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Abstract
Different methods have been suggested for calculating “exact” confidence intervals for a standardized mean difference using the
noncentral t distributions. Two methods are provided in Hedges and Olkin (1985, “H”) and Steiger and Fouladi (1997, “S”).
Either method can be used with a biased estimator, d, or an unbiased estimator, g, of the population standardized mean difference
(methods abbreviated Hd, Hg, Sd, and Sg). Coverages of each method were calculated from theory and estimated from simu-
lations. Average coverages of 95% confidence intervals across a wide range of effect sizes and across sample sizes from 5 to 89
per group were always between 85 and 98% for all methods, and all were between 94 and 96% with sample sizes greater than 40
per group. The best interval estimation was the Sdmethod, which always produced confidence intervals close to 95% at all effect
sizes and sample sizes. The next best was the Hg method, which produced consistent coverages across all effect sizes, although
coverage was reduced to 93–94% at sample sizes in the range 5–15. The Hdmethod was worse with small sample sizes, yielding
coverages as low as 86% at n = 5. The Sg method produced widely different coverages as a function of effect size when the
sample size was small (93–97%). Researchers using small sample sizes are advised to use either the Steiger & Fouladi method
with d or the Hedges & Olkin method with g as an interval estimation method.

Keywords Effect size . Sample size planning . Simulation

There is increasing interest in the use of confidence intervals
for standardized effect sizes either as an adjunct to or as a
replacement for null hypothesis statistical tests (Borenstein
et al., 2009; Cumming, 2014; Cumming & Finch, 2001;
Goulet-Pelletier & Cousineau, 2018; Harlow et al., 1997;
Hedges & Olkin, 1985; Kelley, 2007). Confidence intervals
for effect sizes are much more useful to meta-analysts than
p values in the estimation of effect sizes across various studies,
and the move away from exclusively using p values can help
to reduce publication bias (Cumming, 2014; Ferguson &
Brannick, 2012).

This article provides a detailed comparison of the cover-
ages of two methods for creating noncentral t confidence in-
tervals for a standardized mean difference. The two methods
trace to Hedges (1981), Hedges and Olkin (1985) and Steiger
and Fouladi (1997). The coverage of a confidence interval is

the proportion of the time that confidence intervals derived
from random samples will include the population parameter,
and it can be calculated from the underlying distribution (ex-
pected, theoretical or predicted coverage) or estimated from
simulations of large numbers of random experiments with
known parameters (empirical or observed coverage). For ex-
ample, in simulations, a nominal 95% confidence interval
should include the population parameter in 95% of simulated
experiments. Because the sample standardized mean differ-
ence, d, is a biased estimator of the population standardized
mean difference, δ, confidence intervals have been proposed
for the biased d itself (Cumming & Finch, 2001; Cumming,
2014; Hedges & Olkin, 1985; Kelley, 2007; Steiger &
Fouladi, 1997) or for an unbiased standardized mean differ-
ence, g (Goulet-Pelletier & Cousineau, 2018; Hedges, 1981).
When sample sizes are large, the Hedges & Olkin and Steiger
& Fouladi methods generate similar confidence intervals and
nominal coverage. However, the limits of the intervals gener-
ated by the two methods are different enough at small and
moderate sample sizes that wide discrepancies in coverage
can result. Many researchers must use small sample sizes
when subjects are rare, expensive, or subject to ethical
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concerns (Fitts, 2011), and those researchers need to under-
stand the differences between the two methods for generating
confidence intervals and how the differences could affect the
interpretation of their data.

Methods

Biased and unbiased standardized mean differences

If μ1 and μ2 are population means on a continuous variable
(presumably a control population and an experimental popu-
lation) and σ is some measure of a common population stan-
dard deviation, the formula for the population standardized
mean difference, δ, can generally be written as follows
(Cohen, 1988).

δ ¼ μ1−μ2

σ
ð1Þ

Substitution of sample mean values X 1 and X 2 for μ1 and
μ2 and a sample standard deviation S for σ produces the sam-
ple standardized mean difference, d:

d ¼ X 1−X 2

S
ð2Þ

Although (X 1−X 2 ) is an unbiased estimator of (μ1 – μ2)
and the sample S2 is an unbiased estimator of σ2, S is not an
unbiased estimator of σ because the square root function is not
a linear transformation. The average S will underestimate σ,
and this means that the average d calculated from Eq. 2 will
overestimate δ. This bias in d can be corrected to an unbiased g
(Hedges, 1981) by multiplying d by a correction factor, J
(notation from Borenstein et al., 2009, rather than Hedges,
1981, who used c), that depends only on the degrees of free-
dom, ν:

g ¼ dJ νð Þ ð3Þ

The formula for J(ν) uses the gamma function, Γ, as fol-
lows:

J νð Þ ¼
Γ

ν
2

� �
ffiffiffi
v
2

r
Γ

v−1ð Þ
2

� � ð4Þ

The value of this bias function is 0.56419 for ν = 2, and it
rises rapidly with increasing ν toward an asymptotic upper
limit of 1.0. Therefore, g will always be smaller than d in
absolute value, but the difference is nontrivial only at small
values of ν. For example, the value of J is already 0.95225
with only 16 degrees of freedom. An example of how to cal-
culate J(16) in the free statistical programming language R is

“exp(lgamma(16/2)−(log(sqrt(16/2))+lgamma((16−1)/2)))”.
Using logarithms helps avoid overflow in intermediate calcu-
lations with large ν.

The calculation of d depends on the experimental design. In
this article, I consider two simple experimental designs, a two-
sample experiment such as a control group and an experimen-
tal group, and a one-sample experiment with two conditions
for each subject, such as a pretest and a posttest. Matched
subjects are regarded as a one-sample experiment because
there is only one set of difference scores. Two-sample exper-
iments assume normally distributed populations with homo-
geneous variances. One-sample experiments assume a nor-
mally distributed population of difference scores.

Two-sample experiments in this article always have equal
sample sizes. A general formula for a pooled standard devia-
tion of the two samples, SP, that can also be used with unequal
sample sizes is:

SP ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n1−1ð ÞS21 þ n2−1ð ÞS22

n1 þ n2−2

s
ð5Þ

The dP based on this pooled standard deviation and the
degrees of freedom ν are:

Two samples; dP ¼ X 1−X 2

SP
; ν ¼ n1þ n2–2 ð6Þ

One-sample experiments are assumed to use the differ-
ences between the pretest and posttest scores of n subjects so

that the dD based on the mean, D, and standard deviation, SD,
of the single set of difference scores is:

One sample; dD ¼ D
SD

; ν ¼ n–1 ð7Þ

Either dP or dD can be converted to the respective unbiased
g using Eq. 3.

Not considered is a one-sample test (paired samples) where
the standard deviation is a pooled estimate from the two sets of
scores. It is valid to calculate this d value, but trying to convert
it to an unbiased estimator g or trying to construct a confi-
dence interval for it requires the use of degrees of freedom.
The correct degrees of freedom for that design is an unsettled
issue, and currently published methods for confidence inter-
vals using that design (Cumming & Finch, 2001; Goulet-
Pelletier & Cousineau, 2018) are incorrect (Fitts, 2020).

Noncentral t distributions

The creation of confidence intervals for standardized effect
sizes requires the use of noncentral t distributions. Early pro-
posals for generating confidence intervals for standardized
mean differences emphasized approximate methods that
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avoided the necessity to calculate from noncentral t distribu-
tions (Borenstein et al., 2009; Hedges, 1981, 1982; Hedges &
Olkin, 1985; Morris, 2000; Viechtbauer, 2007), but modern
computers have eliminated the need for approximations. More
recent software programs use noncentral t distributions direct-
ly (Cumming & Finch, 2001; Goulet-Pelletier & Cousineau,
2018; Kelley, 2007), and those papers review the rationale for
the use of the noncentral t. Examples of how to evaluate non-
central t distributions in R and worked examples of confidence
intervals are given in Supplement 1. A link to executable
programs and their C source code that can generate the data
presented in this article is provided in the Software section.

Briefly, the familiar central t distribution is a special case of
the noncentral t distributions in which the population mean
difference δ is 0 and the t distribution is perfectly symmetrical
around 0. When δ is not 0, randomly sampled d values times a
constant will be distributed as a noncentral t with degrees of
freedom ν and population non-centrality parameter λ. When
the sample sizes are unequal, the non-centrality parameter
depends on the calculation of the harmonic mean, en,

en ¼ 2
n1n2

n1 þ n2
ð8Þ

This usage of en is consistent with Goulet-Pelletier and
Cousineau (2018) and Fitts (2020). It differs from the en de-
fined by Hedges (1981), and accordingly formulas using it are
slightly different.

The general formulas for population and sample non-
centrality parameters are:

Population;λδ ¼ δ
ffiffiffi
A

p
ð9aÞ

Sample Biased d; bλd ¼ d
ffiffiffi
A

p
ð9bÞ

Sample Unbiased g; bλg ¼ g
ffiffiffi
A

p
ð9cÞ

where the constant A and the degrees of freedom both depend
on the experimental design:

Two samples;A ¼ en
2
; ν ¼ n1þ n2−2 ð10Þ

One sample;A ¼ n; ; ν ¼ n−1 ð11Þ

The non-centrality parameter λδ represents the noncentral t

distribution that is the sampling distribution of bλd , and that is
the principal distribution of interest. All expected coverages
are calculated using that distribution.

The λδ will always be 0 when the δ is 0, and it will always
have the same sign as δ when δ is not 0. The noncentral t
distributions for all λδ values other than 0 will always be
skewed in the direction of that sign, and the degree of skew-
ness will increase as the absolute value of λδ becomes larger.
See Fig. 1 for examples. More comprehensive descriptions of

noncentral t distributions are given in Cumming and Finch
(2001), Goulet-Pelletier and Cousineau (2018), and Kelley
(2007).

We define α as the complement of the confidence coeffi-
cient. For example, if we desire a 95% confidence interval, α
= 1 – .95 = .05. In this article, the goal for a confidence interval
is always to assign a probability of α/2 beyond the lower and
upper limits of the interval, thus dividing the uncertainty
equally between the two tails. This is a simplifying assump-
tion, not a requirement for all confidence intervals.

Hedges & Olkin and Steiger & Fouladi method
confidence intervals

The Hedges & Olkin and Steiger & Fouladi methods of
forming confidence intervals differ only in how they use the
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Fig. 1 Comparative illustrations of the Hedges & Olkin and Steiger &
Fouladi methods for constructing a 95% noncentral t confidence interval
for d. The examples use a two-tailed, two-sample test with 9 per group, ν
= 16, and a sample d of either 0.0 (1a, top) or 1.0 (1b, bottom). The curves
are the relevant noncentral t distributions, and both units of scaling are
indicated on the abscissa (d or t). A Hedges & Olkin interval is the lower
and upper 2.5% of the center (red) noncentral t distribution around ob-
tained t (tobt, tails marked with * at lower drop lines). A Steiger & Fouladi
interval is the two blue non-centrality parameters of noncentral t distribu-
tions at the upper drop lines that leave 2.5% above (“+”) or below (“–”)
tobt

2414 Behav Res  (2021) 53:2412–2429



noncentral t distributions to set the limits of the interval once
the non-centrality parameter for the sample is known. The
Hedges & Olkin (H) method (1985) uses the noncentral t

distribution corresponding to bλd and its degrees of freedom
to identify quantiles in the cumulative probability distribution
at the probability values of α/2 for the lower limit and 1 – α/2
for the upper limit of the confidence interval expressed as t
values (Eqs. 9b and 9c):

Ht lower and upper limits; LLHt ¼ t
α
2 ;ν;

bλd

;ULHt ¼ t
1−α

2 ;ν;
bλd

ð12Þ

The Steiger & Fouladi method (1997) uses two different
noncentral t distributions to define the lower and upper limits
of the confidence interval. The non-centrality parameter of our
sample d as calculated in Eq. 9 is tobt. The lower t limit of the
Steiger & Fouladi confidence interval, LLSt, is defined as the
non-centrality parameter of the unique noncentral t distribu-
tion with ν degrees of freedom that has tobt as the quantile at a
cumulative probability of 1 – α/2. The upper t limit of the
Steiger & Fouladi confidence interval, ULSt, is defined as
the non-centrality parameter of a different noncentral t distri-
bution with ν degrees of freedom that has tobt as the quantile at
a cumulative probability of α/2. A computer search routine is
recommended, and software is provided.

Both methods are illustrated in Fig. 1 for two d values, 0.0
(1a, no effect) and 1.0 (1b, an effect size equal to 1 standard
deviation). The graphs assume a two-sample experiment with
equal sample sizes of 9 per group (ν = 2(n – 1) = 16). The
desired confidence coefficient is 95%. In each graph there are
three probability distributions for d generated from noncentral
t distributions that were then linearly re-scaled to standard
deviation units like d. Both d and t scales are given on the
abscissa.

The equations for converting these lower and upper t limits
to the same standardized units as d (LLstd, ULstd) requires
dividing the t-scaled limits by

ffiffiffi
A

p
unique to the experimental

design as defined in Eqs. 10 and 11. For example, LLt can
represent either LLHt or LLSt in Eq. 13.

LLstd ¼ LLtffiffiffi
A

p ;ULstd ¼ ULtffiffiffi
A

p ð13Þ

Computing intervals using Cover2D.exe

Appendix 1 gives output from the provided software (see
Software section at end of Methods) for the example given
in Fig. 1b (see Example 1 in the user’s notes). The problem is
to find 95% confidence intervals for both the Hedges & Olkin
and Steiger & Fouladi methods, each based on either d or g
(i.e., 4 separate intervals), when d = 1.0 and ν = 16. The
program reads the instructions from the input file and writes
an output text file that can be opened with a text editor or

spreadsheet (see Appendix 1). The output contains the mean
difference, lower and upper limits, lower and upper segments
(the distance between the non-centrality parameter and the
respective upper and lower confidence limits), and the full
width of the interval for both the standardized biased scaling
and the standardized unbiased scaling for both the Hedges &
Olkin and Steiger & Fouladi methods. The d-scaled confi-
dence intervals from Fig. 1b are given under “Standardized
Biased Scaling” for Hedges & Olkin and Steiger & Fouladi
confidence intervals.

Supplement 1 gives detailed example calculations for each
of the four methods used in this paper.

Predicting coverages for confidence intervals

It is obvious from Fig. 1 that the Hedges & Olkin and Steiger
& Fouladi methods differ, and it is important to understand
how they differ in order to predict and compare the coverages
of the two methods. When the d is 0.0, both methods produce
symmetrical confidence intervals, and in that characteristic,
they are similar to central t confidence intervals which can
be expressed as a mean value plus and minus a calculated half
width.

When the d is nonzero, such as 1.0, all three distributions in
Fig. 1a are positively skewed, and the distances from the non-
centrality parameter to the confidence limits differ on the right
and left sides. I will call these unequal distances segments.
With the Hedges & Olkin method, the wider segment is al-
ways on the same side as the direction of skewness; that is, a
positively skewed distribution will have a wider right segment
and a negatively skewed distribution will have a wider left
segment. With the Steiger & Fouladi method, the reverse is
true: a positively skewed distribution will have a wider left
segment and a negatively skewed distribution will have a
wider right segment. We can see in the example for d = 1.0
in Fig. 1b that the wider segment for the Hedges & Olkin
method is obviously in the direction of skewness to the right,
and is less obviously in the opposite direction for the Steiger &
Fouladi method (i.e., 1.0 – .001 = .999 on the left and 1.972 –
1.0 = .972 on the right, see segment widths in Appendix 1).
The confidence interval for a d of –1.0 would simply be the
mirror image of this graph in the negative direction.

The difference in the direction of the wider segment for
Hedges & Olkin and Steiger & Fouladi methods has implica-
tions for the coverages of the intervals. With effect size 0 (Fig.
1a), the symmetrical Hedges&Olkin interval is wider than the
symmetrical Steiger & Fouladi interval. This implies greater
coverage for the Hedges & Olkin interval with δ at or near 0.
As the effect size increases to a value such as 1.0 in Fig. 1b,
the Hedges & Olkin interval is wider in the direction of skew-
ness toward the tails, where there is a smaller probability den-
sity. The Steiger & Fouladi interval is wider toward the center
of the distribution, where there is a larger probability density.
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Thus, a small increase in the wider segment of a Steiger &
Fouladi interval will add more coverage probability than an
equal increase in the wider segment of a Hedges & Olkin
interval. Steiger & Fouladi intervals with moderate to large
effect sizes can be narrower (more precise) and yet have
higher coverage than Hedges & Olkin intervals.

Overview and method of predictions

Before proceeding to the technical details, let us examine the
output of the provided software to calculate the expected cov-
erages for all four confidence intervals using d or g and using
the Hedges & Olkin or Steiger & Fouladi methods. The pro-
cedure is given in Example 3 in the user’s notes and the output
for 16 degrees of freedom rounded to three decimal digits is
displayed in Table 1. Ignoring the intermediate calculations
and examining the expected coverages in the far right column,
we see that coverage for Hedges & Olkin using d (Hd) is .930,
Hedges & Olkin using g (Hg) is .944, Steiger & Fouladi using
d (Sd) is .950, and Steiger & Fouladi using g (Sg) is .957.

The expected coverage in Table 1 is the probability of
sampling a d value between two boundary d values. These
boundaries for d are called “leftd” and “rightd” in the text
output in Table 1. These d values are converted to t values

called bλd;left and bλd;right using Eq. 9b. These t boundaries are
selected to represent the most extreme possible d value in that
direction (left or right) that could have a confidence interval of
the given type that still includes δ. That is to say, all d values to
the left of leftd will have confidence intervals of that type that
do not include δ, and all d values to the right of rightd will also
have confidence intervals of that type that do not include δ.

The probability of a bλd value to the left of bλd;left (called bαleft )

or to the right of bλd;right (bαright ) can be determined directly
from the cumulative distribution function of the correspond-

ing noncentral t distribution with non-centrality parameter λδ

¼ δ
ffiffiffi
A

p
and ν as given in Eqs. 10 and 11. The sum of these

two tail probabilities (“ltail” and “rtail” in Table 1) is the total
probability of sampling a d that does not include δ (bα = bαleft +

bαright ). The complement, 1 − bα, is the expected coverage of
the confidence interval as given in the far right column in
Table 1.

For Hd and Sd, the d boundaries (leftd and rightd in
Table 1) are determined by a process using Hd and Sd confi-
dence intervals directly. For Hg and Sg, the d boundaries (leftd
and rightd) are determined by a two-step process: (1) use Hg
and Sg confidence intervals to determine g boundaries, then
(2) convert g boundaries to d boundaries by dividing the g
boundaries by J(ν). For example, rightd for method Hg is
computed as rightd = rightg/J(ν) = 1.972/.95225 = 2.071.
The leftg and rightg values have been calculated but are not
needed for methods Hd and Sd.

The process for discovering these d boundaries involves a
computer search for a confidence interval of a given type that
has one of the standardized limits equal to the standardized
population effect size, δ. The standardized limits of a confi-
dence interval are determined with respect to a corresponding
t-scaled non-centrality parameter, and the non-centrality pa-
rameter to be used depends on whether the confidence interval

is a d interval (bλd , Eq. 9b) or a g interval (bλg, Eq. 9c). The left
d boundary for determining the expected coverage of Hd or Sd
confidence intervals is a d whose Hd or Sd standardized con-
fidence interval has an upper limit of δ. The left d boundary for
determining coverage of Hg or Sg confidence intervals is a d
whose associated Hg or Sg standardized confidence interval
has an upper limit of δ. Note that we do not rescale δ for
use with a g interval. In either case, there can be no d
value to the left of the selected boundary that has a
confidence interval of the same type that includes δ.
For the Hg and Sg confidence intervals, this involves
converting the d to a g, searching for the g boundary
that has an upper limit of δ, and then converting that g
boundary back to a d boundary. Any d to the left of
that d boundary would have a corresponding g that is to
the left of its g boundary. The d boundary generated by
a Hg or Sg confidence interval method will not be the
same as the d boundary generated by a Hd or Sd con-
fidence interval method.

Table 1 Sample output from Cover2D.exe using the data of Fig. 1b for a two-sample test with δ = 1.0 and ν = 16. Expected coverage for each of four
methods (M) is listed in the far right-hand column

Samples δ M ν n leftd rightd leftg rightg ltail rtail bα coverage

2 1 Hd 16 9 0.001 1.972 0.001 1.878 0.017 0.053 0.070 0.930

2 1 Hg 16 9 0.001 2.071 0.001 1.972 0.017 0.039 0.056 0.944

2 1 Sd 16 9 0.077 2.218 0.073 2.112 0.025 0.025 0.050 0.950

2 1 Sg 16 9 0.081 2.330 0.077 2.218 0.025 0.018 0.043 0.957

The other values are intermediate data in the calculation. Leftd and rightd are the d boundaries for the Hd and Sd methods that include δ as an upper or
lower confidence limit around the d. Leftg and rightg are the g boundaries for the Hg and Sgmethods that include δ as an upper or lower confidence limit
around g. The g boundaries must be converted to d, and then the expected coverage is the probability between those d boundaries calculated using the
noncentral t sampling distribution of λδ. Note that the leftd and rightd values for the dmethods are the same numbers as the leftg and rightg values for the
g methods (numbers in bold)
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Computation of d boundaries is done by a computer search
algorithm, but the equivalent hand calculation could be done
with much effort by trial and error. Suppose we wish to cal-
culate the lower d boundary, leftd, for the Sd method. A stan-
dardized confidence interval of the Sd type around this d
boundary should have an upper limit δ (i.e., the population
standardized effect size), so that is our target d. We select an
initial educated guess as to the d boundary, dguess (it must be
less than δ if the right limit will be δ), then search for a Sd
confidence interval for dguess and examine the upper limit. If it
is greater than δ, reduce the size of dguess and try again. If it is
less than δ, increase the size of dguess and try again. Stop when
the value of dguess generates a confidence interval suitably
close to δ. The computer does this to eight decimal digits.
Note that similar searches are required for repeatedly comput-
ing Steiger & Fouladi confidence intervals on the way to de-
termining that boundary, so the searching is onerous indeed.
There are shortcuts to this end, discussed later, but the com-
puter always calculates the value from this basic principle.

Pseudo-algorithm used by computer program

The procedure used by my computer program for determining
the expected coverage of a d or g confidence interval for either
method follows. Steps beginning “Search for...” are done
using specialized search functions written for that purpose.

1. Calculate λδ ¼ δ
ffiffiffi
A

p
and ν (Eqs. 9a to 11).

2. If finding the boundaries for Hd or Sd use Step 2a. If
finding the boundaries for Hg or Sg use Step 2b. For each
instance of the word “[Method],” substitute “Hedges &
Olkin Method” if finding the coverage of Hd or Hg con-
fidence intervals or substitute “Steiger & Fouladi
Method” if finding the coverage of Sd or Sg confidence
intervals.

2a. Hd or Sd procedure

i. Search for the left t boundary, bλd;left, which is the non-
centrality parameter of the [Method] confidence inter-

val to the left of λδ = δ
ffiffiffi
A

p
that includes λδ as the right-

hand confidence limit.
ii. Search for the right t boundary, bλd;right, which is the

non-centrality parameter of the [Method] confidence

interval to the right of λδ = δ
ffiffiffi
A

p
that includes λδ as

the left-hand confidence limit.

2b. Hg or Sg procedure

i. Search for the left t boundary, bλg;left, which is the non-
centrality parameter of the [Method] confidence inter-

val to the left of λδ = δ
ffiffiffi
A

p
that includes λδ as the right-

hand confidence limit. Note that we do not rescale λδ

by the bias correction factor because the population
value is not biased.

ii. Search for the right t boundary, bλg;right, which is the
non-centrality parameter of the [Method] confidence

interval to the right of λδ = δ
ffiffiffi
A

p
that includes λδ as the

left-hand confidence limit.
iii. Calculate bλd;left = bλg;left /J(ν) and bλd;right = bλg;right /J(ν).

3. Using the noncentral t distribution for λδ and ν determine

the cumulative probability, pleft, of bλd;left and assign bαleft =
pleft. Do the same for the other tail to compute pright based

on bλd;right and assign bαright = 1 – pright.
4. Calculate bα = bαleft + bαright .

5. Calculate expected coverage = 1 – bα.
Supplement 1 gives examples of how to calculate expected

coverages for both the Hedges & Olkin and Steiger and
Fouladi methods used in this paper.

Comments and shortcuts for predicting coverage

These d boundaries are not confidence intervals, although they
can be interpreted in a fashion similar to confidence intervals.
That is, the tail probabilities represent d values that have con-
fidence intervals that exclude δ, and the probabilities between
the boundaries represent d values that have confidence inter-
vals that include δ. However, bα is a dependent variable in this
process rather that an independent variable. If the process
generating the confidence intervals is well behaved and fol-
lows the appropriate noncentral t distribution exactly, then bα
will equal the α that was determined a priori for the project,
and the expected coverage of the interval will be the nominal
coverage. We can see in Table 1 that the methods are not all
perfectly well behaved with these parameters because bα does
not always equal .05.

The values for the boundaries in Table 1 may look familiar
because they are the same as the d-scaled confidence limits in
Fig. 1b, where d = 1.0 and ν = 16. The confidence limits in
Fig. 1b were determined for a sample d of 1.0, whereas the d
boundaries in Fig. 2b are for a population δ of 1.0, but other-
wise, the computation is the same. Notice that the Steiger &
Fouladi confidence limits for d = 1.0 were [0.001, 1.972], and
this is the same as the d boundaries in Table 1 for the Hd
method (i.e., not the Steiger & Fouladi method). The Hedges
&Olkin confidence limits for d = 1.0 were [0.077, 2.218], and
this is the same as the d boundaries in Table 1 for the Sd
method (i.e., not the Hedges&Olkin method). A d confidence
interval around a value for one method produces the d bound-
aries around that value for the other method. This does not
work for g, but see the next paragraph.

In Table 1, notice that the leftg and rightg boundaries for
Hg are the same as the leftd and rightd boundaries for Hd, and
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the leftg and rightg boundaries for Sg are the same as the leftd
and rightd boundaries for Sd (values in bold type). Even
though we have changed scaling for g, and we have conse-
quently changed the non-centrality parameter for the sampling
distribution, we have not rescaled δ. The calculations for each
follow. The rightd value for method Hd in Table 1 is 1.97214
(with two extra decimal places). The non-centrality parameter

for that d is 1:97214
ffiffiffiffiffiffiffiffi
9=2

p
= 4.18355. The quantiles of the

noncentral t distribution can be determined using the qt() func-
tion in R (see Supplement 1 for tips). The quantile at a cumu-
lative probability of .025 in a noncentral t distribution with

non-centrality parameter 4.18355 and ν = 16 is qt(.025, 16,
4.18355) = 2.121321, and the d associated with this t is

2.121321/
ffiffiffiffiffiffiffiffi
9=2

p
= 1.0000, which matches our requirement

that δ = 1.0000 must be the lower limit in a Hedges & Olkin
d standardized confidence interval (Eq. 12). In g scaling, if the
rightg is 1.97214, its non-centrality parameter is also 4.18355
and the quantile at cumulative probability .025 is also

2.121321. The g associated with that t is 2.121321/
ffiffiffiffiffiffiffiffi
9=2

p
=

1.0000. With method Hd the 1.97214 is a d value, but with
method Hg it is a g value that needs to be transformed to a d
value as rightd = 1.97214/J(ν) = 1.97214/0.95225 = 2.071,
which matches the rightd value for method Hg in Table 1. The
value 1.97214 was determined by independent computer
searches for d and g, but they must be the same.

Thus, for a given δ, one can find the d boundaries to cal-
culate the expected coverage of a Hd confidence interval by
calculating a Sd confidence interval for δ. For example, in
Appendix 1, where the confidence intervals are printed, the
Hedges & Olkin standardized biased scaling confidence limits
[0.077, 2.218] are the same as both (1) the d boundaries for the
d-scaled Steiger & Fouladi confidence interval (Sd), and (2)
the g boundaries for the g-scaled Steiger & Fouladi confidence
interval (Sg). Similarly, one can find the d boundaries of a Sd
confidence interval by calculating a Hd confidence interval for
δ. In Appendix 1, the Steiger & Fouladi d standardized biased
scaling confidence limits [0.001, 1.972] are the same as both
(1) the d boundaries for the Hedges & Olkin confidence inter-
val (Hd), and (2) the g boundaries for g-scaled Hedges &
Olkin confidence interval (Hg) in Table 1. Thus, one can build
all of the boundaries in Table 1 from knowledge of Appendix
1. Intensive computer searching can be reduced to the compu-
tation of one Steiger & Fouladi confidence interval. The rest
of Table 1 can be generated by determining the tail probabil-
ities of the boundaries using R as described in Overview and
Method of Predictions and Supplement 1. The method in the
computer program Cover2D.exe computes all intervals,
boundaries, and probabilities from first principles rather than
relying on equivalences.

Software

Cover2D.exe (coverage for two designs) is a 32-bit console
application for a PC-compatible computer. It is designed to
assist researchers to create noncentral t confidence intervals
using either the method of Hedges and Olkin (1985) or that of
Steiger and Fouladi (1997) when applied to either the biased
standardized mean difference (Cohen’s d) or the unbiased
standardized mean difference (Hedges’ g). It also calculates
expected coverages for each of these types of confidence in-
tervals for a user-selected effect size over a user-selected range
of sample sizes. The data for expected coverages in the figures
and tables in this article can be reproduced using this program
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Fig. 2 Method for calculating expected coverage in Hd and Sd
confidence intervals for a two-sample test as in Fig. 1. The curve in each
panel is the sampling distribution of d, i.e., a noncentral t distribution for δ
= 1.0 and ν = 16, specifically, t2.12132,16. Hedges & Olkin method (2A,
top): Box ‘a’ represents a Hedges & Olkin interval that includes δ as the
upper limit and having a d-scaled non-centrality parameter of 0.001. Box
‘b’ is a Hedges & Olkin interval that includes δ as the lower limit and
having a d-scaled non-centrality parameter of 1.972. Any d sampled
below 0.001 or above 1.972 cannot have a confidence interval that con-
tains δ. Steiger & Fouladi method (2B, bottom): Boxes ‘c’ and ‘d’ are
Steiger & Fouladi confidence intervals that include δ as the upper and
lower limits, respectively. The tails of each sampling distribution are
marked with the proportion representing sampled d values that could
not include δ. Expected coverage is the middle portion between tails
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(see examples in the user’s notes). The program is not limited
to any set confidence coefficient, degrees of freedom, or effect
size. The data for simulated coverages in the figures and tables
in this article can be reproduced using the 64-bit program
Coversim.exe. Source code is provided. Files are available
through the Open Science Foundation: https://osf.io/5tb7u/

Listing 1 is an R script demonstrating computation of
Hedges and Olkin (1985) confidence intervals and Steiger
and Fouladi (1997) confidence intervals for two independent
groups in a simulation program. At the top of the script the
user must set the simulation parameters n (number of subjects
per group), d (population standardized effect size), n_sim (the
number of experiments to include in the simulation), and
gamma (the confidence coefficient). Near the bottom of the
code, the user selects whether to conduct simulations using
either g or d and using either Hedges & Olkin or Steiger &
Fouladi method. One line for each choice must be commented
to remove the line from the program (a commented line begins
with “#”). Thus, to run a simulation for the Hedges & Olkin
method with g (method Hg), one leaves the lines “res[i, 1] <-
hedgesg” and “res[i, c(2,3) ] <- hedges81(hedgesg, n, gam-
ma)” without comments and comments the lines “#res[i, 1] <-
cohend” and “#res[i, c(2,3) ] <- steigerfouladi97(hedgesg, n,
gamma)” to remove them from the script. Then run the script
in R. The run time will depend on the method selected (Steiger
& Fouladi is slower) and the number of simulations in the
model.

Results

Table 2 contains the expected coverages of 95% noncentral t
confidence intervals of two-sample tests using either 8 or 16
degrees of freedom for either d or g for three population stan-
dardized effect sizes (0, 0.5, 1.0) using either the Hedges &
Olkin method (rows Hd, Hg) or Steiger & Fouladi method
(rows Sd, Sg). In each row, the d or g prediction boundaries
are given for a relevant noncentral t distribution. For rows Hd
and Sd, the prediction d boundaries were determined as the
non-centrality parameter in standardized d scaling for a confi-
dence interval of that type that had δ as the right (top line of
each pair) or left (bottom line of each pair) confidence limit.
For rows Hg and Sg, the g boundaries were determined as the
non-centrality parameter in standardized g scaling for a confi-
dence interval of that type that had δ as the right (top) or left
(bottom) confidence limit. The g boundaries for Hg and Sg
were converted to d boundaries by dividing by the bias cor-
rection factor J(ν). The d boundaries were used for all methods
to determine tail probabilities (tailp) for that side using a non-
central t distribution with non-centrality parameter λδ and de-
grees of freedom ν. The two tail probabilities were summed asbα, and the expected coverage (Exp) was determined as 1 − bα.
For example, the d-scaled boundaries for the top pair of rows

for ν = 8 are [−1.240, 1.240]. The area of the tail is given as
tailp for both the left and right sides. The two tails are summed
together as bα = .043 + .043 = .086. The expected coverage
was 1 − .086 = .914.

In addition to expected coverages, Table 2 includes results
of a Monte Carlo simulation (“Sim”) of 100,000 two-sample
experiments conducted with the same δ and ν from randomly
sampled and normally distributed data. See Supplement 1 for
the simulation method. For each experiment, separate empir-
ical Hedges & Olkin confidence intervals for d and g were
constructed (Hd, Hg), and separate empirical Steiger &
Fouladi confidence intervals for d and g were constructed
(Sd, Sg) from the same data. Then, for each method it was
noted whether or not the interval in standardized form
contained δ. Empirical coverage was calculated as the number
of experiments that contained δ divided by 100,000.

Table 2 demonstrates that the expected (Exp) and simulat-
ed (Sim) coverages agree quite well. The only method that
always produced actual 95% coverage of δ was the Steiger
& Fouladi confidence interval for d. The Steiger & Fouladi
confidence interval for g was not constant across effect sizes
or sample sizes. The Hedges & Olkin confidence intervals for
d and g were both lower than the nominal 95% and were not
constant across effect sizes or sample sizes. In all cases, cov-
erage was as close or closer to the nominal 95% at ν = 16 than
at ν = 8. Any coverage that does not equal .950 means that the
underlying distribution for the confidence interval of that type
is not exactly a noncentral t distribution. Because the theoret-
ical prediction method is based on the behavior of confidence
intervals of that type, accurate predictions can be made even
when the underlying distribution is not exactly a noncentral t.

The provided software Cover2D.exe was used to calculate
expected coverages for a wide range of effect sizes for each of
the four methods across sample sizes ranging from 5 to 89,
and the results are displayed in Fig. 3. Simulation results for
the same problems are illustrated in Figure 5 in Supplement 1.
The results for the Steiger & Fouladi confidence intervals
were outstanding both for their perfectly nominal coverage
with d intervals and for their dramatically inconsistent cover-
age with g intervals. The results for the Hedges & Olkin in-
tervals with d were poor because the coverage was sub-
nominal with small sample sizes and was not consistent across
effect sizes. The results for Hedges & Olkin intervals when
used with gwere much more consistent across effect sizes and
had a much smaller window of sub-nominal coverage with
small sample sizes.

The good news in Fig. 3 is that the coverage for all methods
is in the neighborhood of the nominal 95% at large sample
sizes. Additional calculations and simulations, not shown,
demonstrate that sample sizes of 90 and higher are incremen-
tally closer to 95% for all methods. Researchers working with
small and intermediate sample sizes (5–40 per group) should
use either the Steiger & Fouladi method with d or the Hedges

2419Behav Res  (2021) 53:2412–2429

https://osf.io/5tb7u/


& Olkin method with g, as the other methods may produce
unacceptably errant coverage. The Hedges & Olkin method
used with g should be reported as a 94% confidence interval
rather than a 95% confidence interval with the smallest sample
sizes.

One-sample tests had expected coverages as listed in
Table 3 with the same format as Table 2. The dwas calculated
as in Eq. 7 using the standard deviation of the difference
scores, and the non-centrality parameter was calculated as in
Eqs. 9 and 11. The degrees of freedom were ν = n – 1. The
effect sizes were the same numerically as in Table 2, but these
do not represent the same absolute effect size because the
standard deviation of the scores and the standard deviation
of the differences are rarely the same. Again, the expected
and simulated results agreed well, and the Steiger & Fouladi

method used with d was the only method that consistently
gave a 95% confidence interval at all sample sizes and effect
sizes.

Expected coverages for one-sample tests with effect sizes
of 0, 0.25, 0.5, 1, 1.25, and 1.5 are displayed in Fig. 4 for all
sample sizes between 5 and 89. Simulation results for the
same problems are illustrated in Figure 6 in Supplement 1.
The Steiger & Fouladi method used with d remained consis-
tently good for all effect sizes and sample sizes. The Hedges&
Olkin method used with g had coverages at or above 94% at
all sample sizes above 13, but sample sizes as small as 5 had
coverages as low as 92.8%. All methods produced confidence
intervals with coverages between about 94 and 96% at sample
sizes above 40, but the most variable coverage was again the
Steiger & Fouladi method used with g, which produced

Table 2 Two-sample calculations of expected values (Exp) and simulated estimates (Sim) for coverage of the following methods (M) for generating
95% confidence intervals: Hedges & Olkin used with d (Hd) or with g (Hg); Steiger & Fouladi used with d (Sd) or with g (Sg)

ν = 8 ν = 16

Boundaries Coverage Boundaries Coverage

δ M dP g tailp bα Exp Sim dP g tailp bα Exp Sim

0 Hd −1.240 −1.118 .043 .086 .914 .914 −0.924 −0.880 .034 .068 .932 .933

1.240 1.119 .043 0.924 0.880 .034

Hg −1.373 −1.240 .031 .062 .938 .938 −0.970 −0.924 .028 .056 .944 .944

1.373 1.240 .031 0.970 0.924 .028

Sd −1.459 −1.317 .025 .050 .950 .950 −0.999 −0.951 .025 .050 .950 .951

1.459 1.317 .025 0.999 0.951 .025

Sg −1.616 −1.459 .017 .034 .966 .966 −1.049 −0.999 .020 .041 .959 .960

1.616 1.459 .017 1.049 0.999 .020

0.5 Hd −0.777 −0.701 .029 .086 .914 .914 −0.448 −0.427 .025 .068 .932 .931

1.748 1.578 .058 1.432 1.364 .044

Hg −0.861 −0.777 .022 .062 .938 .939 −0.470 −0.448 .022 .056 .944 .943

1.936 1.748 .039 1.504 1.432 .034

Sd −0.824 −0.745 .025 .050 .950 .950 −0.443 −0.422 .025 .050 .950 .950

2.154 1.944 .025 1.592 1.516 .025

Sg −0.913 −0.824 .019 .035 .965 .965 −0.465 −0.443 .023 .041 .959 .958

2.387 2.154 .016 1.672 1.592 .019

1 Hd −0.356 −0.321 .018 .089 .911 .912 0.001 0.001 .017 .070 .930 .931

2.303 2.079 .071 1.972 1.878 .053

Hg −0.395 −0.356 .015 .061 .939 .939 0.001 0.001 .017 .056 .944 .944

2.552 2.303 .046 2.071 1.972 .039

Sd −0.253 −0.228 .025 .050 .950 .950 0.077 0.073 .025 .050 .950 .950

2.906 2.623 .025 2.218 2.112 .025

Sg −0.280 −0.253 .023 .037 .963 .962 0.081 0.077 .026 .043 .957 .957

3.219 2.906 .015 2.330 2.218 .018

Each method was generated for either ν = 8 or 16 and δ = 0, 0.5, or 1.0. The d or g was found as the most extreme result in that direction that would
produce a confidence interval with that method that included δ. The “tailp” is the noncentral t probability of a dmore extreme than the listed value for d on
that line. The bα is the sum of the two theoretical “tailp” values and the expected coverage is 1 – bα. Simulations used 100,000 experiments and reported
the empirical coverage for each method as the (number including δ)/100,000. Expected coverage is always calculated from the d boundary using the
noncentral t distribution for the population δ
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coverages from 93.5 to 97.5% at n = 5 depending on the effect
size.

The above analysis presents data only for 95% confidence
intervals for reasons of space, but the same experiments were
conducted with confidence coefficients of .90 and .99 with
similar conclusions. The provided software can use other con-
fidence coefficients.

Depending on the software in use, the calculation of
probabilities for extremely large t values may generate
computation faults. This occurs most often with tiny or
huge sample sizes or huge effect sizes and can occur
more often with the Steiger & Fouladi method because
of the necessity to calculate probabilities for upper con-
fidence limits that can occasionally sample a large ob-
served t as the critical point at the .025 quantile. If the
observed t is large, the non-centrality parameter at the
upper Steiger & Fouladi limit will be extremely large.
Software such as R and my programs rely on an
algorithm by Lenth (1989) that requires the evaluation
of the C code “exp(–0.5*t*t)”, and this can generate
faults with large t in some programming implementations
or environments. In my two-sample tests the largest
number of faults was 44 with δ = 4, n = 5 (i.e., a huge
effect size combined with a tiny sample size). The max-
imum that empirical coverage could have been increased
if all excluded experiments actually had confidence in-
tervals that included δ is 44/100,000 = .00116. The al-
ternative would be to eliminate the excluded experiments
from the denominator, which would artificially increase
coverage instead of decreasing it. Neither would notice-
ably affect results in a graph.

Discussion

The Hedges & Olkin method was first proposed by Hedges
(1981) and was later explicitly described as an “exact method”
by Hedges & Olkin (1985, p. 91), where it was deemed too
difficult for general use at the time. Hedges (1981) first pre-
sented the method for generating an unbiased standardized
mean difference, g, but the confidence interval method pre-
sented in Hedges and Olkin (1985) was applied to the biased
standardized mean difference, d. (The notation in these early
papers differed from what is generally used today.) Steiger
and Fouladi (1997) presented a different method, which they
also refer to as “exact,” and seemed to consider the methods
identical when they refer (p. 236) to the Hedges and Olkin
(1985) method as “exact,” and comment that the “authors
provided nomographs only for some limited cases involving
very small samples.” The Steiger & Fouladi method has been
studied or promoted in various contexts (Algina et al., 2006;
Bird, 2002; Chen & Peng, 2013; Cumming, 2014; Fidler &
Thompson, 2001; Kelley, 2005; Kelley, 2007; Kelley &
Rausch, 2006; Lecoutre, 2007; Smithson, 2001; Steiger,
2004; Steiger & Fouladi, 1997) and is included in the free
software packages ESCI (Cumming & Finch, 2001) and
MBESS (Kelley, 2007). A recent review (Goulet-Pelletier &
Cousineau, 2018) noted differences between the Hedges &
Olkin and the Steiger & Fouladi methods in their appendix
C, where they “suspect that this [Steiger & Fouladi] method is
less appropriate than the [Hedges &Olkin] noncentral method
presented in this text in most, if not all, scenarios” and they
recommended its abandonment. In an erratum, however, they
reported an error in their calculations and rescinded that
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recommendation (Goulet-Pelletier & Cousineau, 2020). They
did not provide extensive data on coverage to compare the
methods.

The coverages as calculated and simulated in this study
support the use of both methods in different contexts. The
Steiger & Fouladi method used with the biased d produced
excellent coverages for all sample sizes and effect sizes for
both one- and two-sample tests. The Hedges & Olkin method,
when used with unbiased g, also produced highly consistent
coverages across all effect sizes, and the coverage was close to
nominal for sample sizes greater than or equal to about 20. At
sample sizes of 5–20, the coverage of the Hedges & Olkin
method with g was consistently reduced on average to a nadir
of about 94% (two-sample) or 93% (one-sample).

The Hedges & Olkin method with d and the Steiger &
Fouladi method with g produce discrepant coverages with
different effect sizes at small sample sizes and probably
should not be used at all for sample sizes less than about 40
per group.

Precision in a confidence interval is determined by the
width of the interval (Kelley, 2007; Kelley & Rausch,
2006). Estimation of the parameter is more precise if the in-
terval is narrow instead of wide. In general, intervals formed
with g are narrower than intervals formed with d, and intervals
formed with the Steiger & Fouladi method are narrower than
intervals formed with the Hedges & Olkin method. Of the
methods studied here, the Steiger & Fouladi method with d
creates confidence intervals that are always close to the

Table 3 One-sample calculations of expected values (Exp) and simulated estimates (Sim) for coverage of the following methods (M) for generating
95% confidence intervals: Hedges & Olkin used with d (Hd) or with g (Hg); Steiger & Fouladi used with d (Sd) or with g (Sg)

ν = 8 ν = 16

Coverage Coverage

δ M dD g tailp bα Exp Sim dD g tailp bα Exp Sim

0 Hd −0.654 −0.590 .043 .086 .914 .914 −0.475 −0.452 .034 .068 .932 .933

0.653 0.589 .043 0.475 0.452 .034

Hg −0.724 −0.654 .031 .062 .938 .938 −0.499 −0.475 .028 .056 .944 .945

0.724 0.654 .031 0.499 0.475 .028

Sd −0.769 −0.694 .025 .050 .950 .950 −0.514 −0.489 .025 .050 .950 .951

0.769 0.694 .025 0.514 0.489 .025

Sg −0.852 −0.769 .017 .034 .966 .965 −0.540 −0.514 .020 .041 .959 .960

0.852 0.769 .017 0.540 0.514 .020

0.5 Hd −0.210 −0.190 .018 .088 .912 .913 −0.013 −0.012 .017 .069 .931 .929

1.183 1.068 .070 0.999 0.951 .052

Hg −0.233 −0.210 .016 .061 .939 .940 −0.013 −0.012 .017 .056 .944 .943

1.310 1.183 .046 1.049 0.999 .039

Sd −0.163 −0.147 .025 .050 .950 .950 0.025 0.024 .025 .050 .950 .949

1.490 1.345 .025 1.123 1.069 .025

Sg −0.181 −0.163 .022 .037 .963 .963 0.026 0.025 .025 .043 .957 .956

1.650 1.490 .015 1.179 1.123 .018

1 Hd 0.169 0.153 .006 .094 .906 .904 0.403 0.384 .009 .073 .927 .926

1.792 1.618 .088 1.576 1.501 .065

Hg 0.187 0.169 .007 .062 .938 .938 0.423 0.403 .011 .056 .944 .943

1.985 1.792 .054 1.655 1.576 .045

Sd 0.337 0.304 .025 .050 .950 .950 0.501 0.477 .025 .050 .950 .950

2.300 2.076 .025 1.787 1.702 .025

Sg 0.373 0.337 .033 .046 .954 .953 0.527 0.502 .032 .049 .951 .952

2.548 2.300 .014 1.876 1.786 .017

Each method was generated for either ν = 8 or 16 and δ = 0, 0.5, or 1.0. The d or g was found as the most extreme result in that direction that would
produce a confidence interval with that method that included δ. After converting g to d, the “tailp” is the noncentral t probability of a dmore extreme than

the listed value for d in the sampling distribution of d with non-centrality parameter
ffiffien
2

q
. The bα is the sum of the two theoretical “tailp” values and the

expected coverage is 1 – bα. Simulations used 100,000 experiments and reported the empirical coverage for each method as the (number including δ)/
100,000
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nominal confidence coefficient and are generally slightly
more compact even than those generated with the Hedges &
Olkin method with g. Although a point estimator such as g
provides a more accurate estimate of δ than d, the most accu-
rate and compact confidence interval is obtained with Sd, not
Sg. Therefore, it is not possible to use either a d or g method
and have both the most accurate point estimate and also the
most compact confidence interval with exact coverage. Those
needing an accurate point estimate should report g. Those
needing the most precise confidence interval should report
Sd. Those who must report both within either a single d or g
context should use d and Sd or g and Hg.

In the original draft of this manuscript I suggested reporting
g as the best point estimator and also reporting the Steiger &
Fouladi d confidence interval (Sd) as the best interval estima-
tor. One reviewer strongly disagreed with that suggestion be-
cause of the possibility that using different systems for point
and interval estimation could result in intervals being reported
that do not contain the point estimate. The issue is debatable,
but it raises an interesting question: “What is a biased or un-
biased interval estimate?” If we put the method used to gen-
erate the interval in a black box and look only at the perfor-
mance of the method, the Steiger & Fouladi method with d
clearly is the best choice for generating narrow confidence
intervals that include δ a nominal percentage of the time. Is
that interval “biased” because it is using d instead of g to
generate the interval? The answer is clearly no, because the
interval is not a parameter that can be biased or unbiased.
Kelley & Rausch (2006, Footnote 5, p. 365) list several
circumstances, including the standardized mean differ-
ence, where it is best to report the unbiased point

estimate alongside an interval that is based on a biased
point estimate.

An example of this is contained in the publication by
Viechtbauer (2007), who examined 21 potential approxima-
tion formulas for confidence intervals for standardized effect
sizes and compared their coverage and compactness with that
of exact confidence intervals. All approximations used some
version of a biased or unbiased estimate of the effect size and
the variance of the noncentral t distribution and either a central
normal distribution or a central t distribution to approximate
the noncentral t distribution. The closed-form approximations
offered the advantage that they are not iterative and are
therefore easier to calculate. The paper cites both Hedges
and Olkin (1985) and Steiger and Fouladi (1997) for exact
confidence intervals, but the author does not state what varia-
tion of the “exact” interval he used as the standard for com-
parison. As seen here, the Hedges & Olkin procedure is not
iterative. Judging from example data and results presented on
pages 48–49 of Viechtbauer (2007), the “exact” method was
the Steiger and Fouladi method with the biased d, abbreviated
Sd here. The results presented for that method listed g as the
unbiased point estimate and the Steiger method calculated
with the biased d as the exact interval. Given the results of
the present paper, the Sdmethod was indeed the most exact of
the methods, so the choice was appropriate. This is an exam-
ple of using the unbiased g for the point estimate and the
biased d to compute the interval. My recommendations in this
paper are to use this iterative exact and compact Sd method
instead of an approximation. If a non-iterative approach is
required for some reason, the Hg method may be substituted
to obtain similar coverage except at the smallest sample sizes
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and at the expense of a slightly wider interval. If an
approximation technique is preferred for some reason, the
reader is referred to the recommendations of Viechtbauer
(2007) for the best techniques.

In a similar vein, if we use a confidence interval protocol
that employs the number .95 inside the black box, and if that
protocol has an expected and empirical coverage of .944, why
should we call it a 95% confidence interval? The confidence
coefficient should be named for the actual coverage of the
method, regardless of how the method is calculated. The
method presented in this paper now allows us to predict the
actual coverage of the protocol. Thus, it is entirely appropriate
to call a Hedges & Olkin g-scaled confidence interval (Hg)
with ν = 16 in Tables 2 and 3 a 94.4% confidence interval
because the expected coverage is 94.4%. In so doing, a re-
searcher runs a risk of confusing readers into thinking that the
α value used in the calculations was .056 instead of .05 unless
it is made perfectly clear in the publication that the naming of
the confidence coefficient is based on the expected coverage
rather than the α used in the calculations. With a small effort, I
used Cover2D.exe to identify a nominal confidence coeffi-
cient of .957 that generated an actual coverage of .950 with
ν = 16 for method Hg in a two-sample test. This latter should
be called a 95% confidence interval, not a 95.7% confidence
interval, but the researcher needs to clarify how it was done.
This is done in other fields when a confidence interval proto-
col predictably produces observed coverage other than the
nominal confidence coefficient (Singham, 2014, section 5.2
Choosing a Confidence Coefficient). The language for doing
this obviously needs to be clarified (Singham used different
notation for the confidence coefficient employed in the com-
putations and the confidence coefficient representing the ac-
tual coverage).

Given the above paragraph, either the Steiger & Fouladi
intervals with d (Sd) or the Hedges & Olkin intervals with g
(Hg) produce excellent intervals where the actual coverage of
the interval is known a priori and does not vary markedly
according to effect size. The Hedges & Olkin method with d
(Hd) creates poor intervals because the coverage is sub-
nominal to different degrees for different effect sizes. Some
researchers may consider the Steiger & Fouladi gmethod (Sg)
to produce excellent intervals if one’s definition of excellent
coverage is an interval that includes the parameter at least a
nominal proportion of the time. A g value of 3 or 4 is almost
unheard of in practical research in psychology, and those are
the circumstances where the coverage was sub-nominal.
However, researchers who must use small samples because
subjects are rare, expensive, or subject to ethical limitations
would consider a confidence interval protocol that generated
97% coverage instead of the nominal 95% coverage to be a
waste of subjects. These researchers need a confidence inter-
val protocol that generates a known coverage with a known
sample size even if the effect size is unknown. As sample size

management matures for these protocols (Kelley & Rausch,
2006), researchers will want to know the minimum sample
size that produces a confidence interval with a known preci-
sion, and that will be best with the Sd or Hg methods.

Goulet-Pelletier and Cousineau (2018) among others have
called for researchers to report effect sizes for single sample or
paired sample experiments using the pooled standard devia-
tion SP as the denominator for d because the effect size will
then be directly comparable to standardized effect sizes for
two-sample experiments. In this paper, the standardized effect
size of 1.0 was not the same in the two-sample experiments as
it was in the one-sample experiments using SD as the denom-
inator. The problem is that a computation of g from d or a
computation of a confidence interval for d when using SP in a
one-sample test requires a computation of the degrees of free-
dom, and the exact degrees of freedom are some function of
the population correlation, ρ, that is currently unknown (Fitts,
2020). I have generated an approximate solution to the de-
grees of freedom to be published elsewhere, but even with
more accurate degrees of freedom the empirical coverage is
not perfect because of the necessity to substitute a random
variable r for ρ in the prediction equation. By contrast, the
effect sizes and confidence intervals for a one-sample test with
SD in the denominator are exact, and this is the only way
currently to compare confidence intervals for different exper-
iments using one-sample tests.

It is important to mention that the studies presented here
employed ideal conditions for generating consistent confi-
dence intervals. Real data may often be drawn from non-
normal distributions or from populations with different vari-
ances, and this can dramatically affect coverage (Kelley,
2005). When the treatment affects the variance, a standardized
effect size may be more appropriately reported with the stan-
dard deviation of the control group in the denominator rather
than a pooled standard deviation in Eq. 2 (Glass, 1976;
Hedges, 1981; Morris, 2000, for repeated measures). The
same approach could be used if sample sizes are unequal.
The techniques used here with a pooled error term will prob-
ably generalize to pooled error terms from unequal sample
sizes as long as the sizes are roughly the same. A complete
study of unequal sample sizes must also consider the conse-
quences of unequal variances (Fitts, 2010), and that compli-
cated topic is beyond the scope of the current article.

Statistical software is becoming available to generate these
confidence intervals, but one must be careful to inspect the
notation and the exact method used to be sure the software
returns the intended confidence interval. Language such as a
“noncentral t confidence interval” is ambiguous. Kelley’s
(2007) MBESS uses the Steiger & Fouladi method with d,
but only for independent groups analyses. Cumming and
Finch (2001) also used the Steiger & Fouladi method with d
and include repeated measures as well as independent groups;
however, the degrees of freedom for the repeated measures
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intervals are wrong, as just discussed. The current versions of
these software may differ. By contrast, the Hedges & Olkin g-
scaled confidence intervals are fairly easy to calculate without
specialized software other than the qt() function in R and a
table of values of the bias coefficient J (Hedges, 1981).
Whatever the software or method of computation, researchers
should report exactly the method used in publications.

Listing 1

Listing 1 R script demonstrating computation of Hedges and
Olkin (1985) confidence intervals and Steiger and Fouladi
(1997) confidence intervals in a simulation program. The
search program for the Steiger & Fouladi method is a part of
the MBESS package (Kelley, 2007). Author: D. Cousineau.
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Appendix

Appendix 1. Output of Cover2D.exe in CI_MODE. Compare
to Fig. 1b.

Mode: CI_MODE
N of Samples 2
Two-tailed Alpha 0.050000
SAMPLE_MEANDIFF 1.000000
SAMPLE_SD 1.000000
SAMPLE_n 9.000000
Degrees of freedom (v) 16.000000
Biased d 1.000000
Variance of d 0.294031

Bias coefficient J(v) 0.952254
Unbiased g 0.952254
Variance of g 0.266624

HEDGES&OOLKIN 95.0% NONCENTRAL t
CONFIDENCE INTERVAL
**Standardized Biased Scaling**
Mean difference d 1.000000
Lower Limit of d 0.076877
Upper Limit of d 2.218295
Lower Segment 0.923123
Upper Segment 1.218295
Full Width 2.141418
**Standardized Unbiased Scaling**
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Mean difference g 0.952254
Lower Limit of g 0.028710
Upper Limit of g 2.157190
Lower Segment 0.923544
Upper Segment 1.204936
Full Width 2.128480

STEIGER&FOULADI 95.0% NONCENTRAL t
CONFIDENCE INTERVAL
**Standardized Biased Scaling**
Mean difference d 1.000000
Lower Limit of d 0.000580
Upper Limit of d 1.972144
Lower Segment 0.999420
Upper Segment 0.972144
Full Width 1.971564
**Standardized Unbiased Scaling**
Mean difference g 0.952254
Lower Limit of g –0.041062
Upper Limit of g 1.919303
Lower Segment 0.993316
Upper Segment 0.967049
Full Width 1.960365

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13428-021-01550-4.
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