB of the intercept and of
the slope of Model 2. The assumptions of multivariate non-
skewness (Statistic = 7.815, p = .0986) and multivariate
non-kurtosis (Statistic = −0.545, p value= .586) were
not significantly violated at the .05 significance level. Based
on these results, level-2 multivariate normality was assumed
for Model 2.

Step 4. Fixed Effects of the Level-2 Covariate In this step the
fixed effect of the level-2 covariate Endog was added to
Model 2, creating Model 3:

yij = β0+b0j+β1Week
(1)
ij +β2Endog

(2)
j +b1jWeek

(1)
ij +εij ,

(32)

where β2 is the fixed effect of the Endog(2)
j level-2

covariate. Endog(2)
j = 1 if person j ’s depression is

endogenous, and Endog(2)
j = 0 otherwise. Model 3 still

includes the random effect for level-1 heteroscedasticity and
the ARMA(1,0) correlation structure.

Potential inclusion of the level-2 covariate To explore
whether Endog should be included in the model, the
standardized EB of the random slope for Model 2 (Equation
31, which does not include the level-2 covariate) was
plotted for each value of Endog, as presented in Fig. 4
(Step 4 (a)). The histogram (overlaid with scatter plots
of the standardized EB for group) shows that the mean
standardized EB of the random slope for Model 2 was -
0.077 when Endog = 0, and 0.060 when Endog = 1,
illustrating the variability in HD ratings unaccounted for
by omitting Endog in Model 2. The difference between
these two groups was not very large (with a mean difference
of 0.137). The standardized EB of the random slope for
Model 3 (with Endog included in the model) was plotted
for comparison, as shown in Fig. 4 (Step 4 (b)). With the
inclusion of Endog in Model 3, the mean standardized EB
of the random slope was highly similar between the two
values of Endog (−0.016 when Endog = 0 and 0.012
when Endog = 1). The above histograms show that the
standardized EB of the random slope were highly similar
between Model 2 and Model 3.

The addition of the fixed effect of the level-2 covariate
slightly increased the SIQR(SIQR) from 0.1741 in Model
2 to 0.1744 in Model 3. These highly similar SIQR(SIQR)
(with the difference between the two models being <

0.0004) indicate that Model 2 and Model 3 have similar
levels of level-1 heteroscedasticity. To further illustrate
the similarity in SIQR(SIQR) between these two models,
boxplots of the SIQR for persons were plotted for Model
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Table 12 Model comparisons regarding diagnostic measures of HD data

Model Fixed Effects Random Effects RMSE AIC BIC LL Median SIQR SIQR(SIQR)

Null Random Intercept Intercept 0.148 [4] 2506.428 [4] 2518.201 [4] −1250.214 0.487 [4] 0.178 [4]

1b Intercept, L-1 Intercept 0.135 [3] 2242.170 [3] 2281.386 [3] −1111.085 0.347 [1] 0.117 [1]

2 Intercept, L-1 Intercept, L-1 0.0819 [2] 2231.860 [2] 2278.919 [1] −1103.930 0.408 [2] 0.1741 [2]

3 Intercept, L-1, L-2 Intercept, L-1 0.0818 [1] 2228.600 [1] 2279.546 [2] −1101.300 0.427 [3] 0.1744 [3]

L-1 and L-2 in the above table refer to the level-1 and level-2 covariates of Week and Endog, respectively; Numbers in brackets rank models
from worst [4] to best [1] regarding each evaluation measure

2 and Model 3. Figure 4 (Step 4 (c)) shows that the
interquartile range of the SIQR (and by extension the
SIQR(SIQR)) are highly similar between Model 2 and
Model 3.

Based on these analyses, the level-2 covariate Endog
was not considered necessary to include in the model.
Model 2 was used instead of Model 3 for the remainder
of the model building process. Because Model 2 was
selected, the analyses for outliers, influential points, and
non-normality in this step are identical to the analyses
presented in Step 3.

Outlier removal If any level-1 and/or level-2 units were
found to be both outlying and influential in this step, they
would be removed from the data and Steps 1–4 would
be repeated. However, because no outlying and influential
level-1 and/or level-2 units were detected for Model 2 in
Step 3, such outlier removal was not necessary for this
illustration.

Step 5. Model selection regarding fixed and random
effects

In this step, the models analyzed in Steps 1–4 are compared
regarding differences between their predicted values and the
observed data. In Table 12, the diagnostic measures (RMSE,
Median SIQR, and SIQR(SIQR)) for the summary of results
and model selection methods (AIC and BIC) are reported.13

As discussed in Step 4, Models 2 and 3 were highly
similar, with the inclusion of the Endog variable not found
to be necessary. The added model complexity of Model
3 was evaluated by AIC and BIC, with AIC indicating
the fixed effect of Endog worth including in the model
(despite the added complexity), and BIC (which punishes
model complexity more harshly than AIC) indicating that
this parameter was not worth including in the model (with
Model 2 having a lower BIC than Model 3).

13Although Model 2 was selected instead of Model 3 in Step 4, Model
3 is included in this table for comparison.

As investigated in Step 3, Models 2 and 3 (which both
include the random effect of the level-1 Week covariate)
had several outlying SIQR for persons, which caused the
interquartile range of SIQR across persons (and thus the
SIQR(SIQR)) to “expand.” As a result, Model 1b (which
does not include the random effect of the level-1 covariate,
and therefore does not have these outlying SIQR) had
the smallest median SIQR and SIQR(SIQR) of the four
models. Model 2 had a slightly lower median SIQR and
SIQR(SIQR) than Model 3, however, the boxplots of SIQR
for persons presented in Step 4 were highly similar between
Models 2 and 3. This result indicates that the degrees of
variability and heteroscedasticity accounted by Models 2
and 3 are similar.

Taking all results together, Model 2 was selected as the
best-fitting model, with level-1 fixed and random effects
of Week, level-1 heteroscedasticity, and an ARMA(1,0)
correlation structure. The added value of the Endog
variable was not considered significant important to select
Model 3. The parameter estimates of the selected model
(Model 2) are presented in Table 13.

Evaluation of the selected model The residuals of Model
2 were examined to determine if Model 2 adequately
explained HD rating, with Week, level-1 heteroscedasticity,
and the ARMA(1,0) correlation structure, and whether
the conditional independent residuals of Model 2 are
randomly and normally distributed. A scatter plot of the
conditional independent residuals vs. fitted values of Model
2 was generated, as shown in Fig. 4 (Step 5 (a)). The
conditional independent residuals of Model 2 had no
noticeable systematic pattern, with residuals being scattered
uniformly around zero. The lack of a systematic pattern in
the residuals is indicative of Model 2 adequately explaining
HD rating without omitting a critical fixed or random effect
(such as the level-2 fixed effect of Endog). A Bartels ratio
test conducted on the conditional standardized residuals
of Model 2 showed that residuals were not significantly
nonrandom (T = 4.253, n = 375, p value≈ 1). In addition,
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based on a Durbin-Watson test conducted on the conditional
standardized residuals of Model 2, it was concluded that the
first-order AR was not statistically significantly (DW =
2.453, p value ≈ 1).

Histograms of the level-1 conditional independent resid-
uals, the level-2 standardized EB of the random intercept,
and the level-2 standardized EB of the random slope for
Model 2 were plotted to evaluate the normality of residu-
als (these plots were not shown in the paper). As discussed
in Step 3, level-1 normality in the conditional independent
residuals and level-2 normality in the standardized EB of
the intercept and of the slope were assumed for Model 2.
In addition, the standardized EB of the intercept and of the
slope of Model 2 were shown in Step 4 to be multivariate
normally distributed.

Answers to the research question Results of the selected
model (Model 2) are presented in Table 13. The weeks
covariate was coded as 0, 1, 2, 3, 4, and 5. Given this coding,
the intercept estimate (23.509, SE=0.533) indicates that
patients start with an HD score of 23.509 on average. There
was nonignorable variability around the average scores
across patients (V ar(b0j ) = 3.2482). The average weekly
linear change in HD scores for patients with average drug

levels was −2.384 (SE=0.210), indicative of a decrease in
the degree of depression over time per week. There was
variability in the linear change in HD scores across patients
(V ar(b1j ) = 1.3642) and there was no clear support for an
effect of endogeneity of the depression.

Summary and discussion

Residual-based diagnostic plots and measures have been
extensively used in single-level linear regression models.
However, such plots and measures are rather unusual in
model selection and model checking in MLM applications.
In this paper, we listed types of random effects presented in
MLMs for two-level cross-sectional and longitudinal data,
and provided a generic description of these random effects
to guide researchers towards selecting the necessary random
effects. In addition, we reviewed level-specific diagnostic
plots using various kinds of level-specific residuals to
select a random effect and to check model assumptions.
Furthermore, we presented statistical tests and diagnostic
measures to interpret patterns in the diagnostic plots. Using
two empirical data sets, the existing and proposed methods
were illustrated to demonstrate how to select necessary

Table 13 Parameter estimates of Model 2 of HD data

Model 2

Covariate EST SE

Fixed

Intercept 23.509 0.533

Week(1)
ij -2.384 0.210

Random

SD Correlation

Week(1)
ij

Intercept 3.248 -0.143

Week(1)
ij 1.364

Residuals 3.186

Level-1 heteroscedasticity

EST

σ0 1	

σ1 1.232

σ2 1.101

σ3 1.044

σ4 1.052

σ5 1.646

Level-1 ARMA(1,0) correlation structure

EST

φ 0.171

*indicates a model identification constraint; Bold parameter estimates indicate significance at the .05 level based on a t test
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fixed and random effects in model-building steps. R code is
provided for all analyses conducted in these illustrations.

Guidelines for the use of diagnostic measures, plots,
and tests in model-building steps

For the longitudinal and cross-sectional illustrations, only
one or two iterations (respectively) of the analyses
described were required to select a model to answer
research questions. However, longer iterative processes
may be necessary in practice. For example, in Step 5
(model selection regarding fixed and random effects),
large discrepancies may be found between data and fitted
values for a selected model. If the discrepancies stem from
data characteristics missed in the earlier steps (e.g., some
individuals have different slopes), one can return to Step
3 (random effects of the level-1 covariates) and/or Step 4
(fixed and random effects of the level-2 covariate). Not
only do we recommend going through the model-building
steps to obtain the best-fitting model to the data, but it
may be necessary to use multiple iterations because earlier
decisions may look sub-optimal at later steps. An optimal
set of fixed and random effects is crucial for ‘correct’
statistical inferences regarding an effect of interest.

In the illustrative data sets, there is one covariate of
interest for which Steps 2–4 were conducted (confirmatory
hypothesis testing) and additional covariate(s) (functioning
as control covariates) for which Step 5 was conducted (an
exploratory approach). When there are multiple covariates
of interest from research questions, we suggest conducting
Step 2 and Step 3 for each of the level-1 covariates of
interest and Step 4 for each of the level-2 covariates of
interest. When there are multiple covariates of interest,
the model complexity regarding random effects can
dramatically increase. In the present study, a model is built
by starting with a null model and then slowly adding fixed
and random effects based on the diagnostic measures, plots,
and statistical tests as described. As illustrated, the use of
diagnostic measures, plots, and tests can be useful to have
a parsimonious model that provides an adequate description
of the data. The model-building steps starting with a null
model tend to keep the models simple (Hox et al., 2018, p.
43).

The model-building steps in the two applications are
exploratory in nature, so that in Step 5 hypotheses can
be tested regarding covariate(s) of interest. It is possible
that decisions leading to the selected model are based on
sample variation. When the sample size is large enough,
we recommend cross-validation of the selected model (see
Camstra & Boomsma, 1992, for review). As an example,
Hox et al. (2018) suggested using one half of the data to
build up models and using the other half for cross-validation
of the selected model.

We use diagnostic measures, plots, and tests for residuals
as a supplement to common model selection methods
(e.g., AIC and BIC) or significance tests (e.g., Wald
test). As presented in the illustrations, we recommend
using diagnostic measures, plots, and tests for residuals
even when the common model selection methods and
significance testing of effects suggest a certain model.
For example, in the illustration of the cross-sectional data
set, the nonlinearity of the level-2 covariate was observed
in a diagnostic plot (a plot of the standardized EB of
the random slope vs. the level-2 covariate) in the first
iteration (prior to deleting the single level-2 outlier), and
based on AIC, BIC, and significance tests of higher-
order terms of the covariate. However, we found that the
nonlinearity is caused by a single level-2 outlier, based
on (a) further analyses of diagnostic plots and measures
(plot comparisons of the standardized EB of the random
slope vs. the level-2 covariate and RMSE comparisons for
models with and without the higher-order terms of the
covariates), and (b) analyses of level-specific outliers and
influential points in the suggested model-building steps.
Based on these results, a model with the linearity of the
level-2 covariate (without the single level-2 outlier) was
selected.

In the illustrative cross-sectional data set, the single level-
2 outlier was detected and removed. When a large number
of of outliers are detected, researchers can use robust
estimation methods such as the rank based and heavy tailed
methods (e.g., Finch, 2017 for comparisons) and robust S-
estimation (Copt & Victoria-Feser, 2006) to avoid removing
large quantities of the data. We also suggest looking into
Demidenko (2004, Section 4.4) for alternative approaches
to robust modeling.

As far as normality is concerned, extreme non-normality
was not encountered in either of the illustrations, neither
of level-1 residuals, nor of EB estimates of random effects.
Maas and Hox (2004) found via simulation studies that the
non-normality of the level-1 residuals in MLM does not
affect the estimates and standard errors of fixed effects,
but non-normality does result in biased standard errors of
variances of random effects. In addition, Maas and Hox
(2004) reported that robust standard errors do not solve the
non-normality of the level-1 residuals when the residuals are
largely skewed. When there is an extreme deviation from
normality in the level-1 residuals, a nonparametric estimate
of the bivariate density of the random intercept and slope
can be considered using a penalized Gaussian mixture linear
mixed model (e.g., Ghidey, Lesaffre, & Eilers, 2004).

Limitations of the present study

This study provides initial guidance to researchers to build
up MLMs using diagnostic measures, plots, and tests for
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2-level nested data. In applying MLMs for multilevel data
having more than 2 nested levels, additional EB of random
effects at the 3rd level or higher can be obtained, along
with the level-1 residuals and level-2 random effects we
described in the current study. Similar diagnostic measures,
plots, and tests to those presented for the level-2 data
are applicable to multilevel data with more than 2 levels.
However, we expect that model-building strategies can be
more complex for such data, especially when multiple
iterations are desirable (i.e., returning to earlier steps).
Future research applying these methods to higher-level data
could be useful.

Illustrations of the present study are restricted to a
case when there is a single covariate of interest based
on a research question and in the presence of control
covariates. Although the guidelines of model building
for multiple covariates of interest are briefly discussed,
step-by-step illustrations are needed in future research. In
addition, additional diagnostic plots and tests are needed
to explore additional complexities we did not illustrate in
the present study. For example, when there are multiple
level-1 covariates of interest, a plot of OLS regression
coefficients per cluster for the level-1 covariates can be
further considered in Step 3.

For the detection of the level-specific influential points,
specific detection methods and their cut-off values were
used in this study, as used in the MLM literature. To the
best of our knowledge, there is no consensus regarding the
“correct” detection method of the level-specific influential
points and their specific cutoffs to use in MLM. Systematic
comparisons of various detection methods are required
in future studies. Furthermore, for the detection of the
level-specific outliers, the univariate detection method was
used for computational efficiency and the use of robust
estimation methods was recommended when there are many
outliers. However, without further studies on the level-
specific outliers, it would be difficult to create an absolute
guideline on when to use the univariate method instead of
the multivariate detection method and on when to use the
robust estimation methods that would be applied in the same
way to all MLM applications.

This study uses a single software package (the nlme
package in R), to fit MLMs and to calculate level-specific
residuals. There are other software packages which provide
different kinds of residuals and diagnostic measures, as
reviewed by O’Connell et al. (2016) (see Table 4.1) and
Loy and Hofmann (2014) (see Table 1). Currently, there
are no other software packages which provide the functions
required to perform all of the procedures we presented in
this paper. Future research is required to provide guidelines
on how to replicate the model-building and analyses
conducted in this study using other software packages than
nlme.

Despite these limitations, our work clearly underscores
the benefits of using diagnostic measures, plots, and tests
in the applications of MLMs. We hope to encourage
researchers to explore and visualize data in model selection
and model checking in their applications of MLMs.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.3758/s13428-021-01709-z.
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