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Abstract
Missing data is a common occurrence in confirmatory factor analysis (CFA). Much work had evaluated the performance of
different techniques when all observed variables were either continuous or ordinal. However, few have investigated these
techniques when observed variables are a mix of continuous and ordinal variables. This study investigated the performance of
four approaches to handling missing data in these models: a joint ordinal-continuous full information maximum likelihood
(FIML) approach and three multiple imputation approaches (fully conditional specification, fully conditional specification with
latent variable formulation, and expectation-maximization with bootstrapping) combined with the weighted least squares with
mean and variance adjustment (WLSMV) estimator. In a Monte-Carlo simulation, the FIML approach produced unbiased
estimations of factor loadings and standard errors in almost all conditions. Fully conditional specification combined with
WLSMV was second best, producing accurate estimates when the sample size was large. However, FIML encountered slight
non-convergence issues when certain ordinal categories have extremely low frequencies, which is typical of skewed data. If the
sample is large, fully conditional specification combined with weighted least squares is recommended when the FIML approach
is not feasible (e.g., non-convergence, impractical computation durations, and variables that predict missingness are not of
interest to the analysis).

Keywords Missing data . Full information maximum likelihood . Multiple imputation . Joint ordinal continuous . Confirmatory
factor analysis

Confirmatory factor analysis (CFA) is widely used in psycho-
logical research for its ability to estimate relationships between
unobservable latent constructs (factors) and observable indica-
tors (Kline, 2016). Validation of a scale’s factor structure
(Borkenau & Ostendorf, 1990; Caprara et al., 1993; Digman,
1997), estimation of reliability (Leite et al., 2010), testing of
measurement invariance (Meredith, 1993) or assessing the mea-
surement model as part of structural equation modelling (SEM;
Nagengast et al., 2011) are some common but vital applications
of CFA.Missing data is another common occurrence in psycho-
logical research, and methods to address missing data in CFA
are of interest and relevant to many applied researchers.
Numerous studies have investigated the performance of differ-

ent missing data techniques in CFA (e.g., Chen et al., 2019;
Enders & Bandalos, 2001; Jia & Wu, 2019; Rosseel, 2012;
Shi et al., 2019, 2020). However, most studies only investigated
measurement models containing either continuous or ordinal
indicators, but not both.

Models containing both ordinal and continuous indicators are
of interest as researchers integrate different measurements of the
same construct. This paper will refer to these models as joint
ordinal-continuous (JOC) models for brevity. Applications of
JOC models include situations when a construct is measured
by both behavioural (objective) and self-reported (subjective)
indicators and researchers wish to integrate both forms of mea-
surement. Some examples include recovery from physical injury
(MacDermid et al., 2000). Recovery can be measured
behaviourally and on a continuous scale by grip strength, range
of motion, and dexterity of the affected areas. But there are also
subjective and self-reported aspects of recovery, such as incon-
venience to daily functioning, which are measured using Likert
scales. Other examples include the study of pain (Loggia et al.,
2011), which can be measured with neuroscientific equipment
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such as heart rate and skin conductance and with self-reported
pain intensity and unpleasantness scales. Cognitive ability mea-
sures using cognitive tasks also present an interesting case, as
both response time and response accuracy measure cognitive
ability (Vandierendonck, 2017) but are recorded on a continuous
and binary scale, respectively. Situations where indicators of one
construct are amix of both parcelled and individual Likert scales
(e.g., Duncan et al., 2001) also motivate JOC models.

Existing missing data approaches can be adapted to handle
JOC models. Full information maximum likelihood (FIML)
and multiple imputation are two families of techniques that
are considered the best in the field of missing data (Schafer &
Graham, 2002). However, the performance of existing missing
data techniques in JOC models is less studied. The inclusion of
both continuous and ordinal variables presents challenges to
some missing data techniques, e.g., multiple imputation ap-
proaches that impute from a joint distribution have to define
the joint distribution which describes the mix of continuous and
ordinal variables. In this paper, we focus on a recently proposed
approach to implementing FIML in JOC models by Pritkin,
Brick, and Neale (Pritikin et al., 2018), which circumvents the
computational limits from existing FIML approaches when ap-
plied to models with ordinal indicators. This new approach is
implemented in R through the OpenMx package (Neale et al.,
2016). We also focused on three implementations of multiple
imputation: expectation-maximization with bootstrapping
(EMB) as implemented in the Amelia package (Honaker
et al., 2011), fully conditional specification as implemented
via chained equations in the mice package (FCS; van Buuren
& Groothuis-Oudshoorn, 2011), and fully conditional specifi-
cation with a latent variable formulation as implemented in the
Blimp software (FCSLV; Enders et al., 2018). The multiple
imputation approaches were combined with the weighted least
squares with mean and variance adjustment (WLSMV) estima-
tor from the lavaan package (Rosseel, 2012). These packages
are available in the R environment (R Development Core
Team, 2018), which is free and easily accessible. Blimp is free
for MacOS and Windows operating systems at http://www.
appliedmissingdata.com/multilevel-imputation.html.

Objectives

This study aims to evaluate the performance of four different
approaches to analysing JOC models with missing data. Using
a simulation study, we manipulated factors of the dataset across
approaches such that recommendations can be tailored to spe-
cific conditions. The study also tests three additional ap-
proaches combining multiple imputation and FIML, such that
we can attribute performance differences to either the missing
data method or estimator. The eighth approach was an ad-hoc
missing data method, combining pairwise deletion (PD) with
WLSMV. The eight approaches are summarized in Table 1.

Applied researchers who wish to analyse JOC models may
not have a strong basis for adopting certain approaches when
there is missing data. We seek to provide guidelines by ad-
dressing the following research questions:

Question 1: What are the effects of sample size,
missingness, number of categories, and distribution of
response categories on convergence rates, factor load-
ings, standard errors, and accuracy?
Question 2:Amongst the approaches studied, which per-
forms the best?
Question 3: Are differences in performance driven by
differences in missing data approaches or CFA
estimators?

The paper begins with an introduction to the weighted least
squares with mean and variance adjustment (WLSMV) esti-
mator for CFA. Next, the paper will introduce FIML as im-
plemented by Pritkin et al. (Pritikin et al., 2018), followed by
an introduction to multiple imputation in mice, Amelia, and
Blimp. We briefly compare FIML versus multiple imputation
and present a short empirical illustration. The design of the
simulation study and performance measures will be reviewed.
Lastly, the paper will end with a result and discussion section
summarizing the simulation results, provide recommenda-
tions, and lay out future research directions.

Weighted least squares with mean
and variance adjustment

Maximum likelihood (ML) is the default estimator for CFA in
many programs. But ML assumes that indicators were contin-
uous and multivariate normal, which is violated by ordinal
indicators. A theoretically sound approach to handling ordinal
indicators is the weighted least squares (WLS;Muthén, 1984),
consisting of three stages. WLS handles the non-normality of
categorical variables by calculating polychoric correlations
and thresholds using ML in the first two stages (Muthén,
1984). This assumes that a normal and continuous distribution
underlies the indicators. The polychoric correlations and
thresholds are used in minimizing the fit function to obtain
parameter estimates in the third stage,

FWLS ¼ sWLS−σ θð Þð ÞT W sWLS−σ θð Þð Þ; ð1Þ

where W is the weight matrix of sWLS, sWLS is a vector
containing non-duplicated elements of estimated sample sta-
tistics that include the threshold and polychoric correlation
values, and σ(θ) is a vector of the model implied correlations.
The weight matrix contains information about the kurtosis and
covariance to correct for the non-normal distribution.
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Diagonal weighted least squares (DWLS) is a special case of
WLS when only the diagonal elements of W in WLS are used
in minimizing the fit function. Corrections for standard errors
and the chi-square statistic are applied to compensate for the
potential misestimation when the full weight matrix is not com-
puted (Asparouhov & Muthén, 2010). DWLS with the
abovementioned corrections is referred to as weighted least
squares with mean and variance adjustment (WLSMV).
Simulation studies found that WLSMV produced unbiased es-
timates for ordinal indicators even when responses were asym-
metrically distributed and had few categories (Bandalos, 2008;
DiStefano et al., 2019). Beauducel and Herzberg (2006) found
that WLSMV clearly outperformed ML estimation (assuming
categorical indicators were continuous) when the categorical
indicators had two or three categories and did not require a
larger sample size. Parameter estimates and chi-square statistics
were underestimated and overestimated respectively by ML,
while WLSMV produced less biased parameter estimates and
chi-square statistics. When the underlying distribution of the
ordinal indicators was normally distributed, the least-squares-
based estimators outperformed even robust ML (treating ordi-
nal indicators as continuous) in generating unbiased factor
loadings in CFA (Rhemtulla et al., 2012). But the performance
of the least-squares-based estimators was not perfect, as Li
(2016) noted that WLSMV produced biased estimates in small
samples when the underlying distribution of the categorical
indicators was non-normal.

Full information maximum likelihood (FIML)

For continuous and multivariate normal data, FIML is an
extension of the normal theory ML estimator, which ac-
commodates missing data as a by-product of using raw

data as inputs. In ML, the likelihood function is usually
computed assuming all observations have complete re-
sponses and observations with missing values are
discarded. FIML accommodates missing responses by
using the non-missing information to calculate the likeli-
hood instead of discarding missing cases (Enders, 2010).
FIML uses all observed data as input, while ML uses the
covariance matrix of the dataset as input to minimize the fit
function. FIML uses the raw data to calculate case-wise
log-likelihoods (multiplied by −2 for convenience),

−2LLi ¼ kilog 2πð Þ þ log ∑ θð Þi
�� ��

þ Yi−μ θð Þi
� �T∑ θð Þi−1 Yi−μ θð Þi

� �
; ð2Þ

where LL represents the log-likelihood, ki is the number of
variables with non-missing values for the ith case, and Yi is a
vector containing the non-missing scores for the ith case. The
subscript i implies that each case can have different patterns of
missingness, and the relevant vectors will be adjusted to only
contain non-missing estimates. ∑(θ)i and μ(θ)i are the model-
implied covariancematrix and the model-implied vector of the
means of the joint distribution of the non-missing variables for
the ith case, respectively. The −2LL of each case is summed
up to form the −2LL of the entire dataset,

−2LLData ¼ ∑n
i¼1−2LLi: ð3Þ

Maximizing the log-likelihood of the data will produce
parameter estimates that describe the model being tested.
FIML is available in most programs such as Mplus, Lisrel,
lavaan, OpenMx, EQS, and Amos and is widely used to han-
dle missing data.

Additional modification is required to use FIML with JOC
models or models with categorical indicators. Applying contin-
uous FIML to ordinal SEMmodels with missing data produced

Table 1 Approaches evaluated in the study

Approach Description Software/Packages

FIML A recently proposed approach to FIML for JOC models by Pritikin,
Brick, & Neale (Pritikin et al., 2018)

OpenMx

EMB-WLSMV Imputation by EMB (Honaker et al., 2011), followed by WLSMV
(Muthén & Muthén, 2017) in the analysis phase

Amelia and lavaan with the WLSMV estimator

FCS-WLSMV Imputation by FCS (van Buuren, 2007), followed by WLSMV
(Muthén & Muthén, 2017) in the analysis phase

mice and lavaan with the WLSMV estimator

FCSLV-WLSMV Imputation by FCSLV (Enders et al., 2018), followed by WLSMV
in the analysis phase

Blimp and lavaan with the WLSMV estimator

EMB-ML Imputation by EMB (Honaker et al., 2011), followed by FIML in
the analysis phase

Amelia and OpenMx

FCS-ML Imputation by FCS (van Buuren, 2007), followed by FIML in the
analysis phase

mice and OpenMx

FCSLV-ML Imputation by FCSLV (Enders et al., 2018), followed by FIML in
the analysis phase

Blimp and OpenMx

PD-WLSMV Pairwise deletion followed by the WLSMV estimator in the
analysis phase

lavaan with the WLSMV estimator
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biased parameter estimates and standard errors (Teman, 2012).
Probit and logit FIML can accommodate missing ordinal data
(e.g., Asparouhov & Muthén, 2016) but are more commonly
utilized in the domain of Item Response Theory (IRT). Wirth
and Edwards (2007) provide an informative overview of IRT’s
relationship with SEM and the limitations of probit/logit FIML.
In testingmeasurement invariance, Chen et al. (2019) found that
combining FIML with probit or logit links produced relatively
unbiased factor loadings, standard errors, and type I error rates
during model comparison. One practical limitation is that probit
and logit FIML approaches become computationally intensive
when the number of latent variables (dimensions) increases due
to the numerical integration involved. Pritikin et al. (2018) pro-
posed a novel approach to FIML in JOC models, implemented
in the OpenMx package (Neale et al., 2016). Based on Lee et al.
(1990), the multivariate probit distribution is used to model or-
dinal variables. Standard errors and the likelihood ratio tests are
available and covariances between ordinal and continuous var-
iables can be freed. Unlike probit and logit FIML, performance
is not limited by the number of latent variables but by the num-
ber of ordinal variables in the model. Rather than estimating the
joint likelihood directly, the authors utilized the axioms of con-
ditional probability to break down the joint likelihood as

P Ordinal∩Continuousð Þ
¼ P OrdinaljContinuousð Þ P Continuousð Þ
¼ P ContinuousjOrdinalð Þ P Ordinalð Þ: ð4Þ

The conditional likelihood and marginal likelihood are first
calculated, and their product forms the joint likelihood. The
choice of conditioning on the continuous or ordinal indicators
is determined by an algorithm to maximize processing speed.
Further technical details of its implementation and themathemat-
ical underpinnings of this approach can be found in Pritkin et al.
(Pritikin et al., 2018). The authors found that this method pro-
duced relatively accurate estimates in small andmoderate sample
sizes of 250 and 500, respectively, than the estimates produced
from applying multiple imputation and WLS in their studied
conditions. This held true when the method was tested with both
a small and a large factor model containing five and nine indi-
cators, respectively. However, the authors were limited in their
evaluation as they did not systematically vary missingness pro-
portion, the number of categories, and the threshold of the ordi-
nal variables. The effect of these conditions on the performance
of FIML will be evaluated in the current study.

Multiple imputation (MI)

MI is split into three phases. Firstly, missing data is imputed
multiple times to produce multiple sets of data in the imputa-
tion phase. Each set of data is analysed, and the sets of results

are pooled using the formulas developed by Rubin (1987) in
the pooling phase. MI methods differ mainly in their imputa-
tion algorithm; we introduce three imputation algorithms in
this study.

Expectation-maximization with bootstrapping (EMB)Missing
cases are imputed with values drawn from a distribution estimat-
ed by the EMB algorithm (Honaker et al., 2011). Firstly, multi-
ple bootstrapped samples are generated from incomplete data. In
the Expectation-Maximization (EM) algorithm, each
bootstrapped sample goes through the Expectation (E) stage,
calculating the expected likelihood of the model using assumed
model parameters. In the Maximization (M) stage, updated
model parameters are estimated such that they maximize the
expected likelihood generated in the E stage. One cycle consists
of an E andM stage. The updated model parameters are utilized
in the E stage of the next cycle to estimate the likelihood. Cycles
are repeated until convergence, where updated model parame-
ters do not differ significantly from the previous cycle. Missing
cases are imputed by values drawn from the distribution de-
scribed by the updated model parameters. Each bootstrapped
sample is imputed and used in the analysis phase.

The above is a simplified explanation of the EM algorithm, as
illustrated in Honaker et al. (2011). The EMB algorithm runs
much faster compared to FCS as convergence is more easily
assessed and each bootstrapped sample is independent of each
other. However, EMB assumes that the data form amultivariate-
normal distribution, and imputed values are continuous. Amelia
II implements the EMB algorithm and imputes ordinal variables
by transforming imputed continuous values. For the imputation
of an ordinal variable with k categories, the continuous value is
divided by k, and this resultant value is fixed within the range
between zero and 1. The resultant value is used as the probability
to describe a binomial distribution with k trials. An ordinal value,
which is the count of successful draws from the binomial distri-
bution, is drawn and imputed. MI with EMB is currently imple-
mented in R from the Amelia II package (Honaker et al., 2011).

Wu et al. (2015) found that EMB in Amelia II produced
problematic estimates when the sample was small, and the
ordinal responses were asymmetrically distributed in
regression analysis. Similarly, Jia and Wu (2019) found that
treating ordinal indicators as continuous variables in a CFA
and imputing them with EMB produced high non-
convergence rates when the responses were binary, asymmet-
rically distributed, and the sample was small. However, ac-
ceptable estimates were obtained in other conditions with no
convergence issues. The above studies were based on models
where indicators were purely ordinal. EMB is studied in the
current paper to investigate whether its performance would be
acceptable when a JOC model was analysed.

Fully conditional specification (FCS) FCS is another approach
to multiple imputation which imputes missing data on a
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variable-by-variable basis. FCS excels at ease and flexibility
in creating constraints such as boundaries, skip patterns, inter-
actions, and bracketed responses (van Buuren, 2018). In ex-
change, FCS is computationally slower compared to EMB, as
missing values on each variable are imputed separately. FCS’s
most unique feature is the ability to specify imputation models
for each variable. Specifying an appropriate imputation model
generates imputations that are more likely to be drawn from
the same population as the observed data (van Buuren &
Groothuis-Oudshoorn, 2011; Wu, Jia, & Enders, 2015).

FCS in mice In mice, FCS is implemented using the multiple
imputation by chained equations (MICE) algorithm, aMarkov
chain Monte Carlo (MCMC) method developed by van
Buuren (2007). Missing values are initially imputed by ran-
domly selected observed values. In the first step, model pa-

rameter estimates (bθ) that characterize the missing data are
drawn from a posterior distribution derived from other vari-
ables, non-missing data of that variable, and the missingness.
In the second step, imputations are drawn from another pos-
terior distribution, derived from the same information and the
parameter estimates from the first step. Missing values on the
variable are imputed in the second step. The two steps above
are iterated k times, ending at the kth variable. One cycle is
complete when all variables have gone through these two
steps. Cycles are repeated until the imputed values are stable
and convergence is reached. The final imputed dataset is
saved as one imputation to be used as input in the analysis
phase. More details can be found in van Buuren (2018). For
continuous variables with missing values, the default imputa-
tion model is predictive mean matching (van Buuren, 2007).
For ordinal variables, the default imputation model is the pro-
portional odds model (McCullagh, 1980). When an ordinal
variable possesses only two categories, it is imputed with lo-
gistic regression. Imputed values generated for missing ordi-
nal or binary values will be ordinal or binary, respectively.
MICE is available in R from the mice package (van Buuren
& Groothuis-Oudshoorn, 2011).

Jia and Wu (2019) applied MICE with the proportional
odds model and the WLSMV estimator to analyse a three-
factor ordinal model. FCS-WLSMV encountered high non-
convergence in MAR1 (with missingness occurring more fre-
quently on the tail end of the distribution), small sample sizes,
moderate missingness, and asymmetric distribution of re-
sponses. In other conditions, FCS-WLSMV produced accept-
able parameter estimates.

FCS in Blimp (FCSLV) Blimp was primarily developed for the
imputation of incomplete ordinal and nominal variables in
multilevel modelling but is also usable for non-multilevel

analysis. In Blimp, FCS was modified and extended to
impute ordinal variables using a latent variable formulation
in multilevel modelling. Conceptually, Blimp uses the same
FCS algorithm from mice and adopts a cumulative probit
model as the imputation model for incomplete ordinal
variables, which posits that a latent variable underlies each
incomplete ordinal variable. Continuous latent scores are
modelled and discrete imputations for ordinal variables are
created by applying estimated thresholds from the probit
model. Detailed information about multilevel imputation by
FCS can be found in van Buuren (2018) and Enders et al.
(2018). More information about Blimp and the latent variable
formulation can be found in Enders et al. (2018). Blimp was
included in this study, as an anonymous reviewer highlighted
the compatibility of the latent variable formulation in Blimp
with the formulation of latent variables in CFA.

Comparing FIML and MI

FIML and multiple imputation have been compared in a vari-
ety of analyses. In SEM models with only ordinal indicators,
Jia and Wu (2019) found that the combination of FIML with
robust corrections by Yuan and Bentler (2000) performed bet-
ter compared to a variety of multiple imputation methods in
convergence and the generation of unbiased parameter
estimates. These authors also found that it was least sensitive
to different factors of the dataset compared to the multiple
imputation methods. Pritikin et al. (2018) found that FIML
performed better than combining FCS and WLS for estimat-
ing a simple polychoric correlation between two ordinal var-
iables that are MAR. In latent growth models with MCAR
time-invariant covariates, Cheung (2007) found that FIML
performed better compared to multiple imputation, as multiple
imputation underestimated standard errors and produced inac-
curate model fit statistics when missingness was large.
Overall, the literature suggests that the performance of FIML
was superior.

But there are also practical considerations when choosing
between FIML and multiple imputation. One of these consid-
erations is the ease of implementation of the desired analysis.
FIML integrates the handling of missing data and the estima-
tion of the model into a single step, which makes the process
seamless. But the trade-off is that it is much harder to incor-
porate FIML into analysis or software that does not support it.
The modular nature of multiple imputation makes it such that
it is simple to integrate into the existing analysis. It is even
possible and almost trivial to perform the different phases in
different software by exporting imputed datasets. Also, FIML
approaches can be computationally intensive due to the diffi-
culty of numerical integration involved, which may prevent
normal users from utilizing FIML with more sophisticated
models.

1 Missingness on an indicator was dependent on other indicators measuring
the same factor.
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An empirical illustration

We present a short empirical illustration demonstrating the
four approaches (EMB-WLSMV, FCS-WLSMV, FCSLV-
WLSMV, and FIML) as applied to a simple JOC model using
data from the National Health and Nutrition Survey
(NHANES). Due to space constraints, the full empirical illus-
tration was written in the supplemental materials. Table 2 dis-
plays the factor loading estimates and standard errors of the
four approaches. It is uncertain which of the four approaches
produced trustworthy results in this illustration, as the true
factor structure is unknown. Thus, a simulationwas conducted
to assess the performance of each approach in different
datasets.

A simulation study

Different factors were manipulated across datasets to investi-
gate their effects on the performances of each approach. The
results will be used to create recommendations for applied
researchers.

Method

The simulation was conducted in R 3.5.0 (R Development
Core Team, 2018) on the high-performance computing clus-
ter. The R codes used can be found at https://github.com/
Aaron0696/FIML_MI_JOC_MISSINGDATA.

Data generation

The population model used to generate the data was a one-
factor CFA model with six indicators. Three of the indicators
were ordinal indicators (o1, o2, and o3), and three were con-
tinuous indicators (c1, c2, and c3). Continuous and
multivariate-normal data for all six indicators were first gen-
erated from the lavaan package (Rosseel, 2012). The factor
loadings for o1, o2, o3, c1, c2, and c3 were 0.3, 0.5, 0.7, 0.7,
0.8, and 0.85, respectively, following the general pattern of
the model tested by Pritikin et al. (2018). Error variances of

the ordinal indicators and factor variance were fixed to 1
(Kline, 2016). Error variances of the continuous indicators
were fixed to the difference between 1 and the square of their
respective factor loadings. Ordinal indicators were created
from the continuous data by categorizing the scores according
to thresholds. MCAR missing data was created by randomly
deleting data from each variable according to the desired
missingness proportion. Figure 1 displays the diagram for
the population model with the relevant parameters.

Manipulated factors in the simulation

Number of categories Ordinal indicators with two, three, five,
and seven categories were studied in the simulations. All or-
dinal variables had the same number of categories in the same
condition. These values were adapted from Wu et al. (2015),
Chen et al. (2019), and Jia and Wu (2019).

Distribution of responses across categories The distribution of
responses across categories was manipulated by using differ-
ent thresholds adapted from previous simulation studies (Jia &
Wu, 2019; Rhemtulla et al., 2012; Wu et al., 2015).
Thresholds were classified as symmetric, moderately asym-
metric, and severely asymmetric. The thresholds correspond-
ing to the respective number of categories and the degree of
asymmetry are shown in Table 3.

Missingness proportion Existing studies have investigated
widely different missingness proportions. Wu et al. (2015)
and Chen et al. (2019) used 30% and 50%, Jia and Wu
(2019) used 15% and 30%, Shi et al., (2019, 2020) used
15%, 25% and 50%, and Enders (2001) used 0%, 5%, 10%,
15%, 20% and 25%. Based on the values from previous stud-
ies, the current paper uses 10%, 20%, and 40% missingness
on each variable to represent small, moderate, and large
missingness proportions. MCAR missing data was created
by randomly deleting data from each variable according to
the missingness proportion.

Sample size Existing simulation studies (Chen et al., 2019; Shi
et al., 2019, 2020) have used sample sizes of 200 and 1000 to

Table 2 Factor loading estimates (Est) and standard errors (SE) from the empirical illustration

Indicator EMB-WLSMV FCS-WLSMV FCSLV-WLSMV FIML

Est SE Est SE Est SE Est SE

CGrip 6.68 0.51 7.61 0.47 8.14 0.56 7.92 0.60

LiftD −1.34 0.12 −2.11 0.20 −2.23 0.26 −2.20 0.24

GraspD −0.58 0.04 −0.84 0.05 −0.87 0.06 −0.87 0.05

PshPlD −1.31 0.11 −1.90 0.15 −1.91 0.17 −1.95 0.18

1068 Behav Res (2022) 54:1063–1077

https://github.com/Aaron0696/FIML_MI_JOC_MISSINGDATA
https://github.com/Aaron0696/FIML_MI_JOC_MISSINGDATA


represent small and large sample sizes in structural equation
models. Following these studies, small and large sample sizes
corresponded to 200 and 1000, respectively. Crossing the
abovementioned factors created 72 (4×3×3×2) different con-
ditions to be analysed by seven different missing data ap-
proaches. Figure 2 visualizes the distribution of responses
across different conditions with sample size and missingness
proportion constrained at 1000 and 20%, respectively.

Other specifications

For all approaches, the mean and variance of the latent factor
was fixed to zero and 1, respectively, and error variances of
the ordinal variables were fixed to 1. For the approaches in-
volving MI, 50 imputations were generated for every imputa-
tion phase. Since bothMI and FIMLwere used, the simulation
studies were computationally very intense. We used 800 rep-
lications in each condition to balance accuracy and computa-
tional time.

Performance measures

The following measures were considered in evaluating the
performance of the different approaches: Proportion of non-
convergence, relative bias of parameter estimates, and relative
bias of standard errors.

Proportion of non-convergence Following Jia andWu (2019),
replications that produced improper solutions or did not con-
verge were counted as non-convergence replications.
Improper solutions included the following cases: Standard
errors or factor loadings that were ten standard deviations
above or below the mean standard error or factor loading for
that condition, standard errors greater than 10, or negative
standard errors.

For FIML, a replication is considered converged if the sta-
tus code in OpenMx reflects that the estimator converged
without issue. In some cases, certain standard errors may not
be estimated even though convergence was attained. This sim-
ulation treats these replications as non-converged and improp-
er solutions, and they are excluded in further calculations. For
the approaches that utilized multiple imputation, the replica-
tion is considered non-convergent if the pooled estimate is an
improper solution or less than half of the imputations con-
verged. Non-converged imputations were excluded from the
pooling phase and from all subsequent calculations.

Relative bias of factor loadings (FL bias) For each factor load-
ing in the model, the relative bias was calculated as the pro-
portion of the raw bias (numerator) to the true parameter value
( d e n om i n a t o r ) f r om t h e p o p u l a t i o n m o d e l ,

FL bias ¼ λ−λPopð Þ
λPop

*100%, where λ denotes the average fac-

tor loading for a condition with 800 replications and λPop
denotes the factor loading of the population model.
Hoogland and Boomsma (1998) considered a relative bias of

Fig. 1 Simulation population model. Note. Factor loadings and error
variances are displayed in the diagram

Table 3 Thresholds for
generating ordinal variables Degree of

asymmetry
Number of
categories

Thresholds in Z-scores

Symmetric 2 0.00

3 -0.83 0.83

5 −1.50 -0.50 0.50 1.50

7 −1.79 −1.07 -0.36 0.36 1.07 1.79

Moderate asymmetry 2 0.36

3 -0.50 0.76

5 -0.70 0.39 1.16 2.05

7 −1.43 -0.43 0.38 0.94 1.44 2.54

Severe asymmetry 2 1.04

3 0.58 1.13

5 0.05 0.44 0.84 1.34

7 -0.25 0.13 0.47 0.81 1.18 1.64
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Fig. 2 Distribution of o1. Note. The distribution of responses is
visualized across the different conditions after data is deleted when the
sample size is 1000. The height of the bars (y-axis) reflects the frequency
of each response category (x-axis). Black bars represent the amount of

missing data. The title above each graph displays the sample size, missing
mechanism, missingness proportion (MP), number of categories
(numCat), and degree of asymmetry (aSym)
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±5% as acceptable, but Muthén et al. (1987) posit that bias
within ±10% was acceptable. The current paper considers
±10% as an acceptable range for the relative bias of factor
loadings.

Relative bias of standard errors (SE bias)The relative bias in the
standard error is the proportion of the raw bias (numerator) to the
true empirical standard error (ESE; denominator) across 800 rep-

lications2, SE bias ¼ SE−ESEð Þ ESE * 100%, where SE is the av-
erage standard error across all 800 replications of a condition, and
ESE is the standard deviation of the parameter estimate across
800 replications. For SE bias, a relative bias within ±10% and
below is considered acceptable (Hoogland & Boomsma, 1998).

Root-mean-squared-error (RMSE) The mean-squared-error
(MSE) is a measure of overall accuracy, summarizing the bias
and variability in estimation (Wu et al., 2015). For ease of
interpretation, the current study takes the square root of the
MSE such that it is on the same scale as the factor loadings.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑K

k¼1 FLk−FLTrueð Þ
q

2=K, where K = 800 is the

number of replications for each condition. Smaller values of
RMSE closer to zero are indicative of less error and greater
accuracy.

Results and discussion

The results and discussion section will answer each research
question by referencing results from the simulation. Rounded
values of the performance measures are included in the sup-
plementary materials and displayed as heatmaps (Figures S2
to S8). Table 4 summarizes the trends in FL bias, SE bias and
RMSE within each approach.

Question 1: What are the effects of sample size,
missingness, number of categories, and distribution of
response categories on the convergence rates, factor load-
ings, standard errors and RMSE?

Non-convergence rates

Overall, approaches across all conditions had non-convergence
rates of less than 10% (80 out of 800 replications) except for the

FCSLV approaches. FCSLV-WLSMV had large non-
convergence rates between 37% and 63% when the sample size
was small, missingness was large, the number of categories was
seven, and the distribution was moderately asymmetric. This
specific combination of data factors produced the smallest pos-
sible observed frequencies, where a certain response category of
the ordinal variables has very small raw counts. FIML also had
increased non-convergence when small observed frequencies
were present, but non-convergence was below the 10% thresh-
old. FCSLV-ML had non-convergence rates between 20% and
35% when the sample was small, missingness was high, and the
number of categories was two. All other methods performed
adequately well when the convergence rate was assessed and
had no major problems with convergence.

FL and SE bias

All approaches produced biased estimates in some conditions
except for FIML, which produced unbiased factor loading and
standard error estimates for all tested conditions. We observed
that higher rates of missingness appear to be the most impor-
tant data factor affecting the performance, as it was associated
with greater bias in almost all approaches for all estimated
parameters. Smaller sample size, lower number of categories,
and more asymmetric distributions were also associated with
greater bias across all approaches and parameters, but were
less prevalent compared to higher missingness.

RMSE

All approaches produced similar trends in RMSE for ordinal
factor loadings. Within small samples, RMSE was greater
when missingness was higher, number of categories was low-
er, and distributions were more asymmetric. RMSE within
large samples were lower and were less sensitive to the degree
of missingness, number of categories, and distribution. RMSE
for continuous factor loadings produced two distinct trends for
the WLSMV and FIML-based approaches. RMSE for contin-
uous factor loadings in the WLSMV approaches had a similar
trend as the RMSE for ordinal factor loadings. RMSE for
continuous factor loadings in the FIML approaches were
higher when the sample size was small, but did not interact
with the degree of missingness, number of categories, and
distribution.

Question 2:Amongst the approaches studied, which per-
forms the best?

Overall, FIML would be the most preferred approach as it
was able to produce unbiased estimates of factor loadings and
standard errors in all tested conditions. RMSE values were
less than 0.1 for continuous factor loadings in all conditions.
RMSE values for ordinal factor loadings were also less than

2 Complete-data SEM with ML utilizes a z-test for hypothesis testing. When
multiple imputation is involved, the estimated SE follows a t-distribution with
degrees of freedom that is dependent on the missing information. The degrees
of freedom involved in the current study are large and exceed 50. Thus, this
measure of relative bias remains appropriate as the t-distribution approximates
a z-distribution with large degrees of freedom.

1071Behav Res (2022) 54:1063–1077
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0.1 when the sample size was large, but ranged from 0.12 to
0.26 when sample size was small. Despite the lower accuracy
in small samples when estimating ordinal factor loadings,
FIML was one of the most accurate amongst all tested ap-
proaches and conditions for both ordinal and continuous fac-
tor loadings. FIML was prone to moderate rates of non-
convergence when small observed frequencies were present,
but its accuracy in estimating parameters relative to other ap-
proaches and across most conditions outweighs this disadvan-
tage. If FIML is not feasible or does not converge, the second-
best approach would be the combination of FCS and
WLSMV, as it was able to produce unbiased and accurate
estimates consistently when the sample size was large. The
next section will answer the third research question by com-
paring the remaining missing data methods when the same
CFA estimator was used to ascertain the effect of eachmissing
data method on the bias produced.

Question 3: Are differences in performance driven by dif-
ferences in missing data approaches or CFA estimators?

Answering the above question would require us to compare
across missing data methods when the same estimator is used
and vice versa. We first compare missing data methods while
holding the CFA estimator constant. Differences in perfor-
mance between the approaches can be attributed to differences
between the missing data methods.

EMB-WLSMV, FCS-WLSMV, FCSLV-WLSMV, and
PD-WLSMV

Performance was similar when estimating the factor loadings
of the continuous variables and their corresponding standard
errors. Differences were observed when estimating ordinal
factor loadings and their corresponding standard errors.
When estimating ordinal factor loadings with a small sample,
all four approaches were similarly vulnerable to higher
missingness, lower number of categories, and more asymmet-
ric distributions. For FCS, FCSLV, and PD, these data factors
had little to no effect when the sample size was large. EMB
was marginally worse as biases were still observed in large
samples. When estimating the standard errors of the factor
loadings of ordinal variables, the four approaches all per-
formed differently. EMB produced biased standard errors in
both small and large samples when the missingness was high,
the number of categories was low, and the distribution was
more asymmetric. FCS and FCSLV produced biased standard
errors when missingness was moderate or high, and the bias
was persistent across all numbers of categories and sample
sizes, which worsens when the distribution was asymmetric.
PD produced biased standard errors in small samples when the
missingness was high, the number of categories was low, and
the distribution was more asymmetric. The RMSE trendsT

ab
le
4

(c
on
tin

ue
d)

M
is
si
ng

da
ta
m
et
ho
ds

E
M
B

F
C
S

F
C
S
L
V

P
D

R
M
SE

of
or
di
na
lf
ac
to
r

lo
ad
in
gs

G
re
at
er

in
sm

al
le
r
sa
m
pl
es
,

hi
gh
er

m
is
si
ng
ne
ss
,l
ow

er
nu
m
be
r
of

ca
te
go
ri
es

an
d

m
or
e
as
ym

m
et
ri
c

di
st
ri
bu
tio

ns

G
re
at
er

in
sm

al
le
r
sa
m
pl
es
,

hi
gh
er

m
is
si
ng
ne
ss
,l
ow

er
nu
m
be
r
of

ca
te
go
ri
es

an
d

m
or
e
as
ym

m
et
ri
c
di
st
ri
bu
tio

ns

G
re
at
er

in
sm

al
le
r
sa
m
pl
es
,

hi
gh
er

m
is
si
ng
ne
ss
,l
ow

er
nu
m
be
r
of

ca
te
go
ri
es

an
d

m
or
e
as
ym

m
et
ri
c
di
st
ri
bu
tio

ns

N
ot

ap
pl
ic
ab
le

C
on
tin

uo
us

fa
ct
or

lo
ad
in
gs

U
nb
ia
se
d

U
nb
ia
se
d

U
nb
ia
se
d

N
ot

ap
pl
ic
ab
le

St
an
da
rd

er
ro
rs
of

co
nt
in
uo
us

fa
ct
or

lo
ad
in
gs

B
ia
se
d
w
he
n
m
is
si
ng
ne
ss

is
m
od
er
at
e
or

hi
gh
,r
eg
ar
dl
es
s

of
ot
he
r
fa
ct
or
s

B
ia
se
d
w
he
n
m
is
si
ng
ne
ss

is
m
od
er
at
e
or

hi
gh
,r
eg
ar
dl
es
s

of
ot
he
r
fa
ct
or
s,
or

w
he
n
sm

al
l

ob
se
rv
ed

fr
eq
ue
nc
ie
s
ar
e
pr
es
en
t

B
ia
se
d
w
he
n
m
is
si
ng
ne
ss

is
m
od
er
at
e
or

hi
gh
,r
eg
ar
dl
es
s

of
ot
he
r
fa
ct
or
s,
or

w
he
n

sm
al
lo

bs
er
ve
d
fr
eq
ue
nc
ie
s

ar
e
pr
es
en
t

N
ot

ap
pl
ic
ab
le

R
M
SE

of
co
nt
in
uo
us

fa
ct
or

lo
ad
in
gs

G
re
at
er

in
sm

al
le
r
sa
m
pl
es

an
d
hi
gh
er

m
is
si
ng
ne
ss

G
re
at
er

in
sm

al
le
r
sa
m
pl
es

an
d
hi
gh
er

m
is
si
ng
ne
ss

G
re
at
er

in
sm

al
le
r
sa
m
pl
es

an
d
hi
gh
er

m
is
si
ng
ne
ss

N
ot

ap
pl
ic
ab
le

*W
he
n
ei
th
er
E
M
B
or

F
C
S
w
as

us
ed

to
ha
nd
le
m
is
si
ng

da
ta
,t
he
re
w
ill
be

no
m
is
si
ng

da
ta
du
ri
ng

es
tim

at
io
n.
U
til
iz
in
g
FI
M
L
to
ad
dr
es
s
m
is
si
ng

da
ta
an
d
co
nd
uc
tC

FA
es
tim

at
io
n
pr
od
uc
ed

un
bi
as
ed

fa
ct
or

lo
ad
in
gs

an
d
st
an
da
rd

er
ro
r
in

al
lc
on
di
tio

ns
,R

M
SE

tr
en
ds

w
er
e
id
en
tic
al
to

th
e
ot
he
r
F
IM

L
ap
pr
oa
ch
es

1073Behav Res (2022) 54:1063–1077



within the four WLSMV approaches were similar, with great-
er RMSE in conditions with smaller samples, higher
missingness, lower number of categories and more asymmet-
ric distributions. Overall, FCSLV, FCS and PD performed
best, as they were able to consistently provide unbiased factor
loadings and standard errors when the sample size was large.
However, FCSLV’s high rate of non-convergence is
concerning and the FCS imputation method would be pre-
ferred when paired with the WLSMV estimator. While PD
performed well in this study, and even outperformed some
of the missing data approaches on certain performance mea-
sures, it is not recommended that researchers utilize PD over
other missing data approaches. This is because PD may pro-
duce biased estimates when missingness is not MCAR, which
is likely in applied research. A multiple imputation approach
would produce less biased estimates in non-MCAR condi-
tions, as it utilizes information from other variables. van
Ginkel et al. (2020) provides a nice summary about the other
advantages of multiple imputation over PD.

EMB-ML, FCS-ML, and FCSLV-ML

When the FIML estimator is used, all three missing data ap-
proaches produced unbiased estimates of continuous factor
loadings in all conditions. FCS and FCSLV produced unbiased
estimates of ordinal factor loadings in all conditions, while EMB
produced bias estimates when missingness was high, the num-
ber of categories was low, and the distribution was asymmetric.
In estimating ordinal factor loadings, the FCS and FCSLV im-
putation methods appear superior. When estimating standard
errors of both continuous and ordinal factor loadings, all three
imputation methods produced bias estimates when missingness
was moderate or high, regardless of other data factors.
Performance and trends on RMSE were similar as well, as the
three conditions produced higher RMSE in smaller samples
regardless of other factors. EMB has a slight advantage over
the other two imputation methods as the imputed datasets were
not as susceptible to small observed frequencies like the FCS
and FCSLV methods.

FCS-WLSMV, FCS-ML, and FIML

FIML and FCS-WLSMV were the two best approaches from
the simulation study. FIML produced unbiased estimates even
in small samples, whereas the FCS-WLSMV approach pro-
duced biased estimates when missingness was high, the num-
ber of categories was low, and distribution was asymmetric.
Both FIML and FCS-WLSMV produced greater RMSE in
smaller samples, but FCS-WLSMV became less accurate
whenmissingness increased. It is difficult to ascertain whether
these differences in performance were due to the missing data
treatment or choice of CFA estimator, as FIML and FCS-
WLSMV differed in both. The FCS-ML approach is used to

ascertain the effect of the missing data approach by comparing
the performance between FCS-ML and FIML. We also com-
pare FCS-ML and FCS-WLSMV to ascertain the effect of the
estimator.

FCS-ML and FIML The main performance difference between
these two approaches lies in the estimation of standard errors.
While FIML produced unbiased standard errors in all condi-
tions, FCS-ML produced biased standard errors when
missingness was moderate or high. The FCS imputation meth-
od appears to be responsible for the bias in standard errors
when missingness was moderate or high, which is when more
data is imputed, and the impact of imputation is larger. Thus,
the bias in standard errors can be attributed to the missing data
treatment.

FCS-ML and FCS-WLSMV FCS-ML was able to produce unbi-
ased estimates of factor loadings in all tested conditions, while
WLSMV produced bias estimates in smaller samples. In
smaller samples, RMSE for continuous factor loadings were
greater when missingness was higher in WLSMV, while
missingness and RMSE were independent in FIML. The abil-
ity to produce unbiased factor loadings and accurate estimates
in small samples can be attributed to the choice of estimator.
Both approaches also produced biased standard errors in both
large and small samples, especially when missingness was
high. But they differed in the trend and magnitude of the bias.
FCS-WLSMV produced biased standard errors in fewer con-
ditions when the sample size was large compared to FCS-ML,
which produced biased standard errors in both large and small
samples. FCS-ML also produced completely untrustworthy
standard estimates when the data had small observed frequen-
cies. While this and the former section have ascertained that
the FCS missing data method is responsible for the bias in
standard errors, it appears that the trend of the bias interacts
with the choice of CFA estimator.

Recommendations

Based on the results discussed above, FIML is recommended
as the approach to handling missing data in JOC models if
there is no issue of non-convergence or if the sample is small.
FIML is the preferred choice due to its ability to generate
acceptable estimates in almost all conditions in the simulation
study. However, caution should be applied when ordinal cat-
egories have low raw frequencies, which could lead to non-
convergence. FIML for JOC models also becomes computa-
tionally intensive as the number of ordinal indicators increase,
which makes it unfeasible for large models.

If the sample size is large, FCS-WLSMV is recommended
as the alternative if non-convergence persists, if there are low
raw frequencies in the ordinal variables or computation takes
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too much time. FCS-WLSMV performed best in large sam-
ples, producing relatively unbiased estimates of factor load-
ings and standard errors when the sample was large. If FIML
is not feasible and the sample size is small, researchers should
ensure that the dataset has lowmissing proportions and should
have five or more categories in their ordinal variables with
symmetric distributions before applying the WLSMV-based
approaches. If such conditions are not available, applied re-
searchers could consider collapsing categories with small ob-
served frequencies while using FIML.

In light of the simulation findings, it would appear that the
estimates from FIML in the empirical illustration would be the
most trustworthy; it was unbiased in all conditions in the sim-
ulation. The estimates from EMB-WLSMV differed the most
from the other methods; it appeared to consistently underesti-
mate the factor loadings and agreed with the results from the
simulation study. FCS-WLSMV, FCSLV-WLSMV, and
FIML did not differ much, possibly because the data from
the empirical illustration were rather well-behaved. It had a
large sample size and the ordinal variables had four categories.

Limitations and future directions

The present simulation study only investigated a small subset
of possible models and datasets and would likely not general-
ize exactly to other simulated or actual datasets. Thus, caution
is advised in over-interpreting specific effects, and researchers
should focus more on the general trends.

Applied researchers with datasets that exhibit more ex-
treme factors than the factors in this study should apply the
recommendations cautiously. It is possible that there are other
properties of the dataset that may present a challenge to the
tested approaches. One such property was the small observed
frequencies, which may have caused greater rates of non-
convergence and inaccurate model rejection rates. Future
studies should also investigate other factors that may compro-
mise the performances of the approaches. Some recommen-
dations include other mechanisms of missingness, patterns of
missingness, observable frequencies, and degree of non-
normality of the distribution that underlies the ordinal vari-
ables. The involvement of both ordinal and continuous vari-
ables also brings with it the possibility of varying their rela-
tionship as design factors in future simulation studies. One
suggestion would be to investigate conditions where the
missingness of an ordinal and continuous variable was yoked
to each other.

The current study only studied JOC models in the context
of CFA, using a simplistic one-factor model. Future studies
should expand the models to investigate the performance of
the various techniques in estimating models with structural
paths (SEM) or within exploratory factor analysis where these
models are different from CFA. Applying JOC models to

SEM is straightforward, as structural paths can be easily added
in OpenMx; extensions to EFA are also possible if methods
for performing factor rotations are available. Furthermore, the
model studied used an equal number of ordinal and continu-
ous indicators. Future studies could investigate whether the
proportion of continuous and ordinal indicators has any effect
on the performance of each approach. It is plausible that the
joint distribution of the observed variables would more closely
approximate a multivariate normal distribution if there were
more continuous variables in relation to ordinal variables,
where the maximum likelihood estimators may perform bet-
ter. The current study is also limited in studying the different
imputation models within multiple imputation. The mice
package alone contains more than 15 imputation methods,
but the current study only investigated the more popular de-
faults of predictive mean matching and proportional odds
models. Some imputation models (e.g. mice.impute.norm)
are more compatible with the data-generating model used in
the simulation; future studies can evaluate whether a match
between the imputation and data-generating model results in
better performance.

The current paper is not exhaustive in testing all methods of
handling JOC models with missing data, such as Bayesian
methods, which are freely available in programs such as
Stan (https://mc-stan.org/), and which were mentioned by an
anonymous reviewer to be capable of model estimation with
small samples. Future studies may compare the pros and cons
of the frequentist versus Bayesian approaches.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13428-021-01582-w.
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