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Abstract
Linear regression analyses commonly involve two consecutive stages of statistical inquiry. In the first stage, a single ‘best’
model is defined by a specific selection of relevant predictors; in the second stage, the regression coefficients of the winning
model are used for prediction and for inference concerning the importance of the predictors. However, such second-stage
inference ignores the model uncertainty from the first stage, resulting in overconfident parameter estimates that generalize
poorly. These drawbacks can be overcome by model averaging, a technique that retains all models for inference, weighting
each model’s contribution by its posterior probability. Although conceptually straightforward, model averaging is rarely used
in applied research, possibly due to the lack of easily accessible software. To bridge the gap between theory and practice,
we provide a tutorial on linear regression using Bayesian model averaging in JASP, based on the BAS package in R. Firstly,
we provide theoretical background on linear regression, Bayesian inference, and Bayesian model averaging. Secondly, we
demonstrate the method on an example data set from the World Happiness Report. Lastly, we discuss limitations of model
averaging and directions for dealing with violations of model assumptions.

Keywords Bayesian inference · Bayesian model averaging · Linear regression

Linear regression is a standard statistical procedure in which
one continuous variable (known as the dependent, outcome,
or criterion variable) is being accounted for by a set of
continuous predictor variables (also known as independent
variables, covariates, or predictors). For concreteness,
consider a researcher who is interested in predicting
people’s happiness using a number of country-specific
demographic indicators such as Gross Domestic Product
(GDP), public safety, life expectancy, and many others.
When all available predictors are included in the regression
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equation, the resulting model will generally overfit the
data, the estimates of the regression coefficients will be
unreliable, and the results will generalize poorly to other
data sets (e.g., Myung 2000). Therefore, most regression
analyses start by reducing the set of initial predictors to
a relevant subset. The challenge of identifying a good
subset is known as the model selection or variable selection
problem. For instance, a variable selection procedure may
suggest that only wealth and life expectancy are needed
to predict happiness. Once the relevant subset has been
identified, the associated regression model can be used to
assess the magnitude of the relations between the criterion
variable and the selected subset of predictors (e.g., how
much we expect happiness to change per unit of change in
wealth).

Although common practice, the two-step procedure has
been known to be problematic for over 25 years (e.g.,
Hurvich and Tsai 1990; Miller 1990). Specifically, the sec-
ond step in the two-step procedure ignores the uncertainty
associated with the first step, that is, the uncertainty with
which the model of interest (i.e., the subset of predic-
tors) was obtained. Consequently, inference from two-step
methods has been shown to be misleading (Draper, 1995)

/ Published online: 9 April 2021

Behavior Research Methods (2021) 53:2351–2371

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-021-01552-2&domain=pdf
http://orcid.org/0000-0002-9838-7308
mailto: donvdbergh@hotmail.com


and result in overconfident parameter estimates and biased
inference (Burnham & Anderson, 2003, Ch. 1.7). As sum-
marized by (Claeskens & Hjort, 2008, Ch 7.4, p. 199):

“‘Standard practice’ has apparently become to use a
model selection technique to find a model, after which
this part of the analysis is conveniently forgotten,
and inference is carried out as if the selected model
had been given a priori. This leads to too optimistic
tests and confidence intervals, and generally to biased
inference statements.” (italics in original)

The principled alternative to the two-step procedure
is multi-model inference. Instead of settling, perhaps
prematurely, on a single model for inference, multi-model
inference retains all models and calculates for each model
a weight that indicates the degree to which the data support
that model. These weights are usually a function of the
posterior model probabilities, which represent the relative
probability in favor of each model after the data are
observed (Raftery, Madigan, & Hoeting, 1997; Hoeting,
Madigan, Raftery, & Volinsky, 1999). At the same time
that the model weights are being obtained, parameter
estimates are calculated for each model. Then, instead of
basing all of our inferences on a single model, we can
take into account all of the models simultaneously. For
example, in order to predict a set of new observations we
first generate predictions from the individual models and
then average these predictions using the posterior model
probabilities as weights. This ensures our final prediction
for new observations reflects our uncertainty across the
entire model space (Claeskens & Hjort, 2008, Ch. 7). In
other words, multi-model inference accomplishes variable
selection and parameter estimation simultaneously instead
of sequentially.

Despite the advantages of multi-model inference (e.g.,
Burnham, Anderson, & Huyvaert, 2011; Hinne, Gronau,
van den Bergh, & Wagenmakers, 2020; Hoeting et al.
1999) and its successes in fields such as machine learning
(Breiman, 2001), cosmology (Trotta, 2008), and climate
prediction (Tebaldi & Knutti, 2007), the procedure has been
applied only rarely in psychology (but see e.g., kaplan
and Lee 2016; Gronau et al. 2017). The lack of multi-
model inference in psychological science may be due in
part to the perceived lack of user-friendly software that
executes the analysis, as well as a dearth of tutorial-style
explanations that allow psychologists to interpret the results
of multi-model inference.

This aim of this paper is to bridge the gap between
theory and practice by providing a tutorial on Bayesian
multi-model inference, with an emphasis on user-friendly
software to execute the analysis. First, we briefly provide
theoretical background on linear regression, Bayesian

inference, and Bayesian multi-model inference. Next we
demonstrate the method in action using the BAS R package
(Clyde, 2018) as implemented in JASP (JASP Team, 2020),
an open source software program with a graphical user
interface. The paper concludes with a summary and a
discussion about pitfalls of regression modeling.

Theoretical background

Before demonstrating Bayesian multi-model linear regres-
sion for a concrete data set we first introduce some basic
theory. The impatient reader may skip this section. Below
we first introduce linear regression, its assumptions, and
the most common measure of effect size, R2. We then
briefly describe Bayesian inference and finally introduce
multi-model inference.

Linear regression

The most common definition of multiple regression is:

yi = β0 + β1xi1 + β2xi2 + · · · + βpxip + εi, (1)

where i refers to the scores of the ith subject and p to
the total number of predictors. The intercept is represented
by β0, and the linear effects between criterion and
predictor variables are given by the regression coefficients
β1, . . . , βp. The residuals (εi) are assumed to be
normally distributed with mean 0 and unknown variance
σ 2. The predictors

(
x1, x2, . . . , xp

)
are usually centered

(i.e., modeled with their mean subtracted, for example
β1 (xi1 − x1)) so that inference about the intercept is
independent of which predictors are included in the model.
We will refer to collections of parameters or data points
(vectors) using bold notation (e.g., y denotes y1, y2, . . . , yn).

From the definition of linear regression, it is evident
that the model space can be enormous; consequently,
linear regression presents a multi-model problem. With p

predictors, x1, . . . , xp, each of which can be included or
excluded from the model, the total model space consists
of 2p members (e.g., with 10 predictors, there are 1024
different models to consider; with 15 predictors, the
space grows to 32,768 models). If interaction effects are
considered, the model space grows even more rapidly.

Results from a linear regression analysis can be
misleading if its assumptions are violated. The key
assumption of linear regression is that the residuals are
normally distributed. Introductory texts often mention other
assumptions, but these assumptions generally concern
specific violations of normality. We recommend three
visual checks for assessing normality. As the name linear
regression suggests, the relation between the predictor
variables and the criterion variable should be approximately
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linear. Therefore, the first visual check we recommend
is examining a scatter plot of the criterion and predictor
variables. For example, suppose we wish to predict
Happiness using Wealth. We might observe that the
distribution of Wealth is right skewed and that the
relation between Happiness and Wealth is non-linear.
Such deviations from linearity can be corrected using, for
instance, a log-transformation. Note that because of such
transformations, linear regression analyses can detect more
than just linear trends. The relation between Happiness and
Wealth is shown in Fig. 1.

Second, we recommend examining a Q/̄Q plot to assess
the normality of the residuals. A Q/̄Q plot shows the
quantiles of a theoretical normal distribution against the
observed quantiles of the residuals. If the observed residuals
are approximately normal, then all points in the plot fall
approximately on a straight line. However, not all deviations
from normality are easy to detect in a Q/̄Q plot. For
instance, a Q/̄Q plot does not clearly show if the residuals
are heteroscedastic, that is, the variance of the residuals
is not constant across predictions. Therefore, our third
recommendation is to plot a model’s predictions against
a model’s residuals, which is a common visualization to
assess heteroscedasticity and nonlinearity. To illustrate, we
again predict Happiness with Wealth as measured in GPD.
The left panel of Fig. 2 shows a Q/̄Q plot of theoretical
against observed residuals and indicates little deviation from
normality. However, the right panel of Fig. 2 visualizes
the model’s predictions against the model’s residuals and
suggests that the variance of the prediction error depends
on the model’s predictions. For example, the residuals for a
prediction of 5 are much more spread out than the residuals
for a prediction of 6. In the right panel, the red line is a
smoothed estimate of the mean at each point, obtained with
local polynomial regression (Cleveland, Grosse, & Shyu,
1992). If the red line were horizontal with intercept zero,
this would indicate that there is no structure left in the

residuals that could be captured by the model (e.g., with
interaction effects or higher-order polynomial terms).

However, here the red line varies as a function of
the predictions, most likely because the relation between
predictor and criterion is non-linear. Furthermore, the
variance of the residuals differs across the predictions. This
indicates that the residuals are heteroscedastic.

A linear regression of Happiness predicted by log-
transformed GDP yields residuals that are better in
agreement with the assumptions of linear regression (see
Appendix B, Fig. 13).

After applying the regression model of interest and
having confirmed that the assumptions are not badly
violated, it is recommended to assess model fit. Model fit
indices provide an idea about how well the model describes
the data. Among the many model fit indices, the most
common is the coefficient of determination R2 (Olive,
2017, p. 31), defined as

R2
Mj

= Cor
(
y, ŷ | Mj

)2 . (2)

R2
Mj

is the proportion of variance of the criterion variable
y that is explained by model Mj . The explained variance
is computed by squaring the sample correlation between the
observations y and the predictions ŷ of Mj .

Usually, the term Mj is omitted for brevity. Since R2

is the square of a correlation it always lies between 0
(poor model fit) and 1 (perfect model fit). It should be
stressed that R2 is not a good measure for model comparison
because it does not penalize models for complexity:
when additional predictors are added to a model, R2 can
only increase. Therefore, R2 will always favor the most
complex model. However, the most complex model often
fits the data too well, in the sense that idiosyncratic
noise is misperceived to be systematic structure. In other
words, complex models are prone to overfit the data
(e.g., Hastie, Tibshirani, and Friedman, 2001, Ch. 7;
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Fig. 1 Example of a non-linear relationship between Happiness and Wealth, measured in terms of GDP. The left panel shows the density estimate
for Happiness, the middle and right panel relate Happiness (y-axis) to GDP and log-transformed GDP (x-axes), respectively
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Fig. 2 Assumptions checks for a linear regression where Happiness
is predicted from Wealth, measured in terms of GDP. The left panel
shows a Q-Q plot of the theoretical quantiles expected under a nor-
mal distribution (x-axis) against the quantiles of the observed residuals

obtained from Bayesian Model Averaging (BMA; y-axis). The resid-
uals appear approximately normally distributed. The right panel plots
the predictions under BMA (x-axis) against the residuals (y-axis).
Figures from JASP

Myung and Pitt, 1997; Vandekerckhove, Matzke, and
Wagenmakers, 2015). Because models that overfit the data
treat irreproducible noise as if it were reproducible signal,
predictive performance for new data suffers. Altogether,

this makes R2 unsuitable for model selection, unless the
competing

models have the same number of predictors.

Bayesian inference

The next sections provide a brief introduction to Bayesian
statistics. For accessible, in-depth tutorials and an overview
of the literature we recommend the recent special issue in
Psychonomic Bulletin & Review (Joachim Vandekerckhove,
Rouder, & Kruschke, 2018).

Bayesian parameter estimation

Given a specific model Mj –in regression, a particular
subset of predictors– we start a Bayesian analysis by
defining prior beliefs about possible values for the
parameters (e.g., the regression coefficients). This belief is
represented as a probability distribution; ranges of likely
values have more prior probability and ranges of less likely
values have less prior probability.

As soon as data D are observed, Bayes’ theorem (Eq. 3)
can be used to update the prior distribution to a posterior
distribution:

p(β | D,Mj )︸ ︷︷ ︸
Posterior

=
Prior︷ ︸︸ ︷

p(β | Mj ) ×
Likelihood︷ ︸︸ ︷

p(D | β,Mj )

p(D | Mj )︸ ︷︷ ︸
Marginal

Likelihood

. (3)

Equation 3 shows that our prior beliefs are adjusted to
posterior beliefs through an updating factor that involves the
likelihood (i.e., predictive performance for specific values
for β) and the marginal likelihood (i.e., predictive perfor-
mance across all values for β): values for β that predicted
the data better than average receive a boost in plausibil-
ity, whereas values of β that predicted the data worse than
average suffer a decline (e.g., Wagenmakers, Morey, & Lee,
2016). Equation 3 also shows that the posterior distribu-
tion is a compromise between the prior distribution (i.e,
our background knowledge) and the data (i.e., the updat-
ing factor). The updating process is visualized in Fig. 3.
Note that the impact of the prior on the posterior becomes
less pronounced when sample size increases. In large sam-
ples, the posterior is often dominated by the likelihood and
the posterior is practically independent of the prior (Wrinch
& Jeffreys, 1919). In addition, with more data the poste-
rior distribution becomes increasingly peaked, reflecting the
increased certainty about the value of the parameters.

Bayesian model selection

The parameter estimation procedure provides us with
posterior distributions for parameter values conditional on
a given model Mj . When multiple models are in play, we
can extend Bayes’ theorem and use the data to update the
relative plausibility of each of the candidate models. For the
case of two models, M0 and M1, Equation 4 shows how
the prior model odds (i.e., the relative plausibility of M0

and M1 before seeing the data) are updated to posterior
model odds (i.e., the relative plausibility of M0 and M1

after seeing the data). The change from prior to posterior
odds is given by the Bayes factor (e.g., Jeffreys 1961; Kass
and Raftery 1995), which indicates the models’ relative
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Fig. 3 Illustration of Bayesian updating using Bayes’ theorem for a
single observation (left panel) and ten observations (right panel). The
‘true’ value is 2 and is indicated by the gold triangle on the x-axes.
Note that (1) the posterior depends less on the prior as more data
are observed; (2) the variance (width) of the posterior decreases with

sample size. In other words, we become more certain of our esti-
mates as we observe more data. In the right panel, the likelihood was
normalized for illustrative purposes. This example is based on nor-
mally distributed data with unknown mean and known variance (for
derivations, see Murphy, 2007)

predictive performance for the data at hand (i.e., the ratio of
marginal likelihoods):

p(M1 | D)

p(M0 | D)
︸ ︷︷ ︸

Posterior model odds

= p(M1)

p(M0)︸ ︷︷ ︸
Prior model odds

× p(D | M1)

p(D | M0)︸ ︷︷ ︸
Bayes factor

BF10

. (4)

When the Bayes factor BF10 is 4 this indicates that the data
are 4 times more likely under M1 than M0. The Bayes
factor subscripts indicate which model is in the numerator
and denominator; for instance, if BF10 = 0.20, then 1 /
BF10 = BF01 = 5, which means that the data are 5 times
more likely under M0 than under M1 (Jeffreys, 1939).
There exist several categorization schemes to quantify the
evidence associated with particular ranges of values (e.g.,
Jeffreys 1961; Kass and Raftery 1995). Table 1 provides one
such scheme.

Table 1 A scheme for categorizing the strength of a Bayes factor (from
Lee and Wagenmakers (2013), based on Jeffreys (1961)). Note that
the Bayes factor is a continuous measure of evidence and that the
thresholds provided here (and in other schemes) are only meant as a
heuristic guide to facilitate interpretation and not as a definite cutoff

Bayes factor BF10 Interpretation

> 100 Extreme evidence for M1

30 − 100 Very strong evidence for M1

10 − 30 Strong evidence for M1

3 − 10 Moderate evidence for M1

1 − 3 Anecdotal evidence for M1

1 No evidence
1/3 − 1 Anecdotal evidence for M0

1/10 − 1/3 Moderate evidence for M0

1/30 − 1/10 Strong evidence for M0

1/100 − 1/10 Very strong evidence for M0

< 1/100 Extreme evidence for M0

With more than two candidate models in the set, the
posterior model probability for model Mj is given by

p(Mj | D) = p(D | Mj )p(Mj )∑
i p(D | Mi )p(Mi )

.

This can also be written as a function of the Bayes factor
relative to the null model:

p(Mj | D) = BFj0 (Mj )∑
i BFi0 (Mi )

.

The change from prior to posterior model odds quan-
tifies the evidence BFMj

that the data provide for a
particular model j . The prior model odds are given by
p(Mj )/1−p(Mj ) and the posterior model odds are given by
p(Mj |D)/1−p(Mj |D). The change in odds is obtained by
dividing the posterior model odds by the prior model odds:

Bayes factors generally depend on the prior distribution for
the parameter values. In contrast to estimation, the data do
not overwhelm the prior because the Bayes factor quantifies
relative predictive performance of two models on a data
set.1 This is desirable because complex models usually
yield many poor predictions and therefore the Bayes factor
inherently penalizes complexity and favors parsimony
(Jeffreys, 1961). However, without reliable information
suitable for constructing a prior, the relation between Bayes
factors and priors introduces the need for default prior
distributions.

There are two types of prior distributions that need to
be decided upon. The first type of prior distribution is the
model prior, which assigns a prior probability to each model

1As the words imply, predictions follow from the prior distribution;
postdictions follow from the posterior distribution.
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that is considered. For the time being, we only consider a
uniform model prior so that all models are a-priori equally
likely. Alternative model priors are discussed in the section
Prior Sensitivity.

The second type of prior distribution is the prior on
parameters. A popular choice of default prior distributions
for parameters β in linear regression is the Jeffreys–Zellner–
Siow (JZS) prior (i.e., a multivariate Cauchy distribution on
the beta coefficients)

which is also used in the implementation shown later. The
JZS prior fulfills several desiderata (see Arnold Zellner and
Siow, 1980; Zellner 1986b; Liang, Paulo, Molina, Clyde,
and Berger, 2008) for information on the JZS-prior, see
Rouder and Morey (2012) for default priors in Bayesian
linear regression, and see Ly, Verhagen, and Wagenmakers,
(2016) for a general introduction on default Bayes factor
hypothesis tests). An example of such a desideratum is
that the Bayes factor is the same regardless of the units
of measurement (e.g., the Bayes factor is the same when
response time is measured in milliseconds or years; for more
information see (Bayarri, Berger, Forte, Garcı́a-Donato,
et al., 2012)). This desideratum is satisfied by assigning a
Jeffreys prior to the residual variance σ 2,

that is, p(σ 2) is proportional to 1/σ 2.
Other methods included in JASP are the Akaike

Information Criterion (AIC; Akaike, 1973), the Bayesian
Information Criterion (BIC; Schwarz, 1978), the g-prior
(Zellner, 1986a), the hyper-g prior (Liang et al., 2008), the
hyper-g-Laplace prior which is the same as the hyper-g
prior but uses a Laplace approximation, and the hyper-g-
n prior which uses a hyper-g/n prior (Liang et al., 2008).
In addition, two methods are available that use a g-prior
and automatically choose a value for g. Empirical Bayes
“global” uses an EM algorithm to find a suitable value
for g while empirical Bayes “local” uses the maximum
likelihood estimate for each individual model as value for g

(Clyde & George, 2000). We revisit the possible use of these
alternative methods when we discuss robustness.

Bayesianmulti-model inference

As before, assume that there are multiple models in play,
each with their own set of predictors. In the previous
section we have seen that the posterior model probabilities
can be obtained by assessing each model’s plausibility
and predictive performance, relative to that of the other
models in the set. When the results point to a single
dominant model, then it is legitimate to consider only
that model for inference. When this is not the case,
however, inference about the predictors needs to take into
account multiple models at the same time. We consider
two important questions: (1) what predictors should be
included to account for the dependent variable? and (2) what

have we learned about the regression coefficients for the
predictors? In multi-model inference, these questions can
be addressed by summing and averaging across the model
space, respectively.

First, consider the question ‘if we want to predict
Happiness, do we need the predictor Wealth?’ There may
be thousands of regression models, half of which include
Wealth as a predictor, and half of which do not. In BMA
we can quantify the overall support for the predictor Wealth
by summing all posterior model probabilities for the models
that include Wealth:

p(inclβj
| D) =

∑

Mj :βj ∈Mj

p(Mj | D)

If the summed prior probability of models including Wealth
is 0.50, and the summed posterior probability is 0.95, then
the inclusion Bayes factor is 19. That is:

p(inclβj
| D)

p(exclβj
| D)

= p(D | inclβj
)

p(D | exclβj
)

p(inclβj
)

p(exclβj
)

Second, consider the question ‘what have we learned about
the regression coefficient for the predictor Wealth?’ In
the models that do not feature Wealth, this coefficient
can be considered zero; in the models that do feature
Wealth, the coefficient has a posterior distribution, but a
different one for each model. In BMA, we can provide an
overall impression of our knowledge about the coefficient
by averaging the parameter values across all of the models,
using the posterior model probabilities as weights (e.g.,
Ghosh 2015; Raftery et al. 1997). Intuitively, one can first
sample a model (using the posterior model probabilities)
and then, from that model, draw a value of the regression
coefficient from the posterior distribution for that model;
repeating this very many times gives a model-averaged
posterior distribution for the regression coefficient of
interest. Specifically, we have:

p(β | D) =
∑

j

p(β | D,Mj ) p(Mj | D)

The same procedure for sampling from the posterior
distribution of the regression coefficients can be used to
obtain a distribution over model-based predictions. Letting
ŷi denote a prediction for outcome i we obtain:

p(ŷi | D) =
∑

j

p(ŷi | D,Mj ) p(Mj | D)

Here, one may use the observed values for the predictors to
obtain fits for the observed values of the criterion variable,
or one can use new values for the predictors to obtain
predictions for unseen values of the criterion variable. Note
that the predictions and the residuals are random variables
endowed with probability distributions, rather than single
values.
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A complementary method is to base all inference on the
median probability model (Barbieri, Berger, et al., 2004)
which includes all predictors that have posterior inclusion
probabilities larger than or equal to 0.5. This method is
implemented both in BAS and in JASP.

Although BMA is theoretically straightforward, consid-
erable practical challenges need to be overcome. The main
challenge is that the model space can be truly enormous,
and consequently even advanced computational methods
can grind to a halt. Fortunately, the computational chal-
lenge surrounding Bayesian multi-model inference in linear
regression has been mostly overcome by a recent method
called Bayesian Adaptive Sampling (BAS Clyde, Ghosh,
& Littman, 2011). In principle, BAS tries to enumerate
the model space if p ≤ 20. However, if the model space
is too large to enumerate –when p > 20 implying that
there are more than 1,048,576 models to consider– BAS
uses an efficient method for sampling from the model space
without replacement. An open-source implementation of
BAS is available for R (Core Team (2018); package ‘BAS’,
Clyde (2018)) and the methodology is also accessible with
a graphical user interface in JASP (JASP Team, 2020).

Example: World happiness data

To showcase Bayesian multi-model inference for linear
regression we consider data from the World Happiness
Report of 2018. The data set can be obtained from
the appendix of http://worldhappiness.report/ed/2018/. An
annotated .jasp file of the analysis detailed below can be
found at https://osf.io/5dmj7/. The goal of the analysis is to
examine which variables are related to Happiness, and what
is the strength of the relation. First we briefly describe the
data set.

The World Happiness Data is put together yearly
by Gallup, a research-based consulting company. Gallup
regularly conducts public opinion polls and annually
conducts interviews with a large number of inhabitants
of many different countries.2 The happiness of the
interviewees was assessed with the Cantril Self-Anchoring
Striving Scale (Glatzer & Gulyas, 2014). In addition,
interviewees were asked about a variety of topics and the
obtained data are distilled into six variables that may relate
to happiness. A description of these six variables is given in
Table 2.

We first analyze the data using a standard Bayesian
multi-model approach, which is then extended to deal

2Specific information about the data collection can be found on
their website http://www.gallup.com/178667/gallup-world-poll-work.
aspx. Gallop’s complete report can be downloaded from http://
worldhappiness.report/ed/2018/.

with interaction effects, nuisance variables included in all
models, and robustness checks.

Before carrying out any analyses it is critical to check
the model assumptions. We investigate the assumption of
linearity by plotting the entire set of independent variables
against the dependent variable, as shown in Fig. 4. To
replicate Fig. 4, open JASP and load the data, go to
Descriptives, first drag your dependent variable and
then all independent variables.3 Then under Plots click
Correlation plot.

Figure 4 shows that all relations between the covariates
and Happiness are approximately linear. Initially, the
relation between Happiness and Wealth was nonlinear
(see Fig. 1), but after log-transforming Wealth this
assumption no longer appears violated (as shown in Fig. 4).
Transforming a variable in JASP can be done by going to
the data view, scrolling all the way to the right and selecting
Compute Columns. Next, we can create a new variable,
either using a drag and drop scheme or using R-code. This
is shown in Fig. 5.

The other key assumption –normally distributed
residuals– can only be studied after executing the analysis.
To execute the analysis in JASP, we go to the Regression
menu and click on Bayesian Linear Regression.
Fig. 6 shows the resulting interface.

We enter the data by dragging Happiness to the
box labeled Dependent Variable and by dragging the
independent variables to the box labeled Covariates.
As soon as the data are entered the analysis is carried out
and the table on the right of Fig. 6 is filled out. Before
interpreting the results we assess whether the residuals
are approximately normally distributed. To do so, we go
to Plots and check Residuals vs. fitted. This
produces the left panel of Fig. 7, which shows there is
still structure in the residuals that is not captured by the
model. We included a two-way interactions between Life
expectancy and Social support.4 This is motivated by the
following comment in Gallop’s report (page 21):

“There are also likely to be vicious or virtuous
circles, with two-way linkages among the variables.
For example, there is much evidence that those who
have happier lives are likely to live longer, be more
trusting, be more cooperative, and be generally better
able to meet life’s demands. This will feed back
to improve health, GDP, generosity, corruption, and
sense of freedom.” (original in italics)

3All JASP commands in the input menu are typeset like this.
4The model space considered should be predetermined and preferably
preregistered before commencing with the analysis. We enlarge the
model space here to meet the model assumptions. Strictly speaking,
the results should be viewed as exploratory.
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Table 2 Description of the predictor variables for the Gallup World Happiness Data. For a more detailed description of the variables see technical
box 1 of Gallop’s complete report

Predictor Abbreviation Description

GDP per Capita W The relative purchasing power of inhabitants of a country, based on data from the World Bank.

Life expectancy Le Life expectancy based on data from the World Health Organization.

Social support Ss The nation-wide average of responses to the
question: ‘If you were in trouble, do you have
relatives or friends you can count on to help
whenever you need them, or not?’

Freedom F The nation-wide average to the question: ‘Are
you satisfied or dissatisfied with your freedom to
choose what you do with your life?’

Generosity Ge The nation-wide average ‘Have you donated to a charity in the last month?’

Perception of corruption Poc The nation-wide average to the questions ‘Is
corruption widespread throughout the government
or not?’ and ‘Is corruption widespread within
businesses or not?’.

After confirming that the assumptions of linear regres-
sion have been met, we can investigate the results. No
further action is required; as soon as the data were entered,
JASP executed the analysis and displayed the results in an
output table. The results for the ten models with the highest
posterior probability are shown in Table 3.

Table 3 shows that the ten best models all contain Life
expectancy, Social support, and Freedom, which suggests
that these predictors are important to account for Happiness.
Also, note that the Bayes factor BF01, which quantifies a
model’s relative predictive performance, does not always
prefer models with higher explained variance R2, which
quantifies a model’s goodness-of-fit. For instance, R2 is
necessarily highest for the full model that contains all
seven predictors (row 5 in Table 3); however, the Bayes
factor indicates that the predictive performance of this
relatively complex model is about 66 times worse than that
of the model that contains only Wealth, Life Expectancy,
Social support, Freedom, and the interaction between Life
expectancy and Social support.

With many different models it can be challenging to
quantify the relevance of individual predictors by showing
all models as in Table 3 (and its complete version
with all 80 models). In model-averaging, the solution
is to take into account all models simultaneously. This
can be accomplished in JASP by ticking Posterior
summary in the input panel and selecting the option
Model averaged. The output, shown here in Table 4,
provides a summary of the predictor inclusion probabilities
and the posterior distributions averaged across all models.

Table 4 confirms our initial impression about the
importance of Wealth, Life expectancy, Social Support,
Freedom, and the interaction between Life expectancy and
Social Support. Each of these predictors are relevant for
predicting Happiness, as indicated by the fact that the

posterior inclusion probabilities (0.962, 1.000, 1.000, 1.000,
and 0.998 respectively) are all near 1.5 On the other hand,
there is evidence against the relevance of Generosity and
Perception of Corruption: the data lowered the inclusion
probabilities from 0.5 to about 0.1. The median probability
model (i.e., the model that includes all predictors with a
posterior inclusion probability larger than 0.5, Barbieri et al.
(2004)) consists of Wealth, Life expectancy, Social support,
Freedom, and the interaction between Life expectancy and
Social support. To obtain the posterior summary for the
median probability model, click on the menu that says
Model averaged and change it to Median model.

Note that the prior inclusion probabilities are not
equal for all coefficients. This happens because JASP
automatically excludes models with interactions effects but
without their corresponding main effects, as dictated by the
principle of marginality (for details see Nelder (1977)).

Thus the prior inclusion probability, P (incl) is still
obtained by adding up the prior probability of all models
that contain a particular coefficient, but for interaction
effects there are simply fewer models that are added up.
This is further explained in the section Including Interaction
Effects.

The change from prior to posterior inclusion probabil-
ities can be visualized by selecting Plots and ticking
Inclusion probabilities, which produces the bar
graph shown in Fig. 8.

In addition to providing the inclusion probabilities,
Table 4 also summarizes the model-averaged posterior
distributions using four statistics (i.e., mean, sd, and the
lower and upper values of an x% central credible interval).

5Although JASP rounds the posterior inclusion probabilities to 1, they
never equal 1 exactly.
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Fig. 4 A matrix-plot of all variables in the World Happiness Data. The
diagonal plots are the density estimates of the individual variables. The
above-diagonal plots are pairwise scatter plots of two variables, where
the straight line represent the correlation between them. In the first row,

Happiness score (y-axes) is plotted against all independent variables
(x-axes). Below the diagonal the Pearson correlations are displayed.
All relations appear approximately linear by eye. Figure from JASP

The complete model-averaged posteriors can be visualized
by selecting Plots and ticking Marginal posterior
distributions. For example, the posterior distribution
for the regression coefficient of Wealth is shown in the
left panel of Fig. 9. The right panel of Fig. 9 shows
the model-averaged posterior for the regression coefficient
of Generosity; the spike at zero corresponds to the
absence of an effect, and its height reflects the predictor’s

posterior exclusion probability. The horizontal bar above the
distribution shows the 95% central credible interval.

To summarize, the Bayesian model-averaged analysis
showed that the most important predictors in the Gallup
World Happiness Data are Wealth, Social Support, Life
expectancy, and Freedom. There is weak evidence that
Generosity and Perception of Corruption are not relevant for
predicting Happiness.
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Fig. 5 Compute a new column in JASP by clicking on the ‘+’ in the top right of the data view

Including interaction effects

In regression analysis we are often not interested solely in
the main effects of the predictors, but also in the interaction
effects. For instance, suppose that for the analysis of the
Gallup World Happiness Data we wish to consider the two-
way interactions between Wealth, Social Support, Freedom,
and Life Expectancy. To do this we click on Model and
select all variables of interest under Components (use
ctrl / or Shift to select multiple variables) and drag
them to Model terms. JASP then automatically includes
all possible interactions between the selected variables in
the Model terms on the right. To exclude higher order
interactions, we select these in Model terms and click
the arrow or drag them to Components. The result is
shown in Fig. 10.

As soon as the interaction effects are added to the model,
JASP updates the output.6 Since the interaction effects
account for 6 new predictors there are now 12 predictors in
total and 468 models to consider. There are not 212 = 4096
models, because JASP automatically excludes models with
interactions effects but without their corresponding main

6When adjusting the model terms it can be inconvenient that JASP
continually updates the results. A trick to disable this is to temporarily
remove the dependent variable while adjusting the model terms.

effects, as dictated by the principle of marginality (Nelder,
1977). The updated posterior summary is shown in Table 5.

Table 5 shows that Wealth, Social Support, Life
expectancy, and Freedom are important for predicting Hap-
piness, as indicated by the posterior inclusions probabilities.
For almost all interaction effects, the posterior inclusion
probabilities are smaller than the prior inclusion probabili-
ties, indicating that the data provide evidence against these
effects. The interaction effect between Life Expectancy and
Social Support somewhat improves the model (BFincl =
8.612).

Comparing the main effects in Table 4 to those in Table 5,
it might appear surprising that the support for including
the predictors decreased for all variables. For example, the
inclusion Bayes factor for Life Expectancy decreased from
about 2875 to 54, Wealth decreased from about 26 to 10, and
the interaction between Life Expectancy and Social support
decreased from about 2475 to 9. The cause for these change
lies in the added interaction effects. All interaction effects
with Wealth led to poorly performing models, as illustrated
by the low inclusion Bayes factors for all interaction effects
with Wealth. As a consequence, the inclusion Bayes factor
for Wealth also suffered, since 312 out of the 396 models
considered to calculate the inclusion Bayes factor contained
interaction effects with Wealth.

The effect of model averaging on parameter estimation is
clearly present when comparing the 95% credible intervals
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Fig. 6 Screenshot of Bayesian linear regression in JASP. The left panel shows the input fields; once these are populated, output will appear in the
panel on the right

in Tables 4 and 5. For instance, the credible interval
for Freedom was [1.06, 2.35] in Table 4 but widens to
[−6.3, 2.6] in Table 5. There are two reasons for this
increase in uncertainty. First, the posterior probability of the
best model is only 0.223, compared to 0.759 in Table 3 (see
the online supplement for all posterior model probabilities).
This means that other models contribute substantially to the

model-averaged posterior, which increases the uncertainty
in the parameter estimates. Second, the results in Table 5 are
based on a larger model space, which potentially leads to a
wider range of possible estimates and hence increases the
associated uncertainty.

The instability of the results due to changing the model
space is no reason for concern; rather, it demonstrates the
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Fig. 7 Residuals vs Predictions for the World Happiness data set for the model without (left panel) and with (right panel) the interaction effect of
Life expectancy and Social support. The red line is a smoothed estimate of the mean at each point and is ideally completely flat. Figures from JASP
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Table 3 The 10 best models from the Bayesian linear regression for the Gallup World Happiness Data

Models P (M) P (M | D) BFM BF01 R2

W + Le + Ss + F + Le * Ss 0.013 0.759 248.244 1.000 0.821

W + Le + Ss + F + Ge + Le * Ss 0.013 0.097 8.531 7.783 0.822

W + Le + Ss + F + Poc + Le * Ss 0.013 0.093 8.101 8.157 0.822

Le + Ss + F + Le * Ss 0.013 0.027 2.233 27.591 0.805

W + Le + Ss + F + Ge + Poc + Le * Ss 0.013 0.012 0.924 65.617 0.823

Le + Ss + F + Ge + Le * Ss 0.013 0.005 0.413 145.922 0.807

Le + Ss + F + Poc + Le * Ss 0.013 0.004 0.329 182.965 0.807

W + Le + Ss + F 0.013 6.961e − 4 0.055 1089.774 0.794

Le + Ss + F + Ge + Poc + Le * Ss 0.013 6.672e − 4 0.053 1137.027 0.808

W + Le + Ss + F + Poc 0.013 3.179e − 4 0.025 2386.195 0.799

The leftmost column shows the model specification, where each variable is abbreviated as in Table 2. The second column gives the prior model
probabilities; the third the posterior model probabilities; the fourth the change from prior to posterior model odds; the fifth the Bayes factor of the
best model over the model in that row; and the last the R2, the explained variance of each model. Results for all 80 models are presented in the
appendix, Table 9

importance of considering all models and dealing with
model uncertainty appropriately. The example above does
show, however, that some rationale should be provided for
the model space. Here, we did not properly motivate the
inclusion of the interaction effects because we wanted to
demonstrate the effect of model uncertainty on the results.
Instead, one should decide upon the the model space before
executing the analysis and ideally preregister the model
space on the basis of substantive considerations.

Including nuisance predictors in all models

Another common procedure in the toolkit of linear
regression is to include a number of nuisance predictors
in all models in management sience this is sometimes
called hierarchical regression; see also Petrocelli (2003) and

Andraszewicz et al. (2015). Subsequently, the goal is to
assess the contribution of the predictor(s) of interest over
and above the contribution from the nuisance predictors.
For example, we could have included Wealth in all models,
for instance because we already know that Wealth has
a large effect, but we are not interested in that effect –
we are interested in what the other predictors add on top
of Wealth. To add Wealth as a nuisance variable to the
model, we go to Model and check the box under Add to
null model for Wealth (see Fig. 10). As with interaction
effects, JASP updates the results immediately and produces
a model comparison table similar to Table 3. Note that
the Bayes factor BF01 in the fifth column of Table 3
by default compares all models to the best model. When
including nuisance predictors, we are more interested in
how much the models improve compared to the null model.

Table 4 Model-averaged posterior summary for linear regression coefficients of the Gallup World Happiness Data

95% CI

Coefficient Mean SD P (incl) P (incl|D) BFincl Lower Upper

Intercept 5.346 0.041 1.000 1.000 1.000 5.265 5.421

W 0.263 0.094 0.500 0.962 25.616 0.000 0.393

Le −0.110 0.035 0.600 1.000 2875 −0.183 −0.050

Ss −8.545 2.556 0.600 1.000 131213 −13.688 −4.167

F 1.699 0.345 0.500 1.000 3772 1.067 2.327

Ge 0.028 0.127 0.500 0.115 0.130 −0.037 0.390

Poc −0.022 0.112 0.500 0.110 0.124 −0.306 0.043

Le * Ss 0.189 0.044 0.200 0.998 2475 0.105 0.267

The leftmost column denotes the predictor (abbreviations are shown in Table 2). The columns ‘mean’ and ‘sd’ represent the respective posterior
mean and standard deviation of the parameter after model averaging. P (incl) denotes the prior inclusion probability and P (incl | data) denotes
the posterior inclusion probability. The change from prior to posterior inclusion odds is given by the inclusion Bayes factor (BFincl). The last two
columns represent a 95% central credible interval (CI) for the parameters
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Fig. 8 Bar graph of posterior inclusion probabilities for the Bayesian linear regression of the Gallup World Happiness Data. The dashed line
represents the prior inclusion probabilities. Figure from JASP

We can change the default setting by going to Order and
selecting Compare to null model. This changes the
Bayes factor column such that all models are compared to
the null model instead of to the best model. The resulting
table is shown in Table 6. Since we now compare all models
to the null model, the null model is always shown in the first
row.

Prior sensitivity

Priors on parameters

In the previous analyses we used the default JZS prior
on the values of the regression coefficients. However, it
is generally recommended to investigate the robustness of
the results against the choice of prior (van Doorn et al.,

2019). To investigate robustness, one typically uses the same
family of distributions but varies the prior width. A wider
prior will imply more spread-out a-priori uncertainty about
the effect, whereas a more narrow prior implies that the
a-priori belief about the effect is more concentrated near
zero. To adjust the prior, we go to Advanced options
and under Prior change the value after JZS. This value
is generally referred to as the scale of the JZS prior. The
default choice in JASP is a JZS with a scale of 1/8. This
corresponds to the default choice used in other software, for
example the R package “BayesFactor” (Morey & Rouder,
2018). If the JZS scale in JASP is s, the corresponding scale
for the “BayesFactor” package is

√
2s.

Commonly used values for the larger scales are 1/4

and 1/2, respectively referred to as “wide” and “ultrawide”
priors (Wagenmakers et al., 2018; Morey & Rouder, 2018).
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Fig. 9 The model-averaged posterior of Wealth expressed in GDP
(left) and Generosity (right). In the left panel, the number in the bottom
left represents the posterior exclusion probability. In the right panel,

the posterior exclusion probability is much larger. In both panels, the
horizontal bar on top represents the 95% central credible interval.
Figures from JASP
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Fig. 10 Model component view. By selecting multiple variables in the left panel and dragging these to the right panel, all interactions between the
selected variables are included in the model. By ticking the box ‘Add to null model’ the associated variable is included in all models

Figure 11 shows the marginal prior distribution for the
regression coefficients β for these three scales. Under
Advanced options it is also possible to select other
prior distributions than the JZS. However, we recommend
against doing so without proper motivation (see e.g.,
Consonni, Fouskakis, Liseo, Ntzoufras, et al., 2018; Liang
et al., 2008; Bayarri et al., 2012).

We repeated the main analysis with a JZS scale of 1/4 and
1/2 but the posterior inclusion probabilities, see Table 7, did
not change in a meaningful way (see https://osf.io/5dmj7/
for an annotated .jasp file with the results).

Priors on the model space

Aside from adjusting the priors on the coefficients, it is also
possible to adjust the prior over the models. An intuitive
choice is a uniform model prior, where each model is

assigned prior mass equal to one over the number of models
considered. This prior was also used in the analyses above.
However, if we use a uniform model prior and then compute
the prior probability for a model that includes x predictors,
where x goes from 0 to p, we do not obtain a uniform
prior. Instead, the implied prior over the number of included
predictors is bell-shaped with the most mass on models
with p/2 predictors. Thus, a-priori our prior is biased against
sparse models and dense models, and favors something in
between.

A solution to this problem is to use a prior that is
uniform over the number of included predictors. This
can be achieved by dividing the total probability, 1, into
p + 1 chunks. The first chunk represents the combined
probability of all models that include no predictors, the
second chunk represents the combined probability of all
models that include one predictor, etc. This model prior

Table 5 Model-averaged posterior summary for linear regression coefficients of the Gallup World Happiness Data, including two-way interaction
effects between Wealth, Social Support, Freedom, and Life Expectancy

95% CI

Coefficient Mean SD P (incl) P (incl|D) BFincl Lower Upper

Intercept 5.346 0.041 1.000 1.000 1.000 5.260 5.425

W 0.233 0.599 0.841 0.982 10.490 −0.945 1.753

Le −0.122 0.084 0.841 0.997 54.237 −0.288 0.051

Ss −6.576 4.190 0.841 1.000 3057.789 −12.821 3.223

F −0.469 2.901 0.841 1.000 1695.479 −6.258 2.608

Ge 0.021 0.117 0.500 0.110 0.124 −0.136 0.236

Poc −0.015 0.108 0.500 0.106 0.119 −0.409 0.058

W * Le 0.002 0.006 0.363 0.200 0.438 −0.0002 0.019

W * Ss −0.186 0.599 0.363 0.241 0.557 −1.969 0.660

W * F 0.076 0.237 0.363 0.181 0.389 −0.066 0.788

Le * Ss 0.168 0.116 0.363 0.831 8.612 0.000 0.402

Le * F 0.011 0.035 0.363 0.180 0.385 −0.0001 0.117

Ss * F 1.072 2.562 0.363 0.228 0.517 −0.263 8.086
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Table 6 The 10 best models from the Bayesian linear regression for the Gallup World Happiness Data, where the nuisance predictor Wealth is
included in all models. The interpretation of the columns is identical to that of Table 3, except that the Bayes factor BF01 in the fifth column
compares all models to the null model. The table footnote shows a reminder from JASP which variables are specified as nuisance

Models P (M) P (M | data) BFM BF01 R2

Null model (incl. W) 0.031 6.143e − 11 1.904e − 9 1.000 0.679

Le + Ss + F 0.031 0.439 24.228 7.141e + 9 0.794

Le + Ss + F + Poc 0.031 0.200 7.767 3.261e + 9 0.799

Le + Ss + F + Ge 0.031 0.169 6.290 2.746e + 9 0.799

Ss + F 0.031 0.077 2.572 1.247e + 9 0.781

Le + Ss + F + Ge + Poc 0.031 0.043 1.380 6.938e + 8 0.802

Ss + F + Poc 0.031 0.032 1.034 5.254e + 8 0.786

Ss + F + Ge 0.031 0.030 0.955 4.867e + 8 0.786

Ss + F + Ge + Poc 0.031 0.007 0.217 1.131e + 8 0.789

Le + F 0.031 0.002 0.057 2.966e + 7 0.769

Note. All models include Wealth (W)

commonly referred to as a beta-binomial model prior and
can be tweaked using two parameters, α and β. The left
panel of Fig. 12 shows how the total probability is divided
for different values of α and β. The default values in
JASP are α = β = 1.7 In the next step, all models
within a chunk (i.e. all models with the same number of
predictors) are treated as equally likely and the probability
of the chunk is distributed uniformly among them. This
implies the prior probability of a chunk is divided by the
number of models in that chunk. The right panel of Fig. 12
shows the prior model probability for different values of
α and β.

We repeated the main analysis with a Beta-binomial
prior. Table 8 shows the inclusion probabilities for an
uniform model prior and a beta-binomial model prior.
Although the numbers differ, the results are unchanged:
The evidence for the inclusion and exclusion of predictors
in the model point in the same direction for both priors
on the model space. For example, the inclusion Bayes
factors that were larger than 1 for a uniform prior on the
model space were also larger than 1 for the beta-binomial
prior.

7The α and β parameters of the beta-binomial prior can be set
individually. Alternatively it is possible to choose the Wilson model
prior or the Castillo model prior, which are both variants of the beta-
binomial prior (Castillo, Schmidt-Hieber, Van der Vaart, et al., 2015;
Wilson, Iversen, Clyde, Schmidler, & Schildkraut, 2010). The Wilson
model prior sets α = 1 and β = λp, where p is the number of
predictors in the model and λ is a parameter set by the user. The
Castillo model prior sets α = 1 and β = pu, where p is the number of
predictors in the model and u is a parameter set by the user. Both the
Wilson and the Castillo prior assign more mass to models with fewer
predictors.

Although much attention goes to the choice of
prior distribution, the likelihood of the statistical model is
often more important. As stated by Gelman and Robert
(2013):

“It is perhaps merely an accident of history that
skeptics and subjectivists alike strain on the gnat of
the prior distribution while swallowing the camel that
is the likelihood. ” (italics in original)

In other words, choices about which predictors and
interaction effects to consider, choices that influence the
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Fig. 11 Marginal prior distribution on the regression coefficients (β).
The different line types represent different scales for the prior. As the
scale increases the probability mass near zero decreases and the mass
on more extreme values increases
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Table 7 Posterior inclusion probabilities given different values for the
scale of the JZS prior. The intercept is omitted from the comparison
as it is included in all models and therefore its inclusion probability is
always 1

P (incl|D)

Coefficient P(incl) s = medium s = wide s = ultrawide

Log GDP 0.5 0.962 0.962 0.962

Le 0.6 1.000 1.000 1.000

Ss 0.6 1.000 1.000 1.000

F 0.5 1.000 1.000 1.000

G 0.5 0.115 0.114 0.111

Poc 0.5 0.110 0.109 0.106

Le * Ss 0.2 0.998 0.998 0.998

likelihood, are more important than the choice of prior
distribution. This again stresses the importance to demarcate
the model space.

Discussion

This paper provided a tutorial on Bayesian multi-model
inference and aimed to bridge the gap between statistical
theory and the applied researcher. Multi-model inference
and regression analyses are subject to a number of
limitations, which are discussed below.

Limitations

At the moment of writing, the linear regression procedures
as implemented in JASP and BAS do not account for
missing values; therefore, missing values are deleted list-
wise (i.e., cases with missing values for one or more
predictors are omitted from the analysis entirely). However,
Bayesian analyses can handle missing values by perceiving
them as unknown parameters of the model. That way,
the observed value can still contribute to the model and
the uncertainty around the missing values is dealt with
accordingly (Little & Rubin, 2002, Ch 10).

A general challenge for regression models arises
when the predictors are multicollinear, that is, very
highly correlated. To illustrate, consider the data of 13
American football punters (Faraway, 2005, available from).
The goal is to relate various physical characteristics of
the football players to their average punting distance.
Relevant predictors are right leg strength, left leg strength,
right hamstring flexibility, and left hamstring flexibility.
Unsurprisingly, the correlation between the right and left leg
predictors is very high. Consequently, models that contain
predictors from one leg benefit little when the predictor from
the other leg is added on top. Thus, models with predictors
for both legs perform poorly compared to models containing
information of only one leg. After calculating the inclusion
Bayes factors it is unclear whether any specific predictor
should be included. Paradoxically, when directly comparing
the models, the null model is one of the worst models;
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Fig. 12 A beta-binomial model prior for a model space with 6 pre-
dictors. The left panel shows the beta-binomial distribution where the
number of predictors in the model (x-axis) is visualized against the
total probability of all models with that number of predictors (y-axis).
The right panel shows how the number of predictors in the model

(x-axis) influences the prior probability of a single model (y-axis). The
right panel is obtained by dividing each probability in the left panel by
the number of models with that many predictors. The number of mod-
els that contain j predictors is obtained by calculating

(6
j

)
. This yields

for 0 through 6: 1, 6, 15, 20, 15, 6, and 1
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Table 8 Prior inclusion probabilities, posterior inclusion probabilities, and inclusion Bayes factors for a uniform model prior and a beta-binomial
model prior. The intercept is omitted from the comparison as it is included in all models and therefore its inclusion probability is always 1

Uniform Beta-binomial

Coefficient P (incl) P (incl|D) BFincl P (incl) P (incl|D) BFincl

Log GDP 0.5 0.962 25.616 0.489 0.983 59.024

Le 0.6 1.000 2875 0.556 1.000 8924

Ss 0.6 1.000 131213 0.556 1.000 398502

F 0.5 1.000 3772 0.489 1.000 5775

G 0.5 0.115 0.130 0.489 0.339 0.536

Poc 0.5 0.110 0.124 0.489 0.330 0.515

Le * Ss 0.2 0.998 2475 0.333 0.999 2336

it performs about 31.8 times worse than the best model
with right hamstring flexibility as the only predictor. See
punting.jasp at https://osf.io/5dmj7/ for an annotated
analysis. Nonetheless, these results make sense. The model
averaged results are unable to distinguish between the
correlated predictors because individually they improve the
model but jointly they worsen it. For example, the second
best model contains right leg strength as a predictor, the
fifth best model contains left leg strength as a predictor, but
the model that contains both right and left leg strength as
predictors ranks 11th out of 16. Hence, there is a lingering
uncertainty about which predictor to include, even though
directly comparing the different models shows that a model
including at least one predictor already performs better than
the null model.

Recognizing multicollinearity is always important in
linear regression. This does not require much additional
work; when creating Fig. 4, the pairwise correlations can
also be examined. Another way to assess multicollinearity
is by calculating the variance inflation factor (Sheather,
2009, Ch. 6.4).

Violation of assumptions

If the assumption of linearity appears violated for one or
more predictors, some transformations can be used (e.g., a
log-transformation). Alternatively, one could try including
the square (or cube) of a predictor, and including that in
the regression equation to capture any nonlinear relations.
This is also known as polynomial regression and can be
used to relax the linearity assumption. In JASP, polynomial
regression or other transformations can be managed easily
using Compute Columns. If the relation between the
criterion variable and predictors is innately non-linear, for
instance because the criterion variable is binary, generalized

linear models can be used. The R package BAS can also
be used for multi-model inference for generalized linear
models.

If the residuals appear non-normal or heteroscedastic,
then there is no clear way how to proceed. Ideally, one
first identifies the cause of the violation. Violations can
be caused by a single predictor with a nonlinear relation
causing misfit, or by multiple predictors. Nonlinearities
can be dealt with using the suggestions in the previous
paragraph. If the source remains unclear, or is innate to
the data, alternative methods can be used. One alternative
is to use a probabilistic programming language suited for
general Bayesian inference, such as JAGS (Plummer, 2003),
NIMBLE (de Valpine et al., 2017), OpenBUGS (Lunn,
Spiegelhalter, Thomas, & Best, 2009), or MultiBUGS
(Goudie, Turner, De Angelis, & Thomas, 2017), all of which
are conceptual descendants of WinBUGS (Lunn, Thomas,
Best, & Spiegelhalter, 2000; Ntzoufras, 2009).

The main advantage of probabilistic programming
languages is their flexibility: for instance, models can be
adjusted to accommodate heteroscedastic residuals (e.g.,
Reich & Ghosh, 2019, Ch. 4.5.2). These languages also
come with disadvantages. First, it is easier to make a mistake
– either a programming error, a statistical error, or both.
Second, the languages are generic, and because they are
not tailored to specific applications they may be relatively
inefficient compared to a problem-specific method.

In sum, the goal of this tutorial was to familiarize applied
researchers with the theory and practice of Bayesian multi-
model inference. By accounting for model uncertainty in
regression it is possible to prevent the overconfidence that
inevitable arises when all inference is based on a single
model. We hope that tutorial will enable applied researchers
to use Bayesian multi-model inference in their own
work.
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Appendix A: Complete model comparison
table

Table 9 Bayesian multi-model inference for the World Happiness example: all 80 models. The leftmost column gives the model specification; the
second column gives the prior model probabilities; the third the posterior model probabilities; the fourth the change from prior odds to posterior
odds; the fifth the Bayes factor relative to the best model; and the last gives R2

Models P (M) P (M | data) BFM BF10 R2

W + Le + Ss + F + Le * Ss 0.013 0.759 248.244 1.000 0.821
W + Le + Ss + F + Ge + Le * Ss 0.013 0.097 8.531 7.783 0.822
W + Le + Ss + F + Poc + Le * Ss 0.013 0.093 8.101 8.157 0.822
Le + Ss + F + Le * Ss 0.013 0.027 2.233 27.591 0.805
W + Le + Ss + F + Ge + Poc + Le * Ss 0.013 0.012 0.924 65.617 0.823
Le + Ss + F + Ge + Le * Ss 0.013 0.005 0.413 145.922 0.807
Le + Ss + F + Poc + Le * Ss 0.013 0.004 0.329 182.965 0.807
W + Le + Ss + F 0.013 6.961e − 4 0.055 1089.774 0.794
Le + Ss + F + Ge + Poc + Le * Ss 0.013 6.672e − 4 0.053 1137.027 0.808
W + Le + Ss + F + Poc 0.013 3.179e − 4 0.025 2386.195 0.799
W + Le + Ss + F + Ge 0.013 2.676e − 4 0.021 2834.341 0.799
W + Ss + F 0.013 1.216e − 4 0.010 6239.227 0.781
W + Le + Ss + Poc + Le * Ss 0.013 8.133e − 5 0.006 9327.093 0.795
W + Le + Ss + F + Ge + Poc 0.013 6.763e − 5 0.005 11216.690 0.802
W + Le + Ss + Ge + Le * Ss 0.013 6.430e − 5 0.005 11796.826 0.794
W + Ss + F + Poc 0.013 5.121e − 5 0.004 14813.739 0.786
W + Le + Ss + Le * Ss 0.013 4.945e − 5 0.004 15340.968 0.786
W + Ss + F + Ge 0.013 4.745e − 5 0.004 15988.688 0.786
W + Le + Ss + Ge + Poc + Le * Ss 0.013 2.911e − 5 0.002 26057.578 0.799
Le + Ss + Ge + Le * Ss 0.013 1.404e − 5 0.001 54049.136 0.782
Le + Ss + Poc + Le * Ss 0.013 1.313e − 5 0.001 57757.710 0.782
W + Ss + F + Ge + Poc 0.013 1.102e − 5 8.710e − 4 68808.309 0.789
Le + Ss + F 0.013 8.251e − 6 6.518e − 4 91942.898 0.772
Le + Ss + F + Ge 0.013 8.136e − 6 6.427e − 4 93244.135 0.780
Le + Ss + F + Poc 0.013 7.467e − 6 5.899e − 4 101586.552 0.780
Le + Ss + Ge + Poc + Le * Ss 0.013 6.790e − 6 5.364e − 4 111729.632 0.787
Le + Ss + Le * Ss 0.013 5.554e − 6 4.388e − 4 136585.291 0.771
W + Le + F 0.013 2.891e − 6 2.284e − 4 262420.104 0.769
Le + Ss + F + Ge + Poc 0.013 2.704e − 6 2.136e − 4 280537.628 0.784
W + Le + F + Ge 0.013 9.872e − 7 7.799e − 5 768432.339 0.773
W + Le + F + Poc 0.013 6.255e − 7 4.941e − 5 1.213e + 6 0.772
W + Le + Ss + Poc 0.013 4.229e − 7 3.341e − 5 1.794e + 6 0.770
W + Le + Ss + Ge + Poc 0.013 4.004e − 7 3.163e − 5 1.894e + 6 0.778
W + F 0.013 2.744e − 7 2.168e − 5 2.764e + 6 0.751
W + Le + Ss + Ge 0.013 1.846e − 7 1.459e − 5 4.109e + 6 0.768
W + Le + F + Ge + Poc 0.013 1.459e − 7 1.152e − 5 5.200e + 6 0.775
W + F + Ge 0.013 9.281e − 8 7.332e − 6 8.174e + 6 0.757
Le + Ss + Ge + Poc 0.013 6.433e − 8 5.082e − 6 1.179e + 7 0.764
W + F + Poc 0.013 5.171e − 8 4.085e − 6 1.467e + 7 0.755
W + Ss + Ge + Poc 0.013 5.068e − 8 4.004e − 6 1.497e + 7 0.763
W + Ss + Poc 0.013 4.817e − 8 3.806e − 6 1.575e + 7 0.754
Le + Ss + Poc 0.013 3.788e − 8 2.992e − 6 2.003e + 7 0.753
W + Ss + Ge 0.013 2.468e − 8 1.949e − 6 3.074e + 7 0.752
Le + Ss + Ge 0.013 2.443e − 8 1.930e − 6 3.105e + 7 0.752
W + F + Ge + Poc 0.013 1.226e − 8 9.687e − 7 6.186e + 7 0.758
W + Le + Ss 0.013 9.055e − 9 7.153e − 7 8.378e + 7 0.748
W + Ss 0.013 9.655e − 10 7.628e − 8 7.857e + 8 0.730
Le + Ss 0.013 3.475e − 10 2.745e − 8 2.183e + 9 0.726
W + Le + Ge 0.013 7.183e − 11 5.674e − 9 1.056e + 10 0.730
W + Le + Ge + Poc 0.013 6.835e − 11 5.399e − 9 1.110e + 10 0.739
W + Le + Poc 0.013 3.995e − 11 3.156e − 9 1.899e + 10 0.727
Le + F + Ge 0.013 3.838e − 11 3.032e − 9 1.977e + 10 0.727
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Table 9 (continued)

Models P (M) P (M | data) BFM BF10 R2

Le + F 0.013 2.344e − 11 1.852e − 9 3.236e + 10 0.715
Le + F + Poc 0.013 8.976e − 12 7.091e − 10 8.452e + 10 0.721
Le + F + Ge + Poc 0.013 6.562e − 12 5.184e − 10 1.156e + 11 0.729
W + Ge 0.013 4.111e − 12 3.248e − 10 1.845e + 11 0.708
W + Ge + Poc 0.013 3.515e − 12 2.777e − 10 2.158e + 11 0.717
W + Le 0.013 2.243e − 12 1.772e − 10 3.382e + 11 0.705
W + Poc 0.013 1.730e − 12 1.366e − 10 4.386e + 11 0.704
W 0.013 9.747e − 14 7.701e − 12 7.782e + 12 0.679
Le + Ge + Poc 0.013 1.394e − 14 1.101e − 12 5.442e + 13 0.693
Le + Ge 0.013 1.326e − 14 1.048e − 12 5.719e + 13 0.682
Ss + F + Ge 0.013 3.208e − 15 2.534e − 13 2.365e + 14 0.687
Ss + F + Ge + Poc 0.013 2.238e − 15 1.768e − 13 3.389e + 14 0.695
Le + Poc 0.013 1.655e − 15 1.307e − 13 4.584e + 14 0.672
Ss + F + Poc 0.013 7.308e − 16 5.774e − 14 1.038e + 15 0.680
Ss + Ge + Poc 0.013 2.201e − 16 1.739e − 14 3.446e + 15 0.674
Ss + F 0.013 1.144e − 16 9.036e − 15 6.632e + 15 0.659
Ss + Ge 0.013 3.897e − 17 3.079e − 15 1.947e + 16 0.654
Le 0.013 3.039e − 17 2.400e − 15 2.497e + 16 0.639
Ss + Poc 0.013 9.778e − 18 7.725e − 16 7.758e + 16 0.647
Ss 0.013 4.226e − 21 3.339e − 19 1.795e + 20 0.590
F + Ge 0.013 1.565e − 32 1.237e − 30 4.846e + 31 0.417
F + Ge + Poc 0.013 5.599e − 33 4.424e − 31 1.355e + 32 0.424
Ge + Poc 0.013 6.897e − 36 5.448e − 34 1.100e + 35 0.346
F + Poc 0.013 6.589e − 36 5.206e − 34 1.151e + 35 0.345
Ge 0.013 1.971e − 36 1.557e − 34 3.849e + 35 0.313
F 0.013 9.958e − 37 7.867e − 35 7.618e + 35 0.306
Poc 0.013 2.300e − 41 1.817e − 39 3.298e + 40 0.188
Null model 0.013 1.435e − 46 1.134e − 44 5.286e + 45 0.000

Appendix B: Residuals versus Predictions
for log-Wealth
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Fig. 13 Assumptions checks for Happiness predicted by log-
transformed Wealth. In contrast to the right panel of Fig. 2, the red line
is completely flat and the variance is approximately constant across
the predicted values

Acknowledgements Annotated .jasp files and supplementary mate-
rials can be found at https://osf.io/5dmj7/.
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