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Abstract
This paper presents a model that allows group comparisons of gaze behavior while watching dynamic video stimuli. The
model is based on the approach of Coutrot and Guyader (2017) and allows linear combinations of feature maps to form a
master saliency map. The feature maps in the model are, for example, the dynamically salient contents of a video stimulus or
predetermined areas of interest. The model takes into account temporal aspects of the stimuli, which is a crucial difference
to other common models. The multi-group extension of the model introduced here allows to obtain relative importance plots,
which visualize the effect of a specific feature of a stimulus on the attention and visual behavior for two or more experimental
groups. These plots are interpretable summaries of data with high spatial and temporal resolution. This approach differs from
many commonmethods for comparing gaze behavior between natural groups, which usually only include single-dimensional
features such as the duration of fixation on a particular part of the stimulus. The method is illustrated by contrasting a
sample of a group of persons with particularly high cognitive abilities (high achievement on IQ tests) with a control group
on a psycholinguistic task on the conceptualization of motion events. In the example, we find no substantive differences in
relative importance, but more exploratory gaze behavior in the highly gifted group. The code, videos, and eye-tracking data
we used for this study are available online.
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Introduction

Exploring gaze behavior is a popular research method in
many domains, since it can tell us how we are filtering
information and how we might differ in our perception.
Examples of between-group comparisons include differ-
ences in gaze behavior of experts and laymen (Bernal
et al., 2014; Giovinco et al., 2014; Harezlak, Kasprowski,
& Kasprowska, 2018), differences between elderly and
younger people (Fontana et al., 2017) or differences in
visual exploration due to native language (Stutterheim,
Andermann, Carroll, Flecken, & Mertins, 2012). Besides
comparisons of natural groups, differences in gaze behav-
ior are studied subject to different experimental conditions
like manual driving and highly automated driving (Navarro,
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Reynaud, & Gabaude, 2017). The data-analytic approach
for group comparisons proposed in this paper is illustrated
by differences in exploration between a group of people
with particularly high cognitive ability and a control group.

Our visual environment is mostly characterized by dynamic
processes and therefore the focus in this paper is on mod-
eling dynamic scenes. We model the relative importance
(RI) of different stimulus elements in dynamic scenes for
gaze behavior for two natural groups by employing raw
eye-tracking data. Therefore, we extend the approach of
Coutrot and Guyader (2017) to a multi-group case. The
model builds on linear combinations of feature maps to form
a master saliency map while taking into account the highly
dynamic nature of visual exploration, influenced by many
time-dependent factors. The feature maps in the model can
be, for instance, the static or dynamic salient contents of
a video stimulus or predetermined areas of interest (AoIs).
In addition, we reflect the individual steps in the model-
ing process. Before detailing the proposed approach, we
review existing techniques for dynamic group comparisons
and review modeling based on saliency maps.
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Existing techniques for dynamic group comparisons

There are different approaches for comparing gaze behav-
ior in dynamic scenes. Besides using metrics such as
reaction time, dwelling time in AoIs and energy concen-
tration ratios (Bernal et al., 2014; Fontana et al., 2017),
some approaches take into account scan patterns. These
approaches are based on evaluating similarity with sequence
alignment scores followed by testing for statistical differ-
ences (Feusner & Lukoff, 2008) or providing a similarity
score for two scanpaths based on their morphology and,
optionally, duration in an AoI (Frame, Warren, & Maresca
2018). Navarro, Reynaud, and Gabaude (2017) analyze
approaches based on the visual screen but without infor-
mation on displayed images which take into account x and
y axis variability of both groups or detect observer-based
AoIs via heat maps and compare the consequent matrices by
a Wilcoxon signed-ranks test. Furthermore, Navarro et al.
(2017) compare techniques which do take into account the
information on the visual stimulus by considering the per-
centage of time spent looking at a region of 5 degrees around
a tangent point or by analyzing gaze positions relative to a
dynamic gaze point on the stimulus but with a decomposi-
tion of gaze positions in horizontal and vertical components.
Coutrot, Hsiao, and Chan (2017) introduce an approach in
which hidden Markov models are learned from a group of
scanpaths. This is useful to visualize and compare the gaze
behavior of two different groups of observers. Other impor-
tant scanpath algorithms have been introduced by Kübler,
Rothe, Schiefer, Rosenstiel, and Kasneci (2017), where the
scanpath comparison and classification is based on sub-
sequence frequencies, and by Cristino, Mathot, Theeuwes
and Gilchrist (2010), who present an approach for com-
paring saccadic eye- movement sequences based on the
Needleman–Wunsch algorithm used in bioinformatics to
compare DNA sequences.

Holmqvist and Andersson (2017) present different over-
time calculations, like AoI over time with line graphs showing
the proportion of participants gazing at a particular AoI.
These methods are illustrated for static stimuli and do not
involve direct group comparisons, but also provide feature
importance curves that could be compared for different
groups. However, this approach is not based on a statistical
model, which means that the strength of the effects of the
individual features on visual fixations cannot be quantified.
Furthermore, this method considers each AoI individually
and not in a combined manner. This also leads to multiple
allocations of fixations in the case of overlapping AoIs.

Modeling with saliencymaps

Some studies show that saliency maps from the computer
vision field play an important role in the prediction of

gaze behavior in different settings like watching videos,
egocentric vision, or in computer games (Coutrot &
Guyader, 2014; Sundstedt, Stavrakis, Wimmer, & Reinhard
2008; Yamada et al., 2011). On the other hand, some studies
show that tasks overrule saliency when the participant
takes the task very seriously (e.g., Chen & Zelinsky, 2006;
Land & Hayhoe, 2001). Stimulus-driven saliency, also
called bottom-up saliency, can be defined by predetermined
AoIs, but also by static and dynamic saliency. Many
computational models for visual attention, such as the
model by Koch and Ullman (1985), are based on the Feature
Integration Theory (FIT) by Treisman and Gelade (1980).
A well-known approach that also focuses on features such
as contrast, color or orientation, is the model by Itti,
Koch, and Niebur (1998). This approach has later been
extended by motion filters to obtain saliency models for
video stimuli by Peters and Itti (2008). Another saliency
model for video stimuli has been proposed by Le Meur,
Thoreau, Le Callet, and Barba (2005). Le Meur and Baccino
(2012) provide an extensive overview of computational
modeling methods of visual attention and survey the
strengths and weaknesses of common assessment methods
based on diachronic (scanpaths or saliency maps) eye-
tracking data. Marat et al. (2008) propose a spatio-temporal
saliency model, which is biologically inspired and based
on luminance information. In this model, high spatial
frequencies are processed to extract luminance orientation
and frequency contrast through a bank of Gabor filters and
normalized to strengthen the spatially distributed maxima to
obtain the static saliency of a frame. Under the assumption
of luminance consistency between two consecutive frames,
the dynamic pathway of the same model can be used to
create dynamic saliency maps. Here, the moving areas are
extracted by using low spatial frequencies. This model is
also used in the approach of Coutrot and Guyader (2017),
on which the method in this work is based.

Coutrot and Guyader (2017) combine the more popular
bottom-up features with the observer-based top-down
features linearly to a master saliency map. The model takes
into account the dynamic aspect of the stimulus by using a
statistical shrinkage method, which is a crucial difference
from other common models in eye-tracking experiments.
The works of Zhao and Koch (2011) and Peters and Itti
(2007) for instance, are based on a similar model setup,
but use a least-squares approach. Moreover, there exist
methods based on deep learning networks that provide
even higher correct classification rates and are state-of-the-
art in terms of visual saliency prediction (Bylinskii, Isola,
Bainbridge, Torralba, & Oliva 2015; Coutrot et al., 2017).
However, these methods have the disadvantage that they
depend on many parameters that are difficult to interpret
(Lipton, 2018). In this paper, we extend the approach
of Coutrot and Guyader (2017) to a multi-group model,
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which allows to compare gaze behavior between two or
more groups.

The remainder of this paper is organized as follows:
After discussing the extension of the approach in Coutrot
and Guyader (2017) in the subsequent “Methods”, several
worked examples are given in the “Practical application”,
followed by concluding remarks in the “Conclusions”.

Methods

In this section, the idea of modeling eye-position density
maps based on the approach of Coutrot and Guyader (2017)
is described, though many details differ from the original
exposition. The creation of feature maps and the estimation
of eye-position density maps based on raw eye-tracking
data is reviewed in detail, and the least absolute shrinkage
and selection operator (LASSO) is discussed. Subsequently,
we present the novel extension of the eye-position density
modeling approach to the multi-group case.

Modeling eye-position density maps

The aim is to predict salient regions in complex natural
scenes by linearly combining feature maps to a so-called
master saliency map, which identifies regions that might
lead to increased visual attention. The features in the
model can refer to the stimulus (like contrast, motion,
or predetermined AoIs), the so-called bottom-up features,
or to the observer, the top-down features (like group
membership). An often-observed behavior-based bias is the
center bias (e.g., Tseng, Carmi, Cameron, Munoz, & Itti,
2009). This top-down feature describes the tendency to
visually focus rather on the center than on the edges of a
stimulus. The weights of the feature maps in the model vary
systematically over time. The choice of feature maps also
plays an important role since it has a strong impact on the
predictions quality.

Let S be a master saliency map, Mk(t) the feature map
for the kth feature at time t , k ∈ {1, ..., K}, and βk(t) the
corresponding feature map weight at time t . The master
saliency map S(t) is given by the linear combination

S(t) =
K∑

k=1

βk(t)Mk(t).

We suppress the dependency on time in the notation for
ease of exposition, i.e., S = S(t), Mk = Mk(t) and
βk = βk(t) for all k. The maps S and Mk , k = 1, ..., K ,
can be understood as vectors with a length corresponding
to the number of pixels of the stimulus frame. The
vector of weights β is learned using eye-tracking data.
Visual experiments are dynamic processes affected by many

time-related factors, so the statistical shrinkage method
LASSO is used to sieve out relevant feature maps.

Featuremap generation

The generation of feature maps to be included in the model
is described next. Note that all feature maps are represented
by matrices, and all are normalized to obtain a bivariate
probability density function by dividing each entry through
the sum of all entries of the map.

Uniform map The uniform map is a bottom-up feature
with the same value 1

w·h at each entry or pixel, MU =
( 1
w·h )i=1,...,w, j=1,..,h ∈ R

w×h, where w and h represent
the stimulus width and the stimulus height in pixels. This
feature represents a “catch-all hypothesis” for fixations,
which can only be weakly explained by the other features.

Center biasmap The center bias is a bottom-up feature gen-
erated by a time-independent bivariate Gaussian function
N (0, �) with a diagonal covariance matrix � = diag(σ 2

x ,

σ 2
y ), which is centered at the center of the monitor. Standard

deviations σx and σy are chosen proportional to frame size
by dividing the stimulus height and width by 12.

Static and dynamic saliency map The static and dynamic
saliency maps are top-down features that highlight areas of
the stimulus that stand out statically or dynamically from
the other areas of the stimulus. Saliency maps can be created
using different saliency models. In this paper, saliency maps
are first determined using two different saliency models
and then the resulting feature map weights are compared.
The Graph-Based Visual Saliency Algorithm (GBVS) and
the Real-Time Three-Path Saliency Model (TVSM) are
used for this purpose. The comparison of these rather
different approaches is carried out to get an impression of
the influence of the choice of the saliency model on the
results in the eye-position density map modeling approach.
The GBVS algorithm is a graph-based approach (Harel,
Koch, & Perona, 2006). The spatio-temporal saliency model
TVSM is a biologically inspired model based on luminance
information (Marat, Rahman, Pellerin, Guyader, & Houzet,
2013) and is also applied in Coutrot and Guyader (2017).
Both approaches use the same model to create dynamic
saliency maps and static saliency maps. The approach to
model dynamic saliency maps considers information from
the previous frame. For this reason, it is not possible to
create a dynamic saliency map for the first frame.

We find that for stimuli where the dynamic content is also
statically very different from the remainder of the stimulus,
the TVSM algorithm is more suitable for determining the
saliency maps: Fig. 9 includes the comparison of the GVBS
and the TVSM saliency maps for an illustrative frame as
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well as some resulting estimated curves, which show that the
resulting feature map weights for the video stimulus differ
considerably between the approaches. The contrary course
of the feature map weightings of static and dynamic saliency
due to the correlation of the two features is particularly
strong under the GBVS approach. For dynamic scenes
where the statically salient content is more distinct from the
dynamically prominent content, such as the stimulus from
the freely accessible supplementary material from Coutrot
and Guyader (2017), the inaccuracy of the GBVS algorithm
has little effect on the estimated feature map weights.

Consequently, the saliency features are determined using
the TVSM algorithm. Figure 1 shows the static and dynamic
saliency map as well as the original frame for one frame of
the video stimulus car cornfield from our experiment.

Areas of interest (AoIs) The AoIs are defined as polygons
with known vertices. Based on these coordinates, we create
binary matrices for each frame, which are 1 on the pixels
inside the polygon and 0 otherwise. Figure 2 illustrates the
dynamic and static AoI in a video stimulus.

Eye-position density map estimation

For each natural or experimental group, an eye-position den-
sity map is estimated frame by frame from raw eye-tracking
data by kernel density estimation, a non-parametric approach
for estimation of probability densities. Since the stimuli are
two-dimensional videos, a bivariate kernel density with
bivariate least squares cross-validation bandwidth matrix is
appropriate (e.g., Duong, 2004). The bivariate kernel den-
sity estimator on a grid out of pixels x for a random sample
out of N fixation coordinates X1, ...,XN is given by

f̂ (x; H ) = N−1
N∑

i=1

KH (x − Xi ),

with two-dimensional vectors x = (x1, x2)
T and Xi =

(Xi1, Xi2)
T , i = 1, ..., N . The scaled kernel is denoted

by KH and H ∈ R
2×2 is a non-random, symmetric,

positive definite bandwidth matrix. The relation to the non-
scaled kernel K is given in a general form by KH (x) =
|H |−1/2K(H−1/2x). The scaled bivariate gaussian kernel,
on which the calculations in this paper are based, is given
by KH (x) = (2π)−1|H |−1/2 exp(− 1

2x
T H−1x).

The bandwidth matrix ĤLSCV is the solution of the
minimization problem argminHLSCV(H ), with

LSCV(H ) =
∫

Rd

f̂ (x; H )2dx − 2N−1
N∑

i=1

f̂−i (Xi; H ),

where f̂−i (Xi; H ) = (N − 1)−1 ∑N
j=1,j �=i KH (Xi −

Xj ) is the leave-one-out-estimator. This procedure differs
from the kernel density estimation in the work of Coutrot
and Guyader (2017), in which a bivariate Gaussian kernel
with a standard deviation of 1 degree of visual angle is
chosen. In particular, a new bandwidth is selected here
for each frame, which allows for more variability between
the densities of the individual frames (a comparison of
the two approaches can be seen in Fig. 8). A smooth eye
position density map Y results. With this approach, no
further background information on the experimental setup
(like visual angle) is required. Overall, the smoother the
kernel density estimation, the less individual feature maps
stand out and the more similar the resulting weights are.

Least absolute shrinkage and selection operator
algorithm

The advantage of the LASSO over other regression meth-
ods, especially least squares regression or the expectation
maximization algorithm, is that it allows selecting rele-
vant features and to reject the other features. This prop-
erty can lead to a more efficient and more interpretable
model (Hastie, Tibshirani, & Friedman, 2009). Here, the
LASSO shrinks feature map weights β by imposing a L1

penalty with irrelevant map weights shrunk to 0 and, hence,
removed entirely from the master saliency map.

Fig. 1 Frame of a video stimulus (left) with corresponding static (middle) and dynamic (right) saliency maps calculated with TVSM. Contrasts
and luminance influence the static map, while the moving truck in the otherwise steady scene dominates the dynamic salience
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Fig. 2 Frame of a video stimulus with highlighted AoIs (left) and
dynamic (middle) and static AoI maps (right) corresponding to binary
matrices. The dynamic AoI map differs from frame to frame while the

static AoI map is the same for each frame of the video stimulus since
it does not move and there is no camera motion

Recall that the eye-position density map is denoted by
Y , and that the master saliency is equal to

∑K
k=1 βkMk .

The parameter λ > 0 is a tuning parameter, which controls
the amount of shrinkage. The LASSO estimate solves the
minimization problem

βLASSO(λ) = argminβ

{
(Y −

K∑

k=1

βkMk)
2 + λ

K∑

k=1

|βk|
}
.

For λ = 0 the LASSO algorithm corresponds to the least
squares estimate. For λ → ∞ the weights βk , k = 1, ..., K ,
are shrunk towards zero. For an increasing λ, the variance
decreases and the bias increases (James, Witten, Hastie, &
Tibshirani, 2013).

The R package glmnet (Friedman, Hastie & Tibshirani,
2010) finds βLASSO(λ) values for a regularization path, i.e.,
for a sequence of λ values. Following Coutrot and Guyader
(2017), λ is chosen so that βLASSO(λ) is optimal in terms
of the Bayesian Information Criterion (BIC), given here by

BIC = BIC(S|Y ) = −2 log L(S|Y ) + K log n,

where L is Gaussian likelihood of S = S(λ), K is the
number of feature maps in the model (equal to the number
of nonzero βk) and n = w ·h denotes the number of pixels in
Y . Zou, Hastie, and Tibshirani (2007) show that the number
of non-zero coefficients provides an unbiased estimate
of the degrees of freedom in LASSO, which does not
require further assumptions on the predictors. In addition,
it is shown that the unbiased estimator is asymptotically
consistent and thus model selection criteria, such as the BIC,
are acceptable.

Extension tomulti-group case

The extension of the approach of Coutrot and Guyader
(2017) is based on the method for modeling interactions
between qualitative and quantitative predictors in general
linear models, e.g., Kutner, Nachtsheim, and Neter (2005).

To extend the model for the two-group case, a binary
dummy variable M̃G is introduced, which denotes whether
the information on the j th pixel refers to the treatment or
the control group and is given by

M̃Gj =
{
1, if j refers to the treatment group

0, if j refers to the control group,

where j = 1, ..., 2 · w · h, with w the number of pixels in
width and h the number of pixels in height. In the following
model, extension of the first w · h entries refer to the
treatment group and the second w · h entries refer to the

control group. Thus, M̃G is given by M̃G := [
1T
w·h0T

w·h
]T ∈

R
2·w·h.
The feature maps are given in form of vectors in the

model and the variable M̃G is interacted with each feature
map in the model. This is done by elementwise vector
multiplication, denoted by “◦”. The model with K feature
maps M1, ...,MK is given by

Ỹ = βM̃ + ε, (1)

where M̃ =
[
M̃1 ... M̃K M̃1 ◦ M̃G ... M̃K ◦ M̃G

]
denotes

the design matrix with M̃ i := [
MT

i MT
i

]T ∈ R
2·w·h, for i =

1, ..., K , Ỹ = [
Y T

T Y T
C

]T ∈ R
2·w·h with Y T and YC the eye-

position density maps of the treatment and control group in
form of a vector and β = (β1, ..., βK, β1,G, ..., βK,G)T ∈
R
2·K the regression coefficient vector. The density on the

j th pixel is therefore given by

Ỹ j = β1M̃1j + ... + βKM̃Kj + β1,G(M̃1j · M̃Gj ) + ...

+βK,G(M̃Kj · M̃Gj ) + εj

=

⎧
⎪⎨

⎪⎩

(β1 + β1,G)M̃1j + ... + (βK + βK,G)M̃Kj+
... + εj , j = 1, ..., n

β1M̃1j + ... + βKM̃Kj + εj , j = n + 1, ..., 2 · n,

with n = w · h. If β1,G, ..., βK−1,G or βK,G differ
significantly from zero, it can be interpreted as differences
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in gaze behavior between the two groups. Confidence
intervals therefore need to be estimated, which will not be
further specified in this paper.

Practical application

In the following section, we describe the structure of the
experiment, the stimulus material, as well as the available
data material and data processing. Subsequently, the method
is applied to the stimulus and data material. In addition
to the analysis of the stimuli in our specific experiment,
we also include the evaluation of two static stimuli in the
Appendix to demonstrate that our method also works for
other types of stimuli. The analyses are performed in the
statistics software R (R Core Team, 2020). The code, visual
material, and eye-tracking data we used for this study are
available online.1

Material

Participants and experiment The eye-tracking experiment
was carried out with two groups at different time points.
The first group consists of NT = 33 members of theMensa
in Deutschland e.V., an association for participants with
particularly high cognitive abilities. This group is denoted
as the treatment group, where a particularly high cognitive
ability stands for the treatment. The second group contains
NC = 102 participants, which are primarily members of
a bachelor’s program in German philology. This group is
considered to be the control group. All participants are
multi-lingual and speak German at a native-speaker level.
The treatment group in our experiment was aware that their
gaze behavior would be compared with a control group,
which could influence their gaze behavior.

In the experiment, several video stimuli are presented
to the participants. The task was to briefly describe orally
what is happening in the video. This task (or pseudo-task)
is common in many psycholinguistic gaze behavior studies
since it aims to achieve greater comparability between
participants, as visual behavior can vary greatly without any
task (e.g., Castelhano, Mack, & Henderson, 2009).

Visual material The video stimuli are taken from a study
that compares the gaze behavior of speakers of different native
languages (Stutterheim, Andermann, Carroll, Flecken, &
Mertins, 2012). A distinction was made between speakers of
an aspect language and non-aspect language. In terms of the
use of tenses, aspect languages, such as English, distinguish
between an ongoing action (John was crossing the street)
and a completed action in the past (John has crossed the

1https://github.com/marastadler/Lasso eyeposition

street). Non-aspect languages, such as German, do not make
such a distinction, but need time adverbs to clarify that an
action is happening right now. In the study, it was shown
that speakers of non-aspect languages, when considering
dynamic stimuli, put a stronger focus on the expected—
but not occurring—endpoint towards which an object is
moving (Stutterheim et al., 2012). In the context of the
current work, influence of cognitive ability on gaze behavior
is studied, while keeping the variable language constant. In
a study by Vigneau, Caissie, and Bors (2006) on differences
in gaze behavior when solving the Advanced Progressive
Matrices Test, a speech-free multiple-choice intelligence
test, it could be shown, for example, that subjects with
high test scores consider all elements of the matrix to be
completed. In contrast, subjects with low test scores only
considered the elements in the row and column of the
element to be completed in the matrix.

The video stimuli contain one moving object, the dynamic
AoI, and we have defined a fixed end point, the static AoI.
The stimuli end before the end point is reached by the
moving object. The stimuli have no camera pan and no
sound. The procedure is exemplified on several stimuli in
this paper and the detailed procedure is described using the
stimulus car cornfield as an example.

The refresh rate is 25 Hz and the resolution of the
stimulus is w · h = 720 × 576 pixels. This video stimulus
shows a car, the dynamic AoI, driving in the direction of a
house, representing the static AoI, see Fig. 3. The duration
of the video stimulus is approximately 7 s and therefore the
stimulus consists out of NF = 174 frames.

Eye-tracking data The eye-tracking data are given as x and
y coordinates of fixations and saccades on the monitor. Fol-
lowing Coutrot and Guyader (2017), only the coordinates of
the right eye are considered. The data were recorded with
an SMI RED 60 device. The distance of a participant to the
monitor was between 55 and 65 cm. The resolution of the
monitor is 1920×1080 pixels and the stimulus was enlarged
to full monitor height and proportionally adjusted in width.
Therefore, the video area has a resolution of 1350 × 1080
pixels with black areas on the sides with a width of 258
pixels each. The fixations and saccades were recorded at a
sampling rate of 60 Hz. The upper left corner of the moni-
tor represents the coordinate (0, 0), which is also recorded
if there is a loss of vision or if the respondent blinks.

Data processing The number of recorded fixations or
saccades varies slightly between 407 and 410 data points per
participant in the treatment group and between 407 and 419
in the control group due to eye-tracker inaccuracies. The
dataset does not provide any information about the points in
time at which the gaze coordinates are lost, which is why
the number of gaze coordinates is shortened by discarding
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Fig. 3 Excerpt of the video stimulus at the beginning, in the middle, and at the end (1st, 87th, and 174th frame)

the last gaze coordinates to the minimum available number
of gaze coordinates per respondent. Thus, inaccuracies of
up to 12/60 s can be assumed. The gaze coordinates (0, 0)
are removed, as they represent that the gaze could not be
tracked. In addition, the coordinates tracked outside the
stimulus area on the monitor are removed. The tracking
rate of 60 Hz and the refresh rate of 25 Hz result in 2.4
coordinates per person and frame. In order to consider one
coordinate per person per frame, the first viewing coordinate
that remains completely on the respective frame is selected.
With 2.4 view coordinates per frame, the 1st, 4th, 6th,
9th, 11th, 13th etc. are thus selected. The remaining view
coordinates are not included in the analysis.

When estimating causal effects in observational data, a
randomized experiment should be replicated as accurately
as possible to ensure that the distribution of covariates in
the treatment and control groups is as similar as possible.
To ensure this, a matching is carried out. Since the groups
have rather small overlaps in their covariates, a propensity
score matching (PSM) with an optimal matching algorithm
and subsequent balance diagnostics (Zhang, Kim, Lonjon,
& Zhu, 2019) on the covariates gender and age is performed
using the R package MatchIt (Ho, Imai, King, & Stuart,
2011). PSM can be helpful if there is a high level of
imbalance in the covariates (King & Nielsen, 2019). By
using a caliper of 0.1 the matching algorithm selects only
25 participants from the control group and ten participants
from the extreme group with high cognitive abilities and
thus rejects 77 participants from the control group and
23 participants from the group of participants with high
cognitive abilities. Although the result does not provide
satisfactory group sizes, the two-group model is illustrated
on the basis of these matched groups.

Results

Figure 4 illustrates the single-group model for one frame
of the video stimulus. The two-dimensional maps can
be understood as matrices M of the dimension w × h,

where w stands for the number of pixels in width and h

for the number of pixels in height of the stimulus. Each
pixel corresponds to a number on the grayscale, where 0
stands for black and 1 for white. The uniform (U), center
bias (CB), static saliency (S), and dynamic saliency (D)
maps, as well as the dynamic AoI (AOI1) and the static
AoI (AOI2) are all included in the model. The matrices
are treated as vectors in the model definition, so that the
value of the kernel density estimate on a pixel corresponds
to an observation in the model. Therefore, M i := �M i ,
i ∈ {U, CB, S, D, AOI1, AOI2}, applies. Mathematically,
the model has the following form,

M = βUMU + βCBMCB + βSMS + βDMD

+βAOI1MAOI1 + βAOI2MAOI2 + ε,

where Y , M i ∈ R
w·h, i ∈ {U, CB, S, D, AOI1, AOI2},

and w · h = 576 · 720 = 414720. The residuals ε

ignore any remaining spatial dependencies and framewise
homoscedasticity is assumed. Each feature map vector is
divided by the sum of all entries of the vector to obtain
probability density functions. The eye-position density map
and feature maps are centered and standardized in the
model. Thus, the units on the y-axis are standard deviations.

First, the initial model is adapted separately for both
unmatched groups of participants. The following Fig. 5
shows the estimated relative importance (RI) curves and the
adjusted coefficient of determination R2 for each frame.
The term ‘relative importance’ refers to the effect of each
feature map on the prediction of the fixation density on the
corresponding frame in the stimulus compared to the effect
of the other feature maps in the model. The RI of the feature
maps can be compared between different feature maps on
one frame (at the same time) or between several frames
(throughout the stimulus duration).

In both groups, the feature maps do not predict the
fixations on the first frames very well. After about the 10th
frame, the R2 values increase. Since it is assumed that there
are latent influences on human gaze behavior, even lower
R2 values can be considered acceptable. The curve of the
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Fig. 4 Model illustration for the second frame of the video stimulus (U = uniform, CB = center bias, S = static, D = dynamic)

coefficient of determination R2 of the treatment group is
similar to the curve of the control group, but on a noticeably
lower level. It can be concluded that the participants of
the treatment group exhibit a more explorative behavior
during this stimulus and thus the feature maps predict the
coordinates of the fixations less accurately. This finding
is also obtained when drawing a random sample from the
control group that corresponds to the sample size of the
treatment group.

The extension to a two-group model for the j th pixel,
j = 1, ..., 2 · w · h = 2 · 576 · 720 = 829440, is given by

Ỹ j = βUM̃Uj + βCBM̃CBj + βSM̃Sj + βDM̃Dj

+βAOI1M̃AOI1j + βAOI2M̃AOI2j

+βU,G(M̃Uj · M̃Gj )

+βCB,G(M̃CBj · M̃Gj ) + βS,G(M̃Sj · M̃Gj )

+βD,G(M̃Dj · M̃Gj ) + βAOI1,G(M̃AOI1j · M̃Gj )

+βAOI2,G(M̃AOI2j · M̃Gj ) + εj ,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(βU + βU,G)M̃Uj + (βCB + βCB,G)M̃CBj + ...

+εj , for j = 1, ..., n

βUM̃Uj + βCBM̃CBj + ... + εj , for j = n + 1,

..., 2 · n,

with M̃ i := [
MT

i MT
i

]T ∈ R
2·w·h for i ∈ {U, CB, S, D,

AOI1, AOI2}, M̃G :=
[
MT

G,T reM
T
G,Con

]T = [
1T
w·h0T

w·h
]T

∈ R
2·w·h and n = w · h = 414720.
The bivariate kernel density estimate Ỹ = [

Y T
T reY

T
Con

]T

∈ R
2·w·h and the feature maps are centered and standardized

separately for each group. The kernel density estimation in
the groups is carried out separately for both groups and is
therefore based on different bandwidths. A standardization
across both groups could lead to a group having a strong
peak if there are strong mean differences in the densities of
the groups.

The R2 values in the group model for the stimulus vary
over the entire duration of the stimulus between values
close to zero and 0.5, with most frames showing R2 values

between 0.1 and 0.4. Apart from the very low R2 values
of the models of the first frames, no temporal influence on
the R2 values can be seen. The comparison of the results
of the model with a LASSO penalty to the results of a least
squares approach shows that there are no notable differences
in the results (see Fig. 10) which means that all features
in the model play an essential role in explaining the gaze
behavior. Figure 6 shows the non-normalized RI curves or
feature map weights βU , ..., βAOI2 for the control group
in transparent colors and βU + βU,G, ..., βAOI2 + βAOI2,G

for the treatment group. The weights here are illustrated
in a non-normalized form, since the densities of the two
groups were not scaled equally and differ in particular in
their maximum. When interpreting such results, it should
always be taken into account that inaccuracies in the eye
tracker may lead to a fixation being incorrectly assigned
to a feature. For the AoIs and the center bias as well as
for the dynamic saliency this problem should be rather
negligible, since these features cover comparatively large
and dense areas of the stimulus. The influence of these
inaccuracies can be greater for the static saliency, which
in some cases highlights very fine contours (see Fig. 1).
The curves are descriptive in nature and do not indicate
significant influences of some features on the fixations or
differences between the groups. In both groups, however,
the dynamic AoI (AoI1) seems to have a higher weighting
than the other features, which suggests that gaze behavior
is strongly driven by the stimulus content. Nevertheless, the
dynamic AoI is moving in a linear way with no changes
in velocity or directions, so for the participants it is very
easy to predict the development of the depicted movement,
which in turn frees them to explore the rest of the scene.
Overall, the curves in both groups run at a similarly high
level. The curves indicate that the groups do not react to
image elements represented by the feature maps at exactly
the same time, but with a time lag. This behavior can be
seen for example in the center bias curves (green). Also, the
curves of the dynamic AoI (AoI1) indicate that the groups
do not always focus on the car at the same time. Since we
use theL1 penalty in our model, feature map weights, which
are not relevant for the prediction of fixations, would get
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Fig. 5 RI curves of respective feature for both groups separately in the non-extended model (top) and R2 values for both groups (bottom) (left:
treatments, right: controls)

a value of zero, which is not the case here except for the
uniform map, which serves as a control instance and should
therefore be zero. It can be concluded that all feature maps

in our model, the bottom-up feature center bias as well as
the top-down features, seem to be relevant for the prediction
of fixations.

Fig. 6 Estimated feature map weights for the first 70 frames in the two-group model for the clarity in multiple plots. Dashed lines lines stand for
feature map weights in the treatment group and solid for the control group
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We have performed permutation tests based on an equidis-
tant sequence of ten frames (for runtime reasons) to make
statements about significant differences between the groups
for each frame. The following Fig. 7 shows the boxplots
of all observed coefficients of group differences β̂U,G, ...,
β̂AOI2,G in P = 1000 permutations and the corresponding p
values. The observed coefficients are highlighted with a red
cross. If the red cross is located inside the box, the regres-
sion coefficient hardly differs from the coefficients of a
random group assignment and this indicates that there exists
no difference in gaze behavior between the two groups in
this frame. Conversely, observations located outside of the
box represent significant group differences. The results we
obtain reflect what the relative importance curves indicate.

For example, in frame 42 for both the static AoI (AoI2)
and the dynamic AoI (AoI1) and also for the center bias
the red crosses are outside of the box as one would expect
when looking at the RI curves. For frame 21, on the other

hand, no significant difference can be detected in both
AoIs, which is also indicated by the curves. The fact that
the AoI1 boxes are not exactly centered around zero and
are also very large overall shows that in the dynamic
AoI, the gaze behavior also varies more among individuals
in general. Nevertheless, the difference between the two
groups examined here is particularly noticeable.

We again use model (1) and the same groups to analyze
a further stimulus walking market, which includes a market
stall as an endpoint and a lady as a moving object moving
towards the market stall. This stimulus also contains other
possible areas of interest such as a pigeon walking through
the image, which are not included as individual features
in the model, but are covered by the static and dynamic
saliency. Again, we find that the dynamic AoI (AoI1), i.e.,
the lady, gains the highest weight in both groups. In contrast
to the previous stimulus, the static AoI (AoI2) has high
weights at the beginning, which can be explained by the
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Fig. 7 Boxplots showing the estimated coefficients of the group dif-
ferences from 1000 permutations in all feature maps in our proposed
model (1) for a selection of equidistant frames of the stimulus car

cornfield (top). Red crosses indicate the estimated coefficient of the
true groups. Corresponding p values for each feature map and frame
(bottom)
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numerous elements in the picture. Example frames of the
stimulus and the resulting RI curves are shown in Fig. 11
and results from permutation tests in Fig. 12.

Depending on the experimental context, additional AoI
maps could be added, say to model objects competing
for attention. Following Coutrot and Guyader (2017), we
think that both saliency maps are advisable to include
in calculations, but the underlying LASSO regression
modeling framework continues to work when one or
both saliency maps are removed from Eq. 1, changing
model interpretation when doing so. To illustrate the
generalizability of our approach, we include the evaluation
of static stimuli in which the dynamic AoI and the dynamic
saliency in model (1) are omitted (see Figs. 13 and 14).
We expect that the method can also be applied to video
stimuli with camera panning, since neither kernel density
estimation, AoI maps nor saliency map calculations rely on
static scenes.

Conclusions

This article provides a multi-group extension of a visual
saliency model for dynamic stimuli by Coutrot and Guyader
(2017). This allows to compare two or more natural or
experimental groups in terms of the relative importance
(RI) of visual features. Standardized RI plots provide an

interpretable summary. The practical application of the
method shows that the RI curves have similar shape in
both groups, despite the more explorative gaze behavior in
the treatment group. The method thus represents a group
comparison tool which is robust against possible intentional
changes in gaze behavior and investigates differences
in highly automated and subconscious gaze behavior. In
contrast to dynamic models on the level of individuals,
gaze behavior is first aggregated groupwise for each frame.
Hence, model coefficients and especially RI have to be
interpreted as parameters of the groups gaze behavior
distribution. In general, it is not possible to make predictions
for individuals. In principle, the linear model framework in
the background is extensible to further covariates. However,
we caution that the gaze distribution needs to be estimable
by kernel densities or similar approaches, which breaks
down when too few individuals are available.

We demonstrate that the method also works for fewer
features and for static stimuli. The method and the provided
code are applicable to other natural groups and video stimuli
without camera panning without any major changes. The
single steps of model construction can be individually
adapted and should be reflected with regard to the stimulus
material.

Appendix
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Fig. 8 Jensen–Shannon divergence (JSD) between the kernel density
estimate (KDE) in Coutrot and Guyader (2017) (bandwidth 1 degree
of visual angle) and the KDE with a bandwidth selection via bivariate

least squares cross-validation as well as the JSD between the kernel
densities and the uniform distribution for the stimulus car cornfield
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Fig. 9 Illustration TVSM and GBVS saliency maps for one frame of the stimulus car cornfield (left) and resulting feature map weights (static and
dynamic saliency) for GBVS and TVSM saliency maps (right)
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Fig. 11 Relative importance curves of the stimulus walking market with the lady as dynamic AoI (AOI1) and the market stalls as static AoI
(AOI2). There is also a pigeon walking through the video (starting at the lower right corner), which is not modeled as a separate AoI
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Fig. 12 Boxplots showing the estimated coefficients of the group dif-
ferences from 1000 permutations in all feature maps in our proposed
model (1) for a selection of equidistant frames of the stimulus walking

market (top). Red crosses indicate the estimated coefficient of the
true groups. Corresponding p values for each feature map and frame
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Fig. 13 Group comparison of gaze behavior between a group of NT = 55 (after matching) architecture and civil engineering students (treatment)
and a group of NC = 55 (after matching) linguistic students (control) over time for a static stimulus and one AoI (church)
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Fig. 14 Group comparison of gaze behavior between a group of NT = 55 (after matching) architecture and civil engineering students (treatment)
and a group of NC = 55 (after matching) linguistic students (control) over time for a static stimulus and one AoI (lighthouse)
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