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Abstract
This article proposes a two-level moderated mediation (2moME) model with single level data, and develops measures to quantify
the moderated mediation (moME) effect sizes for both the conventional moME model and the 2moME model. A Bayesian
approach is developed to estimate and test moME effects and the corresponding effect sizes (ES). Monte Carlo results indicate
that (1) the 2moME model yields more accurate estimates of the parameters than the conventional moME model; (2) the 95%
credibility interval following the 2moME model covers the moME effects and the ESs more accurately than that following the
conventional moME model; and (3) statistical tests for the existence of the moME effects with the 2moME model are more
reliable in controlling type I errors than those with the conventional moMEmodel, especially under heteroscedasticity conditions.
In addition, the developed measures of ES are more interpretable, and directly answer the questions regarding the extent to which
a moderator can account for the change of the mediation effect between the predictor and the outcome variable through the
mediator variable. An empirical example illustrates the application of the 2moME model and the ES measures.

Keywords Moderated mediation effect . Variance decomposition . Effect size . Bayesian estimation

Introduction

Mediation and moderation analyses are commonly used
methods for studying the relationship between a predictor

(X) and an outcome variable (Y) in social science research.
To better understand the relationships among variables, there
is an increasing demand for a more general theoretical frame-
work that combines moderation and mediation analyses.
Recently, statistical analysis of moderated mediation
(moME) effects has become a powerful tool for scientists to
investigate complex processes. The conceptual model of
moME emphasizes that the question of interest is how the
“mediation effect” of the predictor on the outcome variable
via the mediation variable varies as the first-stage moderator
variable or (and) the second-stage moderator variable chang-
es. However, because the moderated mediation effect is treat-
ed as an interaction effect by including a product term of the
predictor (or mediator) with the moderator in the conventional
statistical model for moME analysis, it is difficult to distin-
guish the different roles of the predictor, mediator, and mod-
erator in practice, which will be discussed further in later
sections.

An effect size (ES) is a quantitative reflection of the mag-
nitude of some phenomenon that is used for the purpose of
addressing a question of interest (Kelley & Preacher, 2012).
Routinely reporting ESs has been recommended as the prima-
ry solution to the issue of overemphasis on significance testing
(American Education Research Association, 2006; Cumming,
2014; Funder et al., 2013; Pek & Flora, 2018; Rozeboom,
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1960; Wilkinson, 1999). Therefore, appropriate ESs for mea-
suring moME effects are very important in reporting and
interpreting inferential results (Rights & Sterba, 2018).
However, there does not exist an effective measure that allows
us to answer the question regarding the extent to which the
moderator variable (Z) moderates the indirect effect of X on Y
via the mediator variable (M) in the moME model.

To distinguish the roles of the moderator, mediator, and
predictor in the analysis of moME effect and to better match
with the conceptual model, we first reformulate the conven-
tional moME model and extend it to a two-level moME
(2moME) model with single level data. The new model does
not need the homoscedasticity assumptions required by the
conventional model. Second, to fill the lack of interpretable
measures of ESs in conducting moME analysis, we develop
ES measures by quantifying the mediation-effect variance at-
tributed to the moderator(s) for both the conventional moME
and the 2moME models under different scenarios. Then, the
2moME model and measures of effect size will be estimated
by the Bayesian method and examined via a simulation study.
Next, the application of the newmodel and the ESmeasures of
the moderated mediation effect will be illustrated with a real
data example.

Mediation model and its effect size measures

Mediation analysis studies the relationship between X and Y
by introducing a mediator variableM. Mediation occurs when
the effect of X on Y is transmitted through M (Fig. 1a).
Statistically, the existence of a mediation effect can be done
by testing whether or not the indirect path X→M→Y (i.e., the
product a0b0) as shown in Fig. 1b (the bolded paths) is zero.
The model in Fig. 1b can be written as

Mi ¼ dM0 þ a0X i þ eMi; ð1Þ
Y i ¼ dY0 þ c0X i þ b0Mi þ eYi; ð2Þ
where dM0 and dY0 represent intercepts, a0, b0, and c0 are
regression coefficients1, and eMi and eYi represent errors with
means 0 and variances σ2

eM and σ2
eY , respectively.

By inserting Eq. (1) into Eq. (2), the combined equation
becomes

Y i ¼ dY0 þ c0X i þ b0 dM0 þ a0X i þ eMið Þ þ eY i
¼ dY0 þ dM0b0ð Þ þ c0 þ a0b0ð ÞX i þ b0eMi þ eYi:

ð3Þ

The mediation effect is evaluated by the product term a0b0
in Eq. (3). The Sobel test (Sobel, 1982) and the bootstrap
methods (MacKinnon et al., 2004; Shrout & Bolger, 2002)

are widely used for testing the hypothesis of null mediation
effect, represented by a0b0=0.

When the null hypothesis does not hold, various ES mea-
sures have been proposed to quantify the size of the indirect
effect in the context of mediation analysis, including the ratio
of the indirect effect to the total effect, the ratio of the indirect
effect to the direct effect (Alwin & Hauser, 1975; Sobel,
1982); standardized indirect effects (Alwin & Hauser, 1975;
Cheung, 2009; MacKinnon, 2008; Preacher & Hayes, 2008);
proportions of the variance of Y that can be attributed to the
indirect effect of X on Y through M (de Heus, 2012; Fairchild
et al., 2009; MacKinnon, 2008; Preacher & Kelley, 2011;
Lachowicz et al., 2018). Reviews and more detailed
discussions about the ES of indirect effects can be found in
Preacher and Kelley (2011) and Lachowicz et al. (2018).

These ES measures for the indirect effect have many desir-
able properties. However, they were formulated based on the
assumptions that both the error variance of M and Y are con-
stants across individuals, called homoscedasticity. As we shall
see, the moME model itself implies that the mediation effect
varies across different values of the moderator variable(s). It is
necessary to consider how to quantify the variation of the
indirect effect attributed to the moderator(s) to advance the
analysis of the moME effect.

Moderation model and its effect size measures

Moderated multiple regression model

The moderation effect describes the conditions under which
the relationship between X and Y is related to a third variable
Z, as shown in Fig. 2a for the conceptual model. Such a hy-
pothesis is commonly tested using moderated multiple regres-
sion (MMR) (Aiken & West, 1991), and the statistical dia-
gram of MMR is given in Fig. 2b. The MMR model can be
written as

Y i ¼ b0 þ b1X i þ b2Zi þ b3X iZi þ εi; ð4Þ
where εi is assumed to have a zero mean and a constant var-
iance (i.e., homoscedasticity assumption). A moderation ef-
fect is endorsed when the least squares (LS) estimate of b3 is
statistically significantly different from zero (the bolded path
in Fig. 2b), and the conditional effect of X on Y is statistically
defined as b1+ b3Z (Baron & Kenny, 1986).

Several ES measures have been proposed to quantify the
size of the moderation effect, which mainly include the differ-

ence of coefficients of determination (ΔR2
Y ), f 2Y , partial and

semi-partial correlations, standardized regression coefficients
(Smithson & Shou, 2017), and a few recently developed al-
ternative measures (Dahlke & Sackett, 2018; Nye & Sackett,
2017; Smithson & Shou, 2017). The measure ΔR2 can be
expressed as

1 For simplicity and without causing ambiguity, we use c0 to represent the

direct effect of X on Y after controlling the effect of M, although c
0
0 is often

used for this coefficient in the literature.
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ΔR2 ¼ R2
int−R

2
1; ð5Þ

where R2
int is the coefficient of determination for the multiple

regression model in Eq. (4), and R2
1 is the coefficient of deter-

mination when the interaction term XZ is removed from Eq.
(4). For researchers conducting moderation analysis using the
MMR model, reporting ΔR2 is perceived as both necessary
and informative to evaluate the additional contributions of the
moderator variable (Aiken & West, 1991; Cohen, 1988;
Cumming, 2014). It is generally accepted that ΔR2 is a good
measure of the importance of the moderator and is commonly
reported in publications (Aguinis et al., 2005; Murphy &
Russell, 2017). Clearly, the ΔR2 in Eq. (5) measures the per-
centage of the variance of Y that is uniquely explained by the
interaction term XZ. However, according to Fig. 2a, the inter-
est of moderation analysis is how the regression coefficient of
X on Y is affected by Z across individuals. The concept of
moderation clearly distinguishes the role of the moderator
from that of the predictor. In particular, the relationship be-
tween the predictor and the outcome variable is of primary
interest, and the moderator affects this relationship. An inter-
action arises when considering the relationship among three or
more variables, and it describes a situation in which the effect
of one causal variable on the outcome variable depends on the
state of a second causal variable (that is, when effects of the
two causes are not additive). In practice, the roles of the var-
iables can be determined substantively or by consulting the
existing literature (Baron & Kenny, 1986; Kraemer et al.,
2001; Kraemer et al., 2002; Kraemer et al., 2008), and the
different roles also need to be clear when interpreting the
effects of the predictor and the moderator variables. Kraemer

et al. (2008) provided concrete steps to distinguish the predic-
tor from the moderator. These steps emphasize that the mod-
erator temporally precedes the independent variable. In
conducting moderation analysis, what we are really interested
in is how Z changes the effect of X on Y, rather than the effect
of XZ on Y. Therefore, proper measures of moderation ES
should reflect the degree for the moderator variable to alter
the effect of X on Y, rather than the effect of XZ on Y.
Unfortunately, most traditional measures of moderation ESs
changed the concept of moderation to interaction. Because the
moderator and the predictor variable are treated equally, they
misrepresent the meaning of moderation ES (Liu & Yuan,
2021). In particular, ΔR2 is simply the proportion of the total
variance of Y uniquely explained by the interaction term XZ.
These traditional measures do not match the concept of mod-
eration effect. Moreover, when the homoscedasticity assump-
tion is violated, the results of testing b3=0 under the MMR
model are unreliable, and the resulting F, t, or Welch’s t tests
following the LS method are unable to control type I and type
II errors (Long & Ervin, 2000). A review conducted by
Aguinis et al. (1999) shows that approximately 50% of the
literature using the MMR model with LS analysis clearly vi-
olated the constant-variance assumption. In fact, violations
appear to be most likely for the MMR model (Aguinis &
Pierce, 1998).

Two-level moderated regression model

A two-level moderated regression (2MMR) model with
single-level data was proposed by Yuan et al. (2014). The
model can be defined hierarchically using three equations:

Fig. 1 Diagrams of the mediation model

Fig. 2 Diagrams of the moderation model
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Level 1:

Y i ¼ bi0 þ bi1X i þ εi; ð6Þ

Level 2:

bi0 ¼ γ00 þ γ01Zi þ ui0; ð7Þ
bi1 ¼ γ10 þ γ11Zi þ ui1; ð8Þ

where bi0 and bi1 can vary across individuals and the moder-
ator Z accounts for their changes; γ00, γ01, γ10, and γ11 are
regression coefficients. Plugging Eqs. (7) and (8) into Eq. (6)
gives us the combined form of the 2MMR model

Y i ¼ γ00 þ γ01Zi þ γ10 þ γ11Zi þ ui1ð ÞX i þ δi: ð9Þ

Since single-level data do not have a nested structure to pro-
vide information to distinguish the error term εi from the level-
2 residual ui0, we combine them into δi = εi + ui0 and continue
to use σ2 to denote the variance of δi for convenience, i.e.,

δi
ui1

� �
∼N

 
0
0

� �
;

σ2 τ01
τ10 τ11

� �!
. Although δi and ui1 are

not necessarily independent for the 2MMRmodel, wemake such
an assumption for more accurate variance-parameter estimates in
practice (see Yuan et al., 2014). Equation (9) implies that Yi has
two components of error, ui1Xi and δi. For a given value of X, the
error variance is
Var ui1X i þ δijX i ¼ xið Þ ¼ x2i τ11 þ 2xiτ01 þ σ2, which ex-
plicitly accounts for violation of homoscedasticity generated by
the moderation effect in practice. It is a natural phenomenon in
human development that individuals differ more as age, level of
education, years of experience, or other chronological variables
increase (Yuan et al., 2014). Nelson and Dannefer (1992)
reviewed 185 gerontological studies and found that a majority
of the studies presenting data reported increases in variability
with age. Bast and Reitsma (1998) found that individuals differ
more in reading as they become older. Therefore, it is common
for the variance of the outcome variable to increasewith the value
of the predictor. The model in Eq. (9) can effectively account for
such empirical heteroscedasticity, and the 2MMRmodel is also a
natural translation of the moderation effect in Fig. 2a.

The 2MMR model also represents a direct translation of the
conceptual model of moderation effect into a statistical model.
The level-1 model describes the effect of X on Y with random
intercepts bi0 and regression coefficient bi1 due to individual dif-
ferences. The level-2 model describes the effects of the moderator
variables Zi on the first level random coefficients. The parameter
γ11 captures the moderation effects of Zi on X→Y. The 2MMR
model highlights the interpretation of the moderation effect, that
is, how the “varying effect” ofX onY (i.e., bi1) is influenced by the
moderator variables Zi (level 2). The 2MMR model implies that
the effect of X on Y varies across individuals. It is also in line with
the person-oriented method (Sterba & Bauer, 2010).

The percentage of the variance of bi1 explained by Z is
naturally evaluated by

ρ2 ¼ γ211Var Zið Þ
γ211Var Zið Þ þ τ11

; ð10Þ

which was formally defined by Yuan et al. (2014). This ρ2

allows us to directly answer the question of the extent to which
Z moderates the effect of X on Y.

Althoughmoderation analysis can advance our understanding
of the underlying processes being investigated, a simple moder-
ation model is often insufficient to explain the complicated rela-
tionships among variables. There is an increasing demand for a
more general theoretical framework that combinesmediation and
moderation into a single model. Themost commonly used one is
the moME model (Edwards & Lambert, 2007; Hayes, 2018;
MacKinnon, 2008; Muller et al., 2005; Wang & Preacher,
2015), in which the mediating process depends on a moderator
variable Z. In this article, wewill developmeasures to answer the
question as to what extent the moderator variable Z explains the
variation of themediation effect ofM on the relationship ofX toY
across individuals.

Moderated mediation model and its effect size
measure

Moderated mediation occurs when the strength of an indirect
effect depends on the value of a moderator variable (Preacher
et al., 2007). Because the indirect effect in Fig. 1 is the product
of two effects (the effect of X on M, and the effect of M on Y
controlling for X), if one of these effects is moderated, then so
too is the indirect effect. Several models have been proposed
corresponding to moME effects under different scenarios
(Hayes, 2015; Preacher et al., 2007; Wang & Preacher,
2015). Figure 3 shows four common scenarios of moMEs:
first stage (the path of X onM) moMEmodel (Fig. 3a), second
stage (the path of M on Y) moME model (Fig. 3b), first stage
and second stage moME models by one common moderator
variable (Fig. 3c) or by two different moderator variables (Fig.
3d). The focused moderated mediation effects under different
scenarios are marked with the bolded paths in Fig. 3.

Let us focus on the model in Fig. 3d, because the other
scenarios can be regarded as special cases of this model. The
model in 3d is conventionally expressed as:

Mi ¼ dM0 þ dM1Zi1 þ a0X i þ a1X iZi1 þ eMi; ð11Þ
Y i ¼ dY0 þ dY1Zi1 þ dY2Zi2 þ b0Mi þ b1MiZi2

þ c0X i þ c1X iZi1 þ c2X iZi2 þ eYi; ð12Þ

where eMi and eYi are assumed to be independent and follow
normal distributions with means zero and constant variances.
If Z1 moderates the relationship X→M and/or Z2 moderates
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the relationship M→ Y, then moME occurs. The conditional
indirect effect given Z1 = z1 and Z2 = z2 can be expressed as

moME ¼ a0 þ a1z1ð Þ b0 þ b1z2ð Þ: ð13Þ

Thus, the difference between two conditional indirect effects
is

dif me ¼ a0 þ a1z11ð Þ b0 þ b1z21ð Þ− a0 þ a1z12ð Þ b0 þ b1z22ð Þ;
ð14Þ

where z11 and z12 are two values of Z1, and z21 and z22 are two
values of Z2. In practice, to detect whether Z1 and/or Z2 mod-
erate the mediation effect ab, we need to test whether the
mediation effects vary across different values of Z1 and Z2.
The null hypothesis of the test is H0: difme = 0. Preacher et al.
(2007) discussed how to estimate and test moME using
methods including the Sobel test, the second-order delta
method, and the bootstrap method. For scenarios represented
by Fig. 3a and b, Hayes (2015) described a confidence interval
approach to convey the uncertainty in estimating the associa-
tion between the moderator and the indirect effect. However,
estimating the coefficients a0 and a1, b0 and b1 in Eqs. (11)
and (12) by the LS method or using the default option in a
statistical package relies on the homoscedasticity assumption
of eMi and eYi, respectively. Testing the difference between
mediation effects under different sets of moderator values
(i.e., H0: difme = 0) also relies on the homoscedasticity as-
sumption of eMi and eYi. Violating this assumption often re-
sults in an inflated type II error rate. Violations of homosce-
dasticity are common in practice (Aguinis & Pierce, 1998;

Alexander & DeShon, 1994).
As for measures of moderated mediation effects, the differ-

ence between two conditional indirect effects difme in Eq. (14)
can be used to quantify the change of mediation effect. But
difme changes with the selected values of the moderator vari-
ables. Thus, difme is not a measure of the overall moME effect,
but a value for checking the existence of moME effect. While
the index of moderated mediation (i.e., a1b0 or a0b1 ) proposed
by Hayes (2015) can be used to quantify the overall effect of
moME, it only applies to scenarios represented by Fig. 3a or b.
In particular, it measures the effect of the interaction term XZ1
orMZ2 on Y, rather than the extent Z1 and/or Z2 moderate the
indirect effect of X→M→Y. Therefore, it does not match the
concept of moderated mediation effect. In summary, even
though researchers have been urged to report ESs to supple-
ment the results of null hypothesis testing in conducting
moME analysis, few such measures are available or they do
not serve the purpose.

The present investigation

The current article has five goals: (1) to extend the two-level
moderated regressionmodel proposed byYuan et al. (2014) to
a two-level moderated mediation (2moME) model within the
framework of structural equation modelling (SEM); (2) to
develop ES measures for the moME effect by decomposing
the total variance of mediation effect; (3) to estimate the pa-
rameters of the 2moME model and the ES measures of the
indirect effect by the Bayesian method; (4) to evaluate the
performance of the 2moME model and the proposed ES

Fig. 3 Four scenarios of the moderated mediation models
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measures using a Monte Carlo simulation study; and (5) to
illustrate the application of the proposed model and measures
with a real dataset. In addition, pros and cons of the new
model and the ES measures, as well as issues for further re-
search will also be discussed.

Model formulation and definition of effect
size measures

In this section, we first describe the formulation of the
2moME model; then we define several ES measures for eval-
uating the moME effect. We will consider four scenarios of
moME corresponding to the conceptual models in Fig. 3.
Because Scenarios A, B, and C become special cases of
Scenario D when letting Zi2 = 0, Zi1 = 0, and Zi1 = Zi2 = Zi,
respectively (Wang & Preacher, 2015), we only present the
development for Scenario D.

A two-level moderated mediation model

The 2moME model for Scenario D can be expressed by the
following equations.
Level 1:

Mi ¼ dMi þ aiX i þ εMi; ð15Þ
Y i ¼ dYi þ biMi þ ciX i þ εYi; ð16Þ

Level 2:

dMi ¼ γdM0
þ γdM1

Zi1 þ udMi ; ð17Þ
ai ¼ γa0 þ γa1Zi1 þ uai ; ð18Þ
dYi ¼ γdY0 þ γdY1Zi1 þ γdY2Zi2 þ udYi ; ð19Þ
bi ¼ γb0 þ γb1Zi2 þ ubi ; ð20Þ
ci ¼ γc0 þ γc1Zi1 þ γc2Zi2 þ uci : ð21Þ

Due to the limitation with single level data, we cannot
distinguish the level-1 error term εYi from the level-2 error
term udYi nor the level-1 error term εMi from the level-2 error
term udMi . They are combined with eMi ¼ εMi þ udMi and
eYi ¼ εYi þ udYi . Note that the error terms eMi and eYi are re-
spectively the left-over effects of M and Y in the process of
moderated mediation, whereas the error terms uai , ubi , and uci
from the slopes are the residuals due to incomplete moderation
effects or the sources for heteroscedastic variances conditional
on X and (or)M. In the development, we assume that the error
terms eMi, eYi, uai , ubi , and uci are independent and follow

normal distributions with eMi∼N 0;σ2
eM Þ

�
, eYi∼N 0;σ2

eY Þ
�

,

uai∼N 0;σ2
uaÞ

�
, ubi∼N 0;σ2

ubÞ
�

, uci∼N 0;σ2
ucÞ

�
. Note that the

different error terms are not necessarily independent for the
2moME model in practice, but we use such an assumption for

more accurate variance-parameter estimates with single level
data (see Yuan et al., 2014). We will also assume that vari-
ables X, Z1, and Z2 are mean-centered in the following
development.

Plugging Eqs. (17) and (18) into Eq. (15) gives us the
combined form of the model for the mediator variable M:

Mi ¼ γdM0
þ γdM1

Zi1 þ udMi þ γa0 þ γa1Zi1 þ uai
� �

X i þ εMi:

ð22Þ

Equation (22) implies that the effect of X on M varies across
individuals in addition to depending on the value of Z1.
Conditional on X, the composite error,
ζMi ¼ udMi þ uaiX i þ εMi ¼ uaiX i þ eMi, is heteroscedastic,
that is,

Var ζMijX i ¼ xið Þ ¼ Var uaiX i þ eMijX i ¼ xið Þ ¼ x2i σ
2
ua þ σ2

eM :

ð23Þ

Plugging Eqs. (19), (20), and (21) into Eq. (16) gives us the
combined form of the model for the outcome variable Y:

Y i ¼ γdY0 þ γdY1Zi1 þ γdY2Zi2 þ udYi
� �þ γb0 þ γb1Zi2 þ ubi

� �
Mi þ γc0 þ γc1Zi1 þ γc2Zi2 þ uci

� �
X i þ εYi:

ð24Þ

Equation (24) implies that the effect of M on Y varies
across individuals in addition to depending on the value of
the moderator variable Z2. Again, the composite error,
ζYi ¼ udYi þ ubiMi þ uciX i þ εYi ¼ ubiMi þ uciX i þ eYi, has
heteroscedastic variances conditional on X and M, that is,

Var ζYijX i ¼ xi;Mi ¼ mið Þ ¼ m2
i σ

2
ub þ x2i σ

2
uc þ σ2

eY : ð25Þ

Similar to the advantages of the 2MMR model over the
MMR model discussed in section 1.2, the models in Eqs.
(22) and (24) better describe the empirical phenomena that
the variance of the outcome variable typically increases with
the value of the predictor than the models in Eqs. (11) and
(12). In addition, the 2moME model is also a natural transla-
tion of the moME effect in Fig. 3d.

The 2moME model also represents a direct translation of
the conceptual model of moME into a statistical model, which
can be represented by the diagram in Fig. 4. The level-1 model
describes the mediation effect of X on Y through M with ran-
dom intercepts dMi, dYi and regression coefficients ai, bi, and ci
due to individual differences, and the coefficients ai and bi are
the focus in moderated mediation analysis (the bolded paths in
level 1). The level-2 model describes the effects of the mod-
erator variables Z1 and Z2 on the first level random coeffi-
cients. The parameter γa1 captures the moderation effects of
Z1 on X→M, and the parameter γb1 captures the moderation
effects of Z2 on M→Y (the bolded paths in level 2). The
2moME model highlights the interpretation of different
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variables in moME analysis, that is, how the “varying media-
tion effect” (i.e., aibi) ofX on Y viaM (level 1) is influenced by
the moderator variables Z1 and Z2 (level 2). However, unlike
the traditional multilevel model (e.g., Raudenbush & Bryk,
2002), the 2moMEmodel does not require a nested data struc-
ture. In the 2moME model, the role of the variable determines
its level in the model. In particular, X, M, Z1, Z2, and Y come
from the same unit in the dataset, but in the 2moME analysis,
the predictor, mediator, and outcome variables (i.e., X,M, and
Y ) are in level 1, while the moderator variables (i.e., Z1 and
Z2) are in level 2. In contrast, in the traditional multilevel
model the level of a variable is determined by the unit (e.g.,
individual or cluster) it comes from. Thus, in terms of data
structure and the scope of applicability, the 2moME model in
Fig. 4 is different from the traditional multilevel model.

The main difference between the moME model and the
2moME model is that the later contains random terms uai ,
ubi , and uci to account for individual differences. They are
needed because the strengths of the regression relationships
X→M,M→ Y, and X→ Y for different individuals are most
likely different, and part of such differences can be accounted
for by Z1 and (or) Z2. The model including individual differ-
ences automatically accounts for the heteroscedastic errors

that are related to X and (or) M. The values of uai and ubi
represent the size of the residuals of the mediation effect after
it is accounted for by the moderator variables Z1 and Z2 for the
ith individual; the size of the level-2 residuals also suggests
that there may be other moderator variables that are not in-
cluded in the model in addition to the variables Z1 and (or) Z2.
Thus, the 2moME model provides a more refined approach to
modeling individual differences. But we should be aware that
the variations at individual level are random effects instead of
being estimable parameters, due to the limitation with single
level data. However, we can estimate the fixed effects
(i.e., γdM0

; γdM1
; γdY0 ; γdY1 ; γdY2 ; γa0 ; γa1 ; γb0 ; γb1 ; γc0 ; γc1 ; γc2)

and the variance of uai , ubi , and uci (Yuan et al., 2014).
It follows from Eqs. (22) and (24) that the indirect effect

based on the 2moME model is given by

INDi ¼ aibi

¼ γa0 þ γa1Zi1 þ uai
� �

γb0 þ γb1Zi2 þ ubi
� �

: ð26Þ

Equation (26) implies that the mediation effect of X on Y
via M also varies across individuals, and the mediation effect
is moderated by both the stage one (X→M) moderator variable
Z1 and the stage two (M→Y) moderator variable Z2. For mean-

Fig. 4 A diagram of the two-level moderated mediation model
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centered variables Z1 and Z2, the expected value or the mean
of aibi is (Goodman, 1960, p.712)

E INDið Þ ¼ E aibið Þ ¼ E aið ÞE bið Þ þ Cov ai; bið Þ
¼ γa0γb0 þ γa1γb1Cov Zi1; Zi2ð Þ: ð27Þ

It is clear that the conventional moMEmodel is a special case
of the 2moME model when uai ¼ 0, ubi ¼ 0, and uci ¼ 0. In
practice, to check σ2

ua ¼ 0, σ2
ub ¼ 0, or σ2

uc ¼ 0, we can use a
Wald test (or Z-test) following normal-distribution-based maxi-
mum likelihood (see Yuan et al., 2014), or the Bayes Factor (BF;
Verhagen & Fox, 2012), and Deviance Information Criteria
(DIC; Spiegelhalter et al., 2002; Cain & Zhang, 2019) in the
framework of Bayesian estimation that we will discuss further
in the empirical example section. If all the estimates of the var-
iances are not statistically significant2, the conventional moME
model will be preferred for parsimony. Otherwise, Eq. (26) pro-
vides a more accurate description of moderated mediation.

Effect size measures of moderated mediation

In this subsection, we define several measures of ESs to quan-
tify the extent to which the moderator variables explain the
variance of the indirect effect in Eq. (26).

For the convenience of presentation and explanation, let

Then,

ð28Þ

Appendix A contains a detailed derivation of this equation.
The term ➀ is the moME variance due to the first stage

moderator Z1 on X→M alone; the term➁ is the moME variance
due to the second stagemoderator Z2 onM→Y alone; the term➂

is themoMEvariance due to the first stagemoderator variable Z1
on X→M interactively with the second stage moderator variable
Z2 on M→Y; the term ➃ is the moME effect due to the covari-
ances between Z1 and Z2, Z1 and Z1Z2, Z2 and Z1Z2; the term➄ is
the unexplained variance of the mediation effect, including the
residual variance of the unexplained effect of X→M and the
residual variance of the unexplained effect of M→Y.

The percentage of variance collectively accounted by the
moderator variables Z1 and Z2 is measured by

ð29Þ

which is the total moderated mediation ES by the moderator
variables Z1 and Z2.

After controlling for Z2, the ratio
3 of the explained variance

of aibi by Z1 alone to the total variance of aibi is given by

ð30Þ

which measures the first stage moME effect by Z1 on X→M.
Similarly, after controlling for Z1, the ratio of the explained
variance of aibi by Z2 alone to the total variance of aibi is
evaluated by

ð31Þ

which measures the second stage moME effect by Z2 on
M→Y.

Note that the stage one coefficient ai of X→M is moderated
by Z1, and stage two coefficient bi of M→Y is moderated by
Z2. The ratio of the explained variance by Z1Z2 to the total
variance of aibi is given by

ð32Þ

If we are interested in the proportions of the model-
explained variance of the mediation effect aibi contributed
by different parts, then the unexplained variance (the part de-
noted by ➄) can be removed from the denominators of Eqs.
(30)-(32), resulting in their fixed-effect versions

ð33Þ

2 Even if all the statistics are not significant, we can only claim that we do not
have enough power to reject the null instead of proving that the three param-
eters are literally zero.

3 The reason for us to use “ratio” rather than “percent” is because the values of
φ1, φ2, or φ12 may exceed 1 when suppressions between Z1 and Z2, Z1 and
Z1Z2, or Z2 and Z1Z2 occur. Specifically, there exist combinations of regression
coefficients, variances, and covariances for the value of the ES (φ1, φ2, orφ12)
to be greater than 1. But such conditions are rare in practice. Interested readers
are referred to Deegan (1978), Lutz (1983), Maassen and Bakker (2001), and
Tzelgov and Henik (1991) for further discussions on when this can occur.
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ð34Þ

ð35Þ

where the superscript ( f ) is to indicate that these ratios are for
fixed effect. Equations (33) to (35) measure the proportions (or
ratios) of the model-explainedmoME variance of aibi attributed
to Z1 alone (the first stage moME), Z2 alone (the second stage
moME), and Z1 and Z2 interactively, respectively.

When σ2
ua =σ2

ub =σ2
uc =0, then the homoscedasticity as-

sumptions on eMi and eYi hold, and the model specified by
Eqs. (15) to (21) become the conventional moME model.
The measures defined in Eqs. (30)-(32) automatically become
those in Eqs. (33)-(35). Thus, the three measures defined in
Eqs. (33) to (35) are applicable to both the conventional
moME and the 2moMEmodels. In practice, we should decide
which model is preferred by trade-off between goodness of fit
with data and model complexity.

In operation, we recommend mean-centering X,M, Z1, and
Z2 prior to conducting the 2moME analysis. The advantages
and disadvantages of centering variables in moME analysis
are similar to those in the analysis of the MMR model, which
have been discussed in details by Dalal and Zickar (2012).
The main reason for mean-centering is that it can remove the
nonessential multicollinearity between the interaction terms
and their constituent variables, and increase the interpretabil-
ity of the coefficients by giving a meaningful zero-points of X,
M, Z1, and Z2. From the perspective of variance decomposi-
tion, reducing the correlations among Z1, Z2, and Z1Z2 en-
hances the interpretability of the moderated mediation effect.

Moderated mediation measures for special cases

As noted earlier, Scenarios A, B, and C are special cases of
Scenario D. Thus, the measures defined in the previous sub-
section also apply to these scenarios. This subsection de-
scribes the simplified forms for these special cases.

For Scenario C, Zi1 = Zi2 = Zi, then

Parallel to those in Scenario D, the φs and φ fð Þ
s under

Scenario C are defined as in Eqs. (29) to (35).
For Scenario A, Zi1 = Zi, Zi2 = 0, and σ2

ub ¼ 0, so only the
first stage moME exists in the model. The formulations of ➀
to ➄ are simplified to ➀¼ γ2a1γ

2
b0Var Zið Þ, ➁=0, ➂=0, ➃=0,

and ➄¼ γ2b0σ
2
ua. Thus,

ð36Þ

which measures the variance of moME attributed to the mod-
erator Zi (first stage moME).

For Scenario B, Zi1 = 0, Zi2 = Zi, and σ2
ua ¼ 0, only the

second stage moME exists in the model. The formulations
of ➀ to ➄ are simplified to ➀=0, ➁¼ γ2a0γ

2
b1Var Z1ð Þ, ➂=0,

➃=0, and ➄¼ γ2
a0σ

2
ub. Consequently,

ð37Þ

which measures the variance of moME attributed to the mod-
erator Zi (second stage moME).

It is worth noting that for Scenarios A and B, there is only
one non-null term, γ2a1γ

2
b0Var Zið Þ or γ2a0γ

2
b1Var Zið Þ, to de-

scribe the explained moME variance. Also, there is only one
non-null residual term, γ2b0σ

2
ua or γ2a0σ

2
ub, to describe the un-

explained moME variance. In these cases, φ fð Þ
1 or φ fð Þ

2 is
always 1, which means that the explained variance of the
mediation effect is only attributed to the single moderator Z.

It can be seen from the denominators of Eqs. (29) to (35)
that the new measures focus on the variance of the mediation
effect aibi or the explained variance of the mediation effect a-
ibi. Each measure captures the variance of X→M→Y and
closely matches the conceptual model of moderated mediation
analysis. Therefore, the new measures allow us to answer the
question regarding the extent to which the moderator variable
(Z) moderates the indirect effect of X on Y via the mediator
variable (M) in the moME models.

Bayesian estimation

We describe how to estimate the 2moMEmodel in this section.
Wang and Preacher (2015) studied the conventional moME
model for estimating the conditional indirect effects in Eqs.
(11) and (12). They showed that the Bayesian method with
diffuse (vague) priors yielded unbiased estimates and higher
power than both maximum likelihood (ML) with delta-
method standard errors and ML with bootstrap percentile con-
fidence intervals, and its power was comparable to the ML
method with bootstrap bias-corrected confidence intervals.
The Bayesian method is more flexible and feasible in
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estimating more complex models than ML. It also provides a
natural and principled way of including prior information,
which will improve estimation efficiency and accuracy, espe-
cially for small samples (Zondervan-Zwijnenburg et al., 2017).
Thus, we will use the Bayesian method to estimate the 2moME
model, and also the conventional moME model for fair
comparison.

In the Bayesian framework, model parameters θ are treated
as random variables, which have a joint prior distribution with
a density function p(θ). With the observed data and the prior
distribution, Bayesian inference can be derived from the pos-
terior distribution of parameters p(θ| data) (Song & Lee,
2012). In our study of the 2moME model, the vector

θ ¼ γdM0
; γdM1

; γdY0 ; γdY1 ; γdY2 ; γa0 ; γa1 ; γb0 ; γb1 ; γc0 ; γc1 ; γc2 ; σ
2
eM ; σ

2
eY ; σ

2
ua; σ

2
ub; σ

2
uc

� �0
;

contains parameters in Eqs. (15) to (21) and the data represent
all observed information on X,M, Y, Z1, and Z2. Based on the
Bayes’ theorem, the posterior distribution of the parameters is
proportional to the product of the likelihood function and the
density function of the prior distribution,

p θjdatað Þ∝p datajθð Þ � p θð Þ
where p(data| θ) is the likelihood function, which is the prob-
ability density of the observed data conditional on the param-
eter vector θ.

In selecting a prior distribution for θ, it is desirable that the
resulting posterior distribution has a convenient form so that it is
relatively easy to simulate random values that follow p(θ| data).
Based on the recommendations and suggestions in the Bayesian
SEM literature (Song & Lee, 2012; Wang & Preacher, 2015),
independent normal priors for the regression coefficients γ ¼
γdM0

; γdM1
; γdY0 ; γdY1 ; γdY2 ; γa0 ; γa1 ; γb0 ; γb1 ; γc0 ; γc1 ; γc2

� �0
and independent inverse gamma priors for the variance param-

etersσ2 ¼ σ2
eM ;σ

2
eY ;σ

2
ua;σ

2
ub;σ

2
uc

� �′
are used. These priors are

semi-conjugate (Gelman et al., 2004) and most frequently used
in Bayesian regression analysis. But we should notice that the
Bayesian method itself does not tell us how to select an appro-
priate prior. Bayesian inferences require skills to translate sub-
jective prior beliefs into a mathematically formulated prior.
Cautions are needed in formulating the priors to avoid mislead-
ing results.

After specifying the model and the priors, the sampling-
based Markov Chain Monte Carlo (MCMC) techniques can
be used to estimate the posterior distributions of the model
parameters (Gilks et al., 1996). One popular MCMC method
is Gibbs sampling, which iteratively draws samples from the
full conditional distributions of all the parameters. For each
parameter in the model, we use the Gelman–Rubin potential
scale reduction (PSR) statistic for checking the convergence
of Gibbs sampling. According to Brooks and Gelman (1998),
convergence is achieved if the PSR statistic is less than 1.05.

For converged samples, we define the Bayesian estimate of θ
as the mean of the posterior distribution of θ (called the pos-
terior mean), and the posterior standard deviation is obtained
using the standard deviation of the converged samples. The
95% CI is obtained based on the empirical 2.5% and 97.5%
quantiles of the sample values for each parameter in θ.

In this study, the process of Gibbs sampling is as follows.

(1) Sampling the model parameters from the full conditional
distributions. For the 2moMEmodel, draw samples of γa1
from p γa1jγdM0

; γdM1
; γa0 ;σ

2
eM ;σ

2
ua; data

� �
and γb1 from

p γb1 jγdY0 ; γdY1 ; γdY2 ; γb0 ; γc0 ; γc1 ; γc2 ;σ2
eY ;σ

2
ub;σ

2
uc; data

� �
.

Note that γa1 is in the regression model with the mediator
variable as the dependent variable, while γb1 is in the
regression model with the outcome variable as the depen-
dent variable (see Eqs. 15 to 24). Parallel to γa1 and γb1,
other parameters are drawn subsequently and iteratively
until convergence.

(2) Compute and test the moME effect for the given values
of the moderator variable(s). With Z1 = z1 and Z2 = z2
given, we can compute the conditional indirect effect
(γmoME) according to Eq. (13) using the corresponding
estimated parameters from either the 2moME model or
the conventional moME model. Then, the difference
between mediation effects (difme) under different sets
of moderator values (e.g., Z1 = z11, Z2 = z21 versus
Z1 = z12, Z2 = z22) is computed by Eq. (14). Using
Bayesian methods, we can obtain point estimates and
credibility intervals (CIs) for γmoME and difme as well
as conduct the tests for H0 : γmoME = 0 and H0 : difme =
0. The test for H0 : difme = 0 shows whether the media-
tion effect varies across two sets of moderator values.

(3) Compute the effect sizes of moME. For evaluating the
ESs of moME, appropriate φs and φ( f )s should be se-
lected from Eqs. (29) to (35) based on the research ques-
tions of interest and the specific model. We can also
obtain point estimates and the corresponding CIs of
the ESs to measure the proportions (or ratios) of medi-
ation variances attributed to different moderator vari-
ables at different stages.

Simulation study

A simulation study was conducted to (i) compare the
performance of the 2moME model against that of the
conventional moME model, and (ii) examine the perfor-
mance of Bayesian methods in estimating and testing
the moME effects and the corresponding ESs under dif-
ferent conditions.
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Table 1 Empirical bias, mean square error (MSE), coverage rate of the 95% CI, and rejection rate in estimating difmoME

γa1 ¼ γb1 σ2
ua ¼ σ2ub ¼ σ2

uc

True
difmoME

moME 2moME

50 100 200 500 1000 50 100 200 500 1000

Bias

0 0 0 -0.009 -0.001 -0.002 0.002 -0.001 -0.011 -0.001 -0.003 0.002 -0.001

0.1 0 -0.004 0.002 0.002 -0.001 0.000 -0.007 -0.001 0.001 -0.001 -0.001

0.25 0 -0.007 0.001 -0.001 -0.001 -0.001 -0.004 -0.003 -0.002 -0.001 -0.001

0.5 0 0.004 0.006 0.005 0.004 0.001 -0.001 -0.001 0.001 0.005 0.000

0.2 0 0.32 0.005 0.003 0.004 -0.001 0.000 0.005 0.006 0.010 -0.001 -0.002

0.1 0.32 -0.008 0.005 0.001 -0.002 0.002 -0.011 0.006 0.006 -0.001 0.001

0.25 0.32 -0.007 0.003 0.001 -0.003 0.002 -0.011 0.006 0.004 -0.001 0.002

0.5 0.32 0.015 -0.003 -0.003 0.005 0.000 0.015 -0.004 -0.002 0.004 -0.002

0.4 0 0.64 0.001 0.006 0.003 -0.002 0.002 0.003 0.008 0.016 -0.001 -0.002

0.1 0.64 -0.008 0.012 0.001 -0.002 0.002 -0.011 0.014 0.012 0.001 -0.001

0.25 0.64 -0.012 -0.006 -0.008 -0.001 0.000 -0.002 0.001 0.001 0.003 -0.002

0.5 0.64 0.002 0.008 0.017 0.004 0.002 0.001 0.000 0.018 0.003 0.001

MSE

0 0 0 0.038 0.015 0.007 0.002 0.001 0.042 0.016 0.007 0.002 0.001

0.1 0 0.047 0.018 0.009 0.003 0.002 0.049 0.018 0.009 0.003 0.002

0.25 0 0.061 0.026 0.013 0.004 0.002 0.059 0.024 0.012 0.004 0.002

0.5 0 0.116 0.042 0.018 0.007 0.004 0.090 0.033 0.014 0.005 0.003

0.2 0 0.32 0.047 0.017 0.009 0.003 0.002 0.052 0.018 0.010 0.003 0.002

0.1 0.32 0.052 0.025 0.011 0.004 0.002 0.055 0.024 0.011 0.004 0.002

0.25 0.32 0.072 0.035 0.015 0.006 0.003 0.068 0.030 0.014 0.005 0.003

0.5 0.32 0.128 0.052 0.024 0.009 0.005 0.110 0.040 0.017 0.006 0.003

0.4 0 0.64 0.063 0.026 0.013 0.005 0.003 0.075 0.029 0.014 0.005 0.003

0.1 0.64 0.078 0.039 0.018 0.007 0.003 0.081 0.039 0.018 0.007 0.003

0.25 0.64 0.108 0.054 0.023 0.010 0.005 0.103 0.048 0.021 0.008 0.004

0.5 0.64 0.189 0.090 0.046 0.016 0.008 0.148 0.062 0.031 0.011 0.005

Coverage rate

0 0 0 0.981 0.968 0.957 0.954 0.941 0.988 0.982 0.969 0.964 0.952

0.1 0 0.980 0.966 0.946 0.924 0.917 1.000 0.984 0.978 0.958 0.947

0.25 0 0.980 0.941 0.909 0.916 0.888 0.996 0.980 0.965 0.955 0.956

0.5 0 0.956 0.921 0.902 0.855 0.830 0.994 0.981 0.971 0.963 0.948

0.2 0 0.32 0.961 0.970 0.950 0.963 0.942 0.982 0.983 0.965 0.969 0.951

0.1 0.32 0.962 0.943 0.932 0.920 0.921 0.987 0.980 0.963 0.949 0.949

0.25 0.32 0.949 0.922 0.893 0.890 0.888 0.990 0.981 0.970 0.957 0.949

0.5 0.32 0.932 0.887 0.878 0.858 0.833 0.990 0.973 0.965 0.959 0.949

0.4 0 0.64 0.960 0.960 0.960 0.940 0.948 0.981 0.976 0.970 0.950 0.951

0.1 0.64 0.946 0.930 0.922 0.919 0.923 0.982 0.976 0.962 0.960 0.960

0.25 0.64 0.936 0.880 0.906 0.889 0.873 0.980 0.955 0.961 0.954 0.949

0.5 0.64 0.912 0.860 0.844 0.836 0.833 0.984 0.964 0.955 0.953 0.956

Rejection rate

0 0 0 0.019 0.032 0.043 0.046 0.059 0.012 0.018 0.031 0.036 0.048

0.1 0 0.020 0.034 0.054 0.076 0.083 0.000 0.016 0.022 0.042 0.053

0.25 0 0.020 0.059 0.091 0.084 0.112 0.004 0.020 0.035 0.045 0.044

0.5 0 0.044 0.079 0.098 0.145 0.170 0.006 0.019 0.029 0.037 0.052

0.2 0 0.32 0.248 0.721 0.972 1.000 1.000 0.097 0.607 0.953 1.000 1.000

0.1 0.32 0.178 0.620 0.941 1.000 1.000 0.077 0.489 0.909 1.000 1.000

0.25 0.32 0.149 0.518 0.887 0.999 1.000 0.050 0.366 0.831 0.999 1.000
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Design

We also just consider Scenario D in the simulation study. For
simplicity and without loss of generality, the intercepts γdM0

and γdY0 for the 2moMEmodel in Eqs. (15) to (21) are set to 0.

The coefficients γdM1
, γdY1 , γdY2 , γa0 , γb0 are all set at 0.4. In

addition, we let γc0 ¼ γc1 ¼ γc2 ¼ 0 because the coefficients

associated with the direct effect are not the focus of moME.
All the predictor and moderator variables X, Z1, and Z2, and
the error terms, eMi ¼ εMi þ udMi , eYi ¼ εYi þ udYi are normal-
ly distributed with zero means and unit variances. The corre-
lations between X, Z1, and Z2 are set to 0.3.

The conditions manipulated in our design include: (1) three
levels of the coefficients γa1 and γb1 (0, 0.2, and 0.4, where
γa1 ¼ γb1 ) that determine the size of the moderation effects,

(2) four levels of the moderation-residual variances σ2
ua, σ

2
ub,

and σ2
uc (0, 0.1, 0.25, and 0.5, where σ2

ua ¼ σ2
ub ¼ σ2

uc ), (3)
five levels of sample size (50, 100, 200, 500, and 1000). The
values of the population ES under different measures corre-
sponding to these conditions are reported in Tables 2 and 3.
Note that homoscedasticity holds under the condition
σ2
ua ¼ σ2

ub ¼ σ2
uc ¼ 0, which gives the conventional moME

model a theoretical advantage over the 2moME model. For
all the conditions with σ2

ua ¼ σ2
ub ¼ σ2

uc ¼ 0, we have

φ1 ¼ φ fð Þ
1 , φ2 ¼ φ fð Þ

2 ; and φ12 ¼ φ fð Þ
12 . The conditions on

moderation ES, moderation-residual variance, and sample size
are crossed, and 1000 replications are used under each of the
60 conditions. Data are simulated using R (R Core Team,
2016) based on the model shown in Eqs. (15) to (21). For
the conditions of σ2

ua ¼ σ2
ub ¼ σ2

uc ¼ 0, data are generated
based on the conventional moMEmodel, whereas for the con-
ditions of σ2

ua ¼ σ2
ub ¼ σ2

uc ¼ 0:1; 0:25; 0:5, data are generat-
ed based on the 2moME model.

Analysis

For the 2moME model, Bayesian estimations are conduct-
ed in Mplus 8.3 (Asparouhov & Muthén, 2019; Muthén &

Asparouhov, 2012). In order to estimate the 2moME mod-
el with single-level data, we “trick” the software by in-
cluding a cluster variable that has only one individual in
each cluster. Thus, the cluster variable is essentially the
individual’s ID. The default prior distributions are
adopted. Three MCMC chains are applied, and conver-
gence is regarded as being achieved if the PSR value is
less than 1.05. After 10,000 burn-in iterations, the param-
eter estimates are obtained using 10,000 simulated obser-
vations. In this article, the parameters of interest include
the conditional indirect effect γmoME and difmoME. We
used Z1 = 1 and Z2 = 1 to evaluate the estimated results
of γmoME, and Z1 = 1 and Z2 = 1 versus Z1 = − 1 and
Z2 = − 1 to compute and test difmoME = 0. The population
values of all interested parameters under different condi-
tions are included in Tables A1 to A9 of the supplemen-
tary material (www3.nd.edu/~kyuan/2moME).

To compare the difference between the conventional
moME model and the 2moME model, both are applied to
analyzing the data under each condition. Five measures,
the bias, the mean square error (MSE), the coverage rate
of the 95% nominal CI, the power, and the type I error rate,
are used to evaluate the performance of the two models in
estimating and testing γmoME and difmoME. Similarly, bias,
MSE, and coverage rate of the 95% nominal CI are used to
evaluate the performances of the two models in estimating
ESs.

Let θ ¼ ∑R
r¼1
bθr=R be the average of the parameter esti-

mates across R=1000 replications, with bθr being the estimate
in the r-th replication. Bias is computed as the difference be-
tween the average and its corresponding population value, i.e.,

Bias bθ� � ¼ θ−θ0; ð38Þ

and MSE is the average of the squared deviation of each pa-
rameter estimate from the corresponding population value, i.e.,

MSE bθ� � ¼
∑R

r¼1
bθr−θ0� �2
R

: ð39Þ

Table 1 (continued)

γa1 ¼ γb1 σ2
ua ¼ σ2ub ¼ σ2

uc

True
difmoME

moME 2moME

50 100 200 500 1000 50 100 200 500 1000

0.5 0.32 0.154 0.414 0.762 0.993 1.000 0.052 0.255 0.668 0.992 1.000

0.4 0 0.64 0.727 0.996 1.000 1.000 1.000 0.517 0.987 1.000 1.000 1.000

0.1 0.64 0.647 0.986 1.000 1.000 1.000 0.396 0.970 1.000 1.000 1.000

0.25 0.64 0.513 0.949 1.000 1.000 1.000 0.304 0.911 0.999 1.000 1.000

0.5 0.64 0.370 0.848 0.995 1.000 1.000 0.189 0.775 0.996 1.000 1.000

Note: Coverage rates less than 0.9 and type I errors larger than 8% are in bold. The rejection rate represents type I error when difmoME = 0, and represents
power when difmoME ≠ 0
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The coverage rate is the proportion for the CI to contain
the population value of the parameter across R=1000 repli-
cations. The estimation procedure is more reliable if the
coverage rate is closer to 95%. The values of power are
calculated as the proportion of the times that the CI does
not contain zero across the replications within each condi-
tion that the population moME exists. The type I error rate
is calculated in the same way as calculating the value of
power but for conditions with zero population moME ef-
fect, and the nominal rate is set at 5%.

Results

Accuracy in estimating γmoME and difmoME

Since the results in estimating γmoME and difmoME are about
the same, only those for estimating difmoME are presented to

save space. The results of γmoME can be downloaded at
www3.nd.edu/~kyuan/2moME/SupplementaryA.pdf.

For the estimation of difmoME, the values of the empirical
bias, MSE, coverage rate of the 95% confidence interval, and
rejection rate (power or type I error) for testing difmoME = 0 by
the conventional moME model and the 2moME model are
reported in Table 1. Overall, the size of bias is small for the
twomodels.When the level-2 error variances are zero (i.e., the
conventional moME model is literally correct, see Eqs. 16 to
20) and the sample size is small, the values of MSE following
the 2moME model are slightly larger than those following the
conventional moME model. Even when the conventional
moME model is literally correct, the difference between the
two models can be ignored with the increase of sample size.
However, for all the conditions when the moderation-residual
variances are nonzero, the 2moME model yields more accu-
rate estimates for difmoME than the conventional moMEmodel

Table 2 Empirical bias, mean square error (MSE), and coverage rate by the 95% CI in estimating φ fð Þ
1

γa1 ¼ γb1 σ2
ua ¼ σ2

ub ¼ σ2
uc

True

φ fð Þ
1

moME 2moME

50 100 200 500 1000 50 100 200 500 1000

Bias

0.2 0 0.348 0.063 0.046 0.025 0.020 0.006 0.064 0.057 0.034 0.014 0.004

0.1 0.348 0.064 0.053 0.036 0.020 0.008 0.065 0.057 0.044 0.015 0.006

0.25 0.348 0.061 0.057 0.044 0.024 0.012 0.063 0.060 0.052 0.017 0.007

0.5 0.348 0.054 0.070 0.066 0.027 0.015 0.047 0.072 0.073 0.017 0.008

0.4 0 0.271 0.030 0.014 0.008 0.001 0.001 0.040 0.022 0.014 -0.003 -0.001

0.1 0.271 0.052 0.021 0.011 0.008 0.002 0.061 0.026 0.017 0.005 0.001

0.25 0.271 0.061 0.039 0.016 0.009 0.003 0.066 0.040 0.021 0.005 0.003

0.5 0.271 0.073 0.057 0.024 0.012 0.003 0.072 0.056 0.029 0.007 0.002

MSE

0.2 0 0.348 0.040 0.038 0.031 0.015 0.007 0.035 0.037 0.030 0.014 0.007

0.1 0.348 0.046 0.046 0.037 0.018 0.009 0.036 0.041 0.034 0.017 0.008

0.25 0.348 0.049 0.052 0.046 0.026 0.013 0.036 0.043 0.038 0.022 0.010

0.5 0.348 0.046 0.055 0.059 0.037 0.020 0.032 0.042 0.046 0.026 0.014

0.4 0 0.271 0.032 0.018 0.009 0.004 0.002 0.030 0.019 0.009 0.004 0.002

0.1 0.271 0.038 0.024 0.012 0.005 0.002 0.034 0.024 0.012 0.005 0.002

0.25 0.271 0.045 0.034 0.019 0.007 0.004 0.037 0.028 0.016 0.006 0.003

0.5 0.271 0.049 0.046 0.026 0.013 0.006 0.038 0.034 0.019 0.008 0.004

Coverage rate

0.2 0 0.348 0.972 0.938 0.905 0.928 0.939 0.986 0.967 0.944 0.953 0.949

0.1 0.348 0.958 0.916 0.901 0.910 0.928 0.984 0.977 0.963 0.943 0.952

0.25 0.348 0.942 0.900 0.858 0.874 0.889 0.984 0.949 0.943 0.938 0.954

0.5 0.348 0.949 0.898 0.842 0.813 0.833 0.989 0.969 0.934 0.929 0.938

0.4 0 0.271 0.923 0.934 0.945 0.943 0.951 0.961 0.945 0.967 0.946 0.947

0.1 0.271 0.908 0.891 0.910 0.919 0.930 0.957 0.920 0.944 0.942 0.957

0.25 0.271 0.900 0.873 0.857 0.890 0.876 0.968 0.941 0.933 0.949 0.938

0.5 0.271 0.894 0.838 0.833 0.813 0.819 0.956 0.939 0.940 0.930 0.945

Note: Coverage rates less than 0.9 are put in bold
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does. The advantages of the 2moME model over the conven-
tional moMEmodel becomemore obvious as the moderation-
residual variances increase.

The results of the coverage rate of the 95% CI for difmoME

indicate that 2moME outperforms the conventional moME
model when the moderation-residual variance is nonzero,
which is consistent with the results of MSE. Moreover, there
is little difference between the two models when homoscedas-
ticity assumption is met.

The results of type I error rate indicate that 2moME con-
trols type I error rather well, as the rates are close to 0.05 or
below 0.05 under all the conditions. However, the type I error
rates following the conventional moME model tend to be
higher than 0.05 when the moderation-residual variance is
nonzero.

The results in Table 1 indicate that the power of eachmodel
in testing difmoME = 0 is clearly affected by the population
value of the moderation effect and the sample size. The value
of the power increases as the magnitude of difmoME and/or
sample size increase. The values of power following the con-
ventional moME and 2moME models are comparable for me-
dium to large sample sizes (n=200, 500, or 1000), or when
there is a large difference in mediation effects due to the mod-
erators (e.g., difmoME = 0.64). While the value of power fol-
lowing the conventional moME model is slightly higher than
that following the 2moME model at a small sample size, this
result is mostly due to the inflated type I error rate of the
conventional moME model.

In summary, the 2moME model yields more accurate esti-
mate of difmoME and the corresponding coverage rate of the

Table 3 Empirical bias, mean square error (MSE), and coverage rate of the 95% CI in estimating φ1

γa1 ¼ γb1 σ2
ua ¼ σ2

ub ¼ σ2
uc

True
φ1

50 100 200 500 1000

Bias

0 0.1 0 -0.029 -0.018 -0.006 0.004 0.004

0.25 0 0.016 0.014 0.012 0.007 0.003

0.5 0 0.023 0.014 0.008 0.003 0.001

0.2 0.1 0.0936 -0.030 -0.018 -0.009 -0.003 -0.002

0.25 0.0354 -0.010 -0.002 0.002 0.002 0.002

0.5 0.0137 0.011 0.010 0.007 0.002 0.000

0.4 0.1 0.1520 -0.029 -0.018 -0.006 0.004 0.004

0.25 0.0808 0.016 0.014 0.012 0.007 0.003

0.5 0.0385 0.023 0.014 0.008 0.003 0.001

MSE

0 0.1 0 0.004 0.004 0.004 0.003 0.001

0.25 0 0.002 0.002 0.002 0.001 0.000

0.5 0 0.002 0.001 0.000 0.000 0.000

0.2 0.1 0.2688 0.008 0.006 0.004 0.002 0.001

0.25 0.1016 0.003 0.003 0.002 0.001 0.001

0.5 0.0393 0.002 0.002 0.001 0.000 0.000

0.4 0.1 0.5607 0.004 0.004 0.004 0.003 0.001

0.25 0.2980 0.002 0.002 0.002 0.001 0.000

0.5 0.1422 0.002 0.001 0.000 0.000 0.000

Coverage rate

0 0.1 0 - - - - -

0.25 0 - - - - -

0.5 0 - - - - -

0.2 0.1 0.2688 0.890 0.906 0.925 0.934 0.942

0.25 0.1016 0.971 0.940 0.910 0.920 0.936

0.5 0.0393 0.990 0.972 0.944 0.936 0.942

0.4 0.1 0.5607 0.889 0.903 0.919 0.928 0.941

0.25 0.2980 0.900 0.913 0.923 0.936 0.952

0.5 0.1422 0.934 0.928 0.921 0.936 0.944

Note: Coverage rates less than 0.9 are put in bold
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95% CI is higher in conditions with nonzero moderation-
residual variance. Under the conditions of homoscedasticity,
there is no difference in the results between the two models.
The tests for difmoME = 0 following 2moME perform well in
controlling the type I error rate, whereas the type I error rate
following the conventional moME model becomes more in-
flated as the value of moderation-residual variance increases.

Accuracy in estimating ESs

When moME exists in the population (γa1 ¼ γb1 ¼ 0.2 or

0.4), the measures φ fð Þ
1 , φ fð Þ

2 ; and φ fð Þ
12 in Eqs. (33)-(35) were

estimated under both the conventional moME and the
2moME models. When the moderation-residual variance is
not zero, the φ, φ1, φ2, and φ12 are estimated only for the
2moME model using Eqs. (29)–(32). Because the results for
these measures exhibit essentially the same patterns, only the

results for estimatingφ fð Þ
1 and φ1 are presented. For the results

of the other measures please refer to the supplementary mate-
rial (www3.nd.edu/~kyuan/2moME/SupplementaryA.pdf).

The estimates of φ fð Þ
1 under the two models are reported in

Table 2. The results indicate that larger sample sizes and
smaller moderation-residual variances correspond to more ac-

curate estimates of φ fð Þ
1 . Medium to large sample sizes (e.g.,

more than 200) are required to obtain estimates of φ fð Þ
1 with

little bias. The results also indicate that, when the homosce-
dasticity assumption of the conventional moME model is sat-
isfied, the ES estimates following the two models are about
the same when sample size is large. However, when the
moderation-residual variance is not zero, the results following
the 2moME model are more accurate than those following the
conventional moME model. Moreover, as the moderation-
residual variance increases, the advantages of 2moME be-
come more obvious. Specifically, the MSEs of the ES esti-
mates under the 2moME model are smaller than those under
the conventional moME model, and the coverage rates for the
population ESs by the 95% CI under 2moME are higher than
those under the conventional moME model, especially when
the moderation-residual variance is large. Similar results are

obtained for the other two measures φ fð Þ
2 and φ fð Þ

12 , as present-
ed in the supplementary material.

The empirical results for estimating φ1 under 2moME
are given in Table 3. Because φ1 is defined under
heteroscedasticity, only the results when moderation-residual
variances are not 0 are displayed. It can be seen from Table 3
that the values of bias andMSE are small under all conditions.
In addition, the coverage rates of the 95% CI are all close to
95%. As the moderation-residual variance and the sample size
increase, the estimate bφ1 becomes more accurate. Even when
the moderation-residual variances are small, medium to larger
sample sizes (e.g., more than 200) can also result in an

estimate of φ1 with little bias. Similar results are obtained
for the estimates bφ, bφ2, and bφ12, as presented in the supple-
mentary material.

An empirical example

In this section, we present an empirical example to illustrate
the application of the 2moMEmodel and the new measures of
ES.

Data and model

The data for our example are from the Program for
International Student Assessment (PISA), which is a world-
wide study conducted by the Organization for Economic
Cooperation and Development (OECD). The program started
in the year 2000 and is repeated every three years. The main
purpose of the program is to measure the mathematics, sci-
ence, and reading performance of 15-year-old students. The
PISA test includes questionnaires for students, school princi-
pals, and parents. The student questionnaire is used to collect
information regarding students' background, educational im-
provement, and their perception of teachers and the school
syllabus, as well as their psychological well-being. The
dataset can be downloaded at http://www.oecd.org/pisa/. For
illustrating the application of the new ESs, we select a
subsample of the Hong Kong dataset, with 743 students,
from PISA2018.

Five variables with this dataset are: students’ reading per-
formance (READ); self-concept of reading (SCREAD); eco-
nomic, social, and cultural status (ESCS); parents' emotional
support perceived by student (EMOSUP); and teacher's stim-
ulation of reading engagement perceived by student
(TSREAD). It was hypothesized that students with a higher
ESCS status will have a higher reading performance and the
effect of ESCS on READ will be mediated by SCREAD.
Furthermore, it was hypothesized that EMOSUP will moder-
ate the effect of ESCS on SCREAD (i.e., the first-stage of the
mediation effect); TSREAD will moderate the effect of
SCREAD on READ (i.e., the second-stage of the mediation
effect); both EMOSUP and TSREADwill moderate the effect
of ESCS on READ. Thus, the mediation effect of ESCS on
READ via SCREAD will be conditional on EMOSUP and
TSREAD. Figure 5 shows the conceptual model of the
moME effects, and we will use the 2moME model to estimate
the effects. Meanwhile, the conventional moME model will
also be used for comparison purposes. Both models are esti-
mated by the Bayesian estimation procedure described in sec-
tion 3 and by using Mplus8.3 (Muthén & Muthén, 1998–
2017). The data, the code, and the output of fitting the model
are provided in the online supplementary material (www3.nd.
edu/~kyuan/2moME/example/).
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Results

As for the simulation study in the previous section, three
chains are used with the MCMC method in the analysis of
the empirical dataset. After 10,000 burn-in iterations, the
PSR values of parameters in the moME and 2meMO models
are all less than 1.05, which supports that the sets of iterations
from each of the three chains are close to the target distribution
(Brooks & Gelman, 1998). Trace plots for the convergence of
the chains for the 17 parameters of the 2moME model are
provided as supplementary material (www3.nd.edu/~kyuan/
2moME/example/TracePlot.pdf). The plots show that the
values of the parameters converge to the same posterior
distribution while they vary because of randomness.

To determine a better model between the conventional
moME and 2moME for the sample from PISA2018, the sig-
nificance of the residual variances of uai , ubi , and uci (i.e.,
σ2
ua ¼ 0, σ2

ub ¼ 0, and σ2
uc ¼ 0 ) are tested via BF (Bayes

factor), and the two models are also compared by the
Deviance Information Criteria (DIC) (Verhagen & Fox,
2012). Note that testing a variance parameter equal to 0 in-
volves nonstandard procedures because it implies that the pa-
rameter lies on the boundary of the permissible space. The
classical procedures can break down asymptotically (e.g.,
likelihood ratio test, Wald test) or require modified asymptotic
null distributions (e.g., generalized likelihood ratio tests).
These modified distributions are complicated and difficult to
apply (e.g., Molenberghs & Verbeke, 2007; Pauler et al.,
1999). In the Bayesian framework, the null hypothesis σ2 =
0 can be substituted by σ2 < 0.01. Then the significance of the
residual variances can be tested by an encompassing prior
approach (Hoijtink, 2011; Klugkist & Hoijtink, 2007;
Klugkist, 2008; Wagenmakers et al., 2010). That is, estima-
tions for the 2moME model were done in two steps: 1) esti-
mate the 2moME model with the default non-informative
priors (H1); 2) in a separate run estimate the model with
IG(1, δ) as priors for σ2

ua, σ
2
ub, and σ

2
uc, where δ is close to zero

(H0). The Bayes factor is computed as the ratio of the marginal
likelihood under the hypothesis H0 to the marginal likelihood

under H1. BF > 3 indicates that the variance of the residual can
be regarded as zero (Asparouhov & Muthén, 2012; Verhagen
& Fox, 2012). In this example, the Bayes factors for a δ-value
of 0.05 are 0.000, 0.000, and 0.876 for testing the hypotheses
σ2
ua =0, σ

2
ub =0, and σ2

uc =0, respectively; and the correspond-
ing posterior probabilities of P(H0| data) are 0.000, 0.000, and
0.467. These results show that σ2

ua, σ
2
ub, and σ2

uc cannot be
regarded as zero at the level of 0.01 (Asparouhov &
Muthén, 2012). In addition, the values of the DIC for the
2moME and the conventional moME models are respectively
3690.69 and 3825.88, indicating that 2moME has a better fit
than the conventional moME. Therefore, it can be concluded
that the 2moME model is more appropriate than the conven-
tional moME model in fitting the PISA2018 sample.

Table 4 contains the parameter estimates and their posterior
standard deviations (SDs) by the conventional moME and
2moME models. The results indicate that both the effects of
ESCS on SCREAD (bγa0 =0.112, SD=0.035 under the con-
ventional moME model and bγa0 =0.081, SD=0.040 under the
2moME model) and SCREAD on READ (bγb0 =0.190,
SD=0.036 under the conventional moME model and bγb0
=0.212, SD=0.041 under the 2moME model) are statistically
significant. EMOSUP significantly moderates the effect of
ESCS on SCREAD (bγa1 =0.185, SD=0.039 under the con-
ventional moME model and bγa1 =0.176, SD=0.045 under the
2moME model); TSREAD significantly moderates the effect
of SCREAD on READ (bγb1 = -0.100, SD=0.031 under the
conventional moME model and bγb1 = -0.130, SD=0.038 un-
der the 2moME model). Students with a higher ESCS status
have a higher reading performance (bγc0 = 0.093, SD=0.034
under the conventional moME model and bγc0 = 0.080,
SD=0.036 under the 2moME model). But EMOSUP and
TSREAD do not significantly moderate the direct effect of
ESCS on READ. In addition, the residual variances of
SCREAD and READ from the conventional moME model

(bσ2
eM ¼ 0:796; SD=0.042; bσ2

eY ¼ 0:735; SD=0.038) are dif-

ferent than those from the 2moME model (bσ2
eM ¼ 0:648;

SD=0.048; bσ2
eY ¼ 0:510; SD=0.045), due to different work-

ing assumptions. In summary, the estimates following the two
models are different, especially for the residual variances, al-
though results of statistical tests on parameter estimates are
consistent.

Table 5 presents the estimates of two conditional indirect
effects (i.e., moME1 andmoME2), their difference (i.e., difmo),
and the estimates of seven ES measures (i.e., φ, φ1, φ2, φ12,

φ fð Þ
1 , φ fð Þ

2 , and φ fð Þ
12 ). Fine histograms for the posterior distri-

butions of these estimates are also provided at www3.nd.edu/
~kyuan/2moME/example/BayesianPosterior.pdf. The results
show that the conditional mediation effect at EMOSUP =
mean+SD and TSREAD =mean-SD is statistically significant
(moME1 =0.074, SD=0.022), whereas the conditional media-
tion effect at EMOSUP= mean-SD and TSREAD= mean+SD

Fig. 5 The moderated mediation model with the empirical example.
Note. ESCS = economic, social, and cultural status; EMOSUP =
parents' emotional support perceived by student; SCREAD = self-
concept of reading; TSREAD = teacher's stimulation of reading engage-
ment perceived by student; READ = reading performance

589Behav Res  (2022) 54:574–596

http://www3.nd.edu/~kyuan/2moME/example/TracePlot.pdf
http://www3.nd.edu/~kyuan/2moME/example/TracePlot.pdf
http://www3.nd.edu/~kyuan/2moME/example/BayesianPosterior.pdf
http://www3.nd.edu/~kyuan/2moME/example/BayesianPosterior.pdf


is not statistically significant (moME2 =-0.006, SD=0.007).
The two conditional mediation effects are significantly differ-
ent (difme=0.080, SD=0.023). Thus, while these results en-
dorse the existence of the moderated mediation effect, we
should note that, as the value of the conditional mediation
effect depends on the values of the moderator variables, so
does the value of difme. This is because difme is not a measure
of the overall effect of the moderator variables on the media-
tion effect.

Note that the total variance of READ is 0.782, and the total
variance of indirect effect is 0.047. The bφ is only 3.9%, which
is the percentage of the total variance of the indirect effect
(0.047) collectively accounted for by the moderator variables
EMOSUP and TSREAD. After controlling the effect of the
second stage moderator variable TSREAD, bφ1 ¼ 0:030 is the
proportion of the total variance of the indirect effect explained
by the first stage moderator variable EMOSUP; after control-
ling the effect of the first stage moderator variable EMOSUP,bφ2 ¼ 0:003 is the the proportion of the total variance of the
indirect effect explained by the second stage moderator vari-
able TSREAD; and the ratio of the explained variance by
EMOSUP×TSREAD to the total variance of aibi isbφ12 ¼ 0:014. Recall that Var½ γa0 þ γa1Z1i

� �
γb0 þ γb1Z2i
� �

] is the total explained variance of the indirect effect and its

value is 0.002. After controlling the effect of TSREAD (the

second stage moderator), bφ fð Þ
1 ¼ 0:757 is the proportion of

the total explained variance accounted for by EMOSUP (the
first stage moderator); after controlling the effect of EMOSUP

(the first stage moderator variable), bφ fð Þ
2 ¼ 0:102 is the pro-

portion of the total explained variance accounted for by
TSREAD (the second stage moderator variable); and the ratio
of the explained variance by EMOSUP×TSREAD to the total
explained variance by EMOSUP and TSREAD isbφ fð Þ
12 ¼ 0:334.
Similar to the idea in analyzing the moderated multiple

regression model, one might be interested in computing the
traditional ΔR2 following two sequential moderated media-
tion models. One is the model that does not include the influ-
ence of the product terms ESCS×EMOSUP and
SCREAD×TSREAD, and the other model includes these
two product terms. These R-squares for the two models are R2

1

¼ 6:3% and R2
2 ¼ 7:5%, respectively. Thus, 1.2% (ΔR2) of

the variance of READ is uniquely explained by the product
terms ESCS×EMOSUP and SCREAD×TSREAD, smaller
compared to the newly defined moME effect sizes

(bφ fð Þ
1 ¼ 0:757, bφ fð Þ

2 ¼ 0:102, and bφ fð Þ
12 ¼ 0:334 ). This is be-

cause the ΔR2 focuses on explaining the variance of the

Table 4 Parameter estimates and their standard deviations by different models for a dataset from PISA2018

Parameter moME 2moME

Est. Posterior SD Est. Posterior SD

Fixed parameters

Intercept of SCREAD (γdM0
) -0.028 0.033 -0.029 0.032

Intercept of READ (γdY0 ) 0.483*** 0.032 0.505*** 0.031

EMOSUP →SCREAD (γdM1
) 0.118** 0.037 0.130*** 0.036

ESCS →SCREAD (γa0 ) 0.112*** 0.035 0.081* 0.040

ESCS× EMOSUP→ SCREAD (γa1 ) 0.185*** 0.039 0.176*** 0.045

EMOSUP → READ (γdY1 ) 0.030 0.037 0.031 0.036

TSREAD → READ (γdY2 ) 0.035 0.035 0.041 0.034

ESCS → READ (γc0 ) 0.093** 0.034 0.080* 0.036

SCREAD → READ (γb0 ) 0.190*** 0.036 0.212*** 0.041

SCREAD×TSREAD → READ (γb1 ) -0.100** 0.031 -0.130*** 0.038

ESCS× EMOSUP→ READ (γc1 ) 0.057 0.040 0.049 0.044

ESCS×TSREAD → READ (γc2 ) -0.008 0.036 -0.023 0.040

Random parameters

Var(eM) 0.796 0.042 0.648 0.048

Var(eY) 0.735 0.038 0.510 0.045

Var(uaiÞ 0.180 0.053

Var(ubiÞ 0.205 0.048

Var(uciÞ 0.080 0.036

Note.* p<0.05; ** p<0.01; *** p<0.001
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outcome variable (i.e., Read) rather than the variance of the
mediation effect by moderators.

To understand how the results from the Bayesian method
are affected by the priors, we have also obtained results with
informative priors on the residual variances, intercepts, and
regression slopes. Specifically, IGamma(0.1, 0.1) is used as
the priors for residual variances, N(0, 1) is used as the priors
for the intercept and regression slopes. The results indicate
that the differences on parameter estimates between the two
sets of priors are rather small, suggesting that priors only have
minimal effect for the analysis of the PISA2018 sample.
Results with the informative priors are provided in the online
supplementary material (www3.nd.edu/~kyuan/2moME/
example/InformativePrior.pdf).

Discussion and recommendations

In this article, we developed a two-level moderated mediation
(2moME) model with single level data and proposed several
measures to evaluate the size of the mediation effect (i.e.,
Var(aibi)) explained by moderator variables at different
stages. We further studied the performance of this model
and compared it against the conventional moderated media-
tion (moME) model via Monte Carlo simulations.

According to our results, when the assumption of homo-
scedasticity holds, the 2moME model yields comparable re-
sults with those under the conventional moME model. When

the homoscedasticity assumption is violated, estimates for the
conditional indirect effects (γmoME) and the difference be-
tween mediation effects (difme) under 2moME are more accu-
rate than those under the conventional moME model. These
results are consistent with the findings in the literature (Liu
et al., 2020; Yang & Yuan, 2016) regarding the comparison
between a two-level moderated regression model and the con-
ventional MMR model with manifest and latent variables.
More importantly, the measures of moderated mediation ES
proposed in this article can be used as a supplement to the test
of moME effects and will meet the needs for reporting ES in
practice, given the fact that heteroscedasticity is common in
moderation analysis (Aguinis & Pierce, 1998; Alexander &
DeShon, 1994). Based on our Monte Carlo results, we recom-
mend using the 2moME model for the analysis of moderated
mediation and reporting the corresponding ES measures for
the interpretation of the effect according to the questions of
interest.

The 2moME model and the corresponding ES measures
have clear practical advantages in studying the moME effect.
First, the 2moME model provides a more general framework
in conceptualizing the moME effect and quantifying the size
of the effect. Under the framework of 2moME, the roles of the
predictors, the moderators, and the mediators are statistically
distinguished; that is, the predictors are included in the level-1
model, whereas the moderators are in the level-2 model. The
conventional moME model is a special case of the 2moME
model even if a variable plays the role as both a predictor and a

Table 5 Estimations of effect sizes, two conditional indirect effects, and the difference between conditional indirect effects for a dataset from
PISA2018

moME 2moME

Est. Posterior SD Est. Posterior SD

Effect size

φ 0.039 0.028

φ1 0.030 0.023

φ2 0.003 0.004

φ12 0.014 0.012

φ fð Þ
1

0.822 0.159 0.757 0.174

φ fð Þ
2

0.117 0.102 0.102 0.117

φ fð Þ
12

0.274 0.133 0.334 0.149

Conditional indirect effect

moME1 0.073*** 0.018 0.074*** 0.022

moME2 -0.004 0.005 -0.006 0.007

Difference between moME1 and moME2

difme 0.077*** 0.019 0.080*** 0.023

Note. * p<0.05; ** p<0.01; *** p<0.001; moME1 is the conditional mediation effect where EMOSUP is one standard deviation above the mean and
TSREAD is one standard deviation below the mean, whereas moME2 is the conditional mediation effect where EMOSUP is one standard deviation
below the mean and TSREAD is one standard deviation above the mean; difme = moME1 − moME2
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moderator. For example in the predictor-moderator interaction
model, the 2moME model can be specified by setting Zi1

¼ udMi ¼ uai ¼ ci ¼ 0; and Zi2 = Xi in Eqs. (15)–(21).
Second, the ES measures proposed in this article are based
on the partition of the variance of the total mediation effect,
i.e., Var(aibi). Such a partition yields different types of mea-
sures of moME effect and facilitates fine descriptions of dif-
ferent moderation effects collectively or separately. The par-
tition also accurately links a particular ES to the specific re-
search question of interest (e.g., Kelley & Preacher, 2012).
Third, because the proposed ES measures are based on the
2moME model, it is unnecessary for the homoscedasticity
assumption to hold when interpreting the size of these mea-
sures. Researchers do not need to worry about the statistically
biased effects due to heteroscedasticity, and consequently the
corresponding ESs are also more valid. Fourth, the 2moME
model is easy to estimate using either free Bayesian programs
or commercially available software4. For example, JAGS
(Plummer, 2015) is easily accessible and allows flexible spec-
ifications of likelihood functions (Wang et al., 2008) as well as
prior distributions, and Mplus 8.3 program is user-friendly for
empirical researchers. Finally, and most importantly, with the
ES measures under the 2moMEmodel, this work fills the lack
of interpretable measures of ESs in conducting moME analy-
sis using the conventional moME model and provides the
means for researchers who need to quantify ESs.

Lachowicz et al. (2018) discussed desired properties for a
good measure of ES (see also Kelley & Preacher, 2012;
Preacher & Kelley, 2011; Wen & Fan, 2015). The ES mea-
sures defined in this article have multiple such properties in
quantifying the effect of moderated mediation. First, the mea-
sures closely match the conceptual model of moderated me-
diation analysis. They have an interpretable scale in the con-
text of variance explanation, and can answer the question as to
what extent Z1 and/or Z2 explain the total variance of the
mediation effect of X on Y through M (i.e., Var(aibi)).
Second, the credibility interval (CI) can be constructed for
these measures using a Bayesian approach together with the
posterior distributions of the involved parameter estimates.
Third, the φs and φ( f )s are independent of sample size, and
they do not depend on the metrics of the involved variables.
Fourth, the value of φ is between 0 and 1.0. However, for a
two-stage moderated model (Scenario C and D in Fig. 3),

there is a possibility for the values of φ1, φ2, φ12, φ
fð Þ

1 , φ fð Þ
2 ,

and φ fð Þ
12 to be greater than 1 when a suppression effect occurs

(Deegan, 1978; Lutz, 1983; Maassen & Bakker, 2001;
Tzelgov & Henik, 1991). Although the new measures have
many advantages, they also have limitations. Similar to the
partial η2 in ANOVA, Var(aibi) is used as the base variance

in the proposedmeasures, and consequently their explanations
are not in absolute5 sense. That is, these ES measures are
naturally relative to the value of the mediation effect (i.e.,
Var(aibi)). Similarly, the denominator in the formulations of

φ fð Þ
1 , φ fð Þ

2 , and φ fð Þ
12 contains only the explained variance at-

tributable to the effect of the moME effect.
In practice, which measures of the ESs to choose depends

on the interest and context of the study. If the analysis is about
the explained variance of the indirect effect (i.e., Var(aibi))
attributable to the moderator variables (Z1 or Z2), the proposed
ESs are preferred. We suggest also including the correspond-
ing denominators when such measures are reported. The rea-
son is to avoid over-interpretation of the moME ES, and the
value of Var(aibi) also forces one to consider whether the total
variance of the indirect effect of X on Y through M has prac-
tical significance before further explaining the moME ES for
specific moderator variables. We also recommend that re-
searchers select and report ESs according to the substantive
interest. Between the measures φs (i.e., φ, φ1, φ2, and φ12)

andφ( f )s (i.e.,φ fð Þ
1 , φ fð Þ

2 , andφ fð Þ
12 ), researchers can select the

most appropriate ones according to the specific research inter-
ests. The measure φs are chosen if the emphasis is on the
extent to which the total variance of mediation effect (i.e.,
Var(aibi)) is explained by the moderator(s), and the φ( f )s are
chosen if the emphasis is on the extent to which the explained
variance of mediation effect (i.e., Var γa0 þ γa1Z1i

� �
γb0 þ γb1Z2i
� �

) is explained by the moderator(s). Among
φ, φ1, φ2, and φ12, φ is preferred if the interest is in the total
moderated mediation effect of Z1 and Z2; φ1 (or φ2) is pre-
ferred if the interest is in the first (or second) stage moderated
mediation effect of Z1 (or Z2);φ12 is preferred if a researcher is
interested in the interactively moderated mediation effect Z1
and Z2. Similar considerations are applicable to the selection

of φ fð Þ
1 , φ fð Þ

2 , and φ fð Þ
12 . However, if the interest is about the

effects of Z1 and Z2 on the outcome Y, estimates other than the
φs (or φ( f )s) might be used. For example, similar to the idea
that the standardized regression coefficient can be used to
measure the effect of an independent variable on the depen-
dent variable in multiple regression analysis, we can take the
standardized estimates of γa1γb0, γa0γb1, and γa1γb1 to mea-
sure the ESs of the first stage moderated mediation effect, the
second stage moderated mediation effect, and the interactively
moderated mediation effect by the moderators in the first and
second stages, respectively. These measures are scale-free and
facilitate communication and comparison across studies. But
theymeasure the indirect effect of the interaction termXZ1 and
MZ2 on Y, rather than the extent Z1 and Z2 moderate the indi-
rect effect of X→M→Y.

4 We compared the results of using Mplus8.3 and JAGS in the simulation
study, and found that they exhibit essentially the same patterns regarding the
performances of the moME and 2moME models.

5 An absolute ES is a measure that does not require a referent value for its
interpretation. A comparative ES is used when there is some explicit compar-
ison that is important to quantify (Kelley & Preacher, 2012).
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With Bayesian methods, one has to choose prior distribu-
tions, and many researchers have demonstrated the influence
of prior distributions on parameter estimates (e.g., Yuan &
MacKinnon, 2009). In this article, we set the shape/scale pa-
rameter of the inverted Gamma distributions to be vague
(diffuse) informative in the simulation studies, and they are
most commonly used and recommended in practice (Browne
& Draper, 2006). Existing literature indicates that proper in-
formative priors can make SEM parameter estimates more
accurate, and Zondervan-Zwijnenburg et al. (2017) provided
specific guidelines in collecting prior information and formal-
izing the information to specify the priors. In practice, we can
incorporate the accumulated information about a parameter
and to form a prior. When new observations become avail-
able, the previous posterior distribution can be used as a prior.
In addition, different priors should be examined to investigate
the influence of priors on the results. While informative priors
are beneficial, how to use the priors can be subjective. For the
empirical example, we piloted both informative and non-
informative priors to explore the impact of different priors,
and results showed that bothMplus and JAGS are little affect-
ed by the selected priors. Thus, we only presented the results
with non-informative priors. But it should be noted that our
findings with the use of priors may not always hold in prac-
tice. Sensitivity analysis should still be considered (van de
Schoot et al., 2017; Zondervan-Zwijnenburg et al., 2017) to
make sure that the results are not strongly influenced by a
particular choice of the priors.

In this article the heteroscedasticity of errors uai , ubi , and uci
are related to X and (or)M in the 2moME model. This form of
heteroscedasticity is derived from the fact that the mediation
effect X → M → Y for different individuals might be affected
differently by Z1 and (or) Z2, which naturally stem from the
conceptual moderated mediation model. We should notice that
there are many different forms of heteroscedasticity in regres-
sion analysis, and how to detect the form of heteroscedasticity
and how to address it are important practical issues. However,
these issues are beyond the scope of our study, and interested
readers are referred to Carroll and Ruppert (1988), and
Weisberg (2014) for further discussion. In addition, if a re-
searcher only cares about the consistency of parameter esti-
mates and their standard errors rather than the efficiency/
accuracy of parameter estimates and/or proper effect sizes, the
sandwich-type (also called White, or Huber-White) standard
errors will serve the purpose following the LS estimation of
the conventional moME model. However, such standard errors
are not as good as expected for the analysis of a moderated
multiple regression model (see, e.g., Yuan et al., 2014). In ad-
dition, we assumed that the error terms uai , ubi , and uci are
independent for more accurate variance-parameter estimates
with single-level data. We can also let the level-2 residuals be
correlated; then the expressions for the mean and variance of

aibi as well as the decomposition of Var(aibi) will contain more
terms. But they can be derived with additional computation,
and the definitions of ESs are still applicable.

In the current article, we have focused on a moderated
mediation model with one moderator variable at each
stage. The two-level moME model can easily include
more moderator and mediator variables. Also, when there
are multiple moderator variables in the moderated media-
tion model, the correlations between the moderator vari-
ables may lead to reciprocal suppression effects (Tzelgov
& Henik, 1991). It is possible that the investigation of
suppression effects can provide an opportunity to gain a
better understanding of the relationships among the vari-
ables (Rucker et al., 2011). Therefore, further studies on
the suppression effects in the analysis of moderated me-
diation are encouraged. It would also be of interest to
know the conditions under which the ESs defined in this
article are outside the interval [0, 1] and to determine the
plausibility of these conditions in practice. In addition,
while the Bayesian method is used in estimating the
2moME model in this article, researchers can also explore
frequentist approaches to estimate the 2moME model. In
particular, Yuan et al. (2014) developed an algorithm for
estimating the 2MMR model by normal-distribution-based
maximum likelihood (NML), and Yang and Yuan (2016)
proposed two robust methods for estimating the same
model. These methods can be extended to the 2moME
model. With the ML method, models can be compared
using AIC or BIC, and sandwich-type SEs might be used
to deal with violation of conditions. Other advantages of
ML include that the computation is a fixed process and no
artistic manipulation is needed, and different researchers
will get the same set of results. But the computation/
programing of ML estimates may involve coding a large
number of equations. In contrast, the Bayesian method is
flexible and capable of handling complicated models. But
it needs to assume a known form for the distribution of
(data| θ) (e.g., normally distributed variables/errors).
Also, Bayesian computation involves a lot of manipula-
tions: choice of priors, determination on the number of
burn-in iterations, and checking the convergences of the
chains. Different researchers may get quite different re-
sults. Further studies are needed in this direction and to
compare the pros and cons of different methods. Finally,
it is worth noting that estimates of the ESs depend on the
accuracy of the parameter estimates, and they are not im-
mune to statistical problems inherent in poorly designed
studies. Similarly, omitted variables, measurement errors,
and other factors that interfere with the estimates of re-
gression coefficients will also affect the new measures of
ES. Additional studies are needed to develop proper mea-
sures to quantify moME effects under these contexts.
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Appendix A

Variance Decomposition of the Moderated Mediation
for Scenario D

This appendix provides the derivation of Var(aibi), as needed
in computing the ESs described in the article. For easier ref-
erence, the two-level moderated mediation model (2moME)
for Scenario D, which is given in Eqs. (15)-(21) in the article,
is restated here as Appendix Eqs. (40)-(46). The other symbols
used here are also defined the same as in the article.
Level-1 model:

Mi ¼ dMi þ aiX i þ εMi; ð40Þ
Y i ¼ dYi þ biMi þ ciX i þ εYi; ð41Þ

Level-2 model:

dMi ¼ γdM0
þ γdM1

Zi1 þ udMi ; ð42Þ
ai ¼ γa0 þ γa1Zi1 þ uai ; ð43Þ
dYi ¼ γdY0 þ γdY1Zi1 þ γdY2Zi2 þ udYi ; ð44Þ
bi ¼ γb0 þ γb1Zi2 þ ubi ; ð45Þ
ci ¼ γc0 þ γc1Zi1 þ γc2Zi2 þ uci : ð46Þ

Suppose that variables X, Z1, and Z2 are mean-centered; the
error terms eMi ¼ εMi þ udMi , eYi ¼ εYi þ udYi , uai , ubi , and uci
are independent and follow normal distributions with
eMi∼N 0; σ2eM Þ

�
, eYi∼N 0;σ2

eY Þ
�

, uai∼N 0;σ2
uaÞ

�
, ubi∼N 0;σ2

ubÞ
�

,

uci∼N 0;σ2
ucÞ

�
.

The mean and variance of the effect X→M, as conveyed by
ai, are respectively

E aið Þ ¼ E γa0 þ γa1Zi1 þ uai
� � ¼ γa0 ; ð47Þ

and

Var aið Þ ¼ Var γa0 þ γa1Zi1 þ uai
� � ¼ γ2a1Var Zi1ð Þ þ σ2

ua: ð48Þ

The mean and variance of the effectM→Y, as conveyed by
bi, are respectively

E bið Þ ¼ E γb0 þ γb1Zi2 þ ubi
� � ¼ γb0 ; ð49Þ

and

Var bið Þ ¼ Var γb0 þ γb1Zi2 þ ubi
� � ¼ γ2b1Var Zi2ð Þ þ σ2

ub: ð50Þ

The indirect effect is

INDi ¼ aibi ¼ γa0 þ γa1Zi1 þ uai
� �

γb0 þ γb1Zi2 þ ubi
� �

: ð51Þ

Equation (51) shows that the mediation effect of Xi on Yi
viaMi varies across individuals, and is moderated by both the
stage one moderator variable Zi1 and the stage two moderator
variable Zi2.

The expected value or the average of aibi is (Goodman,
1960, p. 712)

E INDið Þ ¼ E aibið Þ ¼ E aið ÞE bið Þ þ Cov ai; bið Þ
¼ γa0γb0 þ γa1γb1Cov Zi1; Zi2ð Þ ð52Þ

Var aibið Þ ¼ Var γa0 þ γa1Zi1 þ uai
� �

γb0 þ γb1Zi2 þ ubi
� �� 	

¼ Varðγa0γb0 þ γa0γb1Zi2 þ γa1γb0Zi1 þ γa1γb1Zi1Zi2

þ γa0ubi þ γa1Zi1ubi þ γb0uai þ γb1Zi2uai þ uaiubiÞ:
ð53Þ

With centered Z1 and Z2, and the assumptions of
Cov uai ; ubið Þ ¼ 0; Cov uai ; Zi1ð Þ ¼ 0; Cov uai ; Zi2ð Þ ¼ 0; Cov
ubi ; Zi1ð Þ ¼ 0; and Cov ubi ; Zi2ð Þ ¼ 0 and according to the
rules of conditional expectation and covariance of two vari-
ables U and V given W,

E UVð Þ ¼ E V � E U jVð Þ½ �; ð54Þ
Cov U ;Vð Þ ¼ E Cov U ;V jWð Þ½ �

þ Cov E U jWð Þ;E V jWð Þ½ �; ð55Þ

we have Cov Zi1; uaiZi2ð Þ ¼ 0, Cov Zi1; ubiZi1ð Þ ¼ 0,
Cov Zi1; uaiubið Þ ¼ 0; Cov ubiZi1; ubið Þ ¼ 0; Cov ubiZi1; uaið Þ ¼ 0;

Cov ubiZi1; uaiZi2ð Þ ¼ 0, Cov ubiZi1; uaiubið Þ ¼ 0; then

Cov γa1γb0Zi1; γa0ubi þ γa1Zi1ubi þ γb0uai þ γb1Zi2uai þ uaiubi
� � ¼ 0;

Cov Zi1ubi ; γa0ubi þ γb0uai þ γb1Zi2uai þ uaiubi
� � ¼ 0:

In the same way, we have

Cov γa0γb1Zi2; γa0ubi þ γa1Zi1ubi þ γb0uai þ γb1Zi2uai þ uaiubi
� � ¼ 0;

Cov γa1γb1Zi1Zi2; γa0ubi þ γa1Zi1ubi þ γb0uai þ γb1Zi2uai þ uaiubi
� � ¼ 0;

Cov γa0ubi ; γa1Zi1ubi þ γb0uai þ γb1Zi2uai þ uaiubi
� � ¼ 0;

Cov γb0uai ; γa0ubi þ γa1Zi1ubi þ γb1Zi2uai þ uaiubi
� � ¼ 0;

Cov γb1Zi2uai ; γa0ubi þ γa1Zi1ubi þ γb0uai þ uaiubi
� � ¼ 0;

Cov uaiubi ; γa0ubi þ γa1Zi1ubi þ γb0uai þ γb1Zi2uai
� � ¼ 0:

Therefore,

Var aibið Þ ¼ Var γa0 þ γa1Zi1 þ uai
� �

γb0 þ γb1Zi2 þ ubi
� �� 	

¼ Var
�
γa0γb0 þ γa0γb1Zi2 þ γa1γb0Zi1 þ γa1γb1Zi1Zi2

þ γa0ubi þ γa1Zi1ubi þ γb0uai þ γb1Zi2uai þ uaiubi
�

¼ γ2a1γ
2
b0Var Zi1ð Þ þ γ2a0γ

2
b1Var Zi2ð Þ

þ γ2a1γ
2
b1Var Zi1Zi2ð Þ þ γ2a1Var Zi1ð Þσ2

ub

þ γ2b1Var Zi2ð Þσ2
ua þ γ2a0σ

2
ub þ γ2b0σ

2
ua þ σ2

uaσ
2
ub

þ 2γa0γb1γa1γb0Cov Zi1; Zi2ð Þ
þ 2γa0γa1γ

2
b1Cov Zi2; Zi1Zi2ð Þ

þ 2γ2a1γb0γb1Cov Zi1; Zi1Zi2ð Þ: ð56Þ
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This is Eq. (28) used in the denominators of several effect
size measures presented in section 2.2.
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