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Abstract
In many scientific disciplines, researchers are interested in discovering when complex systems such as stock markets, the weather
or the human body display abrupt changes. Essentially, this often comes down to detecting whether a multivariate time series
contains abrupt changes in one or more statistics, such as means, variances or pairwise correlations. To assist researchers in this
endeavor, this paper presents the package for performing kernel change point (KCP) detection on user-selected running
statistics of multivariate time series. The running statistics are extracted by sliding a window across the time series and computing
the value of the statistic(s) of interest in each window. Next, the similarities of the running values are assessed using a Gaussian
kernel, and change points that segment the time series into maximally homogeneous phases are located by minimizing a within-
phase variance criterion. To decide on the number of change points, a combination of a permutation-based significance test and a
grid search is provided. stands out among the variety of change point detection packages available in because it can be
easily adapted to uncover changes in any user-selected statistic without imposing any distribution on the data. To exhibit the
usefulness of the package, two empirical examples are provided pertaining to two types of physiological data.
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Introduction

Significant psychological events are often characterized by
abrupt changes in statistical features. This is evidenced by
sudden mean level, variance, correlation and/or autocorrela-
tion shifts that researchers notice in the time series they mon-
itor while studying such events. For instance, at the onset of
physically (De Roover et al., 2014), mentally (Barnett &
Onnela, 2016; Grassmann et al., 2016) or emotionally
(Bulteel et al., 2014) demanding events, human physiology
exhibits such sudden changes. Also nonhuman complex sys-
tems can show similar abrupt changes in reaction to critical
events, such as computer network attacks (Tartakovsky et al.,
2006), geological disasters such as volcanic eruptions
(Tárraga et al., 2014), epidemic breakouts (Texier et al.,
2016) and financial crises (Galeano & Wied, 2017).

Change point detection methods were developed to retro-
spectively capture such sudden changes in statistical features
(Brodsky & Darkhovsky, 1993; Chen & Gupta, 2012). These
methods are employed to address two crucial questions
(Bulteel et al., 2014; Cabrieto et al., 2019; De Roover et al.,
2014; Galeano &Wied, 2017) that researchers have. The first
question pertains to the exact timing of the changes and how
proximal they are to the onset of an event if this is known. The
second question focuses on which types of change transpired.
While in some applications, researchers already know which
type of change is expected (i.e., mean, variance, correlation),
making it straightforward to specify which statistic to track, in
many other cases, no prior information is available and several
statistics have to be screened for changes.

A number of methods and software packages have been
proposed to aid researchers in capturing and characterizing
unknown changes in time series data. However, they often fall
short in practice because they are restricted to univariate data
(Erdman & Emerson, 2007; Killick & Eckley, 2014; Ross,
2015), restricted to a specific statistic or statistical model
(Barnett & Onnela, 2016; Dürre et al., 2015; Galeano &
Wied, 2017; Zeileis et al., 2002) or impose other stringent
assumptions on the data (Chen & Gupta, 2012; Davis et al.,
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2006; Lavielle, 2005). There are multivariate, nonparametric
methods available (Arlot et al., 2012; Bulteel et al., 2014;
Lung-Yut-Fong et al., 2012; Matteson & James, 2014) that
can potentially detect all types of changes, but they often lack
power to detect changes in statistics that do not pertain to the
mean level (e.g., correlation; Cabrieto, Adolf, Tuerlinckx,
Kuppens, & Ceulemans, 2018a) and do not uncover which
statistics are exactly involved in the change. To bridge this
gap, we present , a flexible software package that im-
plements the multivariate, nonparametric KCP-RS analysis
(Cabrieto, Tuerlinckx, Kuppens, Wilhelm, et al., 2018c) that
screens user-specified running statistics (RS) for changes.
Because the tool screens the running statistics rather than the
raw data, once a change point is flagged, the user knows what
type of statistical change occurred (e.g., a mean or a variance
change) and is therefore able to better understand the mecha-
nisms that underlie an event.

KCP-RS is based on the generic kernel change point (KCP)
approach proposed by Arlot et al. (2012) for flagging changes
in the raw data. The key steps of KCP-RS are to first convert
the original time series to running statistics, reflecting the
fluctuations in the statistics of interest. This is carried out by
sliding a window one time point at a time across the time
series, and each time computing the statistics’ values. Next,
KCP is implemented on the running statistics to search for
candidate change point locations, dividing the time series into
distinct homogeneous time phases. Note that we prefer the
term ‘phase’ over the term ‘regime’ to indicate that all time
points within a phase are adjacent (for a comparison of KCP-
RS to regime switching approaches, see Cabrieto, Adolf,
Tuerlinckx, Kuppens, &Ceulemans, 2018a). Finally, the pres-
ence and the number of change points are determined via a
permutation test and a grid search. We also discuss how to
streamline more complex settings where researchers aim to
screen (a subset of) four popular running statistics simulta-
neously. The performance and power of KCP-RS was thor-
oughly checked in multiple simulation studies (Cabrieto,
Adolf, Tuerlinckx, Kuppens, & Ceulemans, 2018a;
Cabrieto, Tuerlinckx, Kuppens, Wilhelm, et al., 2018c) and
their usefulness was validated through analysis of several
existing data sets containing known change points (Cabrieto
et al., 2019).

The package features two main functions. First, the
function is provided, allowing the user to flag change

points in any statistic of interest. The user only has to supply a
function that derives the running statistic of choice. Currently,
four built-in functions are available for four popular statistics:
mean, variance, autocorrelation and correlation. Second, the
package includes the function that further
assists users in simultaneously screening (a subset of) the four
statistics mentioned. Although the results of the and

will almost always lead to the same con-
clusions, combining them can help to further avoid false

positive and false negative change points. On top of the
change point analysis functions, visualization tools are avail-
able to generate graphs of the running statistics and the ob-
tained change points.

The next sections in this paper are structured as follows. In
Section 2, we present the steps of the KCP-RS analysis to flag
changes in a single statistic of interest and provide recommen-
dations for using KCP-RS. In Section 3, we discuss how to
monitor multiple statistics. Both sections include toy exam-
ples with step-by-step illustrations of how to use the package.
At the end, these sections conclude with real data examples on
mental load data and CO2-inhalation data.

KCP on the running statistics (KCP-RS)

In this section we first explain the steps of the KCP-RS anal-
ysis, followed by recommendations on how to optimize data
characteristics and on how to set the KCP-RS analysis param-
eters. Finally, we illustrate how the analysis can be run using
the package.

The different steps of KCP-RS analysis and their sta-
tistical rationale

Step 1: Deriving the running statistics

The main goal of the KCP-RS analysis is to detect changes in
a specific statistic. Thus, the first analysis step boils down to
using a multivariate time series of observed data, Xt (t = 1, 2,
…, n), to generate a multivariate time series of running statis-
tics, RSi (i = 1, 2, …, w), that reflects the fluctuations in the
statistic of interest. Subscript t thereby denotes time running in
unit steps from 1 to the total number of time points n. For each
time point t, Xt is thus a v × 1 vector of scores on v variables
observed at that time point.Hence, for the first time point, t = 1,

we have vector X
0
1 ¼ X 11 X 12 ⋯ X 1v½ �, for the second

t i m e p o i n t , t = 2 , w e h a v e v e c t o r X
0
2 ¼

X 21 X 22 ⋯ X 2v½ � and so forth. The running statistics
are then obtained by sliding a window of a selected size, wsize,
one time point at a time, across the original time series,Xt. In each
window, we compute the statistic under study, yielding the de-
rived time series of running statisticsRSi. Subscript i thus denotes
thewindow inwhich the running statistics are calculated and runs
in unit steps from 1 to the total number of windows w. For each
window i,RSi is a d × 1 vector of running statistics. The number
of running statistics d equals the number of original variables v
when one calculates a univariate type of statistic such as the
mean, the variance or the autocorrelation. However, when one
tracks a statistic that involves multiple variables, then d can be
larger or smaller than v.An example of the former is given by all

pairwise correlations, with d ¼ v v−1ð Þ
2 , whereas the intra-class
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correlation of all the variables is an instance of the latter, with d =
1, since one obtains a single value (Erbas et al., 2018). Also note
that the total number of windows w will be smaller than the total
number of time points n, because a window encompasses multi-
ple adjacent time points (i.e., wsize is larger than one).

Step 2: Locating the change points

The kernel function to assess the similarity of running statis-
tics To locate the change points and divide the derived time
series into distinct phases, KCP computes a kernel-based
pairwise similarity between each pair of running statistic vec-
torsRSi andRSj. The idea is straightforward: running statistics
that belong to the same phase will have high similarities, while
those that are separated by change points will have low sim-
ilarities. As proposed by Arlot et al. (2012), any positive semi-
definite kernel (Shawe-Taylor & Cristianini, 2004) can be
plugged into KCP. In our previous studies (Cabrieto, Adolf,
Tuerlinckx, Kuppens, & Ceulemans, 2018a; Cabrieto,
Tuerlinckx, Kuppens, Hunyadi, & Ceulemans, 2018b;
Cabrieto, Tuerlinckx, Kuppens, Wilhelm, et al., 2018c), we
have shown that the Gaussian kernel works well in detecting
change points in several running statistics (e.g., mean, vari-
ance, correlations and autocorrelations). Thus, in this package,
we also use this Gaussian kernel function denoted by Gk(∙) to
measure the similarity of the running statistic vectors RSi and
RSj:

Gk RSi;RS j
� � ¼ exp −

∥RSi−RS j∥2

2h2RS

 !
; ð1Þ

where hRS is the median of the Euclidean distances of all pairs
of running statistics. If RSi and RSj are extremely dissimilar,
the kernel-based similarity approaches 0. If they are very sim-
ilar, the similarity will be close to 1.

The variance criterion to optimize the change point locations
Based on the computed similarities, the KCP algorithm finds
the most optimal change point locations given a specified
number of change points K and thus delineates the K+1
phases. These locations are found by minimizing the within-
phase scatter over all possible change point location patterns
and associated phases. For a given change point location pat-
tern and a specific phase m, which starts after the m−1-th
change point occurred, the within-phase scatter is calculated
as

bV τ1;τ2;…;τK; m ¼ τm−τm−1ð Þ− 1

τm−τm−1

� ∑
i¼ τm−1þ1ð Þ

τm

∑
j¼ τm−1þ1ð Þ

τm

Gk RSi;RS j
� �

: ð2Þ

Here, τm and τm − 1 represent the boundaries, more specifi-
cally the last window of phase m and the previous phase m −
1. These boundaries are part of the full set of boundaries, τ1,
τ2,…, τK, that are associated with a considered change point
location pattern. Note that for the last (i.e., K+1-th) phase, the
boundary τK + 1 equals the total number of windows = w.
Given a specific change point location pattern the within-
phase scatter for phase m thus boils down to calculating the
average kernel-based pairwise similarity between all running
statistic vectors RSi and RSj within phase m, and subtracting
this average from the number of time points in phase m. The
more homogeneous a phase m, the larger the average similar-
ity and the smaller the corresponding within-phase scatter
bV τ1;τ2;τ3;…;τK ; m. Thus, to find the optimal change point loca-
tion pattern, featuring the optimal boundaries bτ1;bτ2;…;bτK,
KCP minimizes the variance criterion bR τ1ð ; τ2;…; τKÞ over
all possible change point location patterns:

bR τ1; τ2;…; τKð Þ ¼ 1

w
∑
Kþ1

m¼1

bV τ1;τ2;τ3;…;τK ; m: ð3Þ

This variance criterion sums the within-phase scatters over
all phases and divides it by the total number of windows, w, a
division due to which the variance criterion takes on values
between 0 and 1. The optimal change point location pattern is
thus given by

bτ1;bτ2;…;bτK ¼ arg min bR τ1; τ2;…; τm;…τKð Þ: ð4Þ

To illustrate, in the simplest scenario where only one
change point is requested, all possible phase boundaries τ1
∈ 1, 2, …, w − 1 are tested and the optimal value bτ1 will be
determined by the bτ1 that yields the minimal

bR τ1ð Þ ¼ 1
w
bV τ1; 1 þ bV τ1; 2

� �
. To simplify the notation for

the following steps, we will denote the minimized variance

criterion for a given K as bRmin;K . Note that bRmin;K decreases
with increasing values of K. Furthermore, in line with the
previous papers on the KCP method, we set the final change
point locations by shifting the optimal boundary values one
window forward, hence bτ1 þ 1;bτ2 þ 1;…;bτK þ 1. This
way, the change point locations coincide with the start of the
next phase, yielding a more intuitive interpretation.

Once the change point location based on the running sta-
tistics is known, it is converted back to the original time scale.
Specifically, the change point location is set to the time point t
that constitutes the midpoint of the window in which the
change point was located (or to the time point before the
midpoint if the window size is even; Cabrieto, Tuerlinckx,
Kuppens, Wilhelm, et al., 2018c). This conversion implies
that the estimated change point location comes with some
uncertainty, as any other time point in this window interval
could also be the change point (i.e., the interval that runs from
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the first to the last time point of the window).1 We therefore
consider an estimated change point to be proximal to the true
or expected one if the estimated change point is located less
than half of the window size from the true or expected one.

Step 3: Choosing the number of change points

In practice, the user often does not know how many change
points are expected; thus K should also be inferred from the
data. To this end, the user chooses the maximum number of
change points, Kmax (see Arlot et al., 2012 for more details)
that have to be considered, based on what is reasonable for the
data at hand. Arlot et al. (2012) proposed estimating K ∈ {1,
2, 3, …, Kmax} by balancing the fit (value of the variance

criterion, bRmin;K ) and complexity (number of change points,
K) of the change point solution by penalizing the variance
criterion as follows:

bK ¼ arg min bR τ1; τ2; τ3;…; τKð Þ þ C
Vmax K þ 1ð Þ

w
1þ log

w
K þ 1

� �� 	
ð5Þ

whereC is a penalty coefficient that weighs the influence of
the penalty term and Vmax is set to the maximum value of the
trace of the covariance matrix of the running statistics in the
first and last 5% windows (Arlot et al., 2012).

When applied to the running statistics, this approach has
two limitations however. First, since Arlot et al. (2012) as-
sumed independent observations, the type 1 error rate is ex-
cessively high when this approach is implemented on the run-
ning statistics, which are serially dependent because they are
extracted from overlapping windows. Second, the user has to
tune the penalty coefficient C. We therefore proposed to de-
termine the number of change points via significance testing
and a grid search, which are described in detail below.

Step 3a: The permutation test to establish whether there is at
least one change point To ensure that the type 1 error rate is
under control, we first conduct a significance test to decide
whether the running statistics contain at least one change point
(Cabrieto, Tuerlinckx, Kuppens, Hunyadi, & Ceulemans,
2018b). The proposed significance test is permutation based
in that it compares the obtained results, based on the original
data, with a distribution of reference results that one gets for a
large number of permutations of the original data. The pur-
pose of permuting the data is to simulate the test’s sampling

distribution under the null hypothesis of no change points. In
the present case, the permutations are versions of the original
time series for which the time indices, and thus the original
time ordering of the vectors Xt, have been reshuffled.2 Two
such tests have been proposed: the variance and the variance
drop test. Combining these tests optimizes power for finding
correlation changes (Cabrieto, Tuerlinckx, Kuppens,
Hunyadi, & Ceulemans, 2018b). However, for data that con-
tain a background autocorrelation larger than zero, the vari-
ance test may yield an inflated type 1 error rate for running
statistics influenced by such serial dependency (e.g., running
autocorrelation (Cabrieto, Adolf, Tuerlinckx, Kuppens, &
Ceulemans, 2018a), running variance, running means). We
therefore focus on the variance drop test here.

The variance drop test focuses on the amount of improve-
ment in the variance criterion when allowing for an additional

change point: bRmin;K−bRmin;K−1. The test exploits the idea that if
there is at least one change point present in the running statis-
tics, this variance dropmeasure will be large for at least oneK-
value. For the time permuted data sets, we expect these vari-
ance drop measures to be significantly smaller. We therefore
compute the p-value for the variance drop test as follows:

pvariance drop test ¼
# maxvariance dropp > maxvariance drop
� �

nperm
ð6Þ

where nperm is the total number of permuted data sets. As in
the usual significance testing framework, the variance drop
test is declared significant if the resulting p-value is smaller
than the significance level set by the user.

Step 3b: The grid search to choose the exact number of
change points (conditional on a yes in Step 3a) If the signif-
icance test discussed above suggests that the running statistics
contain at least one change point, the next step is to assess the
exact number of change pointsK. Building on the penalization
strategy proposed by Arlot et al. (2012) and the work of
Lavielle (2005), we proposed to tune the penalty coefficient
in Eq. 5 via a grid search (Cabrieto et al., 2017; Cabrieto,
Tuerlinckx, Kuppens, Wilhelm, et al., 2018c). This search
starts by setting C = 1, which corresponds to selecting Kmax

change points. Next, we linearly increase C until the penalty
term becomes so large that we retain zero change points. Each
considered C-value corresponds to a K-value. The most stable
K-value, that is the K-value that is most frequently returned

1 Note that the above interval and its interpretation should thus be distin-
guished from a confidence interval in classical statistical inference, in that it
is not based on sampling distributions.

2 We also considered other ways of permuting the data. Specifically, we also
tried permuting the time indices of the running statistics and permuting blocks
of indices of adjacent time points, based on recent results (Bodner et al., in
press; Bulteel et al., 2018; Moulder et al., 2018). However, both approaches
yielded inflated type 1 error rates and were therefore discarded.
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across all C’s considered, is the chosen K. The final change
point solution is then given by the optimal change point loca-
tions for this selected K.

Recommendations

Data characteristics: number of time points and number
of variables

A natural first question is how many time points are needed
for applying KCP-RS. The answer should be formulated in
terms of the phase length. Obviously, the length of the phases
should not be shorter than the window size used, as the chang-
es will otherwise not be detected. However, it is better to have
clearly longer phase lengths. In KCP-RS simulation studies,
for instance, the phase length was often 100 time points and
never less than 50 time points. Moreover, the empirical exam-
ples also had relatively long phase lengths. Hence, for now,
we recommend aiming for 100 time points per phase.

Furthermore, we advise users to think carefully about
which variables to include. A larger number of variables
showing a change makes it easier for KCP-RS to detect this
change. However, the presence of noise variables (i.e., vari-
ables that do not change) makes it harder for KCP-RS to detect
changes.

KCP-RS analysis

The user has to set the number of permutations, the maximum
number of change points, the window size, the significance
tests used, the significance level of these tests and the number
of CPU cores used.

The number of permutations to test the presence of at least
one change point (see Step 3a) should be large (i.e., at least
1000) in order to adequately approximate the null distribution
of the variance drop test.

Regarding the maximum number of change points, we rec-
ommend that the user set Kmax to 10, to allow for unexpected
change points.

Furthermore, for the window size, we set the default value
to 25 time points since this value proved to be optimal in our
simulation studies (Cabrieto, Tuerlinckx, Kuppens, Wilhelm,
et al., 2018c). However, the user can adapt this choice based
on the characteristics of the event under study and check the
stability of the results for different window sizes. Specifically,
we recommend first trying to determine a window size by
dividing the expected minimum length of the phase by two.
Next, one assesses the robustness of the obtained change
point(s) by running the analysis with a number of different
window sizes around this computed window size. If one ob-
tains similar change points with this range of possible window
sizes, one can obviously be more confident about the presence

and location of the change points. Since simulation studies
(Cabrieto, Tuerlinckx, Kuppens, Hunyadi, & Ceulemans,
2018b) have revealed that smaller window sizes generally
yield more accurate locations, the final recommendation is to
select the locations yielded by the smallest window size that
resulted in similar findings as the subsequent larger window
sizes.

Regarding which significance test to apply, we recommend
users conduct the more robust test—the variance drop test—
and set this as the default option. Since future studies may aim
to investigate the behavior of the variance test or of the com-
bination of both tests for other running statistics, the variance
test was also made available in the kcpRS package (see
Section 2.2). For the statistical principles underlying this ad-
ditional test, we refer to Cabrieto, Tuerlinckx, Kuppens,
Hunyadi, et al. (Cabrieto, Tuerlinckx, Kuppens, Hunyadi, &
Ceulemans, 2018b).

Next, users need to set the significance level α, following
usual statistical inference guidelines. Hence, when monitoring
a single type of running statistic, α could be set to 0.05. When
monitoring multiple types of statistics (see Section 3.1), a
correction such as the Bonferroni correction can be applied.
If the user implements the variance test alongside the default
variance drop test, the overall type 1 error rate across these two
tests is automatically controlled through Bonferroni correc-
tion: if the overall significance level is set to α, each subtest
uses the adjusted level α/2. The presence of at least one
change point is declared if at least one of the subtests is sig-
nificant (Cabrieto, Tuerlinckx, Kuppens, Hunyadi, &
Ceulemans, 2018b). In addition to testing the presence of at
least one change point, the software also returns the exact p-
values associated with each test. Users can obviously use
these p-values to implement alternative correction methods
if they wish (for an overview see e.g., Bretz et al., 2016).

Finally, we have built the software such that the user
can exploit multiple CPU cores. This option is especially ben-
eficial in case the time series is considerably long, and the
permutation test step proves to be computationally intensive.
The maximum number of cores in the user's computer can be
determined by running which is available
from the package . Table 1 gives an indication of
the computation time using a single CPU core and using the
setting for the applications pre-
sented in this paper.

Performing the KCP-RS steps by means of the
package

In this section, we illustrate through two toy examples how
one can use the package to carry out a KCP-RS anal-
ysis. A third real data example on stock returns data can be
found at https://osf.io/zrh4v/.
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Toy example 1: Correlation change

The first example is taken from Cabrieto, Tuerlinckx,
Kuppens, Hunyadi, et al. (Cabrieto, Tuerlinckx, Kuppens,
Hunyadi, & Ceulemans, 2018b) and features simulated data
comprised of three multivariate normal variables, two of
which exhibit a correlation change. All three variables have
zero means and unit variances within each phase. Three
phases are simulated: in the first phase, the variables are un-
correlated, in the second phase, the first two variables correlate
highly (ρ = .7), and in the last phase, all variables become
uncorrelated again. The data are generated using the
package using the following code:

The simulated time series are shown in Fig. 1a. Detecting
these two correlation change points is challenging for two
reasons: first, the middle phase, in which the change occurs,
is smaller in size (50 time points) than the other two phases
(100 time points). Second, only one of the three pairwise
correlations exhibits the change. Therefore, the signal may
not be large enough to detect it. Indeed, neither the general
purpose method E-divisive (Matteson & James, 2014) nor
correlation-specific methods such as Frobenius norm

(Barnett & Onnela, 2016) or CUSUM (Galeano & Wied,
2017) were able to detect the change points, whereas KCP-
RS on the running correlations was (see https://osf.io/zrh4v/
for R code and output of the E-divisive method. Code for the
other methods is available upon request). To analyze the data
with the package, we first load the package:

Next, we use the main function as follows, taking to
heart the provided recommendations on how to select the win-
dow size ( ), the number of permutations ( ) and
the test ( 3) for the significance testing, the maximum
number of change points ( ), and the significance level α
( ): We note that X should be a data frame where the
rows pertain to the time points and the columns pertain to the
variables.X is automatically scaled such that all variables have
a variance of 1 to ensure that each variable will have the same
influence while optimizing the KCP criterion. The argument

indicates which function should be used to compute
the running statistic of interest. As mentioned earlier, there are
four built-in functions4 that compute four popular running
statistics: for the running mean, for the
running variance, for the running autocorrelation (lag
1) and for the running correlation. For this example,
we use the function as we are interested in flagging
correlation changes. The argument specifies the la-

bel of the running statistic and this is passed on to
methods such as and so that outputs are prop-
erly labelled.

3 The argument allows one to implement the variance test along-
side the variance drop test during the significance testing. This is by default set
to , and the user has to set it to to carry out the additional
variance test if desired.
4 The four built-in functions to extract the running statistics for the
package were built on the package (Foster, 2019).

Table 1 Computation times in seconds for the example data sets, using a single versus 12 cores (ncpu = 1 versus ncpu = detectCores()).

Data set

Toy example 1 5.09 3.48

Toy example 2 3.92 3.03

Toy example 3 22.49 13.15

Mental load data 410.82 89.29

CO2 inhalation data 13.48 9.21
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First, the number of change points, K, resulting from the
grid search (Fig. 1d) and the corresponding locations (Fig. 1b)
are displayed. There are two change points detected, which is
indeed the case for the toy example. The change point loca-
tions are placed at T = 106 and T = 144, which are proximal
to the real change points at T = 101 and T = 151. As men-
tioned before (see Section 2.1 Step 2), we consider a change
point to be proximal if it is located less than half of the win-
dow size from the true or expected change point (i.e., from 12
time points before to 12 time points after). Similar change
points were found when using different window sizes, ranging
from 10 to 35 (with steps of 5). The first change point ranged
from T = 106 to T = 109 and the second change point ranged
from T = 143 and T = 148. From a window size of 40

onwards, the change points were no longer detected. Next,
the significance level chosen by the user as well as the p-value
from the permutation test are displayed. For the toy example,
the variance drop test (p-value = .002) is highly significant
(Fig. 1c), confirming the presence of at least one change point.
The last part of the output is the KCP solution for all K’s
considered, including the value of the variance criterion as
well as the locations of the extracted change points. Note that
if is set to 0, the significance test will not be carried out,
and thus, only this table will be displayed.

To visualize the solution, the output can be stored as
a object. Applying the plot function on this object will
display the running statistics and the detected change point
locations:

The package also provides a summary function for the class. When called, the summary function will display the
settings specified by the user (see below) and the output of the analysis, which was already discussed above.

Toy example 2: A user-specified running statistic

The function was built to accommodate change point
detection in any user-specified running statistic. As mentioned
before, four built-in functions are already available in
to enable detecting change points in runningmeans, variances,
autocorrelations and correlations. If the user is however

interested in flagging change points in a different running
statistic, the function can be easily adapted. The user
only has to provide and compile a function that can compute
the running statistic of interest and indicate its name in the

argument. This function should accept two argu-
ments, the data and the window size, and should output a data
frame containing the running statistics. The rows of this data
frame pertain to the windows and the columns pertain to the
variables (combination of variables) for which the running
statistic is computed.

As an illustration, let us return to the simulated data in the
previous toy example and investigate whether the data contain
changes in level. However, instead of the mean, we want to
use a more robust measure of location: the median. The first
step then is to write a function, which we call runMed, and
which computes the running median:
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After compiling this new function so that it is available in
the current environment, we can simply run the analysis
using by indicating and supply-
ing the label

The summary shows the settings of our tailored analysis, in
which wemonitored the running medians. The analysis output
shows that no change point was detected, which makes sense
as no changes in level were introduced in this toy example.
This result was consistent across different window sizes, rang-
ing from 10 to 50. Through this example, we have shown how
flexible the function is, and how easy it is to switch to
another statistic of interest.

Monitoring multiple running statistics
simultaneously

Statistical rationale of the simultaneous approach

In many substantive applications, the user wants to monitor a
single type of user-specified statistic only. The proposed

function is perfectly suited for these situations.
However, in other applications the user wants to track changes
in multiple types of statistics, for instance because a crucial
event occurred and theywant to explore which types of chang-
es transpired. To address these more complex questions, the

function is applied separately to all statistics of interest,
while controlling for the type 1 error rate by applying a cor-
rection to . A straightforward and simple method is the
Bonferroni correction. This means that when the user wants to
flag changes in four types of running statistics using an overall
significance level α, each running statistic will be allotted a
significance level, α/4. Obviously, other less conservative
corrections, such as the Holm procedure (for an overview
see e.g., Bretz et al., 2016), can also be applied. To facilitate
this, the function outputs not only the (non) signifi-
cance of an obtained solution, but also all exact p-values.

There is also an alternative, namely the KCP-RSworkflow,
which scans the time series for changes in means, variance,
autocorrelation and correlation, while immediately taking the
possible but rare effects of detected mean changes on other
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running statistics into account.5 We will not go into detail, as
the workflow is merely meant as a check that will in most
cases yield the same results. In the case of contradicting find-
ings, possible causes of the differences obviously should be
carefully considered. The KCP-RS workflow is implemented
in the function . The output of the KCP-RS
workflow for the examples presented in the following sections
can be found at https://osf.io/zrh4v/.

Implementing the simultaneous approach using the
package

Toy example 3: Mean and correlation change

In this section, we will show how to simultaneously monitor
multiple statistics using the function by reanalyzing a
simulated data example from Cabrieto, Tuerlinckx, Kuppens,
Wilhelm, et al. (Cabrieto, Tuerlinckx, Kuppens, Wilhelm,
et al., 2018c), in which both mean and correlation changes
were introduced. Three multivariate normal variables with
unit variances within each phase are simulated. Again, the

time series comprises three phases: in the first phase, all var-
iables have zero means and are uncorrelated. In the second
phase, a mean change of two standard deviations is introduced
on the first two variables. Finally, in the third phase, a corre-
lation change of .9 is applied to the same first two variables.
The simulation code is as follows:

We apply the function separately for all the statistics
of interest. This is done as described in Section 2.2, but we
now also control the overall type 1 error rate by applying the
Bonferroni correction:

The output of the analyses can again be obtained using the summary function. For example, to inspect possible mean
change points, we use:

As the output of KCP-RS is presented in the sameway as in
toy examples 1 and 2, a summary is given in Table 2 (see the
Appendix for the complete output). The main results shown
are the number of change points detected for each running
statistic, their locations and the significance level and p-values
of the tests. In this toy example, Bonferroni correction was
applied, since we set . Thus, as shown
in the output, the overall significance level for each statistic
was adjusted to .0125, which is the overall significance level

5 Behind the scenes, the KCP-RS workflow starts by implementing KCP on
the running means to flag changes in level. If significant mean change points
are found, the data will be centered using the phase-means implied by the
change points, to filter out possible local influences on other running statistics.
For example, a simultaneous mean change across several variables can artifi-
cially increase the variance in a window, and thus influence the results of KCP
on the running variances. Next, the function automatically applies KCP on the
running variances, correlations and autocorrelations of the phase-centered da-
ta. The function also controls the type 1 error rate by means of Bonferroni
correction, but we again facilitate the application of other correction proce-
dures by returning all exact p-values.
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(.05) divided by 4, the number of running statistics monitored.
Only the running means and the running correlations exhibit-
ed significant change points, and this is what we expect given
the simulation code. The location of the mean change point is
T = 100, while that of the correlation change point is T =
207. These KCP change points are proximal to the real mean
and correlation change points which were set at T = 101 and
T = 201, respectively. Moreover, yielded similar
change points across different window sizes, ranging from
10 to 50. Specifically, the detected mean change points ranged
from T = 100 to T = 107, and the correlation change points
from T = 205 to T = 209. The plots for the KCP-RS analyses

and the output for the KCP-RS workflow can be found at
https://osf.io/zrh4v/.

Real data analysis

Mental load data

Wewill apply KCP-RS to second-by-second data on the men-
tal load of aviation pilots, collected by Grassmann et al.
(2016). Three physiological measures are monitored (i.e.,
heart rate, respiration rate and petCO2) throughout an experi-
ment to assess the pilots’ mental load as they carry out multi-
ple highly demanding tasks. There are four experimental
phases: the resting baseline, the vanilla baseline, multiple
tasks and recovery. Each phase lasted for approximately 6
minutes; however, the first and last 30 seconds of each phase
were removed to exclude artifacts caused by speech or move-
ment during experimental phase transitions. The four phases
consisted of 332, 341, 380 and 340 seconds (i.e., time points),
respectively. For a detailed description of each phase, see
Grassmann et al. (2016). Cabrieto et al. (2017) analyzed data

Table 2 KCP-RS results for toy example 3. * indicates p-values lower
than α = .0125

Running statistic p-value Change point locations

Mean 0.000* 100

Variance 0.483 -

Correlation 0.000* 207

Autocorrelation 0.457 -

Fig. 1 Time series data for toy example 1. a The raw trivariate normal data
are shown, with correlation change points at T = 101 and T = 151 for the first
two variables. bThe running correlations, where the red vertical lines indicate

the detected change points. c Variance criterion bRmin values for the running

correlations, plotted against the number of change points K. The blue line
indicates the values for the observed data whereas the grey lines denote the
values of the permuted data sets. d Results of the grid search for the running
correlation, where K is plotted against the penalty coefficient
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from one of these pilots using general purpose methods,
namely, E-divisive (Matteson & James, 2014), MultiRank
(Lung-Yut-Fong et al., 2012), KCP (Arlot et al., 2012) and
DeCon (Bulteel et al., 2014) and detected common change
points at the boundaries of the multiple tasks period, which
is a highly demanding phase. A post hoc analysis was carried
out to test if changes occurred in the statistics of interest,
revealing that both mean and correlation changes transpired.

The data set is available in the package and can be
loaded using:

To inspect whether there are changes in the means, vari-
ances, autocorrelations and correlations of the physiological
measures, we apply the kcpRS function with Bonferroni cor-
rection to all four statistics. A window size of 20 was used, as
this window size provided consistent results (see lower):

The output of KCP-RS can be found in the Appendix. Change points are detected in the running means at T = 673 and T =
1056 (see also Fig. 2a, first panel). These locations are very close to the beginning and end of the multiple task phase at T = 674
and T = 1054 and correspond to the results of the general purpose methods. Note that these change points were consistently
found across the KCP-RS analysis, with different window sizes ranging from 15 to 50, in which the first mean change ranged
from T = 670 to T = 673 and the second mean change from T = 1055 to T = 1057. Furthermore, autocorrelation change points
were found (Fig. 2a, third panel), but only for smaller window sizes (15 and 20). The last two autocorrelation change points are
proximal to the runningmean change points, implying that we can consider them common change points. No evidencewas found
for changes in variance6 nor correlation, contrary to the post hoc test results by Cabrieto et al. (2017), which yielded significant
correlation changes. This inconsistency in conclusions about whether or not correlation changes are present is likely attributable
to the very different nature of the statistical analyses that led to these conclusions. The post hoc analysis tested for correlation
changes by entering the change points obtained with the general purpose approach as a predictor in a regression model, and thus
considers these change points as known to test whether they might involve correlation changes. These tests were run for each
variable pair separately. In the present analysis we rather aim to estimate the location and significance of correlation change
points from the data. This single test also combines the information of all variable pairs. As holds for statistical analyses in
general, changing test features can lead to different results.

We can thus conclude that, for the mental load data, three
change points were found; the first one occurs quite early in
the experiment and is an autocorrelation change, and the next
two mark the beginning and the end of the multiple task phase
where the mean and autocorrelation change. When
interpreting these change points, one has to keep in mind that
the test only indicates that at least one variable changes

significantly. It does not reveal either which or how many
variables change, or the direction of changes. Hence, to inter-
pret the obtained change points, we turn to the raw data and
the running statistics as displayed in Fig. 2b. Regarding the
mean change points around the multiple task, we see that
during the multiple task, the mean levels of at least one of
the physiological measures increased, likely reflecting the
needed physiological arousal to fulfil the task at hand.
Although harder to discern visually, autocorrelation levels
(seem to) decrease at the start of the multiple task, possibly

6 Note that some variance change points were found when using the KCP-RS
workflow, but only when using smaller window sizes.
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Fig. 3 Running means and the obtained change points for the CO2-inhalation data

Fig. 2 aRunning statistics and the obtained change points for the mental load data, using the KCP-RS function. bRaw data of the mental loadmeasures,
with the different background shading indicating the phases: resting baseline, vanilla baseline, multiple tasks and recovery
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indicating a heightened flexibility to carry out the task. The
autocorrelation levels (seem to) increase again near the end
of the task.

CO2 inhalation data

The second empirical example is another physiological data
set, resulting from a CO2 inhalation experiment. These data
were previously analyzed byDe Roover et al. (2014) using the
switching PCA technique to reveal mean and covariance
changes in the nine monitored measures describing breathing
volume (ViVol, VeVol, Vent and PiaAB), breathing duration
(Ti, Te and Tt), heart rate (HR) and cardiac beat interval (RRi)
(see Fig. 3). The experiment comprises three phases, namely,
the baseline (115 time points), CO2-inhalation (40 time points)
and recovery phases (84 time points). While for a detailed
description of the experimental setup, we refer the reader to
De Roover et al. (2014), it is crucial to mention that in the
baseline, the participant inhales room air through an inhalation
tube; during the CO2-inhalation phase the CO2 level in this
tube is increased by the experimenter, and during the recovery
phase, the participant inhales room air again. The goal of the
analysis is to uncover whether and which changes transpire
during the CO2-inhalation phase. The analysis of De Roover
et al. (2014) reveals two change points that are proximal to the
boundaries of the CO2-inhalation phase. To make sense of
these change points, a post hoc comparison between the re-
covered phases was carried out for three statistics: mean,
variances and correlations7.

Using KCP-RS, the user specifies which statistics to mon-
itor at the beginning of the analysis. Therefore, if a change
point is detected, it is immediately clear which statistic exhib-
ited the change. To load the data, the following code is run:

To focus on the same types of changes as De Roover et al.

(2014), we monitor the mean, variance and correlation using
the function:

The KCP-RS results show that only the running means
changed significantly8, locating the change points at T = 126
and T = 167. Varying the window size from 10 to 30 further
demonstrated the robustness of these findings, in that the location
of the first mean change ranged from T = 125 to T = 127 and
that of the second mean change from T = 163 to T = 168. No
change points were found with larger window sizes. The two
mean change points are close to the start (T = 116) and the end
(T = 156) of the CO2-inhalation phase, respectively, and to the
locations found by De Roover et al. (2014). In Fig. 3, it can be
seen that at the first change point the breathing volume variables
(ViVol, VeVol, Vent and PiaAB) dramatically increased, where-
as the breathing duration variables (Ti, Te and Tt) and RRi grad-
ually dropped. At the second change point, it seems that only the
breathing volume variables recovered quickly (i.e., returned to
their baseline levels), while the rest of the variables still lingered
at the CO2 inhalation levels and recovered more slowly.

Conclusion

Through toy examples and real data analyses we have shown
that the package is a powerful and flexible change
point detection tool to address two crucial questions: when
exactly do change points occur, and what exactly changes at
these change points. To the best of our knowledge, is
the only software package in that can aid researchers in
jointly tackling these questions via a multivariate and non-
parametric approach. Our past studies (Cabrieto, Adolf,
et al., 2018; Cabrieto, Tuerlinckx, Kuppens, Wilhelm, et al.,
2018) have tested the performance of the KCP-RS approach
for four popular statistics: mean, variance, autocorrelation and
correlation, but the framework is not at all limited to these
statistics. In fact, we have built a package that in principle

7 De Roover et al. (2014) explored the correlation structure by looking at the
component structure. 8 The KCP-RS workflow yielded the same results.
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allows us to track changes in any statistic of interest. With the
help of the package, future studies may therefore in-
vestigate how KCP-RS performs for other statistics and may
shed further light on the mechanisms underlying crucial
events.

Appendix

Toy example 3: Mean and correlation change
Output of the kcpRS function.
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