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Abstract
With the growing prevalence of psychological interventions, it is vital to have measures which rate the effectiveness of
psychological care to assist in training, supervision, and quality assurance of services. Traditionally, quality assessment is
addressed by human raters who evaluate recorded sessions along specific dimensions, often codified through constructs
relevant to the approach and domain. This is, however, a cost-prohibitive and time-consuming method that leads to poor
feasibility and limited use in real-world settings. To facilitate this process, we have developed an automated competency
rating tool able to process the raw recorded audio of a session, analyzing who spoke when, what they said, and how the
health professional used language to provide therapy. Focusing on a use case of a specific type of psychotherapy called
“motivational interviewing”, our system gives comprehensive feedback to the therapist, including information about the
dynamics of the session (e.g., therapist’s vs. client’s talking time), low-level psychological language descriptors (e.g., type
of questions asked), as well as other high-level behavioral constructs (e.g., the extent to which the therapist understands the
clients’ perspective). We describe our platform and its performance using a dataset of more than 5000 recordings drawn
from its deployment in a real-world clinical setting used to assist training of new therapists. Widespread use of automated
psychotherapy rating tools may augment experts’ capabilities by providing an avenue for more effective training and skill
improvement, eventually leading to more positive clinical outcomes.
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Need for psychotherapy quality assessment
tools

Psychotherapy is a commonly used process in which men-
tal health disorders are treated through communication
between an individual and a trained mental health pro-
fessional. Even though its positive effects have been well
documented (Lambert & Bergin, 2002; Weisz et al., 1995;
Perry et al., 1999), there is room for improvement in terms
of the quality of services provided. In particular, a sub-
stantial number of patients report negative outcomes, with
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signs of mental health deterioration after the end of ther-
apy (Klatte et al., 2018; Curran et al., 2019). Apart from
patient characteristics (Lambert & Bergin, 2002), therapist
factors play a significant and clinically important role in
contributing to negative outcomes (Saxon, Barkham, Fos-
ter, & Parry, 2017). This has direct implications for more
rigorous training and supervision (Lambert & Ogles, 1997),
quality improvement, and skill development. A critical fac-
tor that can lead to increased performance and thus ensure
high quality of services is the provision of accurate feedback
to the practitioner (Hattie & Timperley, 2007). This can take
various forms; both client progress monitoring (Lambert,
Whipple, & Kleinstäuber, 2018) and performance-based
feedback (Schwalbe, Oh, & Zweben, 2014) have been
reported to reduce therapeutic skill erosion and to contribute
to improved clinical outcomes. The timing of the feedback
is of utmost importance as well, since it has been shown that
immediate feedback is more effective than delayed (Kulik
& Kulik, 1988).

/ Published online: 3 August 2021

Behavior Research Methods (2022) 54:690–711

1 3

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-021-01623-4&domain=pdf
mailto: flemotom@usc.edu


In psychotherapy practice, however, providing regular
and immediate performance evaluation is almost impossi-
ble. Behavioral coding—the process of listening to audio
recordings and/or reading session transcripts in order to
observe therapists’ behaviors and skills (Bakeman & Quera,
2012)—is both time-consuming and cost-prohibitive when
applied in real-world settings. It has been reported (Moyers,
Martin, Manuel, Hendrickson, & Miller, 2005) that, after
intensive training and supervision that lasts on average 3
months, a proficient coder would need up to 2 h to code just
a 20min-long session of motivational interviewing (MI), a
specific type of psychotherapy that is also the focus of the
current study. The labor-intensive nature of coding means
that the vast majority of psychotherapy sessions are not
evaluated. As a result, many providers get inadequate feed-
back on their therapy skills after their initial training (Miller,
Sorensen, Selzer, & Brigham, 2006) and behavioral coding
is mainly applied for research purposes with limited out-
reach to community settings (Proctor et al., 2011). At the
same time, the barriers imposed bymanual coding usually lead
to research studies with relatively small sample sizes (Mag-
ill et al., 2014), limiting progress in the field. It is, thus,
made apparent that being able to evaluate a therapy session
and provide feedback to the practitioner at a low cost and in
a timely manner would both boost psychotherapy research
and scale up quality assessment to real-world use. In the cur-
rent work, we investigate whether it is feasible to analyze
a therapy session recording in a fully automatic way and
provide rich feedback to the therapist within short time.

Behavioral coding for motivational
interviewing

Motivational interviewing (MI; Miller & Rollnick 2012),
often used for treating addiction and other conditions, is a
client-centered intervention that aims to help clients make
behavioral changes through resolution of ambivalence. It
is a psychotherapy treatment with evidence supporting
that specific skills are correlated with the clinical out-
come (Gaume, Gmel, Faouzi, & Daeppen, 2009; Magill
et al. 2014) and also that those skills cannot be maintained
without ongoing feedback (Schwalbe et al. 2014). Thus,
great effort from MI researchers has been devoted to devel-
oping instruments to evaluate fidelity to MI techniques.

The gold standard for monitoring clinician fidelity to
treatment is behavioral observation and coding (Bakeman
& Quera, 2012). During that process, trained coders assign
specific labels or numeric values to the psychotherapy
session, which are expected to provide important therapy-
related details (e.g., “how many open questions were
posed by the therapist?” or “did the counselor accept and

respect the client’s ideas?”) and essentially reflect particular
therapeutic skills. While there are a variety of coding
schemes (Madson & Campbell, 2006), in this study we
focus on a widely used research tool, the Motivational
Interviewing Skill Code (MISC 2.5; Houck, Moyers,
Miller, Glynn, & Hallgren, 2010), which was specifically
developed for use with recorded MI sessions (Madson &
Campbell, 2006). MISC defines behavior codes both for
the counselor and the patient, but for the automated system
reported in this paper we focus on counselor behaviors.

The MISC manual (Houck et al. 2010) defines both
session-level and utterance-level codes. The session-level
(or “global”) codes characterize the entire interaction and
are scored on a five-point Likert scale ranging from 1
(poor) to 5 (excellent). Table 1 gives an overview of
the six therapist-related global MISC ratings with a short
description for each one. When coding at the utterance-
level, instead of assigning numerical values, the coder
decides in which behavior category each utterance belongs.
An utterance is a “thought unit” (Houck et al. 2010), which
means that multiple consecutive phrases might be parsed
into a single utterance and, likewise, multiple utterances
might compose a single sentence or talk turn. After the
session is parsed into utterances, each one is assigned one
of the codes summarized in Table 2 (or gets the label NC if
it can not be coded).

The platform we present is evaluated under real-
world conditions, by continuously gathering and analyzing
psychotherapy sessions recorded in the counseling center
of an American university with a large student body. Our
system is part of a broader study where the goal is to
investigate whether therapists make more extensive use of
MI techniques after MI-related training and we thus evaluate
all the recorded sessions following the MISC protocol.

Table 1 Therapist-related session-level codes, as defined by MISC 2.5

Name High score means that counselor...

acceptance consistently communicates acceptance and respect
to the client

empathy makes an effort to accurately understand the
client’s perspective

direction is focused on a specific target behavior

autonomy support does not attempt to control the client’s behavior
or choices

collaboration interacts with their clients as partners and avoids
an authoritarian attitude

evocation tries to “draw out” client’s own desire for changing

Each code is scored on a five-point Likert scale
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Table 2 Therapist-related utterance-level codes, as defined by MISC 2.5

Abbr. Name Example

ADP Advise with Permission Would it be all right if I suggested something?

ADW Advise w/o Permission I recommend that you attend 90 meetings in 90 days.

AF Affirm Thank you for coming today.

CO Confront (C: I don’t feel like I can do this.) Sure you can.

DI Direct Get out there and find a job.

EC Emphasize Control It is totally up to you whether you quit or cut down.

FA Facilitate Uh huh. (keep-going acknowledgment)

FI Filler Nice weather today!

GI Giving Information Your blood pressure was elevated [...] this morning.

QUO Open Question Tell me about your family.

QUC Closed Question How often did you go to that bar?

RCP Raise Concern with Permission Could I tell you what concerns me about your plan?

RCW Raise Concern w/o Permission That doesn’t seem like the safest plan.

RES Simple Reflection (C: The court sent me here.) That’s why you’re here.

REC Complex Reflection (C: The court sent me here.) This wasn’t your choice to be here.

RF Reframe (C: [...] something else comes up [...]) You have clear priorities.

SU Support I’m sorry you feel this way.

ST Structure Now I’d like to switch gears and talk about exercise.

WA Warn Not showing up for court will send you back to jail.

NC No Code You know, I. . . (meaning is not clear)

Most of the examples are drawn from the MISC manual (Houck et al. 2010). Many of the code assignments depend on the client’s previous
utterance (C)

Psychotherapy evaluation in the digital era

Psychotherapy sessions are interventions primarily based
on spoken language, which means that the information cap-
turing the session quality is encoded in the speech signal
and the language patterns of the interaction. Thus, with the
rapid technological advancements in the fields of Speech
and Natural Language Processing (NLP) over the last few
years (e.g., Devlin, Chang, Lee, & Toutanova, 2017, Devlin
et al. 2019), and despite many open challenges specific
to the healthcare domain (Quiroz et al. 2019), it is not
surprising to see trends in applying computational tech-
niques to automatically analyze and evaluate psychotherapy
sessions.

Such efforts span a wide range of psychotherapeutic
approaches including couples therapy (Black et al. 2013),
MI (Xiao et al. 2016) and cognitive behavioral therapy (Fle-
motomos et al. 2018), used to treat a variety of conditions
such as addiction (Xiao et al. 2016) and post-traumatic
stress disorder (Shiner et al., 2012). Both text-based (Imel,
Steyvers, & Atkins, 2015; Xiao, Can, Georgiou, Atkins, &
Narayanan, 2012) and audio-based (Black et al. 2013; Xiao
et al., 2014) behavioral descriptors have been explored in
the literature and have been used either unimodally or in
combination with each other (Singla et al., 2018).

In this study, we focus on behavior code prediction
from textual data. Most research studies focused on text-
based behavioral coding have relied on written text
excerpts (Rojas-Barahona et al. 2018) or used manu-
ally derived transcriptions of the therapy session (Lee
et al., 2019; Can et al., 2015; Gibson et al., 2019).
However, a fully automated evaluation system for deploy-
ment in real-world settings requires a speech processing
pipeline that can analyze the audio recording and pro-
vide a reliable speaker-segmented transcript of what
was spoken by whom. This is a necessary condition before
such an approach is introduced into clinical settings
since, otherwise, it may eliminate the burden of manual
behavioral coding, but it introduces the burden of man-
ual transcription. Transcription errors introduced by
Automatic Speech Recognition (ASR) algorithms may have
a significant effect on the performance of NLP-based mod-
els (Malik et al., 2018), so demonstrating the practical
feasibility of a fully automated pipeline is an important task.

An end-to-end system is presented by Xiao et al. (2015)
and Xiao et al. (2016), where the authors report a case
study of automatically predicting the empathy expressed
by the provider. A similar platform, focused on couples
therapy, is presented by Georgiou et al. (2011). Even

employing an ASR module with relatively high error rate,
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those systems were reported to provide competitive
prediction performance (Georgiou et al., 2011). The scope
of the particular studies, though, was limited only to
session-level codes, while the evaluation sessions were
selected from the two extremes of the coding scale.
Thus, for each code, the problem was formulated as
a binary classification task trying to identify therapy
sessions where a particular code (or its absence) is
represented more prominently (e.g., identify ‘low’ vs. ‘high’
empathy).

Current study

In the current work, we demonstrate and analyze a platform
(Fig. 1) able to process the raw recording of a psychotherapy

session and provide, within short time, performance-based
feedback according to therapeutic skills and behaviors
expressed both at the utterance and at the session level.
We focus on dyadic psychotherapy interactions (i.e., one
therapist and one client) and the quality assessment is based
on the counselor-related codes of theMISC protocol (Houck
et al., 2010). The behavioral codes are predicted by NLP
algorithms that analyze the linguistic information captured
in the automatically derived transcriptions of the session.

The overall architecture is illustrated in Fig. 1a. After
both parties have formally consented, the therapist begins
recording the session. The digital recording is directly sent
to the processing pipeline and appropriate acoustic features
are extracted from the raw speech signal. The rich audio
transcription component of the system (Fig. 1b) consists of

Fig. 1 a Overview of the system used to assess the quality of a
psychotherapy session and provide feedback to the therapist. Once
the audio is recorded, it is automatically transcribed to find who
spoke when and what they said. If the transcription meets certain
quality criteria, this textual information is used to predict utterance-
level and session-level behavior codes which are summarized into an

interactive feedback report. Otherwise, an error message is displayed
to the user. b Rich transcription module. The dyadic interaction is
transcribed through a pipeline that extracts the linguistic information
encoded in the speech signal and assigns each speaker turn to either
the therapist or the client
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five main steps: (a) Voice Activity Detection (VAD), where
speech segments are detected over silence or background
noise, (b) speaker diarization, where the speech segments
are clustered into same-speaker groups (e.g., speaker A,
speaker B of a dyad), (c) Automatic Speech Recognition
(ASR), where the audio speech signal of each speaker-
homogeneous segment is transcribed to words, (d) Speaker
Role Recognition (SRR), where each speaker group is
assigned their role: in our case study, ‘therapist’ or ‘client’,
and (e) utterance segmentation, where the speaker turns
are parsed into utterances which are the basic units of
behavioral coding. The generated transcription is used to
estimate a variety of behavior codes both at the utterance
and at the session level, which reflect target constructs
related to therapist behaviors and skills.

The behavioral analysis of the counselor is summarized
into a comprehensive feedback report provided through
an interactive web-based platform (Hirsch et al. 2018;
Imel et al. 2019). Through the platform, the user is able
to review the raw MISC predictions of the system (e.g.,
empathy score and utterances labeled as reflections), several
theory-driven functionals of those (e.g., ratio of questions
to reflections), session statistics (e.g., ratio of client’s to
therapist’s talking time), as well as the entire speaker-
segmented transcription, accompanied by the corresponding
audio recording. Additionally, the user is given the option
to take notes and make comments linked to specific
timestamps or utterances. That way, the platform can be
used directly by the provider as a self-assessment method or
by a supervisor as a supportive tool that helps them deliver
more effective and engaging training.

Since the system was designed with real-world deploy-
ment in mind, it was important to incorporate specific
confidence metrics which reflect the quality of the auto-
matic transcription. Employing quality safeguards helps us
both identify potential computational errors, and determine
whether the input was an actual therapy session or not (e.g.,
whether the therapist pushed the recording button by mis-
take). If certain quality thresholds are not met, then the final
report is not generated and feedback is not provided for the
specific session. Instead, an error message is displayed to
the counselor. For example, in a scenario where speaker seg-
mentation fails because the recording is too noisy or the
two speakers have very similar acoustic characteristics, the
system would not know which utterances correspond to the
provider and which correspond to the client; as a result, the
subsequent prediction algorithms would fail to accurately
capture counselor-related behaviors. Being able to avoid
such scenarios is of crucial importance for a system used in
clinical settings.

As illustrated in Fig. 1, we have chosen a pipelined
implementation of the system, as opposed to a more con-

voluted architecture, potentially able to predict behavioral
codes directly from the speech waveform. That way, we are
able to provide a feedback report containing much richer
information than merely the behavior codes or statistics
of those. In particular, the user has access to the entire
transcript and can understand how particular behaviors are
linked to the linguistic content of the corresponding utter-
ances. This design increases the interpretability and, as a
result, the trust of the clinical provider to the system. Addi-
tionally, we are able to extract and provide information
critical for the quality assessment of the therapy session,
not directly related to behavior codes, such as the client’s
speaking time. Finally, the quality assurance of the gen-
erated transcription is based on certain quality safeguards
(described later in the paper) corresponding to specific
sub-modules of the pipeline, such as the VAD and the
diarization. So, if a potential error is detected at an early
stage of the pipeline (e.g., VAD), the entire processing can
be halted, thus avoiding wasting computational resources.

Materials andmethods

Datasets

The design of the system presented in this work is
based on datasets drawn from a variety of sources. We
have combined large speech and language corpora both
from the psychotherapy domain and from other fields
(meetings, telephone conversations, etc.). That way, we
wanted to ensure high in-domain accuracy when analyzing
psychotherapy data, but also robustness across various
recording conditions. In order to use and evaluate the
system in real-world clinical settings, we have additionally
collected and analyzed a set of more than 5000 recordings
of therapy sessions between a provider and a patient at a
University Counseling Center (UCC). The details of the
various datasets are presented in the following sections.

Out-of-domain corpora

Audio sources The acoustic modeling performed in this
work was mainly based on a large collection of speech
corpora, widely used by the research community for a
variety of speech processing tasks. Specifically, we used
the Fisher English (Cieri et al., 2004), ICSI Meeting
Speech (Janin et al. 2003), WSJ (Paul & Baker, 1992), and
1997 HUB4 (Graff et al., 1997) corpora, available through
the Linguistic Data Consortium (LDC), as well as Lib-
rispeech (Panayotov et al., 2015), TED-LIUM (Rousseau
et al., 2014), and AMI (Carletta et al. 2005). This com-
bined speech dataset consists of more than 2000 hours of
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audio and contains recordings from a variety of scenar-
ios, including business meetings, broadcast news, telephone
conversations, and audiobooks/articles.

Text sources The aforementioned datasets are accompanied
by manually derived transcriptions which can be used for
language modeling tasks. In our case, since we need to
capture linguistic patterns specific to the psychotherapy
domain, the main reason we need some out-of-domain text
corpus is to build a background model that guarantees a
large enough vocabulary and minimizes the unseen words
during evaluation. To that end, we use the transcriptions of
the Fisher English corpus, featuring a vocabulary of 58.6 K
words and totaling more than 21 M tokens.

Psychotherapy-related corpora

Audio sources In order to train and adapt our machine
learning models, used both for the transcription compo-
nent of the system and for the behavior coding predictions,
we also used several psychotherapy-focused corpora. In
particular, we used a collection of 337 MI sessions (for
which audio, transcription and manual coding information
were available) from six independent clinical trials (ARC,
ESPSB, ESP21, iCHAMP, HMCBI, CTT). In more detail,
ARC (Tollison et al. 2008; nine sessions), ESPSB (Lee
et al. 2014; 38 sessions) and ESP21 (Neighbors et al. 2012;
19 sessions) feature brief alcohol interventions. CTT (Baer
et al. 2009; 19 sessions) also consists of alcohol interven-
tions, but using standardized patients (i.e., actors portraying
patients). Finally, iCHAMP (Lee et al. 2013; seven sessions)
addresses marijuana addiction and HMCBI (Krupski et al.
2012; 70 sessions) addresses poly-drug abuse. We refer to
the combined dataset as the TOPICS-CTT corpus and we
have split it into train (TOPICS-CTTtrain; 242 sessions) and
test (TOPICS-CTTtest ; 95 sessions) sets.

The mean duration of the sessions is 29.10min

(std=15.65min). The number of unique therapists and
clients recorded in those sessions is given in Table 3. Unfor-
tunately, the client IDs are not available for the HMCBI
sessions, so the exact total number of different clients is
not known. However, under the assumption that it is highly

improbable for the same client to visit different therapists
in the same study, and having the necessary metadata avail-
able for the rest of the corpus, we make the train/test split
in a way that we are highly confident there is no overlap
between speakers. This is important since we want to make
sure that our models capture universal behavior-specific
patterns during training and not speaker-specific linguistic
information.

Text sources The transcripts of the aforementioned MI
sessions were enhanced by data provided by the Counseling
and Psychotherapy Transcripts Series (CPTS), available
from the Alexander Street Press (alexanderstreet.com) via
library subscription. This included transcripts from a variety
of therapy interventions totaling about 300 K utterances
and 6.5 M words. For this corpus, no audio or behavioral
coding are available, and the data were hence used only for
language-based modeling tasks.

University counseling center data collection

Through a collaboration with the university-based coun-
seling center of a large western university, we gathered
a corpus of real-world psychotherapy sessions to evaluate
the proposed system. Therapy treatment was provided by
a combination of licensed staff as well as trainees pursu-
ing clinical degrees. Topics discussed span a wide range
of concerns common among students, including depres-
sion, anxiety, substance use, and relationship concerns. All
the participants (both patients and therapists) had formally
consented to their sessions being recorded. Study proce-
dures were approved by the institutional review board of
the University of Utah. Each session was recorded by two
microphones hung from the ceiling of the clinic offices,
one omni-directional and one directed to where the therapist
generally sits.

Data reported in this article were collected between
September 2017 and March 2020, for a total of 5097
recordings. Every time a session is recorded, it is
automatically sent to the audio processing pipeline, and a
performance-based feedback report is generated. We note
that some of those recordings were not actually valid

Table 3 Number of sessions, unique therapists, and unique clients in the six clinical trials composing the TOPICS-CTT corpus

ARC ESPSB ESP21 iCHAMP HMCBI CTT

#sessions 9 38 19 7 70 194

#therapists 3 15 8 5 15 132

#clients 9 38 19 7 – 4

The client IDs are not known for the HMCBI data
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therapy sessions (e.g., the therapist pushed the recording
button by mistake); however we do have relevant safeguards
for such cases, as described later in the article. Eventually,
4268 sessions were successfully processed with a mean
duration of 49.77min (std=11.50min), giving a therapy
corpus totaling more than 2.8 M utterances and 28 M
words (according to the automatically generated output),
including sessions from at least 59 therapists and 1040
clients (there are a few sessions for which such metadata are
not available).

In order to adapt and evaluate the pipeline, 188 sessions
were selected to be manually transcribed and coded. The
coding took place in two independent trials (one in mid-
2018 and one in late 2019), with some differences in the
procedure between the two. For the first coding trial (96
sessions), the transcriptions were stripped of punctuation
and coders were asked to parse the session into utterances.
During the second trial (92 sessions), the human transcriber
was asked to insert punctuation, which was used to assist
parsing. Additionally, for the second batch of transcriptions,
stacked behavioral codes (more than one code per utterance)
were allowed in case one of the codes is open or closed
question (QUO or QUC). Because of those differences in
the coding approach, we are reporting results independently
for the two trials; in particular, we have split the first trial
into train (UCCtrain; 50 sessions), development (UCCdev;
26 sessions), and test (UCCtest1 ; 20 sessions) sets, while we
refer to the second trial as the UCCtest2 set and we only
use it for evaluation. That way, we are able to monitor the
robustness of the system through time, without continuously
adapting to new data. For similar reasons as in the case of
the TOPICS-CTT corpus, the split for the first trial was done
in a way so that there is no speaker overlap between the
different sets.

Each of the 188 sessions was coded by at least one
of three coders. Among those, 14 sessions (from the first
trial) were coded by two or three coders, so that we
can have a measure of inter-rater reliability (IRR). To
that end, we estimated Krippendorff’s alpha (Krippendorff,
2018) for each code, a statistic that is generalizable to
different types of variables and flexible with missing
observations (Hallgren, 2012). Since sessions were parsed
into utterances from the human raters, the unit of coding is
not fixed, so we got an estimate for the utterance-level codes
at the session level by using the per session occurrences of
each label. For the IRR analysis, we treated the occurrences
of the utterance-level codes as ratio variables and the values
of the session-level codes as ordinal variables. The results
for all the codes are given in Table 4. For the session-level
codes, the ‘within one’ reliability is also provided, since it

Table 4 Krippendorff’s alpha (α) to estimate inter-rater reliability
(IRR) for the utterance-level (upper four tables; ratio measurement
level) and the session-level (lower table; ordinal measurement level)
codes in the University Counseling Center (UCC) data

Code IRR (α) IRR ‘within 1’ (α)

acceptance 0.468 0.747

empathy 0.532 1.000

direction 0.593 0.795

aut. support 0.464 0.743

collaboration 0.287 0.472

evocation 0.410 0.626

ADP 0.542∗

ADW 0.422

AF 0.123

CO 0.497∗

DI 0.590

EC 0.558

FA 0.868

FI 0.784

GI 0.861

QUO 0.945

QUC 0.897

RCP –∗

RCW 0.000∗

RES 0.268

REC 0.478

RF 0.093∗

SU 0.345

ST 0.434

WA -0.054∗

For the utterance-level codes (abbreviations defined in Table 2), we
get an estimate through their per-session occurrences. For the session-
level codes, the ‘within one’ agreement is also provided, demonstrating
whether the distance between the raters’ different scores was at most
one point in the Likert scale. ∗ denotes that the particular code was
not used (count=0) by at least 2 coders for at least half of the analyzed
sessions. RCP was never used by any coder

is recommended that only a distance between the raters’
different scores greater than one point in the Likert scale
should be considered disagreement (Schmidt et al., 2019).

Data pre-processing

The manually transcribed UCC sessions do not contain any
timing information, which means that we needed to align
the provided audio with text. That way, we were able to
get estimates of the “ground truth” information required
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to evaluate some of the modules of our system, such as
VAD and diarization. We did so by using the Gentle forced
aligner (github.com/lowerquality/gentle), an open-source,
Kaldi-based (Povey et al. 2011) tool, in order to align at
the word level. However, we should note that this inevitably
introduces some error to the evaluation process, since 9.4%
of the words per session on average (std=3.4%) remain
unaligned.

Another pre-processing step we needed to take in order
to have a meaningful evaluation of the system on the UCC
data is related to the behavioral labels assigned by the
humans and by the platform. In particular, some of the
utterance-level MISC codes are assigned very few times
within a session by the human raters and the corresponding
IRR is very low (Table 4); additionally, there are pairs or
groups of codes with very close semantic interpretation
as reflected by the examples in Table 2 (e.g., complex
reflections (REC) and reframes (RF)). Thus, we clustered
the codes into composite groups resulting in nine target
labels. The mapping between the codes defined in the MISC
manual and the target labels, as well as the occurrences
of those labels in the UCC data, is given in Table 5.
Comparing Tables 4 and 5, we see that IRR is substantially
higher, on average, after this grouping. The facilitate code
(FA) seems to dominate the data, because most of the
verbal fillers (e.g., uh-huh, mm-hmm, etc.)—which are very
frequent constructs in conversational speech—and single-
word utterances (e.g., yeah, right, etc.) are labeled as FA.

Audio feature extraction

For all the modules of the speech pipeline (VAD, diariza-
tion, ASR), the acoustic representation is based on the
widely used Mel-frequency cepstrum coefficients (MFCCs).
For the UCC data, the channels from the two recording
microphones are combined through acoustic beamforming
(Anguera et al., 2007), using the open-source BeamformIt
tool (github.com/xanguera/BeamformIt).

Automatic rich transcription

Before proceeding to the automatic behavioral coding, we
need to transcribe the raw audio recording, in order to
get information about the content, the speakers, and the
utterance boundaries. This is not just a pre-processing step
allowing us to apply NLP algorithms, but it also provides
invaluable information which will be later incorporated
in the final feedback report (e.g., talking time of each
speaker). The rich transcription pipeline we propose is
illustrated in Fig. 1b. In the following sections, we describe
the various sub-modules of the system. Further technical
details are provided in the online supplementary material
that accompanies the article (Appendix A).

Voice activity detection

The first step of the transcription pipeline is to extract the
voiced segments of the input audio session. The rest of
the session is considered to be silence, music, background
noise, etc., and is not taken into account for the subsequent
steps. To that end, a two-layer feed-forward neural network
is used giving a frame-level probability. This is a pre-trained
model, initially developed as part of the Robust Automatic
Transcription of Speech (RATS) program (Thomas et al.,
2015). The model was trained to reliably detect speech
activity in highly noisy acoustic scenarios, with most of the
noise types included during training being military noises
like machine gun, helicopter, etc. Hence, in order to make
the model better suited to our task, the original model was
adapted using the UCCdev data. Optimization of the various
parameters was done with respect to the unweighted average
recall. The frame-level outputs are smoothed via a median
filter and converted to longer speech segments which are
passed to the diarization sub-system. During this process,
if the silence between any two contiguous voiced segments
is less than 0.5 s, the corresponding segments are merged
together.

Speaker diarization

Speaker diarization answers the question “who spoke when”
and it traditionally consists of two steps. First, the speech
signal is partitioned into segments where a single speaker
is present. Then, those speaker-homogeneous segments are
clustered into same-speaker groups. For this work, we
follow the x-vector/PLDA paradigm, an approach known to
achieve state-of-the-art performance for speaker recognition
and diarization (Sell et al. 2018; Snyder et al., 2018).
In particular, each voiced segment, as predicted by VAD,
is partitioned uniformly into subsegments and for each
subsegment a fixed-dimensional speaker embedding (x-
vector) is extracted. Once the x-vectors have been extracted,
an affinity matrix is constructed with the pairwise distances
between the subsegments. The similarity metric used is
based on the probabilistic linear discriminant analysis
(PLDA) framework (Ioffe, 2006; Prince & Elder, 2007)
within which each data point is considered to be the output
of a model which incorporates both within-individual and
between-individual variation. The subsegments are finally
clustered together according to hierarchical agglomerative
clustering (HAC). The assumption here is that each session
has exactly two speakers (i.e., therapist vs. client), so we
continue the HAC procedure until two clusters have been
constructed. As a post-processing step after diarization,
adjacent speech segments assigned to the same speaker are
concatenated together into a single speaker turn, allowing a
maximum of 1sec in-turn silence.
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Automatic speech recognition

After we get the speaker-homogeneous segments from the
diarization module, we need to extract the linguistic content
captured within each segment, since this will be the infor-
mation supplied to the subsequent text-based algorithms.
ASR depends on two components; the acoustic model
(AM), which calculates the likelihood of acoustic observa-
tions given a sequence of words, and the language model
(LM), which calculates the likelihood of a word sequence
by describing the distribution of typical language usage.

In order to train the AM, we build a time-delay neu-
ral network (TDNN) with subsampling (Peddinti et al.,
2015), an architecture which has been successfully applied
in conversational speech achieving remarkable perfor-
mance (Peddinti et al., 2015). The network is trained on
a large combined speech dataset composed of the Fisher
English, ICSI Meeting Speech, WSJ, 1997 HUB4, Lib-
rispeech, TED-LIUM, AMI, and TOPICS-CTT corpora.
Among those, TED-LIUM and the clean portion of Lib-
rispeech are augmented with speed perturbation, noise, and
reverberation (Ko et al., 2015). The final combined, aug-
mented corpus contains more than 4000 h of phonetically
rich speech data, recorded under different conditions and
reflecting a variety of acoustic environments. The ASR AM
was built and trained using the Kaldi speech recognition
toolkit (Povey et al. 2011).

In order to build the LM, we independently train two
3-gram models using the SRILM toolkit (Stolcke, 2002).
One is trained with in-domain psychotherapy data from
the CPTS transcribed sessions. This is interpolated with a
large background model, in order to minimize the unseen
words during the system employment. The background LM
is trained with the Fisher English corpus, which features
conversational telephone data.

Speaker role recognition

After diarization has been performed, we have the entire
set of utterances clustered into two groups; however, there
is not a natural correspondence between the cluster labels
and the actual speaker roles (i.e., therapist and client). For
our purposes, speaker role recognition (SRR) is exactly
the task of finding the mapping between the two. Even
though different speaker roles follow distinct patterns across
various modalities (e.g., audio, language, structure), the
linguistic stream of information is often the most useful
for the task in hand (Flemotomos et al., 2018). So, in this
work we are focusing on this modality, provided by the ASR
output.

Let’s denote the two clusters which have been identified
by diarization as S1 and S2, each one containing the
utterances assigned to the two different speakers. We know
a priori that one of those speakers is the therapist (T) and
one is the client (C). In order to do the role matching, two
trained LMs, one for the therapist (LMT ) and one for the
client (LMC), are used. We then estimate the perplexities
of S1 and S2 with respect to the two LMs and we assign
to Si the role that yields the minimum perplexity. In case
one role minimizes the perplexity for both speakers, we first
assign the speaker for whom we are most confident. The
confidence metric is based on the absolute distance between
the two estimated perplexities (Flemotomos et al., 2018).
The required LMs are 3-gram models trained with the
SRILM toolkit (Stolcke, 2002), using the TOPICS-CTTtrain

and CPTS corpora.

Utterance segmentation

The output of the ASR and SRR modules is at the segment
level, with the segments defined by the VAD and diarization

Table 5 Mapping between the MISC-defined behavior codes (abbreviations defined in Table 2) and the grouped target labels, together with the
occurrences of each group in the training and development University Counseling Center (UCC) sets

Group MISC codes count (UCCtrain) count (UCCdev) IRR (α)

FA FA 5581 2500 0.868

GI GI, FI 3797 1695 0.898

QUC QUC 1911 693 0.897

QUO QUO 1116 405 0.946

REC REC, RF 2212 1041 0.479

RES RES 609 155 0.268

MIN ADP, ADW, CO, DI, RCW, RCP, WA 479 163 0.606

MIA AF, EC, SU 428 238 0.363

ST ST 542 135 0.434

MIA stands for MI-adherent codes and MIN for MI-non adherent. The inter-rater reliability (IRR) for the grouped labels is also given in terms of
the Krippendorff’s alpha (α) value
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algorithms. However, silence and speaker changes are
not always the right cues to help us distinguish between
utterances, which are the basic units of behavioral coding.
The presence of multiple utterances per speaker turn is a
challenge we often face when dealing with conversational
interactions. Especially in the psychotherapy domain, it
has been shown that the right utterance-level segmentation
can significantly improve the performance of automatic
behavior code prediction (Chen et al., 2020).

Thus, we have included an utterance segmentation mo-
dule at the end of the automatic transcription, before emplo-
ying the subsequent NLP algorithms. In particular, we merge
together all the adjacent segments belonging to the same
speaker in order to form speaker-homogeneous talk-turns,
and we then segment each turn using the DeepSegment
tool (github.com/notAI-tech/deepsegment). DeepSegment
has been designed to perform sentence boundary detection
having specifically ASR outputs in mind, where punctuation
is not readily available. In this framework, sentence
segmentation is viewed as a sequence labeling problem,
where each word is tagged as being either at the beginning
of a sentence (utterance), or anywhere else. DeepSegment
addresses the problem employing a bidirectional long-
short term memory (BiLSTM) network with a conditional
random field (CRF) inference layer (Ma & Hovy, 2016).

Quality assurance

The goal of the current study is to provide accurate
and reliable feedback to the counselor in a real-world
environment. Hence, it is essential that we ensure we do
not produce feedback reports which are problematic, either
because of bad audio quality, or because of errors during
computation. We have identified that most of the errors are
produced during the first steps of the processing pipeline
and are propagated to the subsequent steps. Thus, we
have incorporated simple quality safeguards, able to catch
errors associated with the audio recording, the VAD, or the
diarization. Specifically, before any further processing, the
following conditions need to be met:

1. The duration of the entire recording has to be between
60sec and 5h. Given that a typical therapy session in our
study is about 50min long, a session outside this range
indicates either that the provider pushed the recording
button by mistake, or that they forgot to stop recording.

2. At least 25% of the session has to be flagged as
voiced, according to the VAD output. During a typical
conversational interaction, there are pauses of silence
which are especially useful in psychotherapy (Levitt,
2001). Although silence is an essential aspect of
communication, the distribution of the silence gaps
duration is highly skewed with most of them being very

short (Heldner & Edlund, 2010). If most of the therapy
session is flagged as unvoiced, this is an indication of
bad audio quality, of some inherent error of the VAD
algorithm employed, or of a prolonged audio file where
the therapist forgot to stop the recording after the actual
session.

3. The average duration of the voiced segments cannot be
longer than 20 s. Even though words are the primary
means of communication, silence gaps are not just
useful, but necessary in order for spoken language to
be meaningful and natural. When our VAD system is
incapable of detecting unvoiced segments, it is usually
an indication of bad audio quality.

4. The minimum percentage of speech assigned to each
speaker is 10% of the total speaking time. Since we
are dealing with dyadic conversational scenarios, it is
expected that each of the two speakers talks for a
substantial amount of time. Even though therapy is not
a normal dialog and the provider often plays more the
role of the listener (Hill, 2009), if a person seems to
be talking for less than 10% of the time (e.g., less than
about 5min in a typical 50min-long session), then we
are highly confident there is some problem. This may
be an issue associated either with the audio quality, or
with high speaker error introduced by the diarization
module because the two speakers have similar acoustic
characteristics.

If any of the aforementioned conditions is violated, the
processing is halted and an error message is displayed to the
end user, instead of the actual report.

Utterance-level and session-level labeling

Once the entire session is transcribed at the utterance level,
we are able to employ text-based algorithms for the task of
behavior code prediction. Both utterance-level and session-
level behavior codes are predicted and provided back to the
counselor as part of the feedback report, as described below.

Utterance-level code prediction

We are focusing on counselor behaviors, so we only
take into account the utterances assigned to the therapist
according to the speaker role recognition. Each one of those
needs to be assigned a single code from the nine target
labels summarized in Table 5. This is achieved through a
BiLSTM network with attention mechanism (Singla et al.,
2018), which only processes textual features. The input to
the system is a sequence of word-level embeddings for each
utterance. The recurrent layer exploits the sequential nature
of language and produces hidden vectors which take into
account the entire context of each word within the utterance.
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The attention layer can then learn to focus on salient
words carrying valuable information for the task of code
prediction, thus enhancing robustness and interpretability.
The network was first trained on the TOPICS-CTT data
using class weights to handle the problem of skewed code
distribution in the data (Table 5). The system was further
fine-tuned by continuing training on the UCCtrain data in
order to be suitably fitted to the University Counseling
Center conditions.

Session-level code prediction

Apart from the utterance-level codes, our system assigns a
score to each one of the global codes of Table 1, ranging
from 1 to 5. To that end, we represent the entire session,
using the utterances assigned to both the therapist and the
client, by the term frequency - inverse document frequency
(tf-idf; Salton & McGill 1986) transformation of unigrams,
bigrams, and trigrams found within the session, excluding
common stop words. Those features are l2-normalized and
passed to a support vector regressor (SVR), which gives
the final prediction. After hyper-parameter tuning, we chose
polynomial SVR kernel (4th-degree) for acceptance and
autonomy support, linear kernel for empathy, collaboration
and evocation, and gaussian kernel for direction.

Contrary to the training approach followed for the utterance-
level codes, here we train using only UCC data. The reason
is that there is a discrepancy between the globals assigned
by human raters to the TOPICS-CTT and the UCC
sessions, since different coding procedures were followed.
In particular, the TOPICS-CTT sessions were coded
only across two global codes (empathy and MI spirit)
following the Motivational Interviewing Treatment Integrity
(MITI; Moyers et al. 2016) coding scheme. Thus, due
to the limited amount of training data (only 188 sample
points—UCC sessions—in total), we apply a five-fold
cross validation scheme across the UCC dataset (from both
coding trials) for any hyper-parameter tuning and we then
keep those parameters to re-train using the entire UCC set.

Final report

After we have the automatically generated transcript and all
the session-level and utterance-level predictions through our
system, those are provided to the therapist as a feedback
report through an interactive, web-based platform which
we refer to as the Counselor Observer Ratings Expert for
Motivational Interviewing (CORE-MI; Hirsch et al. 2018,
Imel et al. 2019). A video demonstration of the platform and
its functionality is available at www.youtube.com/watch?
v=9fuvT9 azgw.

CORE-MI features two main views, the session view
and the report view (Supplementary material, Appendix C,

Figure C1). In the first one, the user can listen to the
recording of the therapy, watch the video (if available)
and read the generated transcript, which is scrollable and
searchable. Additionally, they can keep notes linked to
specific timestamps and utterances of the session.

The report view provides the actual therapy session
evaluation. The entire session timeline is presented in a
form of a bar where talk turns of the two speakers are
displayed in different colors. Hovering over a specific turn
brings up the corresponding transcription and—in case
the turn is assigned to the therapist—the corresponding
MISC code(s). Based on the results reported later, we have
decided to collapse the simple and complex reflections into
one composite reflection (RE) label. The global behavior
codes are also displayed, as well as a set of summary
indicators which reflect the adherence to MI therapeutic
skills. Those are the ratio of reflections (simple and
complex) to questions (open and closed), the percentage
of the open questions asked (among all the questions),
the percentage of the complex reflections (among all the
reflections), the percentage of each speaker’s talking time,
the MI adherence and the overall MI fidelity. MI adherence
reflects the percentage of utterances where the counselor
used MI-consistent techniques (e.g., asking open questions
or giving advice with permission). Finally, the overall MI
fidelity score is a composite metric rated on a 12-point scale
that takes all the above into consideration and reflects the
proficiency of the counselor to the different aspects of MI
therapy. In particular, a provider can receive one point for
passing pre-defined basic proficiency benchmarks and two
points for passing advanced competency benchmarks across
the following six measures of quality: empathy, MI spirit,
reflection-to-question ratio, percentage of open questions,
percentage of complex reflections, MI adherence. MI spirit
is estimated as the average of evocation, collaboration, and
autonomy support (Houck et al., 2010).

The main design characteristics of the CORE-MI plat-
form have been tested in a past study (Hirsch et al. 2018;
Imel et al. 2019) and results showed that the providers find
the system easy to use and the feedback easy to understand.
Additionally, most of the professional therapists that par-
ticipated in the survey seemed excited about the potential
opportunity to use such a system in clinical practice.

Results and discussion

Automatic rich transcription

All the submodules of the transcription pipeline are evalu-
ated on the two UCC test sets we have described (UCCtest1 ,
UCCtest2 ), both individually and as part of the overall sys-
tem. That way, we want to evaluate the performance of each
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one of the models, but, more importantly, investigate any
error propagation that inevitably takes place.

VAD/diarization

During evaluation, VAD is usually viewed as part of
a diarization system (e.g., Sell et al. 2018), so for
evaluation purposes we consider our diarization model
as the first component of the pipeline (frame-level VAD
results are provided in the online supplementary material -
Appendix B). The standard evaluation metric for diarization
is called diarization error rate (DER; Anguera et al. 2012)
and it incorporates three sources of error: false alarms,
missed speech, and speaker error. False alarm speech
(the percentage of speech in the output but not in the
ground truth) and missed speech (the percentage of speech
in the ground truth but not in the output) are mostly
associated with VAD. Speaker error is the percentage of
speech assigned to the wrong speaker cluster after an
optimal mapping between speaker clusters and true speaker
labels. We estimate the DER on the UCC data using
the md-eval tool which was developed as part of the
rich transcription (RT) evaluation series (www.nist.gov/
itl/iad/mig/rich-transcription-evaluation). We have used a
forgiveness collar of 0.25sec around each speaker boundary,
which is a standard practice (Anguera et al., 2012), and the
results are reported in Table 6.

Even though the speaker confusion (speaker error rate)
is on average low enough (lower than 8%), we should
note that a per session analysis revealed that there are
a few sessions where it is even higher than 45%. This
means that diarization essentially failed for this handful of
sessions, even though the human transcribers did not report
any particular issues related, for example, to audio quality.
Out of the three DER components, false alarm contributes
most to the overall error, while the missed speech is
minimal. Such a behavior is expected because of the
specific implementation followed. In particular, we chose to
concatenate together adjacent speech segments assigned to
the same speaker, if there is not a silence gap between them
greater that 1sec. This step degrades the diarization result,
since it labels short non-voiced segments as belonging to
some speaker, thus introducing false alarms. However, it
creates longer speaker-homogeneous segments, which is
beneficial to ASR, and, hence, to the overall system.

Automatic speech recognition

The evaluation of an ASR system is usually performed
through the word error rate (WER) metric which is the
normalized Levenshtein distance between the ASR output
and the ground truth transcript. This includes errors because
of word substitutions, word deletions, and word insertions.

For instance, word insertion rate is the number of new
words included in the prediction which are not found in
the original transcript over the total number of ground
truth words. WER is calculated as the sum of those three
error rates. Those errors are typically estimated for each
utterance which is given to the ASR module and then
summed up for all the evaluation data, in order to get
an overall WER. However, when we analyze an entire
therapy session which has been processed by the VAD and
diarization sub-systems, the “utterances” are different than
the ones identified by the human transcriber. In that case,
we perform the evaluation at the session level, ignoring the
speaker labels (from diarization) and concatenating all the
utterances of the session. We do the same for the original
transcript and we hence view the entire session as a “single
utterance” for the purposes of ASR evaluation. The results
are reported in Table 7.

As we can see, ASR performance is not severely
degraded by any error propagation from the pre-processing
step of diarization (WER is increased about 1% absolute).
Interestingly, even though the insertion rate is increased,
the deletion rate is decreased when the machine-generated
segments are provided. This is explained by the long
segments constructed by the diarization algorithm and
the post-processing of its output after concatenating
consecutive segments. On the one hand, labeling silence
or noise as “speech” associated with some speaker
occasionally leads ASR to predict words where in reality
there is no speech activity—thus increasing the insertion
rate. On the other hand, this minimizes the probability
of missing some words because of missed speech. Such
deleted words may occur when providing the oracle
segments because of inaccuracies during the construction of
the “ground truth” through forced alignment.

We note that, even though the estimated error is high,
WERs in the range reported (30% − 40%) and even higher
are typical in spontaneous medical conversations (Kodish-
Wachs et al., 2018). Error analysis revealed that those
numbers are inflated because of fillers (e.g. uh-huh,
hmm) and other idiosyncrasies of conversational speech. It
should be additionally highlighted that WER is a generic
metric that gives equal importance to all the words, while
for our end goal of behavior coding there are specific
linguistic constructs which potentially carry more valuable
information than others.

Speaker role recognition

The described SRR algorithm operates at the session level,
which means that, for evaluation purposes, it suffices
to examine how many sessions are labeled correctly
with respect to speaker roles. When oracle diarization
information is provided, coupled either with the manual
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transcriptions or with the ASR results, our algorithm
achieves a perfect recognition result for all the UCCtest1

and UCCtest2 sessions. When speaker segmentation and
clustering is performed through the diarization algorithm of
the processing system, the SRRmodule fails to find the right
mapping between roles and speakers for seven sessions from
the UCCtest2 set.

This behavior is associated with error propagation from
the previous steps which is made apparent from the
fact that the speaker error rate for those seven sessions
is 42.5% on average (std=8.5%). Given the fact that
we are dealing with dyadic conversational interactions,
such a high speaker confusion essentially means that
the diarization algorithm failed to sufficiently distinguish
between the two speakers, probably because of similar
acoustic characteristics. Thus, there is not enough reliable
speaker-specific linguistic information that the SRR can
use during the role assignment. This example of error
propagation also highlights the need for quality assurance
through specific safeguards at the early steps of the
processing pipeline.

Utterance segmentation

The last step of the transcription pipeline is the utterance
segmentation, which provides the basic units for behavioral
coding. We get a rough indication of the quality of our
segmentation process by estimating the correlation between
the total number of utterances per session that have been
assigned to the therapist by the human annotators and by the
processing pipeline.

The Spearman correlation between them, when all the
UCCtest1 and UCCtest2 sessions are taken into account, is
0.478 (p < 10−7). The number of the manually defined
utterances is usually higher than the number of the ones
identified by our system, because the automated rich
transcription module often fails to capture very short
utterances (e.g., ‘yeah’, ‘right’, etc.).

Quality assurance

According to the quality safeguards introduced, 16 out
of the 112 sessions are flagged as “problematic” in our

combined test set of UCCtest1 and UCCtest2 . All of those
do not meet the fourth condition, related to the minimum
allowed speaking time attributed to each speaker. This
means that in practice the processing would halt after the
end of the diarization algorithm, with an error message
displayed to the user. When we ran the entire set of 5097
UCC recordings through the pipeline, 4268 met all the four
criteria and were successfully processed.

It is interesting that, after excluding the “problematic”
sessions from the test sets (UCCtest1 , UCCtest2 ), the
Spearman correlation between the total number of therapist
utterances per session as assigned by the human coders
vs. by the automated system is increased from 0.478 to
0.639. This is explained by the fact that, in several of those
cases, poor diarization performance led the subsequent role
recognition module to assign almost the entire session to
the client. As a result, the number of therapist-attributed
utterances was much smaller than expected.

Utterance-level and session-level labeling

In the following sections, we discuss the results of the MISC
code (utterance-level and session-level) prediction models.
As in the case of the transcription pipeline submodules,
we examine the effectiveness of the proposed models, both
when provided with oracle information and when being part
of the end-to-end system.

Utterance-level code prediction

When we use the manually transcribed data to perform
utterance-level MISC code prediction, the overall F1 score
is 0.524 for the UCCtest1 and 0.514 for the UCCtest2

sets. The F1 scores for each individual code are reported
in Table 8. As expected, the results are better for the
highly frequent codes (Table 5), such as the one expressing
facilitation (FA), since the machine learning models have
more training examples to learn from. On the other hand,
the models do not perform as well for less frequent codes,
such as MI-adherent and MI-non adherent behaviors (MIA
and MIN). However, comparing Table 8 and Table 4, we
can also see that for several of the codes that our system
performs relatively poorly (e.g., simple reflections [RES],

Table 6 Diarization results (%) for the test sets of the University Counseling Center (UCC) data

Set False alarm Missed speech Speaker error DER

UCCtest1 13.7 0.4 6.9 21.0

UCCtest2 9.3 0.5 7.8 17.7

Diarization error rate (DER) is estimated as the sum of false alarm, missed speech, and speaker error rates
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Table 7 Automatic speech recognition (ASR) results (%) for the test sets of the University Counseling Center (UCC) data: substitution, insertion,
and deletion rates, together with the total word error rate (WER), estimated as the sum of those three

Set Diarization method subs del ins WER

UCCtest1 oracle 18.3 15.3 3.5 37.1

pipeline 20.0 13.9 4.3 38.1

UCCtest2 oracle 14.3 13.8 2.3 30.4

pipeline 16.1 12.5 3.1 31.6

Results are reported when using either the machine-generated segments (pipeline) or the ones derived by the manual transcriptions (oracle)

MI-adherent [MIA], structure [ST]), the inter-annotator
agreement is also considerably low. A notable example
which does not follow this pattern is the non-adherent
behavior (MIN) where our system achieves the lowest
results among all the codes, while there is a substantial inter-
annotator agreement (α = 0.606). This is partly because
of the underrepresentation of the particular code (or cluster
of codes) in the training and development sets. It may also
be the case that pure linguistic information found in textual
patterns may not be enough for the operationalization of
the particular code. This example suggests that a hybrid
approach where machine learning methods are combined
with knowledge-based rules from the coding manuals may
be an interesting direction for future research. Finally, by
examining the confusion matrices (not reported in this
article), we realized that the system gets confused between
the codes representing questions (QUC vs. QUO) and
reflections (RES vs. REC), since those pairs of codes get
usually assigned to utterances with several structural and
semantic similarities.

The performance evaluation of the system when used
within the pipeline is not straightforward, since the
utterances given to the MISC predictor after the automatic
transcription are not the same as the ones defined by
the human transcribers. In that case, we use as a simple
evaluation metric the correlation between the counts of
each MISC label in the manual coding trial and in the
automatically generated report. The results are illustrated
in Fig. 2. There is a statistically significant (p < 0.01)
positive correlation for all the codes, apart from FA. The
Spearman correlation for the nine codes is on average 0.446
(std = 0.136), while if we don’t take into consideration
the sessions that did not meet the quality criteria, the

correlation is increased to 0.566, on average (std =
0.172).

The relatively low correlation and discrepancy in the
counts between the manual and the automatically generated
output for FA is striking, especially if we take into account
the remarkably good results of the system when we do
not use the entire pipeline (Table 8). The reason is that
FA is assigned to a lot of one-word utterances and talk
turns. Our speech pipeline, however, often fails to capture
turns of such short duration, which results in a smaller
than expected frequency for the specific code. Another
observed inconsistency is related to the code for simple
reflections (RES), which seems to be assigned by our
algorithm much more frequently than it actually occurs
in the manually annotated data. As already mentioned,
this is partly due to increased confusion between simple
and complex reflections (RES and REC). This becomes
apparent if we merge all the reflections into one composite
group (denoted as RE in Fig. 2).

The distribution of the MISC codes across all the 4268
psychotherapy sessions that were successfully processed for
this study is given in Fig. 3. As observed, the distribution
is similar to the corresponding distribution if only the
transcribed sessions included in the test sets (UCCtest1 and
UCCtest2 ) are taken into consideration. This suggests that
our test sets are indicative of the entire dataset and the
evaluation analysis presented likely extends to previously
unseen therapy sessions processed by the system.

Session-level code prediction

As mentioned in the Materials and methods section, the
session-level code predictor is the only model where, due

Table 8 F1 scores for the predicted utterance-level codes (Table 5) using the manually transcribed University Counseling Center (UCC) data

Set FA GI QUC QUO REC RES MIN MIA ST

UCCtest1 0.956 0.519 0.702 0.825 0.531 0.265 0.158 0.314 0.449

UCCtest2 0.951 0.462 0.588 0.786 0.465 0.186 0.273 0.439 0.474
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Fig. 2 Count of each target MISC label per session (Table 5) when
coded by humans (reference) and when processed by the pipeline.
All the sessions in the two test sets of the University Counseling
Center (UCC) dataset (UCCtest1 and UCCtest2 ) are shown and the

correlation values are calculated based on all of them. The sessions
flagged as problematic by the quality safeguards are denoted by square
markers. RE is a composite label containing both simple and complex
reflections (RES and REC)

to the limited amount of training data, we apply a five-fold
cross validation scheme across the entire coded UCC dataset
(all 188 sessions). The cross-validation results are reported
in Table 9. Results are given in terms of accuracy and
averaged F1 score, after the output of SVR is rounded to the
closest integer in the range from 1 to 5 and after we collapse
classes 1 and 2 together (due to the very limited number of
sessions scored as 1 in the reference data). We also report the
‘within one’ accuracy, demonstrating whether the distance
between the reference and predicted scores was at most one.
In general, the predictive power of the models seems to be
lower for the codes where the inter-rater reliability (Table 4)

is also low. Additionally, the performance is not severely
affected by the usage of the speech pipeline, when compared
to using the manual transcriptions.

The distributions of the six global codes across all
the 4268 psychotherapy sessions that were successfully
processed are given in Fig. 4. All the codes, with the
exception of direction, are skewed towards the higher
scores of the scale (higher than 3). As was the case
with the utterance-level codes (Fig. 3), we get a very
similar distribution if we illustrate the results only for the
sessions in the UCC test sets for which manual transcription
and behavior coding information were available. This is
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Fig. 3 Frequency of the utterance-level MISC codes (Table 5) for all
the University Counseling Center (UCC) recordings processed and for
the subset included in the UCC test sets. Only the sessions successfully
processed (that met our quality criteria) are taken into consideration

here. The total number of therapist-assigned utterances is about 1.2
M for all the sessions (4269 sessions) and 28 K for only the sessions
included in the UCC test sets (UCCtest1 and UCCtest2 ; 96 sessions)

indicative of the generalization of the system and its
performance to future therapy sessions.

Limitations and conclusions

In this article, we presented and analyzed a processing
pipeline able to automatically evaluate recorded psychother-
apy sessions. The application of such a system in real-world
settings could guarantee the provision of fast and low-
cost feedback. Performance-based feedback is an essential
aspect both for training new therapists and for maintain-
ing acquired skills, and can eventually lead to improved
quality of services and more positive clinical outcomes.
Additionally, being able to record, transcribe, and code
interventions at large scale opens up ample opportunities
for psychotherapy research studies with increased statistical
power.

At the point of writing, we have processed a collection
of more than 5000 recordings, 4268 of which met our
quality criteria and are now accompanied by transcriptions
and behavioral coding information. Both utterance-level and

session-level MISC codes are available covering a wide
range of behaviors (Figs. 3 and 4). As we are planning
on expanding our corpus with more data, we are confident
that such a dataset will lead to novel interesting studies in
the fields of psychotherapy, computational modeling, and
their intersection. For example, the transcriptions of a subset
of those data have been already used to study therapeutic
alliance directly using text-based features (Goldberg et al.
2020) or modeling clients and therapists as narrative
characters (Martinez et al. 2019). Even though we have
here focused on motivational interviewing, the basic ideas
of the speech processing pipeline remain the same for other
dyadic interactions as well. For instance, the same modules
analyzed in this article have been used to automatically
transcribe and subsequently analyze cognitive behavior
therapy sessions (Chen et al., 2020).

Despite the promising results presented here, we
recognize that there is room for improvement in almost
all the sub-modules of the pipeline. Our analysis showed
that diarization failed for some of the sessions that human
transcribers had no problem processing. Additionally, there
was a consistent underrepresentation of verbal fillers

Table 9 Averaged F1 scores and accuracy for the predicted session-level MISC codes (Table 1) using the manually transcribed (oracle) or the
pipeline-generated data, based on a five-fold cross validation scheme across all the University Counseling Center (UCC) test data

Metric F1 accuracy accuracy (‘within 1’)

ASR method oracle pipeline oracle pipeline oracle pipeline

acceptance 0.318 0.297 0.478 0.457 0.771 0.755

empathy 0.342 0.342 0.586 0.580 0.819 0.851

direction 0.380 0.261 0.426 0.389 0.740 0.697

autonomy support 0.303 0.261 0.495 0.451 0.878 0.840

collaboration 0.285 0.199 0.437 0.346 0.654 0.612

evocation 0.274 0.188 0.362 0.335 0.751 0.671

The ‘within one’ accuracy demonstrates whether the distance between the predicted and reference scores was at most one point in the Likert scale
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Fig. 4 Distribution of the session-level MISC codes (Table 1) for all the University Counseling Center (UCC) recordings processed and for the
subset included in the UCC test sets. Only the sessions successfully processed (that met our quality criteria) are taken into consideration here

(e.g., uh-huh) and the relevant MISC label (FA) in the
automatically generated transcripts, as a result of the
system struggling to capture and transcribe very short
speaker turns. Moreover, the architecture design followed,
where the various modules are trained independently
and are then connected to form a pipeline, inevitably
leads to error propagation. There are indications that
alternative frameworks could reduce errors in specific
cases, if for example diarization is aware of the different
speaker roles (Flemotomos et al., 2020) or if the two
tasks of diarization and role recognition are performed
simultaneously (Flemotomos et al., 2018).

For this work, we only used text-based methods
for behavioral coding. Acoustic features, however, and
especially prosodic cues, play a major role in understanding
language (Cutler et al., 1997) and have been successfully
used in the past for MISC code prediction (Singla et al.,
2018; Xiao et al., 2014). Recent studies have even shown
that audio-only approaches, where word embeddings are
directly learnt from spoken language, can yield improved
results (Singla et al., 2020). Additionally, for the most
part of our analysis, we have focused only on therapist
characteristics. However, specific dialog attributes, such as
speech rate entrainment (Xiao et al., 2015) and language
synchrony (Lord et al., 2015; Nasir et al., 2019) between
the two involved parties (therapist vs. client) can be proved
useful for identifying therapy-related behaviors.

Another direction for potential future improvements is
related to the modeling approach followed for the utterance-
level codes. The system presented here treats all the codes
evenly and employs a single neural architecture giving one
output label for every utterance. However, since human
coders often stack multiple codes for a single utterance
(e.g., asking for permission to give advice [ADP] through a

closed question [QUC]), a hierarchical algorithm which dif-
ferentiates between codes with increasing granularity and
allows for multiple codes per utterance may be useful. In
such a scenario, a hybrid method which uses the modeling
strength of neural networks and at the same time exploits
knowledge-based information distilled from the coding
manuals and clinical practice, can potentially improve
the robustness and increase the interpretability of the
results. This strategy would particularly benefit codes where
our system performed relatively poorly (e.g., MI-adherent
[MIA] and MI-non-adherent [MIN] behaviors; Table 8),
due to limited training examples or due to insufficient
information captured just from available linguistic cues. Keep-
ing in mind that psychotherapy is a dyadic interaction, incor-
porating contextual information from the client’s neighboring
utterances could also lead to performance improvements,
especially for codes such as reflections (RES and REC) that
depend semantically on client’s language (Table 2).

Limitations imposed by the available number of training
samples is a crucial aspect regarding any machine learning
based model. Even though herein we present and use one
of the largest available corpora constructed for the purpose
of automatic behavioral coding, the performance of all the
models involved is still critically dependent on the sample
size. This is why we decided to use a lot of third-party
sources, both for training the behavior code predictors
and for any audio or language modeling needed for the
transcription pipeline. Applying external datasets, however,
was not possible for all the tasks. In particular, for the
session-level code prediction, we only had the internal 188
labeled samples available and we, hence, decided to apply
a cross-validation scheme with a statistical model (support
vector regression) that does not require as much data as a
more convoluted deep learning model to converge. In any
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case, all the results were reported on evaluation sets not
seen during training, while the distributions of the predicted
codes (Figs. 3 and 4) suggest that those results are indicative
of the performance on a much bigger dataset of therapy
sessions.

An aspect of importance for our system is the quality
assurance of the final evaluation report provided to the
counselor. Being able to determine computational errors
at an early stage and giving relevant warning messages to
the user is an essential prerequisite before mental health
practitioners trust computer-based tools and introduce
them into clinical settings. We have already implemented
several quality safeguards, with results indicating that
they are towards the right direction. We are planning on
implementing more confidence metrics, which take into
account ASR and behavior coding results, apart from VAD
and diarization. Human annotators can still be used for
the sessions or parts of sessions for which confidence is
low. Such manually annotated sessions can be a valuable
source of information to be used for further adapting our
algorithms. That way, we can introduce an active learning
scenario where the system incrementally becomes more
accurate and reliable.

Likewise, it is important that we have evaluation metrics
both for the individual modules and for the end-to-end
system. Standard metrics, such as the word error rate (WER)
and the diarization error rate (DER) used in ASR and in
diarization, respectively, are useful during modeling in order
to have benchmarks and quantifiable areas of improvement.
However, they do not necessarily reflect the transcript
quality from a user’s perspective (Silovsky et al., 2012)
and they are not always representative of the performance
with respect to semantics and to clinical impact (Miner
et al., 2020). Qualitative surveys where experts share their
opinions on the accuracy of the system output could assist
highlighting specific areas of clinical importance on which
the modeling efforts should focus.

We should here underline that our goal is to build
a system that will not replace the human input, but
will instead assist medical experts increasing efficiency
and accuracy. Technology-based tools have seen a rapid
rise in healthcare with applications ranging from safety
surveillance and epidemiological data collection (Cowie
et al., 2017) to clinical decision-making and treatment
recommendations (Sutton et al., 2020). However, all those
tools, and especially the ones focusing on conversational
interactions, are not expected to replace care providers,
but rather augment their capabilities (Gangadharaiah
et al., 2020). In the psychotherapy domain, an automatic
evaluation platform, like the one we presented, would
offer opportunities for ongoing self-assessment and self-
improvement and would open new discussions on the
development of specific skills between professionals or

between trainees and supervisors. Additionally, even with
a widespread usage of automatic psychotherapy evaluation
systems, the community will still need skilled and objective
behavioral coders, both for the evaluation and for the
training of the systems, since any machine learning
algorithm is only as good as the training data we provide
(Caliskan et al., 2017).

In any case, it is essential that the users be adequately
trained to understand the meaning of an automatically gen-
erated feedback and what the several scores represent. It has
been reported that experienced counselors are more likely
to be skeptical about the validity of their ratings (Hirsch.,
2018), as opposed to new and young therapists who may
be attracted by the lure of machine learning, even without
being fully aware of how their performance-based scores
are estimated. Technology-based systems have the potential
to transform mental healthcare. Being receptive to such a
transformation should not mean uncritically accepting any
machine-generated results. In fact, well-intentioned skepti-
cism and criticism will accelerate the research in the field
and will lead to an incremental improvement of the relevant
technologies.

Open practices statement

The original data collected for this study consist of real-
world therapist–client sessions recorded at the University
Counseling Center (UCC) of a large public western
university and have to remain within the UCC servers
at all times for privacy reasons; thus they cannot be
made publicly available. The psychotherapy data used
from previous studies (Tollison et al., 2008; Baer et al.,
2009; Krupski et al., 2012; Neighbors et al., 2012; Lee
et al., 2013; Lee et al., 2014) for adaptation are also
protected and not publicly available. The speech corpora
used to train the ASR system are either freely available
or provided through the Language Data Consortium (LDC)
to members and non-members for a fee (www.ldc.upenn.
edu). In particular, Librispeech (Panayotov et al., 2015)
(www.openslr.org/12), TED-LIUM (Rousseau et al., 2014)
(lium.univ-lemans.fr/ted-lium2), and AMI (Carletta et al.,
2005) (groups.inf.ed.ac.uk/ami/corpus) are freely available
to the community; Fisher English (Cieri et al., 2004)
(Part 1: LDC2004S13 and Part 2: LDC2005S13), ICSI
Meeting Speech (Janin et al., 2003) (LDC2004S02),
WSJ (Paul & Baker, 1992) (Part 1: LDC93S6A and Part
2: LDC94S13A), and 1997 HUB4 (Graff et al., 1997)
(LDC98S71) are provided through LDC. The Counseling
and Psychotherapy Transcripts (without accompanying
audio) that were used for some of the language-based mode-
ling can be accessed on request at alexanderstreet.com/
products/counseling-and-psychotherapy-transcripts-series.
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Our models are trained on real-world, sensitive, and
protected data. Thus, our trained models cannot be
made publicly available. Acoustic feature extraction and
acoustic modeling was performed using the Kaldi toolkit
which is available at github.com/kaldi-asr/kaldi. The Beam-
formIt tool used for acoustic beamforming is available
at github.com/xanguera/BeamformIt. Language models
were built using the SRILM toolkit, available at www.
speech.sri.com/projects/srilm. The neural network used for
utterance-level code prediction was built on TensorFlow
(www.tensorflow.org), while the tf-idf/SVR framework
used for session-level code prediction made use of the
scikit-learn Python library (scikit-learn.org/stable).
The md-eval tool, developed by the National Institute of
Standards and Technology (NIST) and used for diarization
evaluation, is available at github.com/usnistgov/SCTK/
tree/master/src/md-eval. The estimation of Krippendorff’s
alpha (α) for inter-rater reliability was based on the
implementation available at github.com/pln-fing-udelar/
fast-krippendorff.

None of the experiments was preregistered.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.3758/s13428-021-01623-4.
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