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Abstract
Individual differences in workingmemory capacity (WMC) have long been known to relate to performance in domains outside of
WM, including attentional control, long-term memory, problem-solving, and fluid intelligence to name a few. Complex span
WM tasks, composed of a processing component and a storage component, are often used to index WMC in these types of
investigations. Capacity estimates are derived from performance on the storage component only, while processing performance is
often largely ignored. Here, we explore the relationship between processing performance andWMC in a large dataset for each of
three complex span tasks to better characterize how the components of these tasks might be related. We provide evidence that
enforcing an 85% or better accuracy criterion for the processing portion of the task results in the removal of a disproportionate
number of individuals exhibiting lower WMC estimates. We also find broad support for differences in processing task perfor-
mance, characterized according to both accuracy and reaction time metrics, as a function of WMC. We suggest that researchers
may want to include processing task performance measures, in addition to capacity estimates, in studies using complex span tasks
to index WMC. This approach may better characterize the relationships between complex span task performance and perfor-
mance in disparate domains of cognition.
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Working memory (WM) is best characterized as a multipur-
pose mental workspace (Baddeley & Hitch, 1974; Cowan,
1999) that varies across individuals in terms of capacity
(WMC; Kane et al., 2007). Individual differences in WMC
have consistently been shown to relate to performance in a
wide number of other cognitive domains (e.g., dichotic
listening, Conway et al., 2001; attentional control, Kane
et al., 2001; Stroop interference, Kane & Engle, 2003;
reasoning, Kyllonen & Christal, 1990; mind wandering,
McVay & Kane, 2009; modes of attentional control,
Richmond et al., 2015; fluid intelligence, Unsworth, Brewer,
& Spillers, 2009). In this type of research, complex span WM
tasks are a popular method for assessing WMC (e.g., Conway

et al., 2005; Foster et al., 2015; Redick et al., 2012; Unsworth
et al., 2005). In contrast to simple span tasks (e.g., digit span)
that involve only a storage component, complex span tasks
contain both a processing component that involves the presen-
tation of stimuli requiring decisions and a storage component
involving the presentation of memory items (Conway et al.,
2005; Unsworth et al., 2005). An important feature of the
processing task is that it is typically thought to momentarily
reduce access to or block rehearsal of memory items
(Unsworth et al., 2005), and performance on the processing
task is emphasized in complex span task instructions in order
to better capture individual differences in the storage compo-
nent of the task (Conway et al., 2005).

A brief history of complex span task
development

Complex span tasks have undergone a number of design
implementations since their initial instantiation by Daneman
and Carpenter (1980). The initial task structure introduced by
Daneman and Carpenter (1980) was developed to address the
relationship between WMC and reading comprehension that
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had been, to that point, only weakly observed. Previous
studies used mainly simple span tasks that only taxed
memory storage, and Daneman and Carpenter (1980) argued
that the reason for the previously observed weak correlations
was that simple span tasks did not appropriately tap the mul-
tiple components of the workingmemory system. In this view,
simple span tasks are seen as indexing mainly short-term
memory abilities. Short-termmemory, in turn, may be thought
of as just one sub-component of working memory, which
additionally involves attentional control (see Engle et al.,
1999 for an extended discussion) and other mechanisms such
as a controlled search through long-term memory (Unsworth
& Engle, 2007). Further, the authors argued that this complex
span taskwould be both a better measure ofWMC and a better
measure of individual differences inWMC across participants
(Daneman & Carpenter, 1980).

Based on the rationale outlined above, Daneman and
Carpenter (1980) developed the earliest implementation of
the now-classic complex span task (originally dubbed “read-
ing span” and now commonly referred to as “sentence span,”
as the term “reading span” is now more typically used to
describe the sentence verification/letter memory task; Redick
et al., 2012). This task required participants to judge the ve-
racity of sentences presented by an experimenter on index
cards as the processing component, and to remember the final
word of each sentence as the storage component (Daneman &
Carpenter, 1980). Later, Turner and Engle (1989) replaced the
sentences in Daneman and Carpenter’s task with mathemati-
cal operations, thus creating the Operation Span task. Turner
and Engle (1989) used this task to demonstrate that reading
comprehension could be predicted with a task that did not
require reading as the processing component.

In a later publication that influenced the ubiquity of com-
plex span tasks, Unsworth et al. (2005) developed an automat-
ed version of the operation span task (and later other complex
span tasks) that allowed for automated computerized admin-
istration with minimal experimenter interaction. These tasks
are nowwidely used in the literature, thanks to both the ease of
administration afforded by the automated tasks and the
ability of researchers to access the computerized ver-
sions of these tasks that have been made available for
download by the Engle lab (see https://englelab.gatech.
edu/taskdownloads). Together, these two features have
contributed to cementing these tasks as a mainstay in
the literature on individual differences in working
memory.

In recent years, shortened versions of the automated span
tasks (Foster et al., 2015; Oswald et al., 2015), as well as
advanced versions testing performance at larger set sizes
(Draheim et al., 2018), have been introduced. These new task
versions are expected to further increase the popularity
and utility of complex span WM tasks. The scope of
the present work will be limited to the “standard”

automated versions of the Operation Span, Symmetry
Span, and Reading Span tasks (Unsworth et al., 2005).

The relationship between processing
and storage

Although these complex span tasks necessarily contain both
processing and storage, typical methods of calculating WMC
estimates rely exclusively on performance in the storage com-
ponent of the task. Adherence to an 85% processing accuracy
criterion for inclusion in analyses has been recommended to
ensure that participants sufficiently engage the processing
component (Conway et al., 2005). However, ensuring that
participants’ processing performance meets or exceeds this
criterion is often the only consideration of this task component
for scoring. As noted above, early methods for testing WMC
using complex span tasks were not computerized and were
completed in the presence of an experimenter. In these con-
texts, experimenters could ensure adequate engagement with
the processing task and could help correct participants’ erro-
neous understanding regarding correct completion of the pro-
cessing task. With the advent of more automated computer-
ized methods, these tasks are often completed without such
stringent oversight of the experimenter, and therefore the 85%
criterion was suggested to ensure appropriate levels of partic-
ipant engagement with the processing portion of the task.

There is a relatively small body of literature focusing on
investigating the relationship between processing and storage
performance in complex span tasks directly. Such investiga-
tions have been conducted in healthy young adults (e.g., Engle
et al., 1992; Friedman & Miyake, 2004; St Clair-Thompson,
2007a, 2007b; Towse et al., 2000; Unsworth et al., 2005;
Waters & Caplan, 1996) and in typically developing children
(e.g., Barrouillet & Camos, 2001; Hitch et al., 2001; St Clair-
Thompson, 2007b; Towse et al., 1998). Additional work has
examined the relationship between processing task accuracy
and storage performance (Daneman & Tardif, 1987; Engle
et al., 1992; Lépine et al., 2005; Salthouse et al., 2008; Shah
& Miyake, 1996; Towse et al., 2000; Turner & Engle, 1989;
Waters & Caplan, 1996). In both contexts, results have been
somewhat mixed, with some reports finding evidence for a
relationship between better processing performance indices
(lower RT, higher accuracy) and better storage performance
(e.g., St Clair-Thompson, 2007a, 2007b; Waters & Caplan,
1996) in young adult samples. However, evidence for the
opposite pattern in terms of processing RT has been observed
in children (e.g., Towse et al., 1998)1, as well as findings
suggesting no relationship between processing and storage

1 Previous work has noted that relationships between processing RT and stor-
age performance are more consistently observed in children compared to adult
samples (Towse et al., 2010).
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performance in younger adults (e.g., Engle et al., 1992; Shah
& Miyake, 1996; Towse et al., 2000) and in children (Lépine
et al., 2005). In sum, the extant literature does not yet offer a
clear picture of the way(s) in which performance indices on
processing and storage tasks interrelate. The present work
aims to better characterize this relationship.

When introducing the automated version of the Operation
Span task, Unsworth et al. (2005) first tested the relationship
between facets of processing time and storage performance. In
the OSpan task, the average RT for processing stimulus pre-
sentation was found to be negatively related to storage accu-
racy (Unsworth et al., 2005). Therefore, those who were faster
on the processing task exhibited higher WMC. Importantly,
the sample in this study was restricted to participants
exhibiting 85% processing accuracy or better, resulting in ap-
proximately 15% data loss (Unsworth et al., 2005). Following
this initial examination, Unsworth, Redick, and colleagues
(2009) tested the relationship between processing and storage
performance without enforcing any processing accuracy crite-
rion, as well as the relation of these variables to fluid intelli-
gence scores, and found that processing accuracy and process-
ing RT factors were nonredundant with one another. Further,
they note that each of these variables accounted for significant
variance in fluid intelligence scores over and above that pre-
dicted byWMC storage scores. More central to the interests of
the current paper, higher processing accuracy and faster pro-
cessing RTs were associated with better storage performance
(i.e., WMC; Unsworth, Redick, et al., 2009). Building on this
line of work, Unsworth, Fukuda, and colleagues (2014) tested
the relationships between processing and storage performance
and the relation of these factors to capacity, secondary mem-
ory, attentional control, and fluid intelligence. In this analysis,
the negative relationship between processing time and storage
accuracy that had been observed in prior work (Unsworth,
Redick, et al., 2009) was replicated. Moreover, capacity, sec-
ondary memory, and attentional control were shown to fully
account for the relationship between theWM indices (process-
ing, storage) and fluid intelligence (Unsworth et al., 2014).
Such findings provide initial evidence that consideration of
both processing and storage together may be a worthwhile
approach to characterize task performance. Importantly, more
recent work using complex span tasks to characterize WMC
appear to have abandoned strict adherence to an 85% process-
ing accuracy criterion (see, for example, Ellis et al., 2020;
McVay & Kane, 2009; Redick et al., 2011; Richmond et al.,
2015; Unsworth et al., 2013). Đokić, Koso-Drljević, and
Đapo (2018) recently suggested that eliminating the 85% ac-
curacy criterion does not impact the psychometric properties
of the tasks, and Unsworth, Redick, and colleagues (2009)
suggested that enforcing the 85% accuracy criterion is unnec-
essary. However, previous research has not strongly recom-
mended against enforcing this criterion, nor has a systematic
analysis been undertaken to characterize the impact of

enforcing this criterion on WMC estimates retained for inclu-
sion in the final sample.

Advances in investigating task reaction time
and accuracy

The examination of trial-level variation in RTs, rather than
characterizing RTs according to their mean, has recently
gained traction. One such approach involves application of
the ex-Gaussian model to RT distributions. The ex-Gaussian
model convolves the Gaussian and exponential distributions
together, which are described by the parameters μ, σ, and τ.
The μ parameter approximates the mode of the Gaussian dis-
tribution and the σ parameter approximates the standard devi-
ation of the Gaussian distribution, whereas the τ parameter
reflects the mean and standard deviation of the exponential
component of the distribution (Balota & Yap, 2011).
Because the sum of μ and τ is roughly equal to the mean
RT, any variable that results in an increase in τ accompanied
by a decrease in μ (or vice versa) would result in a null effect
at the level of mean RT, but can be easily observed with ex-
Gaussian RT characterization (e.g., Ball & Brewer, 2018;
Balota et al., 2008; Spieler et al., 1996). This work suggests
that the application of the ex-Gaussian model to RT data can
therefore reveal effects that would be masked by simply char-
acterizing RT according to mean performance.

Similarly, characterization of task performance according
to error types, rather than or in addition to overall accuracy,
has gained popularity in recent years (e.g., Giovannetti et al.,
2008; Scullin et al., 2012, 2020). For example, recent work by
Giovannetti and colleagues in the domain of naturalistic action
execution has shown that omissions in the context of a
performance-based measure of everyday action are closely
related to performance on tests of episodic memory, whereas
commission errors are more closely associated with deficits in
executive functioning (Devlin et al., 2014). This suggests that
characterizing performance according to error types may pro-
vide a more detailed analysis of participant performance than
simple accuracy measures alone, and this profile may map
meaningfully to other domains of cognition.

The current work follows these two recent trends to provide
a more detailed examination of the relationship between pro-
cessing and storage performance in complex span tasks. Here,
we consider four novel research questions in each of three
complex span tasks. First, we address the appropriateness of
the aforementioned inclusion criterion by asking the question:
(1) Does enforcing the recommended 85% processing accura-
cy criterion for inclusion result in the removal of more partic-
ipants with low WMC estimates compared to higher WMC
estimates? The next three questions investigate whether and
how specific aspects of processing performance relate to
WMC: (2) Do RTmeans and standard deviations of RTs from
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the processing practice portion of the task differ as a function
of WMC? (3) Do task-derived measures of processing RT,
including mean RT and ex-Gaussian parameters, and process-
ing task error profiles relate significantly to WMC? (4) Does
modeling RT-based and error-based processing profiles to-
gether explain more variance in WMC than consideration of
either alone?

Method

Operation Span (OSpan) and Symmetry Span (SymSpan) data
were collected between 2011 and 2019 at four large state
universities: Arizona State University (ASU), California
State University, Sacramento (CSUS), Stony Brook
University (SBU), and Temple University (TU). Reading
Span (RSpan) data were collected at ASU only. All data were
collected in the context of task batteries for large-scale pro-
jects. Study procedures were reviewed and approved by the
Institutional Review Board of each institution.

Operation Span

In OSpan, participants alternated between solving simple
math problems as the processing component and remember-
ing letters as the storage component. Participants started out
practicing each portion of the task separately—first practicing
the letter memory (storage portion) task, then practicing the
math (processing) portion of the task, and last practicing alter-
nating between solving math problems and remembering let-
ters (comparable to test trials). See Fig. 1 panel A for a task
schematic.

Letters were displayed for 1000ms each in all phases of the
experiment. At the recall phase, participants were shown a
grid displaying 12 possible letters with a box beside each
letter. Participants were told to recall the letters in the order
they were presented; the chosen letters were displayed at the
bottom of the screen. Participants were instructed to use the
“clear” button displayed on the screen if they made a mistake
and wanted to start over. The blank button was displayed on
the screen to mark the position of a forgotten letter, and par-
ticipants were instructed to click the enter button displayed on
the screen when they were ready to submit their response.
Participants were given as long as they needed to complete
the recall phase in all trials.

For the math problems, a simple arithmetic problem such
as “(6*0) + 1 = ?”was displayed, and participants were told to
solve the problem as quickly as possible without sacrificing
accuracy. Once participants had an answer in mind, they were
instructed to click to advance to the next screen. On this
screen, a number is displayed at the top of the screen;
displayed below this number is a box marked “true” and an-
other marked “false.” If the number shown was the correct

response to the math problem, the participant was instructed
to choose the “true” button; otherwise, they were instructed to
click “false.” During the processing practice portion, mean
and standard deviation (SD) of the RTs for the problem dis-
play screen were calculated, and then an upper limit bound
was set for solving math problems in the test context by taking
each individual’s average RT and adding 2.5 standard devia-
tions to that number (Unsworth et al., 2005). This serves as the
maximum allowable response time for clicking to advance
from the problem display to the true/false screen. On trials
for which participants did not click before the maximum time
was reached, the trial was marked as a “time-out” error.
Regardless of the RT on the problem screen, participants were
given unlimited time to respond on the true/false screen, and
the accuracy of the response was recorded.

The OSpan task consisted of 15 trials, with three trials each
at set size ranging from 3 to 7. Set sizes were presented ran-
domly for each participant. In total, for the test phase, partic-
ipants solved 75 math problems and were shown 75 letters.
The capacity score for this task was the number of letters
recalled in the correct position (with 75 being the maximum
possible score).

Reading Span

The RSpan task is similar to OSpan, save for differences in
processing task demands. In RSpan, participants alternated
between reading sentences and judging whether they made
sense as the processing component and remembering letters
as the storage component. The practice phase proceeded as
described above in OSpan. See Fig. 1 panel B for a task
schematic.

The storage component of the task was exactly the same as
in OSpan, described above. The RSpan processing task in-
volved sentence verification. Here, a simple sentence ranging
in length from 10 to 15 words was displayed, and participants
were told to make a judgment as quickly as possible, without
sacrificing accuracy, regarding whether the sentence made
sense or not. “Nonsense” sentences were created by replacing
one word in the sentence (e.g. “The young pencil kept his eyes
closed until he was told to look.”). Once participants had an
answer in mind, they were instructed to click to advance to the
next screen. On this screen, participants saw a box marked
“true” and another marked “false.” If the sentence displayed
on the previous screen made sense, the participant was
instructed that they should choose the “true” button; other-
wise, they should click “false.”During the processing practice
portion, mean and SD for the RTs on the sentence verification
screen were calculated, and then an upper limit bound was set
for making sentence judgments in the test context by taking
each individual’s average RT and adding 2.5 standard devia-
tions to that number. This served as the maximum allowable
response time for clicking to advance from the sentence
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display to the true/false screen. On trials for which participants
did not click before the maximum time was reached, the trial
was terminated and counted as a time-out error. Participants
were given unlimited time to respond on the true/false screen.

The RSpan task consisted of 15 trials, with three trials each
at set sizes ranging from 3 to 7. Set sizes were presented
randomly for each participant. In total, for the test phase, par-
ticipants completed 75 sentence judgments and were shown
75 letters. The capacity score for this task was the number of
letters recalled in the correct position (with 75 being the max-
imum possible score).

Symmetry Span

In SymSpan, participants alternated between making symme-
try judgments as the processing component and remembering
highlighted locations as the storage component. The practice
portion of the task proceeded as described above. See Fig. 1
panel C for a task schematic.

Locations were shown in a 4 × 4 grid with one square of the
grid highlighted in red. Locations were displayed for 650 ms
each in all phases of the experiment. At the recall phase, par-
ticipants were shown a blank 4 × 4 grid. Participants were told
to recall the locations in the order they were presented by

clicking on each location; the chosen locations were num-
bered in the grid. Again, participants had access to “clear,”
“blank,” and “enter” buttons and were given as much time as
needed to complete the recall phase.

For the symmetry judgments, participants were shown an
8 × 8 black and white grid and were asked to make a symme-
try judgment about the vertical axis. Participants were
instructed to solve the symmetry problem as quickly as possi-
ble without sacrificing accuracy. Once participants had an
answer in mind, they were instructed to click to advance to
the next screen. On this screen, participants were instructed to
respond “true” if the grid displayed on the previous screen was
symmetrical and “false” if it was not. The processing task
response deadline was computed as described above (RT
mean + 2.5 SDs) for the processing screen, and unlimited time
was allowed on the true/false screen. When participants did
not submit a response on the processing before the maximum
time was reached, the trial was terminated and counted as a
time-out error.

The SymSpan task consisted of 12 trials, with three trials
each at set size ranging from 2 to 5. Set sizes were presented
randomly for each participant. In total, for the test phase, par-
ticipants solved 42 symmetry problems and were shown 42 to-
be-remembered locations. The capacity score for this task was

A

B

C

Fig. 1 Complex Span Working Memory task schematics depicting Operation Span (panel A), Reading Span (panel B), and Symmetry Span (panel C)

784 Behav Res  (2022) 54:780–794

1 3



the number of locations recalled in the correct order (with 42
being the maximum possible score).

Participants

Data were collected primarily from participant pools at each
respective institution, consisting of undergraduate students
enrolled in psychology courses who were participating in ex-
periments for course credit and/or payment. Paid participants
were also recruited through flyer advertisements and word of
mouth (i.e., paid participants were not required to be regis-
tered with the university subject pool in order to participate)2.

Although these data were collected across a number of
different sites, study designs were relatively similar across
sites. In all studies, participants completed sessions that were
between 1 and 2 hours in length, and task batteries were com-
pleted over one or two sessions. All data reported here were
collected in the context of larger studies that included a variety
of other tasks in addition to the WMC measures. Participants
were aged at least 18 years and provided informed consent for
their participation in each study. Sample sizes and descriptive
statistics for the capacity estimates in each task are displayed
in Table 1, separated by site. Descriptive statistics for storage
performance, processing accuracy, and processing RT are
displayed in Table 2. Cronbach’s alphas for each task for both
processing and storage components are displayed in Table 3.

Procedure and statistical approach

The significance criterion for all statistical tests was set to the
p ≤ .01 level. Statistical analyses were conducted in R (R Core
Team, 2008) using the “stats” package. Cronbach’s alphas
were computed using the alpha function from the “psych”
package (Revelle, 2018). Ex-Gaussian RT distributional com-
ponents were calculated using QMPE software (Heathcote
et al., 2004) and were imported into R for analysis. Where
appropriate, Cohen’s d effect sizes were computed using the
“lsr” package (Navarro, 2015).

Plots were created in R using the “ggplot” package
(Wickham, 2016). For variables where evidence of non-
normality was observed, nonparametric statistical tests were
conducted. For brevity, only parametric results are reported,
with differences from the nonparametric test results footnoted.
Tests of normality and nonparametric test results are provided
in full in the Supplemental Materials.

Importantly, popularly used automated complex span tasks
(e.g., Unsworth et al., 2005) enforce a response deadline for
the processing component of the task (mean RT from process-
ing practice performance + 2.5 standard deviations from that

mean). Therefore, we examine RT data from both the practice
component (where no response deadline is enforced) in ques-
tion 2 as well as from the task itself in questions 3 and 4. The
response deadline applies only to the screen on which the
processing task itself (math problem, symmetry grid, sentence
reading) is presented, and not the following screen where a
response is input. After participants have been alerted to the
response deadline in the context of the task proper, it is pos-
sible for savvy participants to then “game” the system by
moving on from the processing task screen to the response
screen and then lingering on this screen while continuing to
think. Therefore, in addressing research questions 3 and 4 we
used total RTs for both the RT exhibited on the response
screen in the processing component and the RT on the pro-
cessing screen itself. All analyses focusing on processing time
are based on RTs derived from correct trials only.

To examine processing performance, we characterized er-
rors according to two types. For trials on which participants
failed to move on to the response screen before their individ-
ualized response deadline, these were counted as “time-out”
errors (regardless of the response rendered on the response
screen). Overtly incorrect responses (i.e., for the operation
“2 x 3 + 5?” and a response screen displaying a value of
“12,” choosing the “true” box would count as an error) regard-
less of participant RTs were characterized as “incorrect”
errors.

Capacity estimates were examined by awarding credit for
each to-be-remembered item recalled in the correct position,
summed over the entire task (Unsworth et al., 2005).

Results

The results for each of our substantive research questions are
reported below, separated by sub-headings.

Are WMC estimates significantly lower for individuals
who do not meet the 85% processing criterion cutoff
than for those that do?

This question was tested with a two-tailed Welch’s two-
sample t test for unequal variances given the different sample
sizes for those who missed versus met/exceeded the criterion
cutoff. For OSpan, we observe a significant difference in
WMC estimates by processing performance, t(206.73) =
10.74, p < .001, 95% CI [10.60, 15.37], d = 0.99. This pattern
replicates in both SymSpan, t(247.82) = 10.75, p < .001, 95%
CI [5.67, 8.22], d = 0.94, and RSpan, t(163.60) = 7.97,
p < .001, 95% CI [9.62, 15.95], d = 0.89 (see Fig. 2 for visu-
alization of these data). Together, these results strongly sug-
gest that enforcing a processing accuracy criterion for inclu-
sion in the final dataset results in the removal of a greater

2 All analyses were also conducted without the inclusion of paid participants,
and the pattern of results was found to be the same as the results of the full
sample reported here.
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Table 1 Sample sizes and descriptive statistics for WMC estimates from each task and site

Overall ASU CSUS/SBU TU Site difference

M SD M SD M SD M SD

OSpan 56.80 13.72 58.19 12.77 50.07 16.73 54.45 14.72 **
n=1685 n=1180 n=121 n=384

SymSpan 28.61 7.77 29.63 7.79 29.40 7.14 26.56 7.75 **
n=1053 n=585 n=121 n=347

RSpan – 52.52 14.81 – – N/A
n=1062

Note. ** indicates significant site differences observed at the p ≤ .001 level.

Table 2 Descriptive statistics for storage performance, processing accuracy, and processing RT measures

Span Task M SD Skew Kurtosis Norm Violation?

OSpan

Proc Acc 0.91 0.07 −2.71 11.81 Y

Mean Proc Prac RT 3243.03 1385.79 1.51 3.68 N

SD Proc Prac RT 1768.66 1306.06 2.41 9.23 Y

RT Dist, μ 2546.80 761.69 1.63 5.40 Y

RT Dist, σ 489.49 360.66 2.41 10.03 Y

RT Dist, τ 1253.81 741.13 1.98 7.08 Y

Time-Out Err 1.43 1.89 3.37 21.70 Y

Incorrect Err 5.17 4.41 3.28 17.43 Y

SymSpan

Proc Acc 0.91 0.10 −2.66 10.42 Y

Mean Proc Prac RT 2141.52 1041.46 1.58 4.29 Y

SD Proc Prac RT 1190.12 831.42 2.86 14.30 Y

RT Dist, μ 1721.80 676.88 1.74 3.85 N

RT Dist, σ 309.22 303.46 1.84 3.84 N

RT Dist, τ 746.69 467.15 1.82 6.67 Y

Time-Out Err 0.80 1.28 2.56 9.58 Y

Incorrect Err 3.18 3.74 3.04 13.02 Y

RSpan

Proc Acc 0.90 0.11 −3.43 15.44 Y

Mean Proc Prac RT 3947.43 1276.23 1.35 3.85 N

SD Proc Prac RT 1456.58 749.58 2.45 10.37 Y

RT Dist, μ 3436.06 1054.71 0.97 4.78 Y

RT Dist, σ 669.88 415.34 3.16 20.40 Y

RT Dist, τ 991.19 587.05 2.11 11.16 Y

Time-Out Err 1.61 2.28 8.03 125.49 Y

Incorrect Err 5.62 7.40 3.73 17.83 Y

Note.WMC: capacity estimate; Proc Acc: processing task accuracy; Mean Proc Prac RT: mean practice processing task RT; SD Proc Prac RT: standard
deviation practice processing task RT; RTDist, μ: mu component of the ex-Gaussian analysis for task-relevant RTs; RT Dist, σ: sigma component of the
ex-Gaussian analysis for task-relevant RTs; RT Dist, τ: tau component of the ex-Gaussian analysis for task-relevant RTs; Time-Out Err: processing task
errors due slow responding; Incorrect Err: processing task errors due to incorrect responding. “Y” under the Norm Violation column indicates that the
assumption of normality was violated, defined as skew > |2| and/or kurtosis >|4|, whereas “N” indicates that skew and kurtosis values were found to be in
the acceptable range. For rows marked “Y”, nonparametric statistical tests can be found in the Supplemental Materials, and in cases where nonparametric
and parametric findings differed these are footnoted throughout the manuscript.
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number of individuals with lowWMC compared to those who
achieve high WMC estimates.

Do individuals who display higher mean RTs and/or
more variable RTs (i.e., higher RT SDs) in the practice
phase for the processing task also exhibit lower WMC
estimates?

We tested these questions using two-tailed Pearson’s correla-
tions between (a) an individual’s mean RT during the process-
ing practice task and WMC, and (b) an individual’s RT SD
exhibited during the processing practice task and WMC. We
observe a small relationship between mean RT during the
processing practice task and WMC that was nonetheless con-
sistent across OSpan and SymSpan. This effect was not ob-
served for RSpan. For OSpan, there is a small but significant
negative correlation between mean processing practice RT
and WMC, r(1683) = −0.09, p < .001, 95% CI [−0.13,
−0.04], but not between RT SDs and WMC, r(1683) =
−0.03, p = .256, 95%CI [−0.08, 0.02]. This pattern replicates
in SymSpan for mean practice RT, r(1051) = −0.13,
p < .001, 95% CI [−0.18, −0.07], and SD practice RT,
r(1051) = −0.05, p = .142, 95% CI [−0.11, 0.02]3.
However, deviation from this pattern is observed in
RSpan, where we observe non-significant relationships be-
tween WMC estimates and mean practice RT, r(1060) =
−0.02, p = 0.436, 95% CI [−0.08, 0.04], as well as be-
tween WMC estimates and SD practice RT, r(1060) =
−0.07, p = 0.015, 95% CI [−0.13, −0.01]. Overall, as in-
dicated by small correlations, evidence for differences in
RTs during the processing practice phase as they relate to
WMC is weak (Sawilowsky, 2009), with slightly stronger
support for mean RT differences by WMC estimates com-
pared to RT SDs from the practice portion of the task.
Given the small correlations and the large sample size,
however, the relationship between RTs on the practice
processing task and WMC is of little practical
significance.

Do task-derived measures of processing RT, including
mean RT and ex-Gaussian parameters, and processing
task error profiles relate significantly to WMC?

To mirror the strategy employed by Unsworth and colleagues
(Unsworth et al., 2005; Unsworth, Redick, et al., 2009) in
which measures of central tendency were used to characterize
processing RT, a regression model with mean task-derived
processing RT entered as a predictor and WMC as the out-
come was built separately for each task (OSpan, SymSpan,
and RSpan). Significant models predicting WMC estimates
withmean RT derived from the processing taskwere observed
consistently across all three tasks, though variance explained
was small; OSpan, R2 = .019, R2 adjusted = .018, F(1,
1683) = 31.78, p < .001, SymSpan, R2 = .050, R2 adjusted =
.049, F(1, 1051) = 54.82, p < .001, and RSpan, R2 = .007, R2

adjusted = .006, F(1, 1060) = 7.17, p = .008.
Next, we characterized the distribution of task-derived RTs

using an ex-Gaussian approach and examined the significance
of each predictor in these models as well as overall model fit
for each task. Vincentile plots were created for each task to
examine the overlap between predicted and observed values
derived from the ex-Gaussian model. Vincentiles were created
by rank-ordering raw RTs from fastest to slowest for each
individual and calculating the mean RT for the first 20% of
RTs, the next 20%, and so on. The substantial overlap be-
tween predicted and observed values for the top third, middle
third, and bottom third of participants according to WMC
depicted in Fig. 3 suggests that the ex-Gaussian model pro-
vided a good fit for our RT data. Vincentile plots for our entire
sample and for only those participants who had 35 or more
correct RTs (due to concerns over the appropriateness of the
ex-Gaussian model for fitting a small number of RTs) can be
found in the Supplemental Materials.

Across all three tasks, we find significant overall models
which explain between 2.8% and 4.9% of the variance in
WMC estimates. We also observe some inconsistency in
terms of the significance of individual ex-Gaussian predictors.
In OSpan, we observe an overall significant model, R2 = .031,
R2 adjusted = .030, F(3, 1681) = 18.10, p < .001. The σ com-
ponent emerged as the only significant predictor in the
model, β= −0.188, t(1681) = −4.28, p < .001 (μ and τ p values
> .028). Similarly, an overall significant model is observed in
RSpan, R2 = .031, R2 adjusted = .028, F(3, 1058) = 11.30,
p < .001, and the σ component again emerged as the only
significant predictor in the model, β= −0.207, t(1058) =
−5.16, p < .001 (μ and τ p values > .13). In SymSpan, we
replicate the overall significance of the model, R2 = .052, R2

adjusted = .049, F(3, 1049) = 19.16, p < .001, but here the τ
component emerged as the only significant predictor in the
model, β= −0.104, t(1049) = −3.38, p < .001 (μ and σ p values
> .10). In general, we find consistent support for the use of ex-
Gaussian analyses to characterize task-derived RTs in

3 The Spearman correlation for the relationship between SymSpan WMC and
processing practice RT SDs reaches significance: rs (1051) = −.10, p < .001.

Table 3 Cronbach’s alpha scores for processing and storage
components of each task

OSpan SymSpan RSpan

Processing Accuracy .77 .81 .91

Processing RT .93 .88 .93

Storage Accuracy .92 .83 .92
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Fig. 3 Vincentile plots by task (panel A: Operation Span, panel B:
Reading Span, panel C: Symmetry Span) and by WMC estimates (top
third, middle third, and bottom third). This depiction is for illustrative
purposes only; WMC was included in our models as a continuous

variable. Expected values for each group are denoted by the grey dotted
lines and the observed values are denoted by the black solid lines. The
substantial overlap between predicted and observed values indicates that
these data are fit well by the ex-Gaussian function

Fig. 2 Participants who meet or exceed the 85% processing accuracy cutoff have significantly higher span scores across tasks compared to those who
miss the cutoff. Individual data points are depicted by the circles and the error bar represents standard error
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complex span tasks, but the contributions of individual com-
ponents to overall predictive power varies across tasks4.

To test whether the ex-Gaussian approach provides an ad-
vantage over characterizing RTs by only mean performance,
the models described above were tested against one another.
In OSpan, F(2, 1681) = 11.075, p < .001, ΔAIC = 18.06, and
RSpan, F(2, 1058) = 13.28, p < .001, ΔAIC = 22.33, we ob-
served significant improvements in model fit for the ex-
Gaussian models over mean RT models5. There was no dif-
ference between models for the SymSpan task, F(2, 1049)
=1.31, p = .270, ΔAIC = 1.37. In summary, for two of the
three tasks (OSpan, RSpan), we observed improvements in
model fit when using an ex-Gaussian approach compared to
the more common mean RT approach. Together, these data
provide support for characterizing RT data in complex span
tasks using an ex-Gaussian approach.

Last, we explored whether characterizing processing errors
according to their type would predict WMC in each task con-
text by running a series of simultaneous multiple regression
models entering error types (time-out, incorrect) as predictors
and WMC as the outcome variable. Results were consistent
across all three complex span tasks for both overall model fit
and significance of individual predictors (time-out errors and
incorrect response errors). The overall model was significant
for OSpan, R2 = .139, R2 adjusted = .138, F(2, 1682) =
135.40, p < .001, and both time-out errors, β= −0.151,
t(1682) = −6.63, p < .001 and incorrect errors, β= −0.151,
t(1682) = −6.63, p < .001 emerged as significant predictors
in this model. Similar results were observed for SymSpan,
R2 = .153, R2 adjusted = .151, F(2, 1050) = 94.69, p <
.001 again with both time-out errors, β= −0.191, t(1050) =

−6.66, p < .001 and incorrect errors, β= −0.313, t(1050) =
−10.88, p < .001 as significant predictors. Finally, similar re-
sults were observed for RSpan again in terms of overall model
significanceR2 = .119, R2 adjusted = .118, F(2, 1059) = 71.61,
p < .001 as well as signifcance of both time-out, β= −0.196,
t(1059) = −6.75, p < .001 and incorrect errors, β= −0.262,
t(1059) = −9.04, p < .001. Across all task contexts, results in-
dicatemoderate associations between processing error profiles
and WMC estimates.

Does modeling processing RT and processing errors
together explain more variance in WMC than either
alone?

RT components are derived only from correct trials, so error
types add a non-overlapping piece of information about pro-
cessing performance. Here, we compared model fits for re-
gression models including RT components (μ, σ, τ) only
(hereafter called the RT distribution model) and a model in-
cluding error types as predictors (hereafter referred to as the
error model) to a model containing both RT distributional
components and error types (the RT distribution + error mod-
el). In OSpan, the RT distribution + error model explained
significantly more variance in WMC estimates compared to
the RT distribution model, F(2, 1679) = 130.49, p < .001,
ΔR2 = 0.130, and the error model, F(3, 1679) = 15.34,
p < .001, ΔR2 = 0.023. This pattern is replicated in SymSpan
where again a significant increase in variance explained is
o b s e r v e d u n d e r t h e RT d i s t r i b u t i o n + e r r o r
model in comparison to the RT distribution model, F(2,
1047) = 95.24, p < .001, ΔR2 = 0.146, and in comparison to
the error model, F(3, 1047) = 19.61, p < .001, ΔR2 = 0.045.
This pattern was again observed in RSpan showing an in-
crease in variance explained under the RT distribution + error
model compared to the RT distribution model, F(2, 1056) =
59.91, p < .001, ΔR2 = 0.099 and in comparison to the error
model, F(3, 1056) = 4.31, p = .005, ΔR2 = 0.011)6. While the
increase in explanatory power as a result of using the RT
distribution + error model varied across tasks, using the com-
bined ex-Gaussian parameters and error types as predictors
provided notable improvements in terms of variance ex-
plained. Compared to the RT distribution (only) model, the
RT distribution + error model explained between 9.9% and
14.6% more variance in WMC estimates. Compared to the
error (only) model, the RT distribution + error model ex-
plained between 1% and 2.3% more variance in WMC esti-
mates. Across all task contexts, the full model provided a
significantly improved model fit compared to models using
either the ex-Gaussian RT distribution components or error

4 It has been suggested that ex-Gaussian approaches may produce poor model
fits when the number of trials for inclusion in the model are small (Heathcote
et al., 2004). In order to ensure that the inclusion of participants with few
correct RT trials were not skewing our results, we assessed the significance
of the ex-Gaussian model using only participants with 35 or more correct RTs.
Removal of those with very few RTs changed neither the directionality nor the
significance of results for OSpan nor RSpan. Following the removal of partic-
ipants with few RTs in the SymSpan task, the overall model remained signif-
icant, but in this model only the μ (β = − 0.300, t (913) = − 3.75, p <
.001) component emerged as a significant predictor. Vincentile plots for
datasets including those with only 35 or more correct RT trials can be found
in the Supplemental Materials.
5 To compare the non-nested models reported here, we report ΔAIC to provide
information on the best fitting model. AIC (Akaike, 1973, 1985) is a penalized
likelihood model that is based on the number of estimated regression param-
eters. Using the relative AIC values for the candidate models being compared,
one can select the best model from the set and determine whether the others
provide good estimates of the observed data. Burnham and Anderson (2002)
provide some general rules of thumb for estimating the level of empirical
support for competingmodels (compared to the best-fittingmodel) on the basis
of ΔAIC, with ΔAIC between 0 and 2 indicating substantial support, between 4
and 10 with less support, and greater than 10 indicating little to no empirical
support. The authors note that these rules of thumb are generally applied to
nested models and that guidelines values may be larger for non-nested models.
Although there is support for the use of AIC to compare non-nested models
(Burnham& Anderson, 2002), we also note that some argue against the use of
AIC for selecting between non-nested models (Ripley, 2004).

6 The comparison for the quantile regression RT distribution + error model to
quantile regression error-only model in RSpan does not meet our p < .01
significance criterion (model comparison significance: p = .035).
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profiles alone. Taken together, these data provide support for
the joint use of RT-based and error-based metrics to charac-
terize processing task performance in relation to WMC
estimates.

Discussion

For our substantive research questions, we observed a fair degree
of consistency across the three complex span tasks, as well as
some points of departure. Below, we discuss each in terms of
consistency across tasks and size of the observed effects.

First, we see strong evidence in all three tasks that WMC
estimates are significantly lower for those that miss the 85%
processing task accuracy cutoff than those who meet or ex-
ceed the cutoff. Notably, the intention of this cutoff is to re-
move those who do not sufficiently engage in the processing
task (Unsworth et al., 2005), and was not devised to eliminate
truly low performers. In the current datasets, enforcement of
this criterion results in the removal of 10–17% of the full
sample, and in Unsworth et al. (2005), approximately 15%
data loss is reported when this criterion is enforced. Our find-
ings suggest that enforcing this criterion will result in the
removal of a disproportionate number of individuals
exhibiting lower WMC estimates.

We observed some inconsistency across tasks for our sec-
ond question. There were no significant associations observed
between processing task RT SDs and WMC. Significant neg-
ative correlations between mean processing practice RT and
WMC were observed in two of the three tasks (OSpan,
SymSpan). Inconsistency by task is perhaps not surprising,
given the small number of trials and the relatively simple
nature of processing task practice. Moreover, these findings
should be interpreted with caution, as in all cases the strength
of the correlation value was low.

Turning to our third question, in general we find significant
relationships between RT (characterized by mean RT and ex-
Gaussian components) and WMC. For both OSpan and
RSpan, the ex-Gaussian model fit significantly better than
the mean RT model. There were no differences for
SymSpan. This suggests ex-Gaussian analyses are no worse
than measures of central tendency for characterizing RTs, and
are actually more informative for two of the three tasks. Under
the ex-Gaussian analyses, the specific components that were
significant differed across tasks (σ for OSpan and RSpan, τ for
SymSpan when all participants were included for analysis and
μ when only participants with 35 or more correct RTs were
retained for modeling). It is somewhat surprising that the τ
component was only found to be a significant predictor in
one of the three tasks. However, we note that trials reaching
the response deadline were characterized as time-out errors, so
the extent to which effects of τ could be observed may have
been limited in this context. In support of this view, we saw

that the significant contribution of τ to the overall model for
SymSpan was eliminated when errors were modeled together
with ex-Gaussian parameters, suggesting that τ and error pro-
files may be accounting for overlapping variance in WMC. It
is possible that eliminating or extending the response deadline
for each trial may lead to more consistency in terms of the
contribution of the τ component of the ex-Gaussian parame-
ters by capturing responses that exceed the cutoff to be clas-
sified as time-out errors. However, researchers may be reluc-
tant to alter the standard RT deadline of 2.5 times the mean as
it is intended to prevent participants from rehearsing items
from the storage portion of the task when they should be
completing the processing component (Unsworth et al.,
2005).

Future work using other analytic techniques for character-
izing RTs, such as diffusion modeling (Ratcliff, 1978), may
further elucidate these relationships by offering a straightfor-
ward link between parameter estimates and cognitive process-
es. Unfortunately, concerns over an inadequate number of
RTs available in the current tasks precluded the inclusion of
this analysis here (Lerche et al., 2017). Researchers who wish
to pursue such a characterization in future studies are encour-
aged to explore methods by which to increase the number of
RTs available in the context of WMC tasks for the application
of this model, perhaps by utilizing the advanced complex span
tasks with larger set sizes (Draheim et al., 2018), increasing
the number of cycles through each set size, or by loosening or
removing the response deadline for the processing task in
order to obtain usable RT data for long response trials (that
are currently captured instead as time-out errors under stan-
dard task conditions). Nonetheless, across all tasks, we ob-
served predictive power for processing error profiles, with
both time-out errors and incorrect errors emerging as signifi-
cant predictors of WMC.

Last, in all tasks, results provide consistent evidence that
the RT distribution + error models provided better fits than
models containing only error information and models contain-
ing only RT distributional information. In terms of variance
explained, the RT distribution + error model increased vari-
ance explained by 9.9% to 14.6% compared to the RT distri-
bution model. Increases in variance explained compared to the
error model were smaller (between ~1 and 2%). While the
observed effects are small for some of the tasks, inclusion of
both ex-Gaussian RT components and error profiles together
consistently improves the explanatory power of the models.
Future research may consider the specific relationships be-
tween each processing component (RT, accuracy) and other
tasks sensitive to individual cognitive differences. For in-
stance, it is possible that ex-Gaussian RT components may
be more related to tasks that emphasize speeded responding,
whereas processing accuracymay bemore related to tasks that
don’t require speeded responses (Unsworth, Redick, et al.,
2009).
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The current work dovetails with prior work regarding indi-
vidual differences in WM and extends this work in some im-
portant ways. Previous work has sought to characterize indi-
vidual differences in WMC and the relation of those differ-
ences to other cognitive factors of interest, including process-
ing speed (Conway et al., 2002). WMC and processing speed
are generally found to be only weakly related to one another in
samples of healthy adults (see e.g., Conway et al., 2002).
WMC is often observed as a better predictor of higher-order
cognitive functions such as reasoning (Kyllonen & Christal,
1990) and fluid intelligence (Conway et al., 2002) compared
to processing speedmeasures in healthy adult samples, despite
in some cases observing strong relationships between process-
ing speed and WMC (Kyllonen & Christal, 1990, but see
Conway et al., 2002). The relationship between processing
speed and WMC is more strongly observed in early develop-
ment (Kail, 2007) and late in life (Brown et al., 2012).
Nonetheless, consideration of RT-based metrics that can be
derived from complex span tasks themselves may provide a
more fruitful way to characterize relationships betweenWMC
and speed. In this regard, future work to compare the strength
of the relationships observed betweenWMC storage measures
derived from complex span tasks and RTmetrics derived from
traditional processing speed tasks and from the processing
portion of the complex span WM task itself would be useful.

Reflecting on the present findings, we make some recom-
mendations for future WM research using these tasks. First,
we caution against use of an 85% processing accuracy crite-
rion as it may inadvertently bias WMC estimates against low-
er capacity participants, and if adherence to the cutoff is main-
tained researchers should be aware that this is likely to result
in skewed estimates of WMC in their samples. In considering
whether to forgo enforcing this criterion, researchers should
assess whether their sample sizes are sufficiently powered to
tolerate approximately 10–17% data loss. Researchers may
instead choose to adopt a criterion for processing
performance closer to 50% (where performance worse than
50% likely represents misunderstanding of or insufficient en-
gagement with the processing task) or to embed attention
checks in the task in order to justify the removal of partici-
pants’ data. If researchers wanted to move beyond the simple
50% accuracy criterion for processing task performance and
instead include a cutoff for ensuring that participants who are
included in the final dataset were 95% or 99% likely to be
above guessing probability, this could be easily achieved and
data below the cutoff could be discarded on either a task-wise
or trial-wise basis. At the task level, to achieve 95% confi-
dence that participants weren’t guessing on a task with 42
processing trials (e.g., SymSpan) the criterion should be set
to 61.9% overall processing accuracy. For a task with 75 pro-
cessing steps (e.g., Ospan, RSpan), a cut score below 69%

accuracy should be adopted under the 95% confidence
criterion7.

Alternatively, researchers may choose to adopt a data-
driven approach to set a processing task performance thresh-
old for inclusion in the final dataset based on their own sam-
ple. For example, participants who are found to exhibit pro-
cessing task performance 2 or 2.5 SDs below the mean pro-
cessing performance in that sample could be excluded from
the final dataset. In cases where participants complete more
than 1 complex span task, z-scored processing task perfor-
mance could be computed for each participant across tasks,
similar to the typical approach for combining WMC scores
across tasks (see Morrison & Richmond, 2020; Redick et al.,
2011; Richmond et al., 2015; Shipstead & Broadway, 2013
for examples of this approach). From here, participants
exhibiting z-scores equal to or less than −2 or −2.5 could be
removed from the final sample. This approach could perhaps
be used in combination with a criterion for acceptable lower-
bound RTs displayed on the processing task screen itself (e.g.,
RTs shorter than 200 ms). These approaches may be particu-
larly useful in samples that exhibit higher average perfor-
mance on complex span tasks (see for example Redick et al.,
2012 Table 5 showing differences in WMC estimates by data
collection site).

At the same time, we acknowledge that simply reducing or
abandoning a criterion for inclusion on the processing task is
not expected to fully eliminate issues regarding inclusion of
problematic data. Instead, this approach is expected to im-
prove the retention of data for engaged participants at the
lower end of theWMC spectrum. In other words, it is possible
that enforcing a less stringent processing accuracy criterion
level could allow for the inclusion of a small number of par-
ticipants who fail to adequately engage with the processing
task (i.e., faux lows) in the final dataset. More importantly,
forgoing strict adherence to the 85% accuracy criterion is ex-
pected to allow for the inclusion of an interesting and impor-
tant sub-set of individuals with lower WMC estimates.
Approaches such as those described above (enforcing an ac-
curacy criterion at chance levels or above guessing
probability, embedding attention checks in the processing
task, using a data-driven approach to setting a criterion for
inclusion, setting a lower-bound of acceptable processing
RTs for inclusion) are expected to minimize the number of
participants included who truly failed to engage with the pro-
cessing task, but also maximize the number of participants
retained for analysis who were engaged in the task and simply
struggled with both processing and storage components of the
task at hand. Moreover, we note that the traditional criterion
for inclusion only applies to the processing portion of the task,
and there is no lower bound accuracy metric enforced for
performance on the storage portion. To separate out truly dis-
engaged participants from engaged participants with lower
WMC, setting a lower-bound criterion for acceptable storage7 Thank you to an anonymous reviewer for suggesting this approach.
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scores (e.g., at least one correct trial at the lowest set size), in
addition to adopting some or all of the practices we recom-
mend above, could prove useful in future studies.

Another important avenue for future research will be to
examine if the current findings extend to different complex
span task configurations and design choices. For example, in
the complex span tasks used in the current research, the pro-
cessing task itself was designed to disrupt active maintenance
of information in working memory through rehearsal
(Conway et al., 2005). Previous work examining complex
span tasks including semantically related information for both
the processing and storage components (Towse et al., 2010)
suggests that the reinstatement of context at processing could
serve to boost, rather than disrupt, storage performance (see
e.g., Delaney & Sahakyan, 2007; Wahlheim et al., 2016,
2017; Wahlheim & Huff, 2015; Wingfield & Kahana, 2002
for further discussions of context reinstatement and memory
performance). It is as yet unknown whether the patterns ob-
served in the current study would extend to conditions where
the processing task is designed to support, rather than disrupt,
access to the to-be-remembered information. In considering
other task configurations, it has recently been suggested that
the order of the storage and processing components can im-
pact estimates ofWMC, with the processing-storage sequence
resulting in higher estimates of WMC compared to storage-
processing (Debraise, Gauvrit, & Mathy, 2020). Future work
may explore whether the relationships between processing
and storage task components observed in the current work
(using the standard processing-storage sequence) would ex-
tend to complex span tasks with a storage-processing
sequence.

Finally, we encourage those using complex span
tasks in their own work to examine processing perfor-
mance more thoroughly. The advantages of this ap-
proach are twofold: (1) more efficient use of collected
data, and (2) task length could potentially be reduced
while still obtaining stable estimates of WMC. Large-
scale individual differences studies should consider pro-
cessing RT, processing error types, and storage together
in relation to other cognitive constructs (see also
Unsworth, Redick, et al., 2009). Inclusion of both stor-
age and processing components in characterizing WM is
expected to be informative and may reveal subtle rela-
tionships between component processes embedded in
complex span tasks and other cognitive domains.
Overall, the present work provides strong support for
careful consideration of processing performance indices,
in addition to storage performance, in the context of
complex span tasks.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13428-021-01645-y.
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