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Abstract
Language scientists often need to generate lists of related words, such as potential competitors. They may do this for purposes
of experimental control (e.g., selecting items matched on lexical neighborhood but varying in word frequency), or to test
theoretical predictions (e.g., hypothesizing that a novel type of competitor may impact word recognition). Several online
tools are available, but most are constrained to a fixed lexicon and fixed sets of competitor definitions, and may not give the
user full access to or control of source data. We present LexFindR, an open-source R package that can be easily modified
to include additional, novel competitor types. LexFindR is easy to use. Because it can leverage multiple CPU cores and
uses vectorized code when possible, it is also extremely fast. In this article, we present an overview of LexFindR usage,
illustrated with examples. We also explain the details of how we implemented several standard lexical competitor types used
in spoken word recognition research (e.g., cohorts, neighbors, embeddings, rhymes), and show how “lexical dimensions”
(e.g., word frequency, word length, uniqueness point) can be integrated into LexFindR workflows (for example, to calculate
“frequency-weighted competitor probabilities”), for both spoken and visual word recognition research.
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Introduction

Language scientists often need to generate sets of related
words or words with specific properties. This might be
in service of experimental control (e.g., words matched
on length and frequency of occurrences, but differing in
lexical neighborhood; Luce & Pisoni, 1998). Or the need
might arise based on a theoretically motivated or model-
driven hypothesis; perhaps your theory proposes – or your
model simulations predict – that shorter words embedded
within a word should make that word more difficult to
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process, so you want to find words with many or few
words embedded within them. Sets of related items and their
characteristics can also be useful for clinical purposes. For
example, frequency-weighted lexical neighborhoods have
proven useful for clinical assessments and interventions
(e.g., Kirk, Pisoni, & Osberger, 1995; Morrisette & Gierut,
2002; Sommers & Danielson, 1999; Storkel, Bontempo,
Aschenbrenner, Maekawa, & Lee, 2013; Storkel, Maekawa,
& Hoover, 2010). So how do we generate these lists?

Various excellent tools already exist. For example, three
web-based tools are Michael Vitevtich’s phonotactic prob-
ability (Vitevitch & Luce 1998, 1999) and neighborhood
density calculators (http://www.people.ku.edu/∼mvitevit/
PhonoProbHome.html), the English Lexicon Project
(https://elexicon.wustl.edu/; Balota et al., 2007), and the
recent Auditory English Lexicon Project (https://inetapps.
nus.edu.sg/aelp; Goh, Yap, & Chee, 2020). Other tools exist
for semantic variables or languages other than English,
such as Lexique, which includes English and French (http://
www.lexique.org/; New, Pallier, Brysbaert, & Ferrand,
2004), the multilingual CLEARPOND (https://clearpond.
northwestern.edu/; Marian, Bartolotti, Chabal, & Shook,
2012), and EsPal (https://www.bcbl.eu/databases/espal/;
Duchon, Perea, Sebastián-Gallés, Martı́, & Carreiras, 2013)
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for Spanish, but it takes considerable independent work for
a researcher to combine these resources with things like
neighborhood statistics from the other tools.

Furthermore, while these tools are incredibly useful, they
have limitations. Many require using web interfaces, so
a researcher’s workflow must include interacting with the
websites and documenting the steps taken, and importing
lists of items into the researcher’s local workflow (e.g., into
R; R Core Team, 2019). One might argue that this is not a
major inconvenience, but other limitations are more severe.
For example, so far as we are aware, the computer code
used to search lexicons on the sites listed above are not
readily available, so a researcher can neither easily confirm
the code’s validity or extend it (for example, to include
a new type of potential competitor). Another limitation is
that some tools have a predefined lexicon, and a researcher
cannot substitute another in its place. Substituting your own
lexicon might be useful if you simply prefer a different
lexicon, or if you were using an artificial lexicon, either
with human subjects or with a computational model, or if
you wanted to examine an understudied language or dialect.
Finally, we assume that many labs and researchers have
developed and will continue to develop their own code for
lexical searches. This duplication of effort is unfortunate.
An open-source, extensible tool shared via a version-control
repository would allow researchers to collaborate and share
their extensions, reducing duplication of effort.

We have developed a lightweight R package, LexFindR
(Li, Crinnion, & Magnuson, 2020), which addresses these
limitations. LexFindR comes with a suite of lexical relation
finders for common competitor types used in studies of
spoken and/or visual word recognition (e.g., neighbors,
cohort [onset] competitors, and rhymes), but is also easily
extended to incorporate new definitions. LexFindR is
also fast, as it uses R’s parallelization capabilities to
leverage multiple CPU cores (typically found even on
contemporary laptops) and efficient core capabilities of
R (e.g., R’s apply family of functions). Appendix 1
provides an example of how to put together aspects of the
examples throughout the paper in order to efficiently gather
information about multiple lexical dimensions in one script.
In the following sections, we review how to install and use
LexFindR. Details about how to share extensions with the
community via LexFindR’s GitHub repository are provided
in Appendix 2.

Using LexFindR

Installing and loading LexFindR

The package is implemented in R and can be utilized like
any R package. The package is available from the R package

repository, CRAN. Users can install the stable version using
the Tools::Install Packages menu in R Studio, or via the
following command:

install.packages("LexFindR")

The most current developmental version can be installed
from GitHub with the following commands:

# uncomment the line below to install
# devtools if needed
# install.packages("devtools")
# the line below only needs to be run once
devtools::install_github(

"maglab-uconn/LexFindR")

Once installed, the package can be loaded with the fol-
lowing command.

library(LexFindR)

Getting started

The package comes with two lexicons: the 212-word slex
lexicon (with only 14 phonemes) from the TRACE model of
spoken word recognition (McClelland & Elman, 1986) as a
small data set for the user to experiment with, and a larger
lexicon (lemmalex) that we compiled from various open-
access, non-copyrighted materials. The primary source is
the SUBTLEX subtitle corpus (Brysbaert & New, 2009),
which we cross-referenced with the copyrighted (Francis
& Kučera, 1982) database to reduce the word list to
“lemma” (base- or uninflected) forms. Pronunciations were
drawn from the larger CMU Pronouncing Dictionary (CMU
Computer Science, 2020) without lexical stress for both
lexicons (with those for slex transcribed by Nenadić &
Tucker, 2020a). The second lexicon is large enough to
demonstrate the full capabilities of the package. The two
data sets are automatically loaded when we load LexFindR.
We can use the tidyverse (Wickham et al., 2019) glimpse
function to view essential details about the lexicons, and
view their first few lines.

library(LexFindR)
# tidyr gives us glimpse for
# previewing R objects
library(tidyverse)
glimpse(slex)

## Rows: 212
## Columns: 3
## $ Item <chr> "ad", "ar", "ark",

"art", "artˆst", "bab", "babi", "b...
## $ Pronunciation <chr> "AA D", "AA R", "AA

R K", "AA R T", "AA R T AH S T", ...
## $ Frequency <int> 53, 4406, 50, 274,

112, 45, 23, 341, 87, 125, 125, 95...

glimpse(lemmalex)
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## Rows: 17,750
## Columns: 3
## $ Item <chr> "a", "abandon", "

abandonment", "abate", "abbey", "abb...
## $ Frequency <dbl> 20415.27, 8.10, 0.96,

0.10, 3.18, 0.84, 0.02, 0.24, 3...
## $ Pronunciation <chr> "AH", "AH B AE N D

IH N", "AH B AE N D AH N M AH N T"...

Both lexicons are loaded as R dataframes with three
fields. “Item” is a label (orthography in the case of lem-
malex, and transcriptions in the original phonemic con-
ventions used for the TRACE model in the case of slex).
“Pronunciation” is a space-delimited phonemic transcrip-
tion using the ARPAbet conventions of the CMU Pronounc-
ing Dictionary (ARPAbet transcriptions for TRACE items
are from Nenadić & Tucker, 2020b). We will discuss shortly
how to specify alternative delimiters, including a “null”
delimiter for working with orthographic forms or pronun-
ciation forms that use one character per phoneme without
spaces. “Frequency” is occurrences-per-million words; fre-
quencies are based on (Kučera & Francis, 1967) for slex and
on Brysbaert and New (2009) for lemmalex.

More information about the lexicons can by queried with
the ‘?’ command (we do not present the output here as it is
rather extensive):

?slex
?lemmalex

Note that you can use any lexicon you can load into an R
dataframe. You may find it convenient to use the same field
names as in slex and lemmalex, but it is not necessary. For
work on phonological word forms, you typically will have
both “Item” (usually orthography) and “Pronunciation”, but
as we will see later, you can do useful things with LexFindR
with any list of forms, including orthographic forms. To use
this package with orthographic forms, refer to the section
below on Working with orthography or other “undelimited”
forms, or other delimiters.

LexFindR commands

Table 1 provides a list of LexFindR commands along with
brief descriptions. To use any of the LexFindR functions,
we provide a target pattern and a word list to compare it to.
LexFindR will compare the target pattern to the patterns in
the word list to find items that have particular relations to the
target. The functions can return indices of items that meet
the criteria of the function, but we can also tell LexFindR
to return instead the list of matching forms, the list of accom-
panying labels for matching forms (e.g., spellings), or the fre-
quencies of matching forms. As we progress through exam-
ples, we will see when these different options are useful.

Table 1 LexFindR functions briefly described

Function Description

get cohorts Returns items that overlap at onset

get cohortsP Returns cohorts that are not also neighbors

get embeds in target Returns items that embed in the target

get embeds in targetP Returns items that embed in the target that
are not also cohorts or neighbors

get fw Returns the sum of the log frequencies in
a list

get fwcp Returns the ratio of the target word’s log
frequency to the summed log frequencies of
all words meeting the competitor definition

get homoforms Returns items with the same form as the
target

get neighbors Returns items that differ by no more than
a single deletion, addition, or substitution
(can limit to any combination of deletion,
addition, and substitution with the *overlap*
parameter)

get neighborsP Returns neighbors that are not also cohorts
or rhymes

get nohorts Returns items that meet the definitions for
both cohorts and neighbors

get rhymes Returns items that mismatch at word
onset by no more than a specified number
of elements

get target embeds in Returns items that the target embeds within

get target embeds inP Returns items that the target embeds within
that are not also cohorts or neighbors

get uniqpt Returns position at which the target becomes
a unique completion in the lexicon (or word
length + 1 if the word is not unique at offset)

Cohorts

Let’s begin with cohorts. Cohorts are words that overlap at
word onset, and are called “cohorts” because they comprise
the set of words predicted to be strongly activated as a
spoken word is heard (and thus to form the recognition
cohort) by the Cohort Model (Marslen-Wilson & Welsh,
1978). While definitions vary, LexFindR is equipped to
handle overlap in any number of phonemes. By default, it
uses a very common cohort definition: overlap in the first
two phonemes. However, it contains a parameter – overlap –
to allow the researcher to adjust how many initial phonemes
must match for two words to be cohorts. We can get the set
of cohort indices for a pattern with a command like this for
the pronunciation of CAR:

get_cohorts("K AA R",
slex$Pronunciation)

## [1] 66 67 68 69 70 71
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This tells us that slex entries 66-71 are cohorts of CAR
(overlapping in at least the initial two positions, since 2 is
the default overlap). To get the competitors themselves rather
than the indices, we could specify that we want forms:

get_cohorts("K AA R",
slex$Pronunciation,
form = TRUE)

## [1] "K AA L IY G" "K AA P" "K AA
P IY" "K AA R"

## [5] "K AA R D" "K AA R P AH T"

To see the labels of those items (in TRACE’s phonemic
transcriptions), we can use standard R conventions (and
should see the phonemic transcriptions for COLLEAGUE,
COP, COPY, CAR, CARD, and CARPET):

slex[get_cohorts("K AA R",
slex$Pronunciation), ]$Item

## [1] "kalig" "kap" "kapi" "kar" "
kard" "karpˆt"

Alternatively, we could request the count of cohorts:

get_cohorts("K AA R",
slex$Pronunciation,
count = TRUE)

## [1] 6

That is not a large number of cohorts. Let’s compare it to
the count we get from lemmalex:

get_cohorts("K AA R",
lemmalex$Pronunciation,
count = TRUE)

## [1] 272

As expected, we get many more from a more realistically
sized lexicon. Note that most LexFindR functions have
exactly the same structure, returning indices by default, but
with options to return forms or counts.

Finally, let’s see how we can change the cohort definition
in terms of how many phonemes must match. Let’s say we
want to try a definition of cohorts with overlap in the first
three phonemes for the cohort of CARD:

get_cohorts("K AA R D",
slex$Pronunciation,
form = TRUE,
overlap = 3)

## [1] "K AA R" "K AA R D" "K AA
R P AH T"

We could repeat any of the preceding example commands
with 3-phoneme overlap by simply adding “overlap = 3” to
each command.

Neighborhood

Neighbors are another possible competitor often considered
in word recognition research. The standard neighbor
definition for spoken words comes from the Neighborhood
Activation Model (NAM; (Luce & Pisoni, 1998)). While
NAM includes a graded similarity rule, most often,
researchers use the simpler DAS rule: two words are
considered neighbors (and are expected to be strongly
activated if either one is heard) if they differ by no more
than a single phonemic deletion, addition, or substitution.
For example, CAR (/kar/) has many neighbors, including
the deletion neighbor ARE (note that neighbors are based on
pronunciation here, not spelling), addition neighbors SCAR
and CARD, and substitution neighbors at every position,
such as BAR, CORE, and COP (though as we will see, CAR
has no medial [vowel] substitution neighbors in slex). Let’s
look at CAR’s neighbors in slex, using analogous commands
to those we used for cohorts.

# get indices
get_neighbors("K AA R",

slex$Pronunciation)

## [1] 2 10 67 69 70 104 152 184

# get forms
get_neighbors("K AA R",

slex$Pronunciation,
form = TRUE)

## [1] "AA R" "B AA R" "K AA P" "K
AA R" "K AA R D" "P AA R" "S K AA R"

## [8] "T AA R"

# get labels
slex[get_neighbors("K AA R",

slex$Pronunciation), ]$Item

## [1] "ar" "bar" "kap" "kar" "kard"
"par" "skar" "tar"

# get count
get_neighbors("K AA R",

slex$Pronunciation,
count = TRUE)

## [1] 8

Note that in visual word recognition, it is much more
common to consider only substitution neighbors (often
called “Coltheart’s N”; Coltheart, Davelaar, Jonasson, &
Besner, 1977). So if you are working with orthography,
you may only want substitution neighbors. Or perhaps you
would like to explore the relative impact of deletion, addi-
tion, and substitution neighbors. LexFindR’s get neighbors
function anticipates the potential need for such flexibil-
ity. By default, it assumes you want all three, but you can
specify any single type or any combination with the neigh-
bors argument and specifying deletion neighbors with “d”,
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addition neighbors with “a”, and/or substitution neighbors
with “s”. Here are some examples:

# get forms of deletion neighbors
# (just ARE)
get_neighbors("K AA R",

slex$Pronunciation,
form = TRUE,
neighbors = "d")

## [1] "AA R"

# get forms of addition neighbors
# (CARD, SCAR)
get_neighbors("K AA R",

slex$Pronunciation,
form = TRUE,
neighbors = "a")

## [1] "K AA R D" "S K AA R"

# get forms of substitution neighbors
# (BAR, COP, CAR, PAR, TAR)
get_neighbors("K AA R",

slex$Pronunciation,
form = TRUE,
neighbors = "s")

## [1] "B AA R" "K AA P" "K AA R" "P AA R"
"T AA R"

# get forms of deletion (ARE) and
# addition (CARD, SCAR) neighbors
get_neighbors("K AA R",

slex$Pronunciation,
form = TRUE,
neighbors = "ad")

## [1] "AA R" "K AA R D" "S K AA R"

Of course, we can easily do other things using basic R
commands, such as determine what proportion of CAR’s
neighbors are substitution neighbors:

# what proportion of CAR’s neighbors
# are substitution neighbors?
get_neighbors("K AA R",

slex$Pronunciation,
neighbors = "s",
count = TRUE) /

get_neighbors("K AA R",
slex$Pronunciation,
count = TRUE)

## [1] 0.625

Other competitor types

In addition to cohorts and neighbors, LexFindR comes with
analogous functions for several other similarity types.

• get rhymes: returns items that mismatch at word onset
by no more than a specified number of phonemes, using
a mismatch argument which the user can supply. The

default mismatch argument is 1 phoneme, meaning the
function will by default return items that mismatch
at word onset by a maximum of 1 phoneme (so not
a standard definition of poetic rhyme or phonological
rime). With this default argument, rhymes will include
items that are addition or deletion neighbors at first
position (e.g., CAR’s rhymes will include ARE and
SCAR) as well as substitution neighbors at position
1 (e.g., BAR, TAR). If mismatch were set to 2,
for example, CAR would additionally match any 3-
phoneme word ending in /r/ and any 4-phoneme word
ending in /ar/.

• get embeds in target: returns items that are embedded
within a target word. For SCAR, this would include
ARE and CAR.

• get target embeds in: returns items that the target
embeds within. For CAR, this would include SCAR and
CARD.

• get homoforms: returns items with the same form as
the target. We use “homoform” because these would be
homophones for phonological forms but homonyms for
orthographic forms.

LexFindR also anticipates the possibility that a researcher
may want to find competitor types that do not overlap. For
example, CARD is both a cohort and a neighbor of CAR, so
which set should it appear in? We propose a novel category
called nohorts – neighbors that are also cohorts – and provide
“P” (pure) versions of several competitor-type functions that
return non-overlapping sets.

• get nohorts: Cohorts and neighbors are overlapping
sets, although not all cohorts are neighbors (e.g., CAR
and CARPET are cohorts but not neighbors) and not all
neighbors are cohorts. Nohorts are the intersection of
cohorts and neighbors. Note that the target word will
be part of the nohort set, and not part of cohortsP or
neighborsP, which we define next.

• get cohortsP: the set of “pure” cohorts that are not also
neighbors.

• get neighborsP: the set of “pure” neighbors that are not
also cohorts or rhymes.

• get embeds in targetP: set of items that embed in the
target that are not also cohorts or neighbors.

• get target embeds inP: set of items that the target
embeds in that are not also cohorts or neighbors.

The nohort and “P” functions use the base-R intersect
and setdiff functions to find set intersections and differ-
ences. To see the code for any function in R, you can simply
enter the function name with no arguments and no following
parentheses. Let’s look at the code for get nohorts. Many
of the details provided may not be useful for a typical user,
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but the intersect command is the interesting part of this
example.

get_nohorts

## function(target, lexicon, neighbors =
"das", sep = " ", form = FALSE, count =
FALSE) {

## idx <- intersect(
## get_cohorts(target, lexicon, sep,

form = FALSE, count = FALSE),
## get_neighbors(target, lexicon,

neighbors, sep, form = FALSE, count =
FALSE)

## )
##
## get_return(idx, lexicon, form, count)
## }
## <bytecode: 0x7f82fd997d90>
## <environment: namespace:LexFindR>

Now let’s examine the get neighborsP function to see
how setdiff is used to find “pure” sets.

get_neighborsP

## function(target, lexicon, neighbors =
"das", sep = " ", form = FALSE, count =
FALSE) {

## idx <- setdiff(
## setdiff(
## get_neighbors(target, lexicon,

neighbors),
## get_cohorts(target, lexicon, sep,

form = FALSE, count = FALSE)
## ),
## get_rhymes(target, lexicon, sep, form =

FALSE, count = FALSE)
## )
##
## get_return(idx, lexicon, form, count)
## }
## <bytecode: 0x7f82fd28a908>
## <environment: namespace:LexFindR>

This function uses nested setdiff calls to first find neigh-
bors excluding cohorts and then to exclude rhymes from that
set. A user could use these functions as examples to create
their own specific subsets of items.

Form length

You may wish to calculate form length. This is easy to do
with base R. If you use CMU pronunciations, as in lem-
malex, we can use a technique for counting words separated
by whitespace with the lengths command in R.

# get lengths by splitting on spaces
lemmalex$Length <- lengths(strsplit(

lemmalex$Pronunciation, " "))

glimpse(lemmalex)

## Rows: 17,750
## Columns: 4
## $ Item <chr> "a", "abandon",

"abandonment", "abate", "abbey", "abb...
## $ Frequency <dbl> 20415.27, 8.10,

0.96, 0.10, 3.18, 0.84, 0.02, 0.24, 3...
## $ Pronunciation <chr> "AH", "AH B AE N D

IH N", "AH B AE N D AH N M AH N T"...
## $ Length <int> 1, 7, 11, 4, 3, 4, 8,

10, 7, 9, 8, 7, 8, 4, 6, 5, 8, ...

If you have a null-delimited form, where each character
is a single letter or phoneme, we can use the nchar function.

# get lengths by counting characters
# for orthography or 1-char per
# phoneme forms
slex$Length <- nchar(slex$Item)

glimpse(slex)

## Rows: 212
## Columns: 4
## $ Item <chr> "ad", "ar", "ark",

"art", "artˆst", "bab", "babi", "b...
## $ Pronunciation <chr> "AA D", "AA R", "AA

R K", "AA R T", "AA R T AH S T", ...
## $ Frequency <int> 53, 4406, 50, 274,

112, 45, 23, 341, 87, 125, 125, 95...
## $ Length <int> 2, 2, 3, 3, 6, 3,

4, 4, 4, 3, 4, 5, 2, 4, 3, 4, 3, 4,...

Uniqueness point

We have added one other common lexical dimension to the
LexFindR functions (get uniqpt), which is the uniqueness
point (UP) of a form. This is the position at which an item
becomes the only completion in the lexicon. For example,
in slex, /kard/ (CARD) becomes unique at position 4, as
does /karpˆt/ (CARPET). SCAR becomes unique at position
3. CAR (/kar/) is not unique at its final position, so its
uniqueness point is set to its length plus one.

get_uniqpt("K AA R",
slex$Pronunciation)

## [1] 4

get_uniqpt("S K AA R",
slex$Pronunciation)

## [1] 3

Again, CAR is not unique by word offset, so its UP is its
length plus one. SCAR becomes unique at position 3, one
before its offset. Let’s consider some additional useful steps.
We could normalize UPs by dividing them by word length
plus one, the maximal possible score. So CARD would have
a normalized UP of 0.8 (4/5), while CARPET’s would be
0.57 (4/7), and CAR’s would be 1.0 (4/4). Here are some
examples.
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# Get UPs for all items in slex
slex$UP <- unlist(lapply(slex$Pronunciation,

FUN = get_uniqpt,
lexicon = slex$Pronunciation

))

# Now let’s normalize UP
# by word length + 1
slex$UP.norm <- slex$UP /

(slex$Length + 1)

# Check examples
subset(slex, Item == "kar" |

Item == "skar" |
Item == "kard" |
Item == "karpˆt" )

## Item Pronunciation Frequency Length
UP UP.norm

## 69 kar K AA R 386 3
4 1.0000000

## 70 kard K AA R D 62 4
4 0.8000000

## 71 karpˆt K AA R P AH T 22 6
4 0.5714286

## 152 skar S K AA R 22 4
3 0.6000000

Helper functions

LexFindR includes two helper functions that can be applied
to the output of other functions: get fw and get fwcp.

Log frequency weights: get fw

Intuitively, the number (count) of potential competitors may be
important, but some competitors might have more influence
than others; in particular, words with higher frequency-of-
occurrence may compete more strongly. So we may wish to
consider the frequencies of competitors. We can use the indices
returned by functions like get cohorts or get neighbors to
get the frequencies of the items. Let’s do this for the word
CAR in slex and lemmalex and get some summary statistics.

# get CAR’s slex cohorts’
# frequencies
slex_cohort_frequencies <-

slex$Frequency[
get_neighbors("K AA R",

slex$Pronunciation) ]
summary(slex_cohort_frequencies)

## Min. 1st Qu. Median Mean 3rd Qu.
Max.

## 10.0 21.5 47.0 632.9 190.2
4406.0

# get CAR’s lemmalex
# cohorts’ frequencies
llex_cohort_frequencies <-

lemmalex$Frequency[
get_neighbors("K AA R",

lemmalex$Pronunciation) ]
summary(llex_cohort_frequencies)

## Min. 1st Qu. Median Mean 3rd Qu.
Max.

## 0.220 1.353 6.635 58.336 30.830
485.250

Typically, frequencies are log scaled, as this provides a
better fit when they are used to predict human behavior
(e.g., word recognition time). It would be useful, therefore,
to weight the count of competitors by log frequencies. The
LexFindR helper function get fw does this. You supply it
with a list of frequencies, and it takes their logs and returns
the sum. This is simple enough that you could do it with
basic R functions yourself. However, get fw provides some
useful error checking. Specifically, it checks whether the
minimum frequency in your set of frequencies is less than
1, since taking the log would return a negative value. If so,
it also suggests a minimum constant to specify for pad to
add to each frequency before taking the log. Let’s consider
how we might use this. First, let’s try using get fw to give
us summed log frequencies for the frequencies we collected
above for CAR’s slex cohorts.

get_fw(slex_cohort_frequencies)

## [1] 35.1571

This gives us the sum without any problem, as the
minimum frequency in slex cohort frequencies is greater
than 1. Now let’s try with llex cohort frequencies.

get_fw(llex_cohort_frequencies)

## Warning: ‘min(competitors_freq) + pad‘ is
0.22 which is < 1;

## * Consider adding pad >= 0.78

## [1] 55.64038

Now we get a value (55.64038) but also a warning because
the minimum value is less than 1. So let’s add the pad option.
Using 1 will bring our minimum to a value greater than 1,
avoiding results with non-positive values.

get_fw(llex_cohort_frequencies,
pad = 1)

## [1] 65.67193

Log Frequency-Weighted Competitor Probabilities: get fwcp

We could go a step beyond frequency weights and calculate
the Frequency-Weighted Competitor Probability (FWCP) of
a word, inspired by the Neighborhood Activation Model’s
Frequency-Weighted Neighborhood Probability (FWNP;
Luce & Pisoni, 1998). This is calculated as the ratio of the
target word’s log frequency to the sum of all words meeting
the competitor definition, as in the following equation.

FWCP = log(F requencytarget )
∑

c∈competitors log(F requencyc)
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Notably, on most competitor definitions, this includes the
target word itself, so we can think of the ratio as expressing
what proportion of the “frequency weight” of the target’s
competitors is contributed by the target itself. For spoken
words, the larger the ratio, the more easily the target word
tends to be recognized. To calculate this with LexFindR,
we supply a set of competitor frequencies and the target
word’s frequency to the get fwcp function. Note that we can
include a pad option as for get fw, and it will be applied to
both the target word’s frequency and the list of competitor
frequencies; again, this should be done if the minimum
frequency value is less than 1. Let’s verify that the minimum
frequency in slex is greater than 1.

# check the minimum frequency
min(slex$Frequency)

## [1] 10

The next two code blocks demonstrate how to get the
FWCP for neighbors (i.e., the FWNP) and then for cohorts.

# because get_neighbors returns indices
# by default, we can use its output as
# the keys to get corresponding
# frequencies from another column in the
# dataframe
competitors_freq <-

slex$Frequency[get_neighbors("K AA R",
slex$Pronunciation)]

target_freq <- slex$Frequency[
which(slex$Pronunciation == "K AA R")]

# now we can get the FWCP based on
# neighbors; minimum frequency is > 1
# so we won’t specify a pad
get_fwcp(target_freq, competitors_freq)

## [1] 0.1694064

# Now let’s get the FWCP for cohorts
competitors_freq <- slex$Frequency[

get_cohorts("K AA R", slex$Pronunciation)]
target_freq <- slex$Frequency[

which(slex$Pronunciation == "K AA R")]

get_fwcp(target_freq, competitors_freq)

## [1] 0.2459427

Note that get fwcp is not simply computing the ratio
of target-to-competitor frequencies; it is first converting
the frequencies to log frequencies. If your lexicon file has
frequencies already in log form, you should not use the
get fwcp function, but instead you should calculate the
ratios directly. Also note that it is fairly standard to express
frequencies as occurrences-per-million. If your basis is dif-
ferent (e.g., occurrences-per-six million), you may want to
transform your frequencies to the more standard per-million

basis. Finally, we recommend that you examine distribu-
tions before using the results of get fwcp, as these often
exhibit difficult-to-mitigate deviations from normality. One
may be better served by examining target frequencies and
competitor frequency weights (obtained with get fw) sepa-
rately.

Working with orthography or other “undelimited”
forms, or other delimiters

By default, LexFindR functions expect the forms you supply
to be space-delimited, which is the typical convention for
CMU pronunciations. Using a delimiter allows you to have
form codes (typically phoneme codes) made up of more
than one character. But what if you want to work with
orthography, or a phoneme code that uses one character per
phoneme without delimiters? You can simply specify sep =
”” to indicate that your forms have a “null” delimiter. We
can illustrate this with the orthography in the “Item” field in
lemmalex.

# Let’s list orthographic substitution
# neighbors for CAR in lemmalex
get_{n}eighbors("car",

lemmalex$Item,
form = TRUE,
neighbor = "s",
sep = "")

## [1] "bar" "cab" "cam" "can" "cap" "car"
"cat" "caw" "cur" "ear" "far" "jar"

## [13] "mar" "par" "tar" "war"

Now let’s try it with TRACE’s original phoneme encod-
ings, which use one character per phoneme. Those original
forms are in the “Item” field of slex:

# Let’s list orthographic substitution
# neighbors for CAR in slex
get_neighbors("kar",

slex$Item,
form = TRUE,
neighbor = "s",
sep = "")

## [1] "bar" "kap" "kar" "par" "tar"

Batch processing with target list and lexicon

Often, we may need to get the competitors for each word in
the lexicon, with respect to the entire lexicon. This would
be a prerequisite for selecting words with relatively many
vs. few neighbors, for example. One way to do this would
be to use the base R function lapply. Here is how we could
do this for cohorts. The final glimpse command will show
us the first few instances of each field.
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# reset R
rm(list = ls())
library(LexFindR)

# define the lexicon with the
# list of target words to compute
# cohorts for; we will use
# *target_df* instead of modifying
# slex or lemmalex directly
target_df <- slex

# specify the reference lexicon;
# here it is actually the list of
# pronunciations from slex, as we
# want to find all cohorts for all
# words in our lexicon. It is not
# necessary to create a new dataframe,
# but because we find it useful for
# more complex tasks, we use this
# approach here
lexicon_df <- target_df

# this instruction will create a new
# column in our target_df dataframe,
# "cohort_idx", which will be the
# list of lexicon_df indices
# corresponding to each word’s cohort
# set
target_df$cohort_idx <-

lapply(
# in each lapply instance,
# select the target pronunciation
target_df$Pronunciation,
# in each lapply instance,
# apply the get_cohorts function
FUN = get_cohorts,
# in each lapply instance,
# compare the current target
# Pronunciation to each
# lexicon Pronunciation
lexicon = lexicon_df$Pronunciation

)

# let’s look at the first few
# instances in each field...
glimpse(target_df)

## Rows: 212
## Columns: 4
## $ Item <chr> "ad", "ar", "ark",

"art", "artˆst", "bab", "babi", "b...
## $ Pronunciation <chr> "AA D", "AA R", "AA

R K", "AA R T", "AA R T AH S T", ...
## $ Frequency <int> 53, 4406, 50, 274,

112, 45, 23, 341, 87, 125, 125, 95...
## $ cohort_idx <list> [1, <2, 3, 4, 5>,

<2, 3, 4, 5>, <2, 3, 4, 5>, <2, 3,...

Consider the cohort idx field. We can see that /ad/ (ODD)
has only one cohort (itself), while /ar/ (ARE) has four (items
2, 3, 4, 5, or /ar/, /ark/, /art/, and /artˆst/, i.e., ARE, ARK,
ART, ARTIST).

What if we also want the lists of cohort forms or labels
and frequencies? Rather than calling the function three
times, we could speed up the process (speed will be very
important when we work with large lexicons!) by calling
get cohorts only once, and then using the indices to get the
other items we want. In the next example, we keep working
with target df and its new field cohort idx (which has the
list of indices [row counts] of records that meet the cohort
definition for each target).

# continuing the code block above,
# this instruction creates a new field,
# cohort_str, which will be the list of
# forms corresponding to the list of
# indices in cohort_idx
target_df$cohort_str <-

lapply(
# on each instance of lapply (each
# target word), we apply this simple
# function of returning the Item
# (label) of each cohort index (idx)
target_df$cohort_idx, function(idx){

lexicon_df$Item[idx]
}

)

# to create a list of frequencies for
# each cohort of a target item, we do
# the same thing, but now we get the
# Frequency rather than the Item
target_df$cohort_freq <-

lapply(
target_df$cohort_idx, function(idx){

lexicon_df$Frequency[idx]
}

)

# to get the count of cohorts for each
# item, we *could* run get_cohorts again
# with "count = TRUE", but we can use
# the "lengths" command to get the count
# of items in cohort_str (or cohort_idx)
# instead. We put the result in a new
# field in the dataframe called
# "cohort_count"
target_df$cohort_count <-

lengths(target_df$cohort_str)

# finally, we can get the cohort
# frequency weight for each word (the
# summed log frequencies of all its
# cohorts)
target_df$cohort_fw <-

lapply(target_df$cohort_freq, get_fw)

Let’s look at the results:

glimpse(target_df)
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## Rows: 212
## Columns: 8
## $ Item <chr> "ad", "ar", "ark",

"art", "artˆst", "bab", "babi", "b...
## $ Pronunciation <chr> "AA D", "AA R", "AA

R K", "AA R T", "AA R T AH S T", ...
## $ Frequency <int> 53, 4406, 50, 274,

112, 45, 23, 341, 87, 125, 125, 95...
## $ cohort_idx <list> [1, <2, 3, 4, 5>,

<2, 3, 4, 5>, <2, 3, 4, 5>, <2, 3,...
## $ cohort_str <list> ["ad", <"ar", "ark",

"art", "artˆst">, <"ar", "ark",...
## $ cohort_freq <list> [53, <4406, 50,

274, 112>, <4406, 50, 274, 112>, <44...
## $ cohort_count <int> 1, 4, 4, 4, 4, 7, 7,

7, 7, 7, 7, 7, 3, 3, 3, 3, 3, 3,...
## $ cohort_fw <list> [3.970292, 22.63437,

22.63437, 22.63437, 22.63437, 3...

We can see that cohort idx, cohort str, and cohort freq
all contain lists, and we can verify that for a given word, the
lists are the same length (e.g., one frequency form for each
cohort). There should only be one value per target word in
cohort count and cohort fw, which we can see is the case as
well.

Working with different target and lexicon lists

In some cases, you may only want to get details for a
subset of items in the lexicon – or even for a list of forms
that are not in the lexicon. In these cases, you can simply
specify a shorter target list rather than making the target
list and lexicon the same. Note that of course, if you do
not have frequencies for your items, you will not be able
to use the get fwcp command. As an example, we might
want to examine what the neighborhoods of the words in the
TRACE lexicon would be in the context of a realistically
sized lexicon. We can do this by using slex as our target list
and lemmalex as our lexicon.

# Again, it is not necessary to copy
# slex and lemmalex to target_df and
# lexicon_df, but doing so can promote
# clarity in more complex workflows
target_df <- slex
lexicon_df <- lemmalex

# first, *lapply* get_cohorts
target_df$cohort_idx <-

lapply(
target_df$Pronunciation,
FUN = get_cohorts,
lexicon = lexicon_df$Pronunciation

)

# let’s also get cohort counts
target_df$cohort_count <-

lengths(target_df$cohort_idx)

glimpse(target_df)

## Rows: 212
## Columns: 5
## $ Item <chr> "ad", "ar", "ark",

"art", "artˆst", "bab", "babi", "b...
## $ Pronunciation <chr> "AA D", "AA R", "AA

R K", "AA R T", "AA R T AH S T", ...
## $ Frequency <int> 53, 4406, 50, 274,

112, 45, 23, 341, 87, 125, 125, 95...
## $ cohort_idx <list> [<10577, 10578,

10579, 10582>, <762, 763, 764, 765, ...
## $ cohort_count <int> 4, 69, 69, 69, 69,

64, 64, 64, 64, 64, 64, 64, 32, 32...

Comparing this to our earlier results, we see that ODD would
have four cohorts in lemmalex instead of one within slex.

Parallelizing for speed

If we are getting competitors for every word in a lexicon,
speed becomes a concern, especially if we want to do this
for many competitor types. To quantify this, let’s time how
long it takes to calculate cohorts for all words in lemmalex.
We will use the R tictoc package (Izrailev, 2014) to time the
process. For this demonstration, we are using a MacBook
Pro with an Intel Core i9 CPU and 32 GB of RAM.
# load functions for timing
library(tictoc)

# set targets and lexicon to be
# the large lemmalex lexicon
target_df <- lemmalex
lexicon_df <- target_df

# start the timer
tic("get_cohorts w/oparallelization")

# lapply the get_cohorts function -- fast,
# vectorized, but not parallel...
# Warning: this could take a long time,
# depending on your hardware
target_df$cohort_idx <-

lapply(
target_df$Pronunciation,
FUN = get_cohorts,
lexicon = lexicon_df$Pronunciation

)
toc()

## get_cohorts w/oparallelization: 140.625
sec elapsed

tic("get additional fields")
# get cohort strings
target_df$cohort_str <- lapply(

target_df$cohort_idx, function(idx) {
lexicon_df$Item[idx]

}
)

# get cohort counts
target_df$cohort_count <-

lengths(target_df$cohort_str)

toc()

1397Behav Res  (2022) 54:1388–1402

1 3



## get additional fields: 0.068 sec elapsed

glimpse(target_df)

## Rows: 17,750
## Columns: 6
## $ Item <chr> "a", "abandon", "

abandonment", "abate", "abbey", "abb...
## $ Frequency <dbl> 20415.27, 8.10,

0.96, 0.10, 3.18, 0.84, 0.02, 0.24, 3...
## $ Pronunciation <chr> "AH", "AH B AE N D

IH N", "AH B AE N D AH N M AH N T"...
## $ cohort_idx <list> [<>, <2, 3, 4, 7,

8, 14, 15, 16, 18, 19, 29, 30, 31,...
## $ cohort_str <list> [<>, <"abandon",

"abandonment", "abate", "abbreviate...
## $ cohort_count <int> 0, 61, 61, 61, 39,

39, 61, 61, 39, 39, 39, 39, 39, 61...

On our demonstration laptop, get cohorts with lapply
took ˜111 seconds (on an older workstation we tested, it
took several minutes). If you only have to do this once, that
may be tolerable. But we can do better! We could easily
parallelize using the R future package, and its commands
like future.apply (Bengtsson, 2013). There are various ways
to engage multiple cores with this package, as detailed
in its documentation. The plan(multisession, workers =
num cores) is quite convenient, and works on Windows,
Macintosh, and Linux with Rstudio and base R. In the
following code block, we show how to load future.apply and
set things up to use multiple cores.

# uncomment the line below to install,
# but you only need to do this once.
# install.packages("future.apply")
library(future.apply)

# how many cores do we have?
num_cores <- availableCores()
print(paste0("Using num_cores: ",

num_cores))

## [1] "Using num_cores: 12"

# now let future.apply figure out
# how to optimize parallel division
# of labor over cores
plan(multisession, workers =

num_cores)

With this setup, the only thing left to do is to replace our
apply functions with their future.apply equivalents. In the
example below, we just replace lapply with future lapply
to parallelize the function that gets competitors (there’s
no real need to do this with the other apply call as it
is not the bottleneck; in fact, it is so poorly suited for
parallelization that it is slowed by a factor of ˜10 if we do use
future apply).

# load functions for timing
library(tictoc)

# set targets and lexicon to be
# the large lemmalex lexicon
target_df <- lemmalex
lexicon_df <- target_df

# start the timer
tic("get_cohorts WITH parallelization")

# future_lapply the get_cohorts
# function: now parallel!
target_df$cohort_idx <-

future_lapply(
target_df$Pronunciation,
FUN = get_cohorts,
lexicon = lexicon_df$Pronunciation

)
toc()

## get_cohorts WITH parallelization: 29.225
sec elapsed

# get cohort strings
target_df$cohort_str <- lapply(

target_df$cohort_idx, function(idx) {
lexicon_df$Item[idx]

}
)

target_df$cohort_count <-
lengths(target_df$cohort_str)

toc()

glimpse(target_df)

## Rows: 17,750
## Columns: 6
## $ Item <chr> "a", "abandon", "

abandonment", "abate", "abbey", "abb...
## $ Frequency <dbl> 20415.27, 8.10,

0.96, 0.10, 3.18, 0.84, 0.02, 0.24, 3...
## $ Pronunciation <chr> "AH", "AH B AE N D IH

N", "AH B AE N D AH N M AH N T"...
## $ cohort_idx <list> [<>, <2, 3, 4, 7, 8,

14, 15, 16, 18, 19, 29, 30, 31,...
## $ cohort_str <list> [<>, <"abandon", "

abandonment", "abate", "abbreviate...
## $ cohort_count <int> 0, 61, 61, 61, 39,

39, 61, 61, 39, 39, 39, 39, 39, 61...

We see an improvement from 111 seconds to approxi-
mately 35; it took a bit more than three times longer without
parallelization. On the older workstation, the improvement
was more dramatic, from several minutes to around 35 sec-
onds (around ten times faster with parallelization). Again,
such differences may not seem important if you are running
a search once, but if you want to do many different kinds
of searches, or explore novel similarity definitions, speed
will become important. In Appendix 1, we present an exam-
ple of parallelized code for conducting several LexFindR
competitor searches in series.
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Conclusions

LexFindR fills important gaps in the language scientist’s
toolkit. It provides a free, fast, extensible, tested, and readily
shared tool that can be integrated into typical analysis
workflow within R. Researchers inclined to contribute
extensions to LexFindR should refer to Appendix 2 for basic
guidance on how to do so. We hope our fellow researchers
will find LexFindR useful.

Appendix 1: Extended example – Getting
several competitor types

This example shows how you can go through several com-
petitor types for a lexicon, adding columns for the indices,
labels, frequencies, counts, frequency weights, and FWCP
for each competitor type. For an example implemented
in tidyverse (Wickham et al., 2019) piping style, see the
package vignettes for LexFindR.

library(LexFindR)
library(tidyverse) # for glimpse
library(future.apply) # parallelization
library(tictoc) # timing utilities

# In this example, we define a dataframe
# source for target words (target_df)
# and another for the lexicon to compare
# the target words to (lexicon_df).
#
# Often, these will be the same, but we
# keep them separate here to make it
# easier for others to generalize from
# this example code.

# Code assumes you have at least 3
# columns in target_df & lexicon_df:
# 1. Item -- a label of some sort, can
# be identical to Pronunciation
# 2. Pronunciation -- typically a
# phonological form
# 3. Frequency -- should be in
# occurrences per million, or some
# other raw form, as the functions
# below take the log of the frequency
# form. See advice about padding in
# the main article text.
#
# Of course, you can name your fields
# as you like, and edit the field names
# below appropriately.
target_df <- slex
lexicon_df <- target_df

# Prepare for parallelizing
# 1. how many cores do we have?
num_cores <- availableCores()
print(paste0("Using num_cores: ",

num_cores))

## [1] "Using num_cores: 12"

# 2. now let future.apply figure out
# how to optimize parallel division
# of labor over cores
plan(multisession, workers =

num_cores)

# the functions in this list all
# return lists of word indices; the
# uniqueness point function is not
# included because it returns a
# single value per word.
fun_list <- c(

"cohorts", "neighbors",
"rhymes", "homoforms",
"target_embeds_in",
"embeds_in_target",
"nohorts", "cohortsP",
"neighborsP",
"target_embeds_inP",
"embeds_in_targetP"

)

# we need to keep track of the
# P variants, as we need to tell
# get_fwcp to add in the target
# frequency for these, as they
# exclude the target
Ps <- c(

"cohortsP", "neighborsP",
"target_embeds_inP",
"embeds_in_targetP"

)

# determine how much to pad based
# on minimum frequency
if (min(target_df$Frequency) == 0) {

pad <- 2
} else if

(min(target_df$Frequency) < 1) {
pad <- 1

} else {
pad <- 0

}

# now let’s loop through the functions
for (fun_name in fun_list) {

# start timer for this function
tic(fun_name)

# the P functions do not include the
# target in the denominator for
# get_fwcp; if we want this to be a
# consistent ratio, we need to
# add target frequency to the
# denominator
add_target <- FALSE
if (fun_name %in% Ps) {

add_target <- TRUE
}

# inform the user that we are
# starting the next function, make
# sure we are correctly adding

1399Behav Res  (2022) 54:1388–1402

1 3



# target or not
cat("Starting", fun_name,

" : add_target\n",
add_target)

func <- paste0("get_", fun_name)

# use *future_lapply* to do the
# competitor search, creating
# a new column in *target_df*
# that will be this function’s
# name + _idx (e.g., cohort_idx)
target_df[[paste0(fun_name,"_idx")]]<-

future_lapply(
target_df$Pronunciation,
FUN = get(func),
lexicon = lexicon_df$Pronunciation

)

# list the competitor form labels
# in functionname_str
target_df[[paste0(fun_name,"_str")]]<-

lapply(
target_df[[paste0(fun_name, "_idx")]],
function(idx) {
lexicon_df$Item[idx]

}
)

# list the competitor frequencies
# in functionname_freq
target_df[[paste0(fun_name,"_freq")]]<-

lapply(
target_df[[paste0(fun_name, "_idx")]],
function(idx) {

lexicon_df$Frequency[idx]
}

)

# put the count of competitors
# in functionname_num
target_df[[paste0(fun_name,"_num")]]<-

lengths(
target_df[[paste0(fun_name, "_idx")]])

# put the FW in functionname_fwt
# using the "mapply" function
# to input multiple arguments to
# the get_fw function; using "lapply"
# would require a helper function
target_df[[paste0(fun_name,"_fwt")]]<-

mapply(get_fw,
competitors_freq =

target_df[[paste0(fun_name,
"_freq")]],

pad = pad
)

# put the FWCP in functionname_fwcp
target_df[[paste0(fun_name,"_fwcp")]]<-

mapply(get_fwcp,
target_freq = target_df$Frequency,
competitors_freq =

target_df[[paste0(
fun_name, "_freq")]],

pad = pad,

add_target = add_target
)

toc()
}

## Starting cohorts : add_target
## FALSEcohorts: 1.614 sec elapsed
## Starting neighbors : add_target
## FALSEneighbors: 0.329 sec elapsed
## Starting rhymes : add_target
## FALSErhymes: 0.614 sec elapsed
## Starting homoforms : add_target
## FALSEhomoforms: 0.382 sec elapsed
## Starting target_embeds_in : add_target
## FALSEtarget_embeds_in: 0.402 sec elapsed
## Starting embeds_in_target : add_target
## FALSEembeds_in_target: 0.523 sec elapsed
## Starting nohorts : add_target
## FALSEnohorts: 0.305 sec elapsed
## Starting cohortsP : add_target
## TRUEcohortsP: 0.362 sec elapsed
## Starting neighborsP : add_target
## TRUEneighborsP: 0.35 sec elapsed
## Starting target_embeds_inP : add_target
## TRUEtarget_embeds_inP: 0.528 sec elapsed
## Starting embeds_in_targetP : add_target
## TRUEembeds_in_targetP: 0.383 sec elapsed

# Now let’s streamline the dataframe;
# we’ll select the num, fwt, and fwcp
# columns and put them in that order,
# while not keeping some of the other
# ’helper’ columns we created
export_df <- target_df %>%

select(Item | Pronunciation |
Frequency | ends_with("_num") |
ends_with("_fwt") |
ends_with("_fwcp"))

# save the results
write_csv(

export_df, "slex_lexdims.csv"
)

glimpse(export_df)

## Rows: 212
## Columns: 36
## $ Item <chr> "ad", "ar",

"ark", "art", "artˆst", "bab", "...
## $ Pronunciation <chr> "AA D",

"AA R", "AA R K", "AA R T", "AA R T ...
## $ Frequency <int> 53, 4406,

50, 274, 112, 45, 23, 341, 87, 125...
## $ cohorts_num <int> 1, 4, 4, 4,

4, 7, 7, 7, 7, 7, 7, 7, 3, 3, 3,...
## $ neighbors_num <int> 4, 8, 6, 5,

1, 4, 4, 2, 1, 7, 5, 1, 7, 5, 8,...
## $ rhymes_num <int> 3, 5, 4, 3,

1, 2, 2, 1, 1, 5, 4, 1, 6, 3, 4,...
## $ homoforms_num <int> 1, 1, 1, 1,

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...
## $ target_embeds_in_num <int> 6, 29, 5, 9,

1, 2, 1, 1, 1, 2, 1, 1, 5, 1, 1...
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## $ embeds_in_target_num <int> 1, 1, 2, 2,
5, 1, 3, 2, 1, 2, 4, 2, 1, 3, 3,...

## $ nohorts_num <int> 1, 3, 3, 3,
1, 3, 3, 2, 1, 3, 2, 1, 2, 2, 3,...

## $ cohortsP_num <int> 0, 1, 1, 1,
3, 4, 4, 5, 6, 4, 5, 6, 1, 1, 0,...

## $ neighborsP_num <int> 1, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2,...

## $ target_embeds_inP_num <int> 3, 21, 1, 5,
0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0...

## $ embeds_in_targetP_num <int> 0, 0, 0, 0,
2, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0,...

## $ cohorts_fwt <dbl> 3.970292,
22.634373, 22.634373, 22.634373, 2...

## $ neighbors_fwt <dbl> 21.533445,
37.968634, 33.688446, 27.349358, ...

## $ rhymes_fwt <dbl> 13.142723,
24.473191, 19.684596, 15.046612, ...

## $ homoforms_fwt <dbl> 3.970292,
8.390723, 3.912023, 5.613128, 4.71...

## $ target_embeds_in_fwt <dbl> 29.792782,
127.685319, 22.680328, 42.517044,...

## $ embeds_in_target_fwt <dbl> 3.970292,
8.390723, 12.302746, 14.003851, 35...

## $ nohorts_fwt <dbl> 3.970292,
17.915874, 17.915874, 17.915874, 4...

## $ cohortsP_fwt <dbl> 0.000000,
4.718499, 4.718499, 4.718499, 17.9...

## $ neighborsP_fwt <dbl> 8.390723,
3.970292, 0.000000, 0.000000, 0.00...

## $ target_embeds_inP_fwt <dbl> 16.650059,
88.968478, 2.995732, 22.751933, 0...

## $ embeds_in_targetP_fwt <dbl> 0.000000,
0.000000, 0.000000, 0.000000, 16.5...

## $ cohorts_fwcp <dbl> 1.00000000,
0.37070710, 0.17283550, 0.247991...

## $ neighbors_fwcp <dbl> 0.1843779,
0.2209909, 0.1161236, 0.2052380, ...

## $ rhymes_fwcp <dbl> 0.3020905,
0.3428536, 0.1987352, 0.3730493, ...

## $ homoforms_fwcp <dbl> 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,...

## $ target_embeds_in_fwcp <dbl> 0.13326355,
0.06571407, 0.17248529, 0.132020...

## $ embeds_in_target_fwcp <dbl> 1.0000000,
1.0000000, 0.3179797, 0.4008275, ...

## $ nohorts_fwcp <dbl> 1.0000000,
0.4683401, 0.2183551, 0.3133047, ...

## $ cohortsP_fwcp <dbl> 1.0000000,
0.6400626, 0.4532777, 0.5432957, ...

## $ neighborsP_fwcp <dbl> 0.3211947,
0.6788053, 1.0000000, 1.0000000, ...

## $ target_embeds_inP_fwcp <dbl> 0.19254240,
0.08618315, 0.56632333, 0.197888...

## $ embeds_in_targetP_fwcp <dbl> 1.0000000,
1.0000000, 1.0000000, 1.0000000, ...

Appendix 2: Bug reports and user
contributions

2.1 How to report bugs

Report any bugs at https://github.com/maglab-uconn/LexFindR/
issues by clicking on “New Issue”.

2.2 How to create an extension

To contribute new functions, first please read the R files
that are part of the LexFindR package. New functions can
be added to extensions.R on your local installation. New
functions should be carefully tested and the code should be
clearly commented. Once you are confident your code is
ready to be shared, move on to the next step of submitting
your code via GitHub.

2.3 How to contribute extensions via GitHub

Extensions are welcomed through a GitHub “pull request”.
Once the user has created a local clone of the forked repos-
itory, the user can edit the competitors.R or extensions.R
file and push their edits to their forked path. Once these
edits have been made, users can open a pull request. Before
every pull request, run R CMD check to ensure that the
code is clean. Please also style your code using the tidy-
verse style guide at https://style.tidyverse.org/ (Wickham,
n.d.) and document your code using roxygen2 (Wickham,
Danenberg, Csárdi, & Eugster, 2020). We will monitor pull
requests and merge appropriate changes.
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