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Abstract
We empirically investigate the role of small, almost imperceptible balance and breathing movements of the head on the level
and colour of noise in data from five commercial video-based P-CR eye trackers. By comparing noise from recordings with
completely static artificial eyes to noise from recordings where the artificial eyes are worn by humans, we show that very
small head movements increase levels and colouring of the noise in data recorded from all five eye trackers in this study. This
increase of noise levels is seen not only in the gaze signal, but also in the P and CR signals of the eye trackers that provide
these camera image features. The P and CR signals of the SMI eye trackers correlate strongly during small head movements,
but less so or not at all when the head is completely still, indicating that head movements are registered by the P and CR
images in the eye camera. By recording with artificial eyes, we can also show that the pupil size artefact has no major role
in increasing and colouring noise. Our findings add to and replicate the observation by Niehorster et al. (2021) that lowpass
filters in video-based P–CR eye trackers colour the data. Irrespective of source, filters or head movements, coloured noise can
be confused for oculomotor drift. We also find that usage of the default head restriction in the EyeLink 1000+, the EyeLink
II and the HiSpeed240 result in noisier data compared to less head restriction. Researchers investigating data quality in eye
trackers should consider not using the Gen 2 artificial eye from SR Research / EyeLink. Data recorded with this artificial
eye are much noisier than data recorded with other artificial eyes, on average 2.2–14.5 times worse for the five eye trackers.

Keywords Eye tracker · Data quality · Head movements · Precision · Oculomotor drift · Corneal reflection ·
Pupil size artefact

Introduction

When characterising the quality of data produced by eye
trackers, precision – the level of variability in the data,
independent of its source – is one of the most important
properties to take into account (BiPM et al., 2012).
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Although much progress has been made in characterising
precision (e.g. Niehorster et al., 2020b; Wang et al., 2017;
Blignaut & Beelders, 2012; Coey et al., 2012), several
unresolved questions remain.

Variability in eye-movement data is thought to arise from
at least two sources, 1) noise inherent in the measurement
device (Niehorster et al., 2020b; Blignaut & Beelders,
2012), and 2) rotations of the eyeball itself, such as tremor,
drift, and microsaccades (Ratliff & Riggs, 1950; Collewijn
& Kowler, 2008; Martinez-Conde et al., 2004; Rolfs, 2009).
In this paper, we want to direct attention to the role of very
small head movements on the precision of data from eye
trackers.

Modeling eye trackers geometrically and physically is
one way to investigate the quality of the tools we are using
for our research (Hansen & Ji, 2010). Our approach is to use
empirical methods to investigate commercial eye trackers
with unknown/unpublished settings, algorithms, sensor
properties etc. Because eye trackers are the participants of
data-quality studies, we take the approach that we should
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investigate eye trackers with the same methods as we use
when investigating the psychology of human beings.

Precision - the level of noise

That precision has a major effect on reliable detection and
classification of events such as microsaccades, but also
for detecting drift, fixations and regular saccades has been
shown by van Renswoude et al. (2018), Hessels et al.
(2017), and Holmqvist (2016), and Holmqvist et al. (2012).

Precision in data from eye trackers is known to be
influenced by a number of factors; for instance, human eyes
have been found to cause noisier data than do artificial eyes
(Niehorster et al., 2020b), different eye trackers produce
recordings of different levels of precision (Holmqvist,
2015), and blue eyes result in noisier data than brown eyes
(Hessels et al., 2015a; Holmqvist, 2015).

The level (or magnitude) or precision is often measured
as RMS-S2S (the root mean square of the sample-to-sample
distances), which reflects the high velocity noise that is
characterised by large sample-to-sample movements in the
gaze signal. Sometimes precision is instead measured as
standard deviation (STD), which ignores the size of sample-
to-sample movements but instead measures the dispersion
of gaze (i.e. its spread over space). (For mathematical
definitions, see Niehorster et al., 2020b). We will speak of
RMS-S2S and STD precision when referring to these two
operationalisations.

Precision - the colour of noise

The most common way to calculate colour of noise in
a signal is to perform a spectral density (PSD) analysis
(Niehorster et al., 2020b; Wang et al., 2017; Coey et al.,
2012). It is commonly found that dynamical systems follow
power-law scaling behaviour of the signals power with
frequency, as described by the formula

S(f ) ∝ 1

f α
(1)

where S(f ) is the PSD of 1D gaze (or some other signal),
as a function of signal frequency. The slope α is a scaling
component that can be used to assess the spectral colour of
the gaze signal. For white noise, where the energy at each
frequency is the same, α is zero. For coloured noise, α takes
on higher values, because the signal is more energetic at
some frequencies (typically lower frequencies).

Although α is the standard way to calculate colour, there
are alternative methods. Niehorster et al. (2020b) could
recently show that the quotient RMS-S2S

STD maps onto the slope
α of the power-spectral density plot of the same segment
of data. The relationship was established using real and
simulated gaze data; see the paper for details. This entails

that both α and RMS-S2S
STD can be used to describe the colour

of the data. We will follow Niehorster et al. (2020b) in
defining a shorter name Type as:

Type = RMS-S2S

STD
(2)

Type refers to the shape of the signal in 2D space: spiky
vs smooth (see Figure 5 in Niehorster et al. 2020b). Slow
noise results in smooth signals with low Type values, while
high-velocity noise results in spiky signals with higher Type
values. White noise has a Type value of

√
2. Throughout this

paper, we will use Type to investigate colour of noise in the
gaze signal from eye trackers, instead of α.

Interestingly, the colour of the recorded gaze data, the
Type, differs slightly between data recorded from human
vs artificial eyes (Niehorster et al., 2020b, Figure 10):
Unfiltered human gaze data have some slight colour, while
unfiltered data from artificial eyes are completely white.
The authors speculate that human oculomotor drift, the
pupil size artefact or head movements can cause this slight
colour. One goal of this paper is to show which of these
three sources contribute to colour of gaze data.

All our calculations of precision, as RMS-S2S, STD and
Type, are made on 2D gaze signals (x,y on the monitor) or
2D camera image features (x,y on the camera sensor).

Possible explanations to increased imprecision and
colour of noise in human eye-tracker data

Several geometrical models of gaze estimation in eye
trackers have been published, and they do give us good
insights in how small head movements could result in
inaccuracies in the reported gaze data (Hansen and Ji,
2010, e.g.). Testing several geometrical models, Cerrolaza
et al. (2012) showed that inaccuracies may originate from
small stabilizing head movements that participants make.
However, as far as we can tell, none of these models predict
a poorer precision due to very small head movements.

Some level of imprecision likely originates from noise
produced by pupil and corneal reflection (CR) center
calculation algorithms operating on the image at the camera
sensor of the eye tracker. For instance, errors in the center
calculation of the CR image of the eye camera sensor
was proposed by Holmqvist and Blignaut (2020) as the
most likely explanation for substantial mismeasurements
of the amplitudes of small saccades. In all tested video-
based eye trackers, small eye movements were mismeasured
such that, for instance, a 10′ (arcmin) microsaccade was
sometimes reported with an amplitude of 5′, and sometimes
with an amplitude of 25′. These CR errors repeated over
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the measurement space with a wavelength that varied
between 30–120′, depending on the eye tracker (Holmqvist
& Blignaut, 2020, Table 6). If such errors happen during
very small translational or rotational head movements, it
should generate small movements in the gaze data signal
that could be interpreted either as noise or artificial eye
movements. Such a mechanism would explain the higher
noise (poorer precision) in data from human eyes compared
to data from artificial eyes, as reported by Niehorster et al.
(2020b), and possibly also the increased colouring of the
data.

Furthermore, it is conceivable that an uneven shape of
the human cornea (Kiely et al., 1982 e.g) may lead to
small random and erroneous movements in the CR and
subsequently in the gaze signal, which could manifest
themselves as noise of unclear colouring.

Slow head movements will increase the STD variability
more than the RMS-S2S variability, and Equation 2 tells us
that Type will then decrease, which means that data will be
more coloured.

Lowpass-filtering in the software of some eye trackers
is the main reason for colour in the data (Niehorster et al.,
2021), but even in unfiltered data, there is a remaining
difference in colour of the noise between human and
artificial eyes that needs clarification.

Wang et al. (2017) argued that the differences in noise
colour between human and artificial eyes stem from the
existence of drift and small microsaccades in human data,
but this is to a large extent contradicted by Niehorster et al.
(2021), and also by Coey et al. (2012).

Furthermore, the pupil size artefact is known to affect
gaze accuracy (Hooge et al., 2016; Drewes et al., 2014,
e.g.). Niehorster et al. (2020b) speculate that the pupil size
artefact might also be responsible for increased noise and
colouring, arguing that the calculation of pupil centers in P-
CR trackers is affected by variations in pupil dilation, which
means that changes in pupil size could be a contributor to
increased noise levels. Since changes in pupil diameter are
slow, much like head movements, they could also colour
data.

Hypotheses

In this paper, we set out to investigate whether the level
and colour of noise in eye trackers to some part originates
from small head movements. For this purpose, we will
record from artificial and human eyes in three different
configurations:

1. Static: The artificial eyes are placed on a static
glass head at a fixed distance from the eye tracker,
both placed on a vibration-free table. We expect this
configuration to result in the lowest level of noise, and
that this noise is white for unfiltered data, as previously
shown by Niehorster et al. (2020b).

2. AA: The same two artificial eyes are placed on a
human head, covering the human eyes. This allows us
to measure the influence of head movements without
any interference from small eye movements. We expect
these data to have larger and more coloured noise
compared to recording the same artificial eyes mounted
on a static glass head. Furthermore, these artificial
eyes have pupils with fixed diameters, which would
exclude the pupil size artefact as an explanation for the
increased noise and colour.

3. HH: We record human eyes, which we expect to
be noisier than artificial eye data. If we would find
more coloured data (lower Type) from humans, as
compared to data from artificial eyes (case AA) it would
suggest that the pupil size artefact or oculomotor drift
is responsible.

Method

Experimental design

Our main comparison is between the Static, the AA and the
HH conditions. However, based on previous findings, we
manipulated a number of factors (Table 1) that have been
shown to have an effect on data quality: Firstly, we recorded

Table 1 The experimental factors

Factor #levels Levels

Eye tracker 5 See Table 2

Filter 2/0 On vs. off where possible

Stabilisation 2 Stabilised vs. unrestricted

Participant type 2 Human vs static

Eyes 4 Human, EL 2, Tobii and SMI

Eye combinations 2 AA and HH (see Section “Masks for attaching artificial eyes”)
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Table 2 The eye trackers

Eye tracker Interface Calibration Sampling frequency (Hz) Filtering

SMI HiSpeed 240 Head fixed Polynomial 240 On / off

SMI RED250mobile Remote Polynomial 250 On

SR Research EyeLink II Head fixed Polynomial 250 On / off

SR Research EyeLink 1000+ Remote Polynomial 500 On / off

Tobii Spectrum Remote 3D model 600 Off

The P-CR method calculates uncalibrated gaze as the difference between the centres of the pupil image and the CR image in each video frame of
the eye. Polynomial calibration uses the solution of a higher-order polynomial equation system to map P and CR data to gaze, while 3D modelling
of the eye estimates parameters of the shape of the eye ball. Default filtering marked with bold

on five eye trackers (Table 2) that were selected because
of their particular properties (Section “Eye trackers”). We
also recorded with filters on and off on all eye trackers
that allowed it, in order to possibly replicate the finding
in Niehorster et al. (2020b) that (lowpass-)filters affect the
colour of the recorded noise. Both human participants were
recorded in a stabilised and an unrestricted condition, in
order to make remote eye trackers more comparable to those
that come with a built-in head stabilisation as their default.

Two types of participants took part in the study: Human
heads and the static glass head. Humans participated to
provide small head movements, whereas the glass head
provided data from an immobile baseline setting.

In addition to the human eyes, three types of artificial
eyes were evaluate for use in the recordings: the SMI
artificial eye, the EyeLink artificial eye, Gen 2., and the
Tobii artificial eye (Section “The three pairs of artificial
eyes”). Any movement in the data from artificial eyes must
reflect either head movements and imperfections in the eye
tracker.

Environment

All recordings took place in a windowless room with no
exterior walls. The room had a constant illumination of
145 lux, measured at the point where the artificial eyes were
mounted. All light came from fluorescent lamps and the
stimulus monitor. Air ventilation was turned off and inroom
temperature kept stable at 21◦ Celcius. The eye trackers and
the mounting of artificial eyes were placed on a 300 kg
vibration-free table. As soon as the recording started and
until it ended, noone was allowed to move in the room. All
recordings were made during the Bavarian restrictions and
curfews of the COVID-19 pandemic, while making sure that
no human or machine activity took place in neighbouring
rooms. There are no large roads or manufacturing or
construction activity nearby that could introduce vibrations.

The three pairs of artificial eyes

Tobii AB, SMI GmbH and SR Research have all
manufactured their own artificial eyes. This same set of
artificial eyes have previously been used by Wang et al.
(2017), Niehorster et al. (2020b), and Holmqvist and
Blignaut (2020), with the exception that previous studies
used the EyeLink eyes of generation 1, while we are using
generation 2. Figure 1 shows the artificial eyes in visible
light, and the neodym magnets that were glued to the back.

Artificial eyes differ from human eyes in a few aspects.
They generally do not have neither a bright pupil reflex
nor a lens that can produce a fourth Purkinje reflection.
Artificial eyes might be modelled with slightly different
corneal shapes and curvatures. Given that human corneas
vary in shape (Kiely et al., 1982), it is possible that the
even corneal curvature of artificial eyes is more closely
align with the model expectations of the five commercial
eye trackers we are testing, and that the even cornea will
contribute to a lower noise than with human data. Artificial
eyes have fixed pupil sizes of around 4 mm rather than a
variable pupil dilation 2–8 mm which is typically seen in
humans. Artificial eyes are made of a different material than
found in human corneas, and they typically lack moisture.

Fig. 1 The different artificial eyes. We used EL 2, Tobii and SMI
artificial eyes, with a neodym magnet attached on the rear
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Fig. 2 The EL 2, Tobii and SMI artificial eyes, and participant SLÖ as
seen in the SMI HiSpeed 240 eye camera

As neither of these features of artificial eyes are likely to
affect measurements of precision negatively or unequally
between Static and AA conditions, we judged that they are
unlikely to have impacted the results found in the current
study.

However, the contrast between iris and pupil may very
well have an impact on precision levels. As this contrast
differs between artificial eyes, we looked at each artificial
eyes in infrared light, which is more relevant than looking
at them in visible light. Figure 2 shows the three artificial
eyes used in the study and human participant SLÖ from the
SMI HiSpeed 240 camera. Notice that the contrast between
iris and pupil is poorer in the EL 2 eye compared to the
other three eyes. Also notice that all three artificial eyes
exhibit additional, weaker reflections inside the pupil, which
however do not seem to disturb the detection of the actual
corneal reflection.

Heads for generating headmovements

Two humans heads, belonging to authors KH and SLÖ,
provided human head movements for the HH and AA
conditions. The human participants also provided their own
human eyes for the HH condition.

KH has 25 years of experience of eye tracking, light
blue eyes and used no visual aids. SLÖ has one year
of experience of eye tracking, brown eyes and used no
visual aids. Both humans have left dominant eyes and
upward/forward directed eye lashes. No make-up was used.
Both KH and SLÖ exercise regularly, have good muscle
control, and can sit very still.

The static, entirely immobilised glass head was used
for recording baseline (Static) data in which no head
movements are made (Fig. 3). For the Tobii Spectrum and
SMI RED250mobile, we had to attach a face mask to the

Fig. 3 The static glass head, wearing the mask on which the artificial
eyes were mounted. The picture also shows the modified version of
the EyeLink II, which represents the unrestricted condition for this eye
tracker

glass head in order for the trackers to accept the artificial
eyes; this very same face mask was previously used by
Holmqvist and Blignaut (2020).

Masks for attaching artificial eyes

Human eyes (HH) were recorded as in any eye-tracking
study. Artificial eyes (AA and Static) were mounted on
modified protection glasses (Fig. 3). We replaced the glass
cover with cardboard to cover the human eye, and glued
a metal plate onto the cardboard, which allowed a very
stable attachment of the neodym magnets at the rear of the
artificial eyes. The protection glasses had a snug fit onto
both human (AA) and glass heads (Static). The setup with
strong magnets also made it easy to switch artificial eyes
between recording trials, and to make small adjustments to
the exact position of artificial eyes during setup.

We also covered all metal surfaceswith black tape to prevent
erroneous reflections, and added a thin paper between the
artificial eye and the metal plate, for the same reason.

Eye trackers

We recorded on the Tobii Spectrum, the SMI HiSpeed
240, the RED250mobile, the SR Research EyeLink 1000+
at 500 Hz, and the EyeLink II. The two EyeLinks were
chosen because they have been extensively used not
only in microsaccade research, as evidenced by Table 1
in Martinez-Conde et al. (2009), but also for measuring
oculomotor drift (Roberts et al., 2013; Engbert & Mergen-
thaler, 2006). The SMI HiSpeed 240 is a well-examined eye
tracker, with very regular measurement artefacts. The Tobii
Spectrum is the flagship eye tracker of the largest manu-
facturer, and the SMI RED250mobile was chosen because
it exhibits the largest errors in amplitude measurements
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(Holmqvist & Blignaut, 2020). That said, these five eye
trackers are all P-CR video eye trackers, and Holmqvist
& Blignaut found that all five have clear CR artefacts that
could turn head movements into noise and artefacts in the
gaze signal.

For all eye trackers, we recorded each condition in a
stabilised and an unrestricted setup. For the Spectrum and
the RED250mobile, we simply recorded with and without
a chinrest. For the HiSpeed 240 and the EyeLink 1000,
we recorded with the standard chin- and forehead-rest for
the stabilised condition, and only with forehead-rest in the
unrestricted condition. The EyeLink II was recorded in two
human interface configurations. In the first case, we used
the ordinary head-mount of the system. In the second case,
we dismantled the head-mount and attached it to a modified
chinrest mounted on the table, such that the eye tracker is
not touching the participant head (Fig. 3). These two cases
represent the stabilised and unrestricted conditions of the
EyeLink II.

Whenever possible, we recorded all conditions with and
without the standard lowpass filters. For the EyeLinks, we
used the “no filter” and “extra filter” settings, while for the
HiSpeed 240, we turned on/off both the bilateral and the
heuristic filters. On the SMI RED250mobile and the Tobii
Spectrum, no filter settings are available, but we know from
Niehorster et al. (2020b) that the RED250mobile gaze data
are filtered, and Tobii claim that the Spectrum gaze data are
unfiltered by default (which our analysis below confirms).

Since the Spectrum automatically switches between dark
pupil and bright pupil mode and this may disrupt the
recording of artificial eyes (which are unable to produce a
bright pupil), we covered most of the illuminators around
the two eye cameras of the Spectrum, such that we force
the eye tracker to record in dark pupil mode. This was done
by placing halved, circular paper cut-outs with a hole in the
middle, so as not to obstruct the view of the camera, above
the outer half of the bright pupil illuminators. This allowed
us to record on the Spectrum both humans and artificial eyes
in the same dark pupil mode.

Both the Spectrum and the RED250mobile require a face
around the artificial eyes to record data. Furthermore, both
remote eye trackers recorded more precise data if artificial
eye lids in skin colour were placed above and below the
artificial eyes. For all other eye trackers, it is enough to place
the artificial eyes in front of them, and they start tracking.

Procedure

We first calibrated each eye tracker on human eyes using
the built-in manufacturer software, always with a 9 point
calibration. If the recording software allowed us to save
and later reuse a calibration, we did so for new recordings
of the Static and AA condition. The procedure to calibrate

for other eyes than the eyes recorded has been used for
recordings with artificial eyes by Holmqvist and Blignaut
(2020) and Niehorster et al. (2020b) and Wang et al. (2017),
and has been shown by Holmqvist and Blignaut (2020) and
Harrar et al. (2018) to produce no non-linearities in data, but
slightly poorer accuracy, which we presume has no bearing
on precision.

We took care to set up the eye camera and P and CR
thresholds on the EyeLinks and the SMI HiSpeed such that
centre calculation of each feature was unobstructed and as
free of noise as possible.

Data were then recorded while participants watched a
single fixation point in the middle of the recording area for
the duration of 100 s, while remaining as still as possible.

On the two remotes (Tobii Spectrum and SMI RED250
mobile), we recorded 10×10 s, to allow for readjustments
every 10 s, if we were seeing deteriorating data quality
in online eye images or gaze cursors. This was necessary,
because the two remote systems were difficult to record on,
as experienced also by Holmqvist and Blignaut (2020). Both
when a human was wearing the AA mask as well as when
the eyes were mounted on the static glass head, these two
eye trackers struggled with recognising the eyes, and easily
lost tracking if the setup was not optimal. Setup time for
a single recording could be more than half an hour of trial
and error. The quality of the recording seemed to depend on
a multitude of factors, but was primarily influenced by the
exact angle and position of the artificial eyes, the distance
from the screen, and the type of artificial eye used.

Data processing

First we calculated precision in terms of RMS-S2S and
STD, using a similar procedure as in Niehorster et al.
(2020b). Each approximately 100 s long data recording was
split into trials: non-overlapping segments of 2 seconds.
Table 3 summarises the number of trials per eye tracker

Table 3 Number of trials, i.e. non-overlapping 2 second segments of
data, per eye tracker and eye

Eye tracker Eye Static AA HH

HS240 H – – 232
HS240 S 51 221 –
RED250 H – – 98
RED250 S 25 69 –
EL II H – – 208
EL II S 50 200 –
EL1000 H – – 213
EL1000 S 52 200 –
Spectrum H – – 99
Spectrum T 24 98 –

There are less data for the Spectrum and RED250 because they have
only one filtering option
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Table 4 Number of windows, i.e. 200 ms windows from which our
data points are calculated, per eye tracker and eye

Eye tracker Eye Static AA HH

HS240 H - - 4290
HS240 S 938 4087 -
RED250 H - - 1862
RED250 S 475 1306 -
EL II H - - 3952
EL II S 949 3794 -
EL1000 H - - 3933
EL1000 S 962 3684 -
Spectrum H - - 1687
Spectrum T 441 1794 -

There are less data for the Spectrum and RED250 because they have
only one filtering option

and eye. Data before each recording pause, if any, were
discarded if it was not 2 s long. For each of the trials, dis-
persion was calculated separately for the left and right eye

and then combined into one dispersion measure by calculat-
ing the l2-norm of the two. The 50% of the trials with the
highest dispersion were discarded from further analyses.

RMS-S2S and STD were calculated using the remaining
trials and a sliding window of 200 ms with a 50 ms
stride. To avoid potential microsaccades, only windows
with dispersion below the median were included in RMS-
S2S and STD analyses. The remaining number of 200 ms
windows are listed in Table 4.

Finally, we recalculated all RMS-S2S and STD values
to degrees for each separate eye tracker, using the specific
geometry of the recording (monitor size, resolution and
participant-monitor distance), and divided RMS-S2S by
STD to form Type (RMS-S2S

STD ). All comparisons of RMS-
S2S, STD, and Type of gaze, P and CR are made within eye
trackers (i.e. within-subjects) and between conditions Static,
AA and HH.

All plots and statistics were made in R, version 3.6.1
(Core Team, 2013). We present all results pertaining to
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Fig. 4 RMS-S2S precision of 2D gaze, for the five eye trackers, and the four types of eyes. Note how much worse precision the EyeLink Gen 2
eyes (E) produce compared to Human (H), SMI (S) and Tobii eyes (T). Default filtering was applied to all trackers in this plot (on for all but the
Tobii Spectrum), and data from both stabilized and unstabilized recordings were included
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gaze as angular error. Results for P and CR are reported in
pixel coordinates of the camera sensor. Remaining figures
are reported in the unitless Type, quantifying the colour of
noise.

Results 1: Selection of artificial eyes to use in
subsequent analyses

Figure 4 plots the RMS-S2S distributions of each artificial
eye and each eye tracker. For all eye trackers, except the
Tobii Spectrum, the SMI eyes resulted in the lowest (best)
precision, and the narrowest distributions. In particular,
the EyeLink 2 artificial eyes produced much noisier data
compared to other eyes on all eye trackers, and much wider
distributions. Average RMS-S2S was 2.2–14.5 times worse
for the EyeLink 2 eye compared to the eye with the lowest
RMS-S2S. The most likely reason for the poor RMS-S2S
precision and the wide distributions is the poor contrast
between the pupil and the iris of the EyeLink 2 artificial
eye (see Fig. 2). Such a poor contrast between iris and pupil

would only be found for rare human eyes having a dark blue
eye colour (Figure 4.13 in Holmqvist & Andersson, 2017).

In all subsequent analyses, we will therefore use data
from the SMI artificial eyes, except when using data from
the Tobii Spectrum where we employ data recorded with the
Tobii eyes. We will not employ the EyeLink 2 artificial eye
in any of the analyses.

Results 2: Level and colour of noise in the
gaze signal

The effect of built-in filters on the colour of noise

Figure 5 compares the colour of noise using the Type
measure. Results show that filters colour data (lower Type),
which replicates the finding in Niehorster et al. (2020b,
Fig. 10). The result in Fig. 5 is also compatible with
Coey et al. (2012) and Blignaut and Beelders (2012),
but it is inconsistent with the findings reported by Wang
et al. (2017). Also notice how the SMI RED250mobile is
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Fig. 5 Type precision of 2D gaze, for the five eye trackers, with and without filtering. Data from both stabilized and unstabilized recordings were
included. White noise corresponds to Type values near the square root of 2 (indicated with a green line), while coloured noise has values nearer to 0
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coloured (filtered) by default, while the Spectrum has white
(unfiltered) data by default. Neither the Tobii Spectrum,
nor the SMI RED250mobile allow the user to change the
filtering of data.

The effect of small headmovements on the level
and the colour of noise

We then compared 2D RMS-S2S, STD and Type between
the Static glass head with artificial eyes (Static), artificial
eyes on human head (AA) and human eyes in a human head
(HH). Figure 6 shows how RMS-S2S precision is lowest
(best) for the Static glass head with the optimal artificial
eye, while the second lowest (best) precision is for the same
artificial eyes worn on a human head, and the noisiest data
for all eye trackers is with human eyes, with the exception
for the Tobii Spectrum.

The finding in Fig. 6 has the interesting implication that
head movements do contribute to the increased noise levels

in all the five eye trackers. Because data from human eyes
(HH) are even noisier than data from artificial eyes worn
by humans (AA) for four of the eye trackers, there is a
possibility that pupil artefacts or fixational eye movements,
besides head movements, also contribute to the higher noise
levels. It is unclear why the Tobii Spectrum is different,
but it is likely that their tracking of head movements works
better, or that the difficulty to record on the Spectrum
resulted in a lack of the expected effect due to increased
measurement noise.

Niehorster et al. (2020b, Fig. 10) show a difference in
the colour of noise between artificial and human eyes, with
human eyes producing slightly more coloured noise than
the artificial eyes, also for unfiltered data. If this difference
in colour would depend only on the type of eye (human
or artificial) and not on the type of head (human or static),
the colour of noise in data from artificial eyes recorded on
the static head should be the same as from artificial eyes
recorded on a human head (AA).
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Fig. 6 RMS-S2S precision of 2D gaze, for Static glass head with artificial eyes, artificial eyes on human head (AA) and human eyes in a human
head (HH). The SMI artificial eyes were used for all eye trackers, except the Tobii Spectrum, where we used the Tobii artificial eyes. Default
filtering was used for all eye trackers
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However, Fig. 7 shows that gaze data recorded from
artificial eyes on a human head (AA) are more similar
in colour to data recorded from human eyes (HH) than
they are to data from artificial eyes recorded on a static
head (Static). The finding in Fig. 7 provides support for
the conclusion that head movements play the major part in
creating the differences in noise colour between human and
artificial eyes, and that the pupil size artefact speculated by
Niehorster et al. (2021) to be another possible cause, plays
no or a much smaller role. Furthermore, the explanation
fromWang et al. (2017) that intra-fixational eye movements
would colour any of the noise is also not supported by our
data, as artificial eyes produce neither microsaccades nor
oculomotor drift.

In Fig. 8, we show that the same result holds also for
unfiltered data: Head movements colour the noise for all eye
trackers; more so for some than for others.

How can head movements change the colour of noise?
The colour of noise, Type (RMS-S2S

STD ) decreases if RMS-

S2S increases less than STD. RMS-S2S is a measure
of velocity noise in the gaze signal, while STD is a
measure of dispersion. Small and slow head movements will
increase STD more than RMS-S2S. Indeed, the data for STD
precision (Fig. 9) shows the exact same trends as the RMS-
S2S precision in Fig. 6 but with even larger effect sizes.
Hence, Type (RMS-S2S

STD ) decreases, and we find the result in
Fig. 7.

The effect of head stabilisation on noise

The results in the previous section are based on data in
which half the trials involve free seating and the other
half were recorded using a full chin- and headrest. It
is conceivable that head movements can be sufficiently
constrained by a combined chin- and headrest (as speculated
by Niehorster et al., 2021), which would potentially affect
our results. We therefore compare data recorded with versus
without restriction on all five eye trackers.
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Fig. 7 Type of 2D gaze, for Static glass head with artificial eyes, artificial eyes on human head (AA) and human eyes in a human head (HH). The
SMI artificial eyes were used for all eye trackers, except the Tobii Spectrum, where we used the Tobii artificial eyes. Default filtering was used
for all eye trackers
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Fig. 8 Type of 2D gaze, for Static glass head with artificial eyes, and artificial eyes on human head (AA) for unfiltered data (with and without
head stabilization)

Figure 9 shows the STD precision with and without
restriction for two representative eye trackers. The Eye-
Link1000+ exhibits noisier data with combined chin- and
forehead rest (stabilized) than with just a forehead rest,
while the Spectrum data show mixed results. The EyeLink
II and the HiSpeed240 exhibit a very similar effect to the
EyeLink 1000+, which is not surprising as they are simi-
lar in their construction. In contrast, the RED250mobile is a
remote with unknown head movement compensation algo-
rithms, and exhibits the same unclear mix of results as the
Spectrum.

Results 3: Positions of P and CR images on
the eye camera sensor

Head movements should directly affect the position of the P
and CR images in the eye camera sensor of the eye tracker.
We do not know the algorithms that calculate P and CR
centers from the eye images in commercial eye trackers, but
we do know that open-source algorithms for calculating the
centre points often differ between P and CR images (Hosp
et al., 2020; Mestre et al., 2018, e.g).

In this third result section, we investigate the behaviour of
the P and CR signals from the two eye trackers that provide
them. This is important because gaze, which we investigated
in the first two result sections is calculated from P and CR,
in some cases simply as P minus CR.

The effect of small headmovements
on the processing of P and CR signals from the eye
camera

In Fig. 10 we plot the RMS-S2S noise of the P and CR
signals for the HiSpeed 240 and the RED250mobile (the
other eye trackers did not supply these data). Figure 10
shows that as soon as the artificial eyes are mounted on a
human head, we find elevated (worse) RMS-S2S precision
of both the P and CR signals: head-movements cause
increased noise in the AA condition for both P and CR
signals, compared to the Static condition.

Furthermore, as Fig. 10 shows, the RMS-S2S noise is
mostly larger in P than in CR for both systems and most
conditions, replicating the finding for the HiSpeed 1250 in
Table 1 of Hooge et al. (2016). Since camera noise is the
same for each image, this result implies that the algorithms
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Fig. 9 STD precision of 2D gaze, for the EyeLink1000+ and the Tobii Spectrum, comparing stabilized to non-stabilized participants. The EyeLink
II and the HiSpeed240 exhibit a very similar effect to the EyeLink 1000, while the SMI RED250mobile has the same unclear effect of stabilization
as the Tobii Spectrum

indeed differ in how the P and CR images are processed into
signals.

Do the P and CR signals move similarly and
synchronously?

In order to examine whether there is movement of related
sizes in the noise of the two signals, we correlated
the P and CR signals, both as range and as STD, for
all 200 ms measurements windows in each condition,
because these measures reflect slow changes in the signal.
For this analysis, in order to avoid outliers potentially
affecting the correlation score, we first applied a RANSAC
(RANdom SAmple Consensus) linear regressor1, and

1We used RANSACRegressor function from scikit-learn (version
0.24.0) library (Pedregosa et al., 2011), with X being range or STD of
P signal and y – range or STD of CR. We used squared loss and all
other parameters as defaults.

removed detected outliers prior to calculating the Spearman
correlations.

Table 5 shows that for both eye trackers, in both the
AA and the HH conditions, the size of the movements
of the CR centre and the pupil centre are indeed strongly
correlated: When a small head movement takes the artificial
eye one way, both P and CR signals follow suit. These
movements are a tiny fraction of a camera pixel, according
to Fig. 10. However, in the Static condition we find
minimal or no correlations between the movement of P
and CR signals, for both eye trackers. The amplitude of
these Static movements are even smaller than for AA
and HH movements, most likely resulting from noise in
the camera image and from algorithms operating on the
image.

In order to examine whether these movements are also
similarly directed, we correlated the raw P and CR signals
of the HS240 eye tracker, for each 200 ms window, using
Spearman correlations. Figure 11 shows the correlations
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Fig. 10 RMS-S2S of the 2D Pupil center signal (P) and the CR center signal from the processing of the eye camera images. Only SMI eyes were
used for static and AA conditions. The unit of RMS-S2S in this figure is camera pixels; with most values in the range 0.02–0.10 px

Table 5 Spearman correlations between the P and CR range and P and
CR STD for all measurement windows per condition, including both
filtered and unfiltered data (which does not affect P and CR)

ET Condition Restriction Range STD

RED Static 0.363 0.382
250 AA Yes 0.718 0.765

AA No 0.993 0.996
HH Yes 0.750 0.765
HH No 0.990 0.993

HS Static -0.038 0.087
240 AA Yes 0.975 0.990

AA No 0.968 0.979
HH Yes 0.860 0.921
HH No 0.923 0.949

Data from the RED250mobile and the HS240 are used here, recorded
with the SMI artificial eye. All correlations are significant with p-
values below 10−31, except in the static condition of the HS240, which
is not significant

between the horizontal P and CR components while Fig. 12
shows the corresponding correlations of the vertical P and
CR. For both the RED250mobile and the HS240, the head-
worn eyes of AA and HH produce strong correlations
between P and CR, while for the Static conditions, there
is no correlation for HS240, and moderate ones for the
RED250mobile. This shows that head movements produce
synchronous and similarly directed changes in P and CR
signals, representing movement of those images over the
camera sensor. The slightly lower correlations for the HH
condition compared to AA suggests that eye movements
may indeed reduce the similarity in movement between
P and CR, exactly what models of P-CR tracking would
predict (Hansen & Ji, 2010). When the correlation between
P and CR is below 1, P and CR centers move differently on
the eye camera sensor, and the gaze signal will show either
high-velocity noise or an eye-movement. Both Figs. 11 and
12 show that for some analysis windows, this happens, in
both AA and HH condition; as seen by the many values
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Fig. 11 Boxplots of Spearman correlations between horizontal P and CR signals in each analysis window. Only SMI eyes were used for static and
AA conditions

between 1 and 0, and even negative correlations in the lower
end of the distributions.

The effect of mostly translational movements of
artificial eyes on the P and CR signals

All previous head movements (AA and HH) have been
very small and slow. In order to test whether the P and
CR signals are misaligned during larger head movements,
of up to 2 centimeters, we built a simple mechanism
to move artificial eyes sideways, with minimal rotations.
We attached the artificial eyes onto the Stepperbox from
Holmqvist and Blignaut (2020), which provided a heavy
and stable foundation for letting the artificial eyes stare
straight ahead. The Stepperbox and an additional weight
were placed onto a small board that smoothly rolled on two
plastic tubes (with an extra tube for the Stepperbox). Springs
on the tubes ensured a soft halt and that the endpoints of
the translation keep the artificial eyes within the eye video
frame of each eye tracker. We took care that the edges of all
three tubes moved alongside the edge of the table where the
eye tracker was mounted (Fig. 13).

We then recorded artificial eye data for the EyeLink
II and the HiSpeed 240 over 30 seconds of back

and forth, manually induced translational movements
of approximately two centimeters, to simulate mostly
translational head movements. For the recorded SMI
HiSpeed 240 data, we modelled the CR signal based
on the pupil signal, using a linear regression from pupil
to CR. Table 6 shows the slope is around 1.2. We
also performed the same linear regression modelling for
rotational data from Holmqvist & Blignaut (1-10 and 10-
100 arcmin rotations), and found radically different slopes
(about -0.3) and intercepts (Table 6). This suggests that
the basic difference between translation and rotation can
be readily distinguished by the SMI HiSpeed 240, at least
for translations of a few centimeters and rotations of a few
minarcs and above.

Although the HiSpeed 240 appears to be able to largely
distinguish between translation and rotation, we do not
know how accurately the eye tracker manages to calculate
its Pupil and CR signals during mostly translational
movements. In Fig. 14, we plot P, CR and Gaze for one and a
half translational movement. Note the the P and CR signals
should be nearly identical for this largely translational
movement, but they are not. This is most likely due to the
same artefact found by Holmqvist and Blignaut (2020), that
the center calculations for the CR and Pupil images are
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Fig. 12 Boxplots of Spearman correlations between vertical P and CR signals in each analysis window. Only SMI eyes were used for static and
AA conditions

imperfect, and the variable distances between P and CR
cause fluctuations in the Gaze signal that look like irregular
rotations of the eye.

The EyeLink II was shown by Holmqvist & Blignaut
to exhibit similar artefacts to the HiSpeed 240, but the
EyeLink II unfortunately does not output separate Pupil
and CR signals. However, we can examine the generation
of artificial saccades during translation by looking at the
output of the EyeLink saccade detector (which combines
a velocity with an acceleration threshold). Table 7 shows
that the saccade rate for largely translational movements is
between 1.5 to 2.5 saccades per second, and amplitudes are
around 1◦. Previously, Hermens (2015) showed, using the
EyeLink II, that artificial saccades can appear in data as a
result of small head movements, which is very much in line
with our finding.

Table 6 Modeling the Pupil movement based on the CR movement, in
camera pixels, using a simple linear regression

Movement Eye Slope Intercept R2

Translation SMI 1.188 0.661 0.998

Rotation 1 SMI -0.337 125.89 0.318

Rotation 2 SMI -0.271 122.02 0.230

All data are recorded on the HiSpeed 240. The rotation data are from
Holmqvist and Blignaut (2020), where an artificial eye was rotated

Discussion and outlook

We set out to investigate the effect of small, almost
imperceptible balance and breathing movements of the body
and head on the noise in data from video-based P-CR
trackers.

Fig. 13 The Stepperbox in a setup that allows for translational
movement of a pair of artificial eyes
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Table 7 Rate (s−1) and average amplitude (◦) of artificial saccades for
translational movements of the SMI artificial eyes. Data recorded on
the EyeLink 2, and saccades detected with the SR event detector

Rate L Rate R Ampl L Ampl R

2.55 1.51 0.89◦ 1.11◦

Headmovements affect noise characteristics

In our main comparison, we recorded with completely static
artificial eyes, and with the same artificial eyes worn by
humans (AA). Comparing the noise from these recordings,
we could show that head movements play a clear role to both
increased levels (Fig. 6) and an increased colouring of noise
seen as lower Type values (Fig. 7). Head movements affect
the level of noise not only in the gaze data, but also in the
P and CR signals in the two eye trackers that provide those
data (Fig. 10). Furthermore, the effect of head movements
on noise is the same for filtered (Fig. 6) and unfiltered
(Fig. 8) data.

The difference in noise colour in Fig. 7 between static
artificial eyes and artificial eyes worn by a human (AA)
precludes the pupil size artefact from being the major cause,
because the pupil of an artificial eye does not change size.
Pupil dilation may nevertheless play a small additional

role, because human data are even noisier (but not more
coloured).

Because the AA condition involved recordings from
artificial eyes which produce neither microsaccades nor
oculomotor drift, the slight difference in colour between
the AA and the Static conditions (Fig. 6) cannot result
from intrafixational eye movements, which the oculomotor
hypothesis by Wang et al. (2017) proposes (see also
Niehorster et al., 2021).

We could replicate the finding in Niehorster et al. (2021)
that built-in lowpass filters are a major determiner of the
colour of eye movement data. We can therefore repeat
and sharpen the observation that researchers who measure
oculomotor drift with video-based P-CR eye trackers should
be aware that parts of the signal that bear a resemblance to
drift may often originate from a combination of filters and
head movements.

Niehorster et al. (2021) speculate that it is unlikely
that head movements could cause the increased colour in
noise, because their participants were restricted by chin
and forehead rests. Surprisingly, adding more head support
increased the level of noise in the EyeLink1000+, the
Eyelink II and the HiSpeed240, but not the remote trackers
Tobii Spectrum and the RED250mobile (Fig. 9). This
implies that it is disadvantageous to use head restriction in
the EyeLink 1000+, the EyeLink II and the HiSpeed240,
while it is safe to use head restriction for the SMI

Fig. 14 Horizontal CR, Pupil and Gaze signals from the SMI HiSpeed 240 for a typical 2.5 s translational 2 centimeter movement across the
camera (appr. 1.5 px movement of CR and Pupil), and the beginning of the return. During these 2.5 s Gaze moves back and forth, of around half
a degree, because Pupil and CR signals behave quite differently despite being recorded from the same artificial eye. For optimal illustration, the
CR and Pupil signals have been scaled to fit the size of the Gaze plot
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RED250mobile and the Tobii Spectrum. One possibility is
that the head movement compensation mechanisms of the
two remote eye trackers make chinrest usage unnecessary
(rather than a problem). It is hard to explain why head
restriction leads to noisier data for all eye trackers except
the two remotes. One possibility is that sitting in a more
restricted setup could lead to more muscle tension and hence
more small head movements, or possibly the head tracking
algorithms being confused by the headrest. Another possible
explanation might be that the data quality of the two remotes
was impaired by the difficulty to set them up for tracking
with artificial eyes.

Artificial eyes

Artificial eyes have primarily been used to quantify system
noise, that is the precision of the instrument itself, with
no influence from human eyes. Figure 4 shows that the
RMS-S2S noise in the EyeLink Gen 2 artificial eyes is 2.2–
14.5 times worse than in the other eyes and with much larger
ranges. We therefore excluded all data from the EyeLink
Gen II eyes from our subsequent analyses, and recommend
to all eye-movement researchers that they do not use this
artificial eye to measure precision.

As we mentioned in Section “The three pairs of artificial
eyes”, artificial eyes and human eyes do differ in many
ways. Our results to some extent confirm this. Not only
is the Gen 2 artificial eye from SR Research / EyeLink
unsuited for precision measurements, but more subtle
difference exist. In Fig. 6, for instance, we show that RMS-
S2S for the HH and the AA conditions differ, which means
that the human eyes add some part to noise that the artificial
eyes do not, possibly because of varying corneal shapes in
combination with the geometrical model. The same pattern
is found later, when we look at the RMS-S2S values of
the P and CR signals from both human and artificial eyes.
However, in other cases the artificial and human eyes have
yielded very similar results. For instance, the correlations
between P- and CR ranges and STD values in Table 5 show
very small differences between human and artificial eyes,
suggesting that the movement (dispersion of data points)
of the two image centres in the camera sensor happen in
the same way for artificial and human eyes. Artificial eyes
cannot entirely replace human eyes in data quality research,
but for teasing apart the effects of head movements from
those of eye movements, artificial eyes are necessary. The
same is true for separating system noise from oculomotor
noise (Niehorster et al., 2021), investigating how correctly
eye rotations are tracked (Holmqvist & Blignaut, 2020), and
when measuring end-to-end latencies (Reingold, 2014).

The P and CR images on the camera sensor

The gaze signal from P-CR eye trackers is formed from the
P and the CR signals. We saw in our correlation analyses
that P and CR signals very clearly reflect head movements,
both in the AA and the HH conditions. In contrast, the P and
CR signals appear to move randomly in the Static condition.

We saw in Fig. 10 that both P and CR signals are noisier
when recorded in the AA condition (artificial eyes on a
human head), compared to the static artificial eyes. We
could also see that noise in P is larger than noise in CR,
for all conditions and both eye trackers that provide these
signals.

Furthermore, Fig. 14 exemplifies the imperfection in
the algorithms calculating the centre of the CR and the
P signals from the images in the eye camera, the same
origin that cause mismeasured amplitudes of small saccades
(Holmqvist & Blignaut, 2020). This is most likely where
noise and artefacts are produced when the participants head
moves ever so slightly.

Hermens (2015) showed that in Pupil-only mode,
the EyeLink II produced artificial microsaccades when
recording with artificial eyes worn by human participants,
and attributed these artefactual microsaccades to the
head movement compensation mechanism in the EyeLink
II. Recording in P-CR mode decreased the number of
generated artificial micro-saccades, but it did not ensure
artefact-free recordings. Only when the artificial eyes were
mounted on an artificial head did the EyeLink II provided
data free of micro-saccades. We could show that when
moving artificial eyes sideways across the eye cameras of
the EyeLink II, emulating translational body movements
in a controlled way, many artefactual small saccades were
produced.

All our results pertain to small movements of eyes
and head. For larger eye movements, the linear modeling
(Table 6) suggests that the SMI eye trackers manages the
basic requirement for any P-CR eye tracker to use the
P and CR signal to distinguish between translation and
rotation. For very large head movements, other artefacts
appear (Niehorster et al., 2018).

Outlook

Our results question the assumption that the eye tracker will
record optimal data if participants sit still during recordings.
Imperceptible head movements are enough to more than
double the noise, colour the signal and generate artefactual
eye movements. Seeing this result in the context of other
data quality research (e.g. Holmqvist, 2015; Andersson
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et al., 2017; Hooge et al., 2016; Wang et al., 2019; Hessels
et al., 2015b; Ehinger et al., 2019; Niehorster et al., 2020a;
Drewes et al., 2014; Funke et al., 2016), it is clear that
researchers who use eye trackers must take care not to make
faulty assumptions about their tools, and for manufacturers
to think about how to produce better eye trackers.
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