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Abstract
In the social and behavioral sciences, observed variables of mixed scale types (i.e., both continuous and categorical observed
variables) have long been included in structural equation models. However, little is known about the impact of mixed continuous
and categorical observed variables on the performance of existing estimation methods. This study compares two popular
estimation methods with robust corrections, robust maximum likelihood (MLR) and diagonally weighted least squares
(DWLS), when mixed continuous and categorical observed data are analyzed, evaluating the behavior of DWLS and MLR
estimates in both measurement and full structural equation models. Monte Carlo simulation was carried out to examine the
performance of DWLS and MLR in estimating model parameters, standard errors, and chi-square statistics. Two population
models, a correlated three-factor measurement model and a five-factor structural equationmodel, were tested in combination with
36 other experimental conditions characterized by the number of observed variables’ categories (2, 3, 4, 5, 6, and 7), categorical
observed distribution shape (symmetry and slight asymmetry), and sample size (200, 500, and 1000). Data generation and
analysis were performed with Mplus 8. Results reveal that (1) DWLS yields more accurate factor loading estimates for categor-
ical observed variables than MLR, whereas DWLS and MLR produce comparable factor loading estimates for continuous
observed variables; (2) inter-factor correlations and structural paths are estimated equally well by DWLS and MLR in nearly
all conditions; (3) robust standard errors of parameter estimates obtained byMLR are slightly more accurate than those produced
by DWLS in almost every condition, but the superiority of MLR over DWLS is not clearly evident once a medium or large
sample is used (i.e., n = 500 or 1000); and (4) DWLS is systematically superior to MLR in controlling Type I error rates, but this
superiority is attenuated with increasing sample size. The article concludes with a general discussion of the findings and some
recommendations for practice and future research.

Keywords Diagonally weighted least squares . Maximum likelihood . Robust statistics .Mixed scale types . Monte Carlo

Introduction

The use of observed variables of mixed scale types (e.g., a
mixture of continuous and categorical observed variables
within the samemeasurement model) to operationalize a latent
construct is becoming increasing common in applied studies,
meriting increased research attention to measurement models
with mixed item response types. In an organizational setting,
for instance, studies measuring “job embeddedness” can nat-
urally involve both continuous and categorical observed

variables (Hom et al., 2009; Mitchell et al., 2001). In such a
case, examples of continuous observed variables may include
the number of years a person has been in their present position
or has worked for a company and the number of coworkers
highly dependent on them, while categorical variables may
include the frequency of communication with managers and
key customers of the company, measured on a five-point
Likert-type scale, or home ownership and current marital sta-
tus (yes or no). In the field of political science, the construct of
political-economic risk in question (Quinn, 2004) is typically
linked to continuous (e.g., gross domestic product, black-
market premium), ordinal observed variables using a six-
point scale (e.g., lack of expropriation risk, lack of corruption),
and dichotomous variables (e.g., judicial independence).
Another general example in psychology comes from the study
of substance abuse, in which measurements of alcohol use can
bemanifested by a set of continuous (e.g., age at first drinking,
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largest number of drinks consumed during the last 30 days,
largest number of drinks one can hold), ordinal (e.g., weekly
drinking frequency, perception about availability of alcohol),
and binary observed variables (e.g., experience of drinking
alcohol ever, a blackout experience). There have been many
applications of measurement models with a mixture of contin-
uous and categorical observed variables in medical, social,
and behavioral research (see, e.g., Diemer & Li, 2012;
Gueorguieva & Sanacora, 2006; Lee & Xu, 2003; Morisky
et al., 1998; Sammel et al., 1997; Song et al., 2007; Zhou et al.,
2014; and references therein). Computational challenges for
the estimation process caused by mixed continuous and cate-
gorical data suggest that increased attention to these situations
in the broader latent variable modeling framework is
warranted.

Numerous simulation studies have compared the relative
performance of different estimators in confirmatory factor
analysis (CFA) and structural equation models (SEM) with
observed data characterized as either continuous or categori-
cal. For example, Olsson et al. (2000) found that maximum
likelihood (ML) resulted in less biased structural parameters
and more accurate overall model inference than weighted least
squares (WLS) when observed variables were continuous.
Among all ML-based estimators in Mplus, Maydeu-Olivares
(2017) concluded that robust maximum likelihood (MLR)
yielded the most reliable standard error estimates, and mean-
and variance-adjusted maximum likelihood (MLMV) per-
formed the best on overall model evaluation using chi-
square test statistics. For categorical data, previous simulation
studies demonstrated that factor loading estimates were gen-
erally less biased by diagonally weighted least squares
(DWLS) than ML-based estimators (Bandalos, 2014;
Beauducel & Herzberg, 2006; Li, 2016a). Bandalos (2014),
and Li (2016b) found that DWLS outperformed ML-based
estimators at estimating structural coefficients in a correctly
specified model. Previous simulation studies have observed
mixed findings regrading standard error estimates of model
parameters. For instance, Bandalos (2014) suggested that
standard errors obtained from DWLS were generally less bi-
ased than those from ML. On the other hand, ML exhibited
better performance than DWLS under some conditions (e.g.,
small sample size, asymmetric distribution of observed vari-
ables, or a combination of both). Li (2016a, 2016b) showed
that MLR generally produced less bias in standard error esti-
mates of factor loadings, inter-factor correlations, and struc-
tural paths than did DWLS across nearly all conditions. In
terms of overall model evaluation, earlier research suggested
that DWLS was superior to MLR but inferior to MLMV in
controlling Type I error rates for testing an SEM model
(Bandalos, 2014; Li, 2016b); under latent normality assump-
tion violation conditions, DWLS performed as well asMLR at
maintaining Type I error rates for a measurement model (Li,
2016a).

However, statistical estimation of CFA and SEM models
measured by mixed continuous and categorical observed var-
iables has not yet been fully studied. It is noted that there have
been some simulation studies approaching this inquiry from a
Bayesian perspective (for more detailed discussions see, e.g.,
Lee & Zhu, 2000; Fahrmeir & Raach, 2007; Quinn, 2004;
Samani & Ganjali, 2011; Song & Lee, 2001), which has valu-
ably contributed to the literature. In contrast, the properties of
existing frequentist estimation methods for model parameters,
standard errors, and chi-square statistics when observed vari-
ables have mixed scales are still unclear.

There appears to be no consensus in favor of certain esti-
mation methods among researchers when observed variables
have different types of scales in current research practice. A
review of empirical studies from two high-impact journals
(i.e., Journal of Organizational Behavior and Journal of
Applied Psychology) was conducted to examine the frequency
of each estimation method used in confirmatory factor analy-
sis or structural equation modeling between the years 2018
and 2019. Note that multilevel CFA or SEM and path analysis
were excluded from this review. A total of 84 studies were
identified from the search, resulting in 161 CFA models and
10 SEMmodels. Of the 84 studies, 35 studies (41.67%) clear-
ly reported the method of estimation. ML (n = 6) or robust ML
(n =8) was used for continuous observed variables; ML (n =
7), robust ML (n = 5), or DWLS (n = 4) was utilized for cate-
gorical observed variables; and ML (n =3) or robust ML (n =
2) was employed in the model estimation with mixed contin-
uous and categorical observed variables.

It seems that normal theory-based ML with the sample
covariance matrix has been widely used across CFA and
SEM applications primarily because ML is the most well-
known estimator and is usually the default setting for most
software programs (e.g., Mplus, LISREL, Amos, EQS, or
R). However, based on previous simulation studies on cate-
gorical observed variables (Bandalos, 2014; Beauducel &
Herzberg, 2006; DiStefano, 2002; Li, 2016a, 2016b; Yang-
Wallentin et al., 2010), the “conventional” ML estimation
method without robust corrections is not advisable in research
practice. In general, when employing categorical variables in a
model, the classical estimation techniques (i.e., frequentist
statistics) DWLS and ML (with various robust corrections)
are the two most commonly employed or recommended esti-
mation methods in the current SEM literature, including em-
pirical applications and simulation studies.

Among robust ML-based estimators (e.g., MLR, MLM, or
MLMV) in Mplus, MLR has been set as the default estimator
for various models with continuous or categorical dependent
variables (Muthén & Muthén, 1998–2017). Also, MLR is the
only estimation option to (1) adjust standard errors for the
effects of non-normality or clustering, and (2) model random
effects in the conditions of complex data (e.g., non-
independence of observations, sampling weights). Instead,
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MLMVorMLM requires continuous dependent variables and
is limited to specific models in which missing data, mixture
analyses, or random effects are not present (Muthén &
Muthén, 1998–2017). However, implementing random ef-
fects in moderation analysis or dealing with missing data in
an SEM model is not uncommon in the social and behavioral
sciences. Therefore, this study mainly focused on the estima-
tion performance of MLR not only because of its robust cor-
rection to standard errors using a sandwich estimator but also
its flexibility in model specification. On the other hand, al-
though Muthén and Muthén (1998–2017) recommended that
DWLS should be implemented in a general model specifica-
tion (e.g., general CFA or SEM models) when at least one
binary or ordered categorical dependent variable is present,
one interesting finding from the above review is that DWLS
seemed not the first choice for applied researchers when a
mixture of continuous and categorical observed variables
was present. One possible argument could be due to the un-
certainty of estimation performance of DWLS in applications.

Overall, MLR has been developed to permit modeling non-
normal (approximately) continuous variables, whereas DWLS
has been implemented to deal with categorical data. Although
MLR with the sample covariance matrix is not, generally
speaking, appropriate for categorical data, researchers have
suggested that data can be considered “approximately contin-
uous” if the number of observed variable response categories
is sufficiently large. Moreover, results of simulation studies
imply that MLR estimates exhibit some robustness, even
when observed variable distributions depart from normality.
In practice, MLR is often treated as a viable alternative to
DWLS with a polychoric correlation matrix in categorical
CFA and SEM models when the number of response catego-
ries for each observed variable is five or more (Raykov, 2012;
Rhemtulla et al., 2012; Yang-Wallentin et al., 2010).
However, until the present, limited information has been pro-
vided comparing MLR and DWLS in the context of mixed
scale observed variables. Comparison of MLR and DWLS
may shed some light on their statistical estimation perfor-
mance under suboptimal conditions, when observed variables
are not made up solely of continuous or categorical ones, but
of a mixture of both. The importance of studying the impact of
mixed continuous and categorical data, and consequently
selecting an appropriate estimationmethod based on empirical
conditions, cannot be overstated.

To address the aforementioned research gaps in the
established literature, this study is motivated to advance schol-
arly understanding regarding the impact of mixed item scale
types (continuous and categorical variables) on parameter es-
timates (factor loadings, inter-factor correlations, and structur-
al paths), standard errors, and chi-square statistics through a
Monte Carlo simulation study. The performance of the two
different estimationmethods (MLR and DWLS) are evaluated
for two model specifications: one CFA model and one SEM

model. The two frequentist estimation methods, MLR and
DWLS, with their robust corrections to standard errors and
chi-square statistics are briefly reviewed in the next section.

Estimation methods

Latent variable modeling, particularly applications of confir-
matory factor analysis (CFA) and structural equation model-
ing (SEM), have enjoyed widespread popularity in the social
and behavioral sciences for more than two decades.
Confirmatory factor analysis has been extensively used to
provide evidence of construct validity in theory-based instru-
ment construction and development. Confirmatory factor an-
alytic models have the practical advantage of accounting for
measurement error in observed variables by explicitly model-
ing pertinent error variances as parameter estimates. Given a
tenable confirmatory measurement model, a structural equa-
tion model simultaneously captures relational phenomena
among latent constructs of interest, including, but not limited
to, inter-factor correlations, direct effects, mediating/indirect
effects, and moderated effects.

In practice, normal theory-based maximum likelihood
(ML) with the sample covariance matrix remains the most
well-known and most frequently used estimation method, be-
cause of its desirable estimation properties of asymptotic un-
biasedness, consistency, normality, and maximal efficiency in
an infinite sample (Bollen, 1989). ML has been developed
with the assumption that observed data are continuous and
multivariate normally distributed in the population (Bollen,
1989; Jöreskog, 1969). Under the assumption of normality,
parameter estimates of ML are obtained by maximizing the
likelihood of the observed data, which is equivalent to mini-
mizing the maximum likelihood fit function (Bollen, 1989). If
observed variables exhibit non-normality to some degree (due
to skewness, leptokurtosis, or/and heavy tails), standard errors
and chi-square statistics should be statistically corrected to
enhance robustness against the presence of non-normality.
More specifically, the asymptotic covariance matrix of the
parameter estimates from ML is no longer consistently esti-
mated, resulting in inaccurate standard error estimates (Yuan
et al., 2005; Yuan & Hayashi, 2006). Instead, to compute
standard error estimates by robust ML (MLR) estimation, a
consistent estimator of the asymptotic covariance matrix of
the parameter estimates can be obtained using the pseudo
maximum likelihood (PML) approach (Asparouhov &
Muthén, 2005; Savalei, 2010; Yuan & Schuster, 2013). The
asymptotic covariance matrix of the parameter estimates con-
tains the sample estimates of skewness and kurtosis of the
observed variables in order to correct for possible violation
of the normality assumption (Yuan et al., 2005).

At the same time, the chi-square statistic for overall model
fit computed using aWishart-based likelihood is very likely to
be substantially overestimated. When non-normal observed
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variables are present, a robust correction to the chi-square
statistic using PML is therefore constructed to closely follow
a chi-square distribution. A scale factor in the correction can
accommodate the effects of skewness and kurtosis in the ob-
served data to adjust for deviation from normality. These sta-
tistical adjustments for standard errors and chi-square statistics
in MLR, which can in general enhance the precision of pa-
rameter estimates and reduce the inflation of chi-square statis-
tics, have improved estimation when modeling non-normal
data (Asparouhov & Muthén, 2005).

However, observed variables measured with a set of or-
dered categories (e.g., Likert scales) are commonly used as
indicator variables for latent constructs in the social and be-
havioral sciences. By treating ordered categorical variables as
if they were continuous in nature, as is required by MLR, the
accuracy and precision of model parameter estimates could be
compromised, resulting in erroneous conclusions drawn from
empirical data. Strictly speaking, it is not advisable to use ML
with the sample covariance matrix when observed variables
are categorical, mainly because Pearson product-moment cor-
relations cannot reflect proper relationships among categorical
observed variables (Bollen, 1989; Muthén & Kaplan, 1992;
Olsson, 1979). This problem has generally plagued applied
researchers utilizing various latent variable modeling
techniques.

Practically, the diagonally weighted least squares method
(DWLS: Jöreskog& Sörbom, 1996; Muthén et al., 1997) with
a polychoric correlation matrix has been proposed for use
when categorical data are employed in statistical analysis.
Although DWLS makes no assumptions about observed var-
iable distribution shape, it assumes that a continuous, normal,
latent response distribution gave rise to each categorical ob-
served variable in the population from which samples are
drawn. Parameter estimates of DWLS are then obtained by
minimizing the diagonally weighted least squares fit function
(Muthén et al., 1997). Because the weight matrix contains
only reduced information (i.e., diagonal elements), the param-
eter estimates obtained by DWLS are not asymptotically effi-
cient (i.e., smaller sampling error), leading to inaccurate stan-
dard error estimates (Savalei, 2014). Therefore, upward cor-
rections applied to standard errors are suggested to compen-
sate for the loss of efficiency (Muthén et al., 1997). A robust
correction to standard errors is implemented in the estimated
asymptotic covariance matrix of the parameter estimates for
DWLS estimation (Muthén et al., 1997).

In addition, as chi-square statistics produced by DWLS are
no longer asymptotically chi-square distributed, a robust cor-
rection implemented in DWLS estimation entails adjusting for
both the chi-square statistic’s mean and variance to make its
shape approximate the reference chi-square distribution
(Asparouhov & Muthén, 2010). Therefore, the mean- and
variance-adjusted chi-square statistic can be implemented in
the DWLS estimator (e.g., WLSMV in Mplus). Importantly,

the estimated asymptotic covariance matrix need not be
inverted (i.e., a positive definite matrix) in the computation
of adjusted chi-square test statistics. Chi-square statistics are
downwardly adjusted to compensate for the effect of includ-
ing only reduced information in the weight matrix. This cor-
rection can help control the probability of Type I error (i.e.,
rejecting a correctly specified model by chance). DWLS with
robust corrections to standard errors and chi-square statistics
has proved useful in the analysis of categorical CFA and SEM
models under a variety of conditions (e.g., a varying number
of response alternatives, different levels of distributional
asymmetry in observed variables, sample sizes) investigated
by several simulation studies (Bandalos, 2014; Li, 2016a; Li,
2016b; Rhemtulla et al., 2012; Yang-Wallentin et al., 2010).
Next, statistical estimation of a structural equation model with
mixed continuous and categorical observed variables is
discussed below.

Structural equation modeling

A structural equation model, a synthesis of measurement
models and structural (regression) models, is used to simulta-
neously examine hypothetical relationships among latent var-
iables. A measurement model with a mixture of continuous
and categorical observed variables, in general, is partitioned
into two sub-models: (i) one measurement model manifested
by a set of continuous observed variables, and (ii) one mea-
surement model manifested by a set of continuous latent re-
sponse variables underlying categorical observed variables.
Each sub-model in the measurement model can be specified as

x ¼ Λxξþ δx; s ¼ Λsηþ εs; ð1Þ

y* ¼ Λy*ξþ δy*; and t* ¼ Λt*ηþ εt*; ð2Þ

where x = [x1, x2,… , xp]’ and s = [s1, s2,…, sm]’ are p × 1 and
m × 1 vectors of continuous observed variables x and s, re-
spectively, ξ is an r × 1 vector of exogenous latent variables
with Cov(ξ) =Φ (an r × r variance-covariance matrix of latent
variables ξ), η is a g × 1 vector of endogenous latent variables,
Λx and Λs are p × r and m × g matrices of factor loadings
linking ξ and x, and η and s, respectively, δx is a p × 1 vector
of measurement errors in x with a multivariate normal distri-
bution N~ 0;Θδxð Þ, and εs is an m × 1 vector of measurement
errors in s with N~ 0;Θεsð Þ.Θδx andΘεs are p × p and m × m
diagonal matrices of error variances for x and s, respectively,
assuming δx are independent of one another and of latent
variables ξ, and εs independent of all other measurement er-
rors and latent variables η. For categorical observed variables,
y* = [y*1, y

*
2, …, y*q ]’ and t* = [t*1, t

*
2, …, t*n ]’ represent q × 1

and n × 1 vectors of continuous, normal, latent response
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variables y* underlying each categorical observed variable y,
and latent response variables t* underlying each categorical
observed variable t, Λy* and Λt* are q × r and n × g matrices
of factor loadings linking ξ and y*, and η and t*, respectively,
δy* is a q × 1 vector of measurement errors in y* with
N~ 0;Θδy�

� �
, and εt* is an n × 1 vector of measurement errors

in t* with N~ 0;Θεt�
� �

. Θδy� and Θεt� are q × q and n × n
diagonal matrices of error variances for y* and t*, respectively,
assuming δy* are independent of one another and of latent
variables ξ, and εt* independent of all other measurement
errors and latent variables η.

Further, the relationship between each continuous,
normal, latent response variable yi

* and its categorical
observed variable yi or between each latent response var-
iable ti

* and its categorical observed variable ti is defined
by a set of thresholds. Note that unlike continuous ob-
served variables, the variances of measurement errors
(i.e., the diagonal elements) are not identified in a mea-
surement model with categorical observed variables.
These variances can be identified by standardizing either
the latent response variables y* and t* or their measure-
ment error terms. In order to metricize the latent re-
sponse variables, variances of the latent response vari-
ables y* and t* are assumed for mathematical conve-
nience to be equal to unity here. However, if all categor-
ical observed variables were intended to be treated as if
they were approximately continuous observed variables
in the model estimation (i.e., using ML with the
sample-based covariance matrix), the above measurement
model would reduce to the general model for confirma-
tory factor analysis with continuous observed variables
simply (see, e.g., Bollen, 1989, p. 233).

Let z = [x, y*]’ and u = [s, t*]’. A structural (regression)
model with exogenous and endogenous latent variables mea-
sured by a mixture of continuous and categorical observed
variables is then defined as

η ¼ Bηþ Γξþ ζ; ð3Þ
where B is a g × g matrix of structural regression coefficients
with zero diagonal elements among η (assuming |I − B| ≠ 0),
Γ is a g × rmatrix of structural regression coefficients between
ξ and η, ζ is a g × 1 vector of disturbance terms in η with a
multivariate normal distribution N~(0, Ψ), and Ψ is a g × g
diagonal matrix of residual variances for η, assuming distur-
bance terms ζ are independent of all other disturbance terms
and latent variables (ξ and η). It follows that Cov(η) = (I −
B)−1(ΓΦΓ’ + Ψ)(I − B)−1’.

Let θ continuous observed variables x and s as well as
continuous, normal, latent response variables y* and t* of a
general SEM model implied by θ can be expressed as

Σ θð Þ ¼ Σu

Σw Σz;
ð4Þ

Σu θð Þ ¼ Σss

Σst* Σt*t* ;

Σw θð Þ ¼ Σsx Σt*x

Σsy* Σt*y*;

; and
Σz θð Þ ¼ Σxx

Σxy* Σy*y*:

ð5Þ

By standardizing the latent response variables y* and t* to
achieve model identification, variances of the latent response
variables y* and t* are assumed to be equal to unity in the
aforementioned section. As a consequence, three different sets
of matrices are produced: (1)Σxx is a p×p variance-covariance
matrix, Σss an m×m variance-covariance matrix, and Σsx a
p×m variance-covariance matrix; (2) Σxy* is a p×q matrix
representing polyserial correlations, Σst* an m×n matrix of
polyserial correlations, Σsy* a q×m matrix of polyserial corre-
lations, andΣt*x is a p×nmatrix of polyserial correlations; and
(3)Σy*y* andΣt*t* have unit diagonal elements only and there-
fore reduce to a q×q polychoric correlation matrix and an n×n
polychoric correlation matrix, respectively, and Σt*y* a q×n
matrix of polychoric correlations. Likewise, if all categorical
observed variables were purposefully treated as approximately
continuous observed variables in the measurement models, it
would simplify the above covariance matrix Σ(θ) to the gen-
eral covariance matrix for an SEM model with continuous ob-
served variables (see, e.g., Bollen, 1989, p. 325). More specif-
ically,Σu reduces to a (m+n)×(m+n) variance-covariance ma-
trix,Σz to a (p+q)×(p+q) variance-covariance matrix, andΣw

to a (p+q)×(m+n) variance-covariance matrix.

Present study

The present study was designed to advance scholarly under-
standing of the impact of mixed scale observed variables (both
continuous and categorical) on parameter estimates, standard
errors, and chi-square statistics for CFA and SEM models
usingMLR andDWLS. Previously, several simulation studies
have examined the impact of categorical data on maximum
likelihood estimation and on the family of least squares esti-
mators in categorical CFA models. However, what is not yet
known is the impact of mixed scale observed variables on the
overall quality of parameter estimates, especially factor load-
ings and structural coefficients, on robust standard error esti-
mates, and on the sensitivity of adjusted chi-square statistics
using MLR and DWLS in CFA and SEM models. This study
extends previous simulation studies (see, e.g., Bandalos,
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2014; Beauducel & Herzberg, 2006; Li, 2016a, 2016b;
Maydeu-Olivares, 2017) by pursuing the following overarch-
ing research question: Is either of the two estimation methods
with its robust corrections consistently better or worse than the
other for estimation of model parameters, standard errors, and
chi-square statistics across the experimental conditions inves-
tigated (i.e., the number of observed variables' categories, the
level of distributional asymmetry of the observed variables,
and sample size)?

DWLS has been well developed to deal with categorical
data, but a combination of continuous and categorical ob-
served variables might potentially degrade its estimation per-
formance. On the contrary, MLR is likely to exhibit superior
estimation performance when observed variables have mixed
scale types than when they are exclusively categorical.
Therefore, the statistical estimation performance of DWLS
and MLR is worth further exploring to inform applied re-
searchers and methodologists. Comparing the performance
of MLR and DWLS estimation of factor loadings and struc-
tural coefficients in the context of mixed scale observed var-
iables remains an open research question. Given abundant
findings in the simulation studies (see, e.g., Bandalos, 2014;
Beauducel & Herzberg, 2006; Li, 2016a), it is expected that
DWLS performs better than MLR at estimating factor load-
ings of categorical observed variables. However, it is postu-
lated that DWLS and MLR can produce equally good factor
loading estimates of continuous observed variables. The ratio-
nale behind this formulated expectation is that continuous
observed variables are actually treated as continuous in the
DWLS estimation where variances, covariances, or polyserial
correlations are used for data analysis. In terms of structural
coefficients, the expected outcome is that parameter estimates
obtained from DWLS are slightly more accurate than those
yielded from MLR mainly because previous simulation stud-
ies have shown that an undesired low quality of measurement
estimates (i.e., underestimation of factor loadings) obtained
from MLR could however correct covariance estimates
for attenuation, leading to “approximately” unbiased
point estimates for inter-factor correlations and structural
paths (Beauducel & Herzberg, 2006; Coenders et al.,
1997; Li, 2016b).

Relatedly, robust corrections to standard errors and chi-
square statistics have recently received considerable attention
in applied research, so findings about their performance with
mixed continuous and categorical response variables would
have practical utility in research practice. A general expecta-
tion regarding robust standard error estimates is that the per-
formance of MLR is consistently better than that of DWLS
across most conditions. In support of this proposition are find-
ings that MLR yielded more accurate standard error estimates
of model parameters than DWLS did in previous simulation
studies, irrespective of latent constructs manifested by contin-
uous or categorical observed variables (Li, 2016a, 2016b;

Maydeu-Olivares, 2017). Finally, it is anticipated that
DWLS outperforms MLR at controlling Type I error rates
across CFA and SEM models. Prior research findings sug-
gested that MLR is prone to yielding inflated chi-square sta-
tistics in the conditions of small samples with asymmetric
ordinal data (Li, 2016b) or moderately non-normal continuous
data (Maydeu-Olivares, 2017). That is, test statistics produced
by MLR tend to over-reject the hypothesized model when the
sample size is not large enough, and non-normal observed
variables are continuous or categorical in nature. Moreover,
DWLS and MLR may have equivalent performance in main-
taining Type I error rates for a measurement model even when
the underlying normality assumption was violated in the
DWLS estimation (Li, 2016a).

Method

A Monte Carlo simulation study was carried out to determine
any effects that different configurations of the number of ob-
served variables' categories, level of distributional asymmetry
of the observed variables, and sample size have on parameter
estimates, standard errors, and chi-square statistics in one cor-
related three-factor measurement model and one five-factor
structural equation model.

Population models

In latent variable modeling applications, the number of ob-
served variables per factor typically falls within the range of
two to five (Ding et al., 1995), and five or more observed
variables per factor have rarely appeared in the literature
(Gerbing & Anderson, 1985). One literature review across
194 CFA models reported that the median number of first-
order factors for a CFA model was 3 in the area of scale
development (Jackson et al., 2009). Li (2016b) noted that
the median number of factors was 5, and the median number
of total observed variables was 18 (with 15 and 24
representing the 25th and 75th percentiles, respectively)
across 36 empirical studies using structural equation model-
ing. In the earlier search for CFA and SEM applications,
across 84 empirical studies, the median numbers of latent
variables and total observed variables for a hypothesized
model were 4 and 20, respectively. More specifically, for
those analytical models with a mixture of continuous and
categorical observed variables across seven empirical
studies, the median numbers of latent variables and total
observed variables were 5 and 26, respectively. In addition,
Marsh et al. (1998) gave empirical evidence that the accuracy
of parameter estimates appeared to nearly reach a maximum
when the number of observed variables per factor was 4, im-
proving only trivially when the number increased further.
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In line with empirical studies reviewed above, model spec-
ifications of the two population models are described next. To
represent a “medium-sized” CFA model design from the
standpoint of scale development applications, a correlated
three-factor measurement model with the first factor having
three continuous observed variables and one categorical ob-
served variable (the ratio of continuous observed variables to
categorical observed variables = 3:1), the second factor having
two continuous observed variables and two categorical ob-
served variables (the ratio = 2:2), and the last factor having
one continuous observed variable and three categorical ob-
served variables (the ratio = 1:3) was examined. A five-
factor structural equation model with each factor having two
continuous observed variables and two categorical observed
variables (the ratio = 2:2) was examined as representative of a
“medium-sized” SEMmodel specification frequently encoun-
tered in the applied literature. Results from this study are ex-
pected to address important generalizability limitations of pre-
vious simulation studies, which failed to examine the effect of
a mixture of continuous and categorical observed variables in
CFA and SEM models.

Population parameters

For the sake of simplicity, homogeneous factor loadings are
sometimes used in simulation studies (see, e.g., Anderson,
1996; Flora & Curran, 2004; Forero & Maydeu-Olivares,
2009), but can hardly ever be expected under real-world con-
ditions. In this study, the six factor loadings of continuous
observed variables were held at .8, .7, .6, .8, .7, and .7, with
corresponding error variances automatically set to .36, .51,
.64, .36, .51, and .51, and the other six factor loadings of
categorical observed variables were held at .7, .8, .7, .8, .7,
and .6, with corresponding error variances automatically set to
.51, .36, .51, .36, .51, and .64 under a standardized solution.
The inter-factor correlations were all set to .3 in the popula-
tion, reflecting a realistic and empirical inter-factor correlation
coefficient based on the results of previous simulation studies
and the applied literature. The correlated three-factor measure-
ment model with a mixture of continuous and categorical ob-
served variables is depicted in Fig. 1a.

Regarding the five-factor SEMmodel, four factor loadings
were fixed at .8, .6, .8, and .6, with corresponding error vari-
ances automatically set to .36, .64, .36, and .64 under a stan-
dardized solution across all exogenous and endogenous latent
variables. The variance-covariance matrix of the two exoge-
nous latent variables (Φ) consisted of two components: (1) the
inter-factor correlation was set to .3 in the population, and (2)
the two exogenous factor variances were set equal to 1.
Considering plausible structural regression coefficients for
the population model, common coefficients in standardized
solutions range from .1 to .7, and their associated residual
variances (i.e., 1 − R2) from .2 to .8 in practice and simulation

studies. Structural regression coefficients below .1 are, in gen-
eral, not practically important or statistically significant in
applied research (Bandalos, 2006; Ethington, 1987;
Hoogland & Boomsma, 1998; Paxton et al., 2001).
Therefore, two matrices of structural regression coefficients
B and Γ were each set up as

B¼
0 0 0
:3 0 0
:2 :5 0

24 35 and Γ¼
:4 :6
:4 :2
:1 :1

24 35:
The residual variances of the three endogenous latent var-

iables (Ψ) were designated at .336, .436, and .379, in order to
obtain standardized structural regression coefficients. The
five-factor structural equation model with a mixture of contin-
uous and categorical variables is depicted in Fig. 1b.

Number of categories

Consistent with experimental conditions from previous simu-
lation studies, this study examined the impact of the number of
categories in observed variables on statistical estimation. Li
(2016b) found that odd-numbered Likert scales with a middle
category occur more frequently in empirical studies than even-
numbered rating scales. Among 157 psychometric measures,
the most common number of response categories was five
(39.4%), followed by seven (29.9%), four (10.2%), and six
(8.3%). Besides, a total of 647 instruments were examined for
the number of response categories in the earlier review of 84
empirical studies. A five-category set (48.5%) was the most
widely employed, followed by seven-category (40.6%), six-
category (3.7%), and four-category (2.8%), two-category
(0.9%), and three-category (0.5%). Specifically, for the
models with a mixture of continuous and categorical observed
variables, a total of 66measures were identified. Similarly, the
highest percentage of response category was five (62.1%),
followed by seven (33.3%), two (3.0%), and six (1.5%). Use
of MLR has been considered “legitimate” in published studies
when categorical observed variables have five or more re-
sponse categories without ceiling or floor effects. In order to
explore the impact of mixed scale types in borderline usage
situations without a clear preferred estimation method, two,
three, four, five, six, and seven categories were generated for
each categorical observed variable, in combination with two
types of distribution shape, as discussed in the next section.

Categorical observed distributions

This study also compared the behavior of MLR and DWLS
estimators under varying degrees of normality violation in the
categorical observed variables. The presence of non-normality
in the form of distribution asymmetry (due to categorization)
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is typical in applied psychometric studies (Micceri, 1989). To
this end, two categorical observed distributions were manipu-
lated to vary in symmetry: (1) a symmetric distribution, and
(2) a slightly asymmetric distribution. For the symmetric dis-
tribution, the middle categories had the highest probabilities;
for the slightly asymmetric distributions, the probabilities in-
creased from low to high categories to different degrees.

In the symmetry condition, the threshold value for the two-
category observed variables was 0, corresponding to a re-
sponse proportion of 50% for each category; the threshold
values for the three-category observed variables were [−.84,
.84], respectively, corresponding to response proportions
20%, 60%, and 20% falling into each category; [−1.282, 0,
1.282] for the four categories, corresponding to response pro-
portions 10%, 40%, 40%, and 10%; [−1.282, −.524, .524,
1.282] for the five categories, corresponding to response

proportions 10%, 20%, 40%, 20%, and 10%; [−1.645,
−.806, 0, .806, 1.645] for the six categories, corresponding
to response proportions 5%, 16%, 29%, 29%, 16%, and 5%;
and [−1.645, −.954, −.385, .385, .954, 1.645] for the seven
categories, corresponding to response proportions 5%, 12%,
18%, 30%, 18%, 12%, and 5%.

In the slight asymmetry condition, the threshold value for
the two-category observed variables was −.553, correspond-
ing to response proportions 29% and 71% falling into each
category; the threshold values for the three-category observed
variables were [−1.282, −.202], respectively, corresponding to
response proportions 10%, 32%, and 58% falling into each
category; [−1.645, −1.08, .412] for the four categories, corre-
sponding to response proportions 5%, 9%, 52%, and 34%;
[−1.751, −1.341, −.524, .706] for the five categories, corre-
sponding to response proportions 4%, 5%, 21%, 46%, and

Fig. 1 a The postulated correlated three-factor measurement model with
standardized coefficients. Note. xs are continuous observed variables, ys
are categorical observed variables, λs are factor loadings, ξs are exoge-
nous latent variables, andφs are inter-factor correlations b The postulated
five-factor structural equationmodel with standardized coefficients.Note.
Continuous and categorical observed variables of each factor are not

depicted here for clarity. ξs are exogenous latent variables, ηs are endog-
enous latent variables, φ is the inter-factor correlation, βs are structural
paths capturing the relationship among endogenous latent variables, γs
are structural paths capturing the relationship between exogenous and
endogenous latent variables, and ζs are residual variances of the endog-
enous latent variables
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24%; [−1.751, −1.341, −1.08, 0, .878] for the six categories,
corresponding to response proportions 4%, 5%, 5%, 36%,
31%, and 19%; and [−1.751, −1.341, −1.036, −.613, .496,
1.341] for the seven categories, corresponding to response
proportions 4%, 5%, 6%, 12%, 42%, 22%, and 9%.
Response proportions of categorical observed variables used
in the study are displayed in Fig. 2.

Sample size

Finally, this study was also designed to examine the effect of
sample size while utilizing these two estimation methods, be-
cause identifying a desired minimum sample size is an impor-
tant practical consideration in latent variable modeling, which
often relies on large-sample assumptions. Sample size is al-
most universally an experimental factor in Monte Carlo sim-
ulation studies (Paxton et al., 2001). A small sample may not
only cause inaccurate parameter estimates and unreliable stan-
dard errors, but can also produce problems of non-
convergence and improper or inadmissible solutions. In addi-
tion, when sample size is small, the test statistic for overall
model fit is likely not asymptotically chi-square distributed.
Applied researchers are therefore interested in determining the
sufficient sample size at which parameter estimates will be
sufficiently accurate, standard error estimates will be stable,
and chi-square model fit statistics will be interpretable.

DiStefano and Hess (2005) reviewed 101 studies using
CFA from 1990 to 2002, and reported that the median sample
size was 377, and about 19% of the models were tested on
samples smaller than 200. Jackson et al. (2009) systematically
reviewed 194 CFA models from 1998 to 2006 and found that
the median sample size was 389, and about 20% of the models
were tested on samples smaller than 200. Li (2016b) reviewed
36 SEM studies and noted that the sample size ranged from
110 to 2512, with a mean of 518. The median sample size was
341, with the 25th and 75th percentiles of 245 and 603

respectively. The earlier review of 84 empirical studies re-
vealed that the median sample size was 275 and the mean
sample size was 479, with the 25th and 75th percentiles of
179 and 393, respectively. The highest percentage of sample
size category was n = 201~500 (57.3%), followed by n =
101~200 (25.7%), n = 501~1000 (8.8%). For those analytical
models with a mixture of continuous and categorical vari-
ables, the median sample size was 208, and the mean sample
size was 275, with the 25th and 75th percentiles of 121 and
351, respectively. The highest percentage of sample size cat-
egory was n = 201~500 (41.7%), followed by n = 101~200
(33.3%), n < 100 (16.7%), n = 501~1000 (8.3%). Therefore,
three different levels were employed to represent small (N =
200), medium (N = 500), and large (N = 1000) sample sizes,
bearing more resemblance to those commonly occurring in
research practice and frequently manipulated in simulation
studies as well (see, e.g., Beauducel & Herzberg, 2006;
Flora & Curran, 2004; Forero et al., 2009).

Data generation and analysis

Two population models, a correlated three-factor measure-
ment model and a five-factor structural equation model, were
tested in combination with 36 other experimental conditions
characterized by the number of observed variables' categories
(2, 3, 4, 5, 6, and 7), categorical observed distribution shape
(symmetry and slight asymmetry), and sample size (200, 500,
and 1000). A random seed number was set across experimen-
tal conditions to initiate random draws from each distribution
during data generation. A thousand data sets were generated
per experimental condition. The choice of 1000 replications
was made with consideration to sampling variance reduction,
adequate power, and practical manageability. Model parame-
ters, standard errors, and the chi-square statistic were estimat-
ed for each replication using MLR and DWLS. In
implementing robust maximum likelihood estimation

Symmetric Observed Distribu�on 

2-category 3-category 4-category 5-category 6-category 7-category

Slightly Asymmetric Observed Distribu�on

2-category 3-category 4-category 5-category 6-category 7-category

Fig. 2 Response probabilities of categorical observed variables across six different numbers of response categories (from 2 to 7) and the two types of
categorical observed distributions (symmetry and slightly asymmetry)
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(Estimator = MLR in Mplus), categorical observed variables
were treated as continuous variables (i.e., computing the sam-
ple covariance matrix for data analysis). For robust diagonally
weighted least squares (Estimator = WLSMV in Mplus), cat-
egorical observed variables were specified as categorical var-
iables and continuous observed variables as continuous (i.e.,
computing variances, covariances, polychoric correlations,
and polyserial correlations as appropriate). Data generation
and analysis were performed with Mplus 7.4 (Muthén &
Muthén, 1998–2017). For the sake of simplicity, a standard
normal distribution was selected for each latent response var-
iable in the data generation phase (i.e., with zero mean and
variance of one), leading to a zero mean structure implied by
the model. The multivariate normally distributed data were
first generated, then ordinally categorized using pre-
specified threshold values to induce the desired distributions
and response proportions along a standard normal distribution
(Muthén & Muthén, 1998-–2017). Mplus code used for data
generation and data analysis are available in the supplementa-
ry materials.

Outcome variables

Estimation performance was judged according to the follow-
ing five study outcome variables: (1) average relative bias of
parameter estimates, (2) average relative mean squared error
of parameter estimates, (3) average relative bias of standard
error estimates, (4) relative bias of chi-square statistics, and (5)
the model rejection rate associated with the chi-square statistic
at an alpha level of .05.

The relative bias (RB) in estimates over the replications and
average relative bias (RBA) across parameter estimates (i.e.,
factor loadings, inter-factor correlations, or structural paths)
were calculated, in tandem, by

RB ¼ bθi� �
¼ 1

nr
∑ j

bθij−θi
θi

" #
� 100%; i ¼ 1; 2;…; np; j

¼ 1; 2;…; nr ð6Þ

and

RBA bθ� �
¼ 1

np
∑iRB bθi� �

; ð7Þ

where RB(bθi ) denotes the relative bias of the parameter esti-

mate bθi over the replications, bθij is the parameter estimate of
the ith population parameter estimate θi in the jth replication,
nr is the number of replications in each experimental condi-
tion, and np is the number of parameter estimates. An averaged
RB with a positive or negative sign indicates overestimation
or underestimation of parameter estimates, respectively. An
absolute value of RBA less than 5% can be interpreted as a

trivial bias, between 5% and 10% as a moderate bias, and
greater than 10% as a substantial bias (Curran et al., 1996).

To quantify the overall quality of parameter estimates, the
mean squared error is commonly used in simulation studies
because it accounts for both the amount of bias and the sam-
pling variability of parameter estimates (i.e., efficiency). The
relative mean squared error (RMSE) and average relative
mean squared error (RMSEA) can be defined as

RMSE bθi� � 1

nr
¼ ∑ j

bθij−θi
θi

" #2

ð8Þ

and

RMSEA bθ� � 1

np
¼ ∑iRMSE bθi� �

; ð9Þ

where RMSE(bθi ) denotes the relative mean squared error of

the parameter estimate bθi over the replications; and other no-
tations have been defined. A small RMSEA value is suggested
as favorable because it indicates better overall quality of pa-
rameter estimates, that is, less biased and more precise.

Obtaining accurate standard error estimates is also a
primary concern in applied studies. In a similar way, the
bias formulations can be used for standard error estimates,
which are compared to the standard deviation of the pa-
rameter estimates over the replications (also referred to as
the empirical standard error) as a proxy for the population
standard error. The RB and RBA for standard error esti-
mates are formulated as

RB
d

SE bθi� �� �
¼ 1

nr
∑ j

d
SE bθi� �

j
−SD bθi� �

SD bθi� �
2664

3775� 100% ð10Þ

and

RBA
d

SE bθ� �� �
¼ 1

np
∑iRB

d
SE bθi� �� �

; ð11Þ

where
d

SE bθi� �
j
is the estimated standard error of parameterbθi

in the jth replication, and SD bθi� �
is the standard deviation of

parameter bθi over the replications.
Likewise, the performance of chi-square statistics can be

assessed by their relative bias. Because the expected value of a
chi-square distribution is equal to its degrees of freedom, the
relative bias of chi-square statistics over the replications can
be expressed as
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RB cχ2
j

� �
¼

cχ2
j−df
df

" #
� 100% ð12Þ

and

RB cχ2
� �

¼
∑
j
RB cχ2

j

� �
nr

; j ¼ 1; 2;…; nr; ð13Þ

where cχ2
j is the estimate of the chi-square statistic in the jth

replication, df is the model degrees of freedom, and nr is the
number of replications in each experimental condition.

Alternatively, chi-square statistics’ performance has often
been examined through calculation of the rejection rate at a
given nominal alpha level of .05. The rejection rate equals the
number of replications for which the chi-square value was
greater than the critical value, divided by the number of suc-
cessfully analyzed replications. The rejection rate of the hy-
pothetical model should, therefore, approximate 5% specified
in the population model. Obtained rejection rates lying be-
tween 2.5% and 7.5% can be considered acceptable at a nom-
inal alpha level of .05 (Bradley, 1978). A high rate of rejection
implies an unintended increased likelihood of concluding
against the null hypothesis, whereas a low rate of rejection
may indicate a potential compromise of power for rejecting
the hypothetical model.

Results

Result presentation begins with information about
nonconvergence and inadmissible solutions. Next, in terms
of average relative bias (RBA) and average relative mean
squared error (RMSEA) of parameter estimates, figures and
tables are collapsed across same-type parameters within each
cell: factor loadings of continuous observed variables, factor
loadings of categorical observed variables, inter-factor corre-
lations, structural paths in the two matrices of B and Γ. Full
results of factor loadings for the five-factor SEM model spec-
ification are not presented here, because the pattern of loading
results was similar to that observed in the correlated three-
factor measurement model. Presentations of standard error
bias follow the same logic described above. Finally, rela-
tive bias of chi-square statistics and rejection rates are
reported for each estimation method by sample size, num-
ber of observed variables' categories, categorical observed
distribution shape, and model type. To free up space in the
text, all cross-tabulations of (1) the RBA of factor load-
ings, inter-factor correlations, and structural paths, (2)
the RBA for robust standard errors of factor loadings,
inter-factor correlations, and structural paths, and (3) the
relative bias of chi-square goodness of fit statistics and

rejection rates associated with the LR test can be found
in the supplemental materials.

Nonconvergence and inadmissible solutions

Nonconvergence occurs when the number of iterations
exceeds the default maximum number in Mplus or when
the program experiences computational difficulties in
optimizing the fit function before the maximum number
of iterations has been reached (Muthén & Muthén,
1998–2017). An inadmissible solution (i.e., Heywood
case) usually involves out-of-bounds estimates in a sta-
tistically converged solution, such as standardized coef-
ficients or correlations larger than 1 in absolute value,
or negative residual/error variances.

The rates of nonconvergence across the 36 experimental
conditions in measurement models were 0% for both MLR
and DWLS. That is, estimation that failed to converge did not
occur for MLR or DWLS in CFA models, given varying sub-
optimal conditions investigated in the study. However, out of
1000 replications, MLR and DWLS both encountered only
one case of nonconvergence in SEMmodels when the number
of observed variables' categories was two or three in the
smallest sample size n = 200. Regarding to inadmissible solu-
tions, neither MLR nor DWLS suffered from improper solu-
tions in the measurement estimation. On the other hand, in the
SEM estimation, bothMLR and DWLS typically experienced
inadmissible solutions when sample size was small (i.e., n =
200). Besides, improper solutions most frequently occurred
when categorical data were asymmetric and had a small num-
ber of observed variables' categories (e.g., 2 or 3) and consid-
erably decreased in frequency when the number of categories
increased. Across the smallest sample size (n = 200) condi-
tions, MLR and DWLS produced a total of 29 and 47 inad-
missible solutions (out of 12,000 replications), respectively.
These findings generally suggest that DWLS has a slightly
higher probability of producing inadmissible solutions than
MLR in a small sample. However, no inadmissible solution
was ever identified across all conditions as sample size in-
creased to n = 500 or more. The results table is not presented
here but available in the supplementary materials.

Any replications producing an inadmissible solution
were classified as invalid empirical observations and were
removed from subsequent analyses (cf. Boomsma, 2013;
Chen et al., 2001; Flora & Curran, 2004; Ferero &
Maydeu-Olivares, 2009); that is, all the outcome variables
below were computed based on admissible solutions in
converged replications for each estimation method. A sen-
sitivity analysis that included the inadmissible solutions
was also conducted. Although these analyses produced
negligible changes in the reported result tables, the conclu-
sions remained unchanged.
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Parameter estimate bias

Factor loadings

Figure 3 presents the average relative bias (RBA) of factor
loadings of continuous and categorical observed variables
for MLR and DWLS across all conditions. Factor loadings
of categorical observed variables were, on average,
underestimated by MLR. When observed variables had five
or more categories, they were moderately downward-biased
(ranging from −7.04% to −5.17%) in asymmetric categorical
data and showed trivial bias (from −4.44% to −2.31%) in
symmetric categorical data. In conditions of fewer than five
categories (i.e., from 2 to 4 categories), factor loadings of
categorical observed variables were substantially downward-
biased (from −22.10% to −10.08%) in asymmetric categorical
data and showed substantial to moderate bias (from −18.99%
to −6.87%) in symmetric categorical data. This negative bias
was significantly reduced with increasing number of observed
variables' categories, irrespective of sample size. On the other
hand, MLR estimation resulted in average relative bias of less
than 1% in absolute value for factor loadings of continuous
observed variables across all conditions. Conversely, DWLS
factor loading estimates of both continuous and categorical
observed variables appeared to be only negligibly biased on
average (within±.5%), regardless of the number of observed
variables' categories, categorical observed distribution shape,
and sample size.

An additional evaluation was conducted to assess the effect
of the proportion of categorical observed variables (i.e., 25%,
50%, and 75%) in a mixture of continuous and categorical
observed variables on factor loading estimation while utilizing
MLR and DWLS. Figure 4 presents the RBA of factor load-
ings of the three continuous (x2, x5, and x6) and three categor-
ical (y1, y3, and y5) observed variables for MLR and DWLS.
The values of these six factor loadings were all .7 in the pop-
ulation model. The proportions of categorical observed vari-
ables for the three distinct latent variables ξ1, ξ2, and ξ3 were

25%, 50%, and 75% in the correlated three-factor measure-
ment model, respectively. As shown in Fig. 4, DWLS factor
loading estimates of the three continuous and three categorical
observed variables appeared to be consistently biased within
.5% in absolute value across all conditions, regardless of the
proportion of categorical observed variables in a mixture of
continuous and categorical data. Similarly, the proportion of
categorical observed variables seemed not to exert a major
influence toward MLR factor loading estimates across the
three categorical observed variables (y1, y3, and y5).
However, in terms of continuous observed variable factor
loadings, when the proportion of categorical observed vari-
ables was 75%, MLR estimation did result in average relative
bias of −2% in the conditions of symmetric categorical ob-
served variables with two categories and displayed average
relative biases between −1.06% and −4.67% in the conditions
of asymmetric categorical data, regardless of sample size, in-
dicating that a high proportion of categorical observed vari-
ables in a mixture of continuous and categorical data within
the same latent construct can deteriorate the accuracy of MLR
loading estimates for continuous observed variables.

As expected, DWLS was consistently superior to MLR for
factor loading estimation of categorical observed variables,
particularly in the conditions of fewer than five response cat-
egories. Also, DWLS generally performed as well as MLR at
estimating factor loadings of continuous observed variables
and even outperformed MLR when the proportion of categor-
ical observed variables was high in a mixture of continuous
and categorical observed variables. These findings indicate
that DWLS is better than MLR at estimating factor loadings
of mixed scale observed variables in the measurement model.

Tables 1, 2 and 3 display the average relative mean squared
error (RMSEA) of factor loadings, inter-factor correlations,
and structural paths by the number of observed variables' cat-
egories, categorical observed distribution shape, and model
type for the two estimation methods. The average relative mean
squared error wasmost pronounced in the conditions where RBA

was also appreciable, and it decreased as sample size and the

Fig. 3 The average relative bias (RBA) of factor loadings of continuous and categorical observed variables
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number of observed variables' categories increased for both esti-
mation methods. The RMSEA was particularly large for asym-
metric categorical variables when MLR was used. Overall, the
RMSEA obtained with DWLS was much smaller than MLR
across nearly all categorical data conditions, indicating that
DWLS produced less biased and more precise factor loading
estimates of categorical observed variables, in comparison to
MLR. The two estimationmethods had comparable performance
for continuous observed variables, marginally favoring MLR,
however. The discrepancies between the two estimators de-
creased as sample size increased.

Inter-factor correlations

The upper panel of Fig. 5 presents the average relative bias
(RBA) of inter-factor correlations for the twomodel types (i.e.,
the three-factor correlated measurement model and the five-
factor SEM model). Inter-factor correlation estimates of the
two model types were, on average, trivially biased for MLR
across all conditions (from −1.41% to 1.74%), with high bias
typically occurring in the SEMmodel with a small sample size
of 200. Compared to MLR, DWLS inter-factor correlation
estimates were generally overestimated to a great extent in
the smallest sample size of 200 conditions (i.e., .72%~2.77%

Fig. 4 The average relative bias (RBA) of factor loadings of the three continuous observed variables (x2, x5, and x6) and three categorical observed
variables (y1, y3, and y5)

Table 1 The average relative mean squared error (RMSEA) for model parameters (n = 200)

Measurement model parameters Structural model parameters

MLR DWLS MLR DWLS

Dis. Cat. λ_con λ_cat φ λ_con λ_cat φ φ γ β φ γ β
sym 2 .0056 .0437 .0889 .0069 .0123 .0931 .0856 .8693 .4930 .0905 .9801 .5624

3 .0050 .0191 .0800 .0064 .0092 .0810 .0780 .7061 .4117 .0800 .7871 .4507
4 .0047 .0102 .0787 .0061 .0073 .0801 .0799 .6601 .3775 .0821 .7323 .4186
5 .0047 .0070 .0773 .0061 .0066 .0783 .0790 .6015 .3479 .0800 .6728 .3888
6 .0045 .0057 .0751 .0060 .0062 .0762 .0750 .6091 .3500 .0765 .6585 .3781
7 .0045 .0052 .0737 .0060 .0059 .0748 .0756 .5987 .3447 .0767 .6421 .3723

Dis. Cat. λ_con λ_cat φ λ_con λ_cat φ φ γ β φ γ β
asym 2 .0063 .0582 .0933 .0075 .0145 .0977 .0889 .9141 .5487 .0942 .9960 .5989

3 .0056 .0250 .0869 .0067 .0100 .0904 .0864 .8282 .4791 .0889 .8350 .4842
4 .0051 .0167 .0801 .0065 .0083 .0807 .0837 .7365 .4475 .0836 .7600 .4626
5 .0049 .0109 .0791 .0062 .0073 .0793 .0816 .6637 .3932 .0797 .6881 .4043
6 .0048 .0092 .0765 .0061 .0067 .0771 .0804 .6682 .3958 .0782 .6810 .3972
7 .0047 .0082 .0769 .0060 .0063 .0762 .0816 .6545 .3906 .0800 .6566 .3862

Note. Dis. = distribution type, Cat. = number of categories, sym = symmetric distribution, and asym = slightly asymmetric distribution. MLR = robust
maximum likelihood and DWLS = diagonally weighted least squares. λ_con = factor loadings of continuous observed variables, λ_cat = factor loadings
of categorical observed variables,φ = inter-factor correlations, γ = structural paths between latent endogenous and latent exogenous variables, and β =
structural paths among latent endogenous variables
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in the measurement model and 2.6%~3.32% in the SEMmod-
el). This bias dropped with increasing sample size.
Specifically, the values of RBA obtained from DWLS were

between .1% and 1.25% in the sample size n = 500 conditions
and between −.08% and .67% in the sample size n = 1000
conditions. Generally speaking, the RBA for inter-factor

Table 2 The average relative mean squared error (RMSEA) for model parameters (n = 500)

Measurement model parameters Structural model parameters

MLR DWLS MLR DWLS

Dis. Cat. λ_con λ_cat φ λ_con λ_cat φ φ γ β φ γ β

sym 2 .0023 .0389 .0358 .0027 .0049 .0370 .0355 .2924 .1695 .0367 .3136 .1876

3 .0020 .0153 .0327 .0025 .0035 .0333 .0346 .2490 .1429 .0349 .2640 .1525

4 .0019 .0070 .0319 .0024 .0029 .0323 .0333 .2264 .1296 .0340 .2419 .1421

5 .0019 .0039 .0312 .0024 .0026 .0315 .0336 .2093 .1214 .0341 .2242 .1308

6 .0018 .0029 .0305 .0023 .0024 .0308 .0322 .2072 .1205 .0327 .2194 .1291

7 .0018 .0024 .0298 .0024 .0023 .0301 .0324 .2056 .1197 .0330 .2169 .1279

Dis. Cat. λ_con λ_cat φ λ_con λ_cat φ φ γ β φ γ β

asym 2 .0027 .0525 .0366 .0029 .0056 .0379 .0374 .3170 .1833 .0395 .3285 .1934

3 .0024 .0206 .0345 .0026 .0039 .0353 .0356 .2740 .1588 .0365 .2770 .1602

4 .0021 .0128 .0329 .0025 .0032 .0332 .0356 .2551 .1516 .0361 .2609 .1575

5 .0020 .0073 .0317 .0024 .0029 .0317 .0343 .2313 .1353 .0345 .2326 .1359

6 .0019 .0059 .0313 .0024 .0026 .0311 .0335 .2295 .1342 .0330 .2277 .1345

7 .0019 .0053 .0306 .0024 .0025 .0303 .0340 .2266 .1308 .0340 .2238 .1289

Note. Dis. = distribution type, Cat. = number of categories, sym = symmetric distribution, and asym = slightly asymmetric distribution. MLR = robust
maximum likelihood and DWLS = diagonally weighted least squares. λ_con = factor loadings of continuous observed variables, λ_cat = factor loadings
of categorical observed variables,φ = inter-factor correlations, γ = structural paths between latent endogenous and latent exogenous variables, and β =
structural paths among latent endogenous variables

Table 3 The average relative mean squared error (RMSEA) for model parameters (n = 1000)

Measurement model parameters Structural model parameters

MLR DWLS MLR DWLS

Dis. Cat. λ_con λ_cat φ λ_con λ_cat φ φ γ β φ γ β

sym 2 .0012 .0374 .0172 .0014 .0024 .0178 .0178 .1417 .0802 .0184 .1551 .0886

3 .0010 .0139 .0156 .0013 .0017 .0159 .0169 .1226 .0669 .0170 .1339 .0724

4 .0009 .0058 .0154 .0012 .0015 .0155 .0163 .1115 .0619 .0165 .1218 .0683

5 .0009 .0029 .0149 .0012 .0013 .0151 .0158 .1037 .0582 .0160 .1127 .0632

6 .0009 .0019 .0147 .0012 .0012 .0148 .0155 .1040 .0568 .0157 .1123 .0615

7 .0009 .0015 .0146 .0012 .0012 .0147 .0156 .1026 .0563 .0157 .1108 .0611

Dis. Cat. λ_con λ_cat φ λ_con λ_cat φ φ γ β φ γ β

asym 2 .0015 .0506 .0175 .0015 .0028 .0181 .0183 .1541 .0869 .0193 .1646 .0935

3 .0013 .0189 .0167 .0013 .0019 .0170 .0176 .1356 .0769 .0179 .1378 .0783

4 .0010 .0115 .0156 .0012 .0016 .0158 .0171 .1239 .0694 .0169 .1284 .0728

5 .0010 .0061 .0154 .0012 .0014 .0154 .0167 .1159 .0651 .0165 .1191 .0663

6 .0010 .0048 .0154 .0012 .0013 .0153 .0164 .1156 .0640 .0161 .1180 .0651

7 .0010 .0041 .0152 .0012 .0013 .0149 .0163 .1120 .0623 .0160 .1114 .0617

Note. Dis. = distribution type, Cat. = number of categories, sym = symmetric distribution, and asym = slightly asymmetric distribution. MLR = robust
maximum likelihood and DWLS = diagonally weighted least squares. λ_con = factor loadings of continuous observed variables, λ_cat = factor loadings
of categorical observed variables,φ = inter-factor correlations, γ = structural paths between latent endogenous and latent exogenous variables, and β =
structural paths among latent endogenous variables
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correlations in the measurement model was relatively smaller
for DWLS than for MLR across nearly all conditions, except
some conditions with the smallest sample size of 200. In the
SEM model, the RBA for inter-factor correlations was consis-
tently smaller for MLR than for DWLS across all conditions,
particularly for the conditions with the smallest sample size of
200. This finding implies that MLR generally yields more
accurate inter-factor correlation estimates than DWLS when
mixed scale observed variables are used in an SEMmodel or a
measurement model with a small sample size of 200; howev-
er, DWLS can perform better than MLR at estimating inter-
factor correlations in a measurement model with a sample size
of 500 or more. It is noted that these differences between the
two estimation methods, not more than 2%, may be regarded
as negligible.

Regarding the overall quality of the estimated inter-factor
correlations, the RMSEA decreased with increasing sample
size but was not clearly a function of the number of observed
variables' categories. No sizable difference was observed be-
tween the two estimation methods, in terms of RMSEA.
Although MLR, on average, produced more accurate inter-
factor correlation estimates than DWLS, MLR estimates ex-
hibited relatively larger variations (i.e., less efficient) than
DWLS counterparts. For example, a relatively high positive
bias in estimating inter-factor correlations was obtained using

DWLS in the SEM model, but the overall quality of DWLS
estimates was slightly better than that of MLR estimates in the
conditions of asymmetric categorical data with more than five
observed variables' categories. This finding suggests that
DWLS and MLR can yield comparable inter-factor correla-
tion estimates in a measurement model with mixed scale ob-
served variables, in terms of the overall quality (accuracy and
precision) of inter-factor correlation estimates.

Structural paths

The lower panel of Fig. 5 presents the average relative bias
(RBA) of structural paths for gamma and beta coefficients.
Averaging over the structural path estimates, the bias in struc-
tural coefficients (including structural paths in bothmatricesB
and Γ) obtained with the two estimators was, on average,
trivially biased. The amount of bias in gamma and beta esti-
mates was within 1% either in a positive or negative direction
for both estimators when sample size n reached 500, except
some conditions in MLR with asymmetric categorical ob-
served variables or with symmetric categorical data having
only two categories. In the conditions with a sample size of
200, negative bias in gamma estimates (−3.57%~−1.08% for
MLR and −2.49%~−.37% for DWLS) and positive bias in
beta estimates (.49%~2.35% for MLR and .04%~1.53% for

Fig. 5 The average relative bias (RBA) of inter-factor correlations and structural paths
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DWLS) generally decreased with increasing the number of
observed variables' categories. Comparing the two estimators,
there was no remarkable distinction in terms of the absolute
value of RBA. MLR, however, consistently introduced a rela-
tively larger amount of bias into the estimates of both struc-
tural paths than did DWLS across nearly all conditions, except
a relatively smaller amount of bias in MLR structural path
estimates between endogenous and exogenous latent variables
of the Γ matrix in the conditions with a sample size of 1000.
However, the estimation differences between the twomethods
became negligible as sample size increased. To sum up, these
findings support the aforementioned expectation that DWLS
produces more accurate structural path estimates, both gamma
and beta coefficients, thanMLR in an SEMmodel with mixed
scale observed variables.

The RMSEA for structural path estimates decreased with in-
creasing sample size and the number of observed variables' cat-
egories. That is, structural coefficient estimation improved when
sample size and the number of observed variables' categories
increased. In general, there was no remarkable evidence suggest-
ing that one estimator is inferior or superior to the other, in terms
of RMSEA. Although DWLS, on average, produced more accu-
rate structural path estimates than did MLR across nearly all
conditions, DWLS displayed greater variability in estimates than
MLR. For example, in spite of a relatively high bias in estimating
MLR structural paths in SEM models, the overall quality of
MLR estimates was slightly better than that of DWLS estimates
across nearly all conditions. This finding shows that MLR and
DWLS can perform equivalently well at estimating structural
paths in an SEM model with mixed scale observed variables,
in terms of the overall quality (accuracy and precision) of struc-
tural path estimates.

Standard error bias

As shown in the upper panel of Fig. 6, standard errors of factor
loadings exhibited, on average, slight downward bias (from
−4.88% to −.72%) for DWLS with the smallest sample size n
=200, reflecting that robust corrections to standard errors were
not upward-adjusted enough to compensate for the loss of
efficiency in the sample size of 200 conditions. Not surpris-
ingly, this standard error underestimation improved
(−2.61%~.40%) when sample size increased. Standard errors
of factor loadings obtained fromDWLS were constantly more
biased for categorical observed variables than for continuous
observed variables across all conditions. In contrast, a relative-
ly small amount of bias was observed in MLR estimation
across all simulation conditions (ranged from −2.26% to
1.79%). When the sample size reached n = 500, the differ-
ences in standard error bias between the two estimators greatly
shrank. As soon as the sample size increased up to n = 1000,
there was no notable discrepancy between MLR and DWLS

in estimating standard errors of loading estimates for either
continuous or categorical observed variables.

In the middle panel of Fig. 6, robust standard errors of
inter-factor correlations exhibited, on average, moderate
downward bias (from −9.15% to −2.71%) for DWLS with
the smallest sample size of 200. This negative bias was only
marginally lessened when sample size increased (from
−8.35% to −2.71% in the sample size n = 500 conditions and
from −4.11% to .18% in the sample size n = 1000 conditions).
For MLR estimation, a small amount of bias was evident
across all simulation conditions (from −3.80% to .91%), ex-
cept for a relatively high bias (from −6.18% to −3.01%) in the
SEM model with a sample size of 500. This exception is
because nearly the same magnitude of negative bias was ob-
served for the two sample size levels (n = 200 and 500), but
relatively small values of empirical standard errors were ob-
tained when sample size was 500, which produced a larger
average relative bias in the sample size of 500 conditions.
Therefore, the performance in estimating standard errors of
inter-factor correlations was considered equivalent between
DWLS and MLR when the sample size was equal to 1000.
That is, standard errors of inter-factor correlations obtained
from MLR performed slightly better than those from DWLS
(by 1%~2%) in the conditions of sample size n = 500 and were
considerably less biased than those from DWLS (by 4%~6%)
in the sample size n = 200 conditions.

Similarly, robust standard errors of structural paths exhib-
ited, on average, moderate downward bias (from −8.70% to
−4.03%) for DWLS with the smallest sample size of 200, as
depicted in the lower panel of Fig. 6. This negative bias was
significantly reduced with increasing sample size (from
−2.86% to .15% in the sample size n = 500 conditions and
from −1.44% to .46% in the sample size n = 1000 conditions).
A small amount of bias was, again, observed for MLR esti-
mation across all simulation conditions (from −4.01% to
.84%), with some relatively high bias typically occurring in
the model with a small sample size of 200. The performance
of DWLS in estimating standard errors of structural paths was
apparently inferior to that of MLR in the conditions with a
sample size of 200, trivially weaker than that of MLR in the
sample size n = 500 conditions, but as good as that of MLR
when the sample size reached 1000. On the whole, the perfor-
mance of MLR surpassed that of DWLS in estimating stan-
dard errors across most conditions, as predicted. However,
there was no remarkable distinction between MLR and
DWLS in the conditions with a large sample size of 1000.

Chi-square statistics

Figure 7 presents findings for relative bias of chi-square
goodness-of-fit statistics and rejection rates associated with
the likelihood ratio (LR) test for the two model types, respec-
tively. Generally speaking, the corrected chi-square test
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statistics tended to be positively biased across all experimental
conditions in the upper panel of Fig. 7, with the MLR correc-
tion being particularly unstable. Chi-square statistics obtained
from DWLS were minimally biased (−.66%~3.23%) across
all conditions. In general, MLRwas prone to yield moderately
inflated chi-square statistics (4.26%~8.15%) in the conditions
with a small sample size of n = 200 and suffered from moder-
ate to substantial inflation (4.14%~9.37%) in the conditions
with asymmetric categorical observed variables having fewer
than four categories. It is not surprising that the former infla-
tion was reduced with increasing sample size and the latter
inflation dropped with increasing the number of observed

variables' categories for both estimation methods. Compared
to MLR, the bias in chi-square statistics was consistently
smaller for DWLS, leading to a better performance of
DWLS on the evaluation of overall model fit.

For DWLS, the empirical Type I error rates of testing overall
model fit for measurement and SEM models were all within the
range of .025 (lower bound) and .075 (upper bound), very close
to the nominal Type I error (alpha =. 05), as shown in the lower
panel of Fig. 7. On the other hand, MLR appeared to be system-
atically inferior in controlling the Type I error rate for testing
overall model fit across nearly all measurement models, unless
observed variables had at least four categories with the largest

Fig. 6 The average relative bias (RBA) for standard errors of model parameters (factor loadings, inter-factor correlations, and structural paths)
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sample size of n =1000 and or symmetric observed variables had
five or more categories. MLR even performed very poorly for
the SEM models at the smallest sample size of n = 200 or in the
conditions with asymmetric observed variables made up of two
or three categories. More specifically, MLR seemed to over-
reject the hypothesized SEM model much beyond expectation
(approximately 3 to 5 times as often as the nominal Type I error
rate would suggest), indicating that robust chi-square statistics
obtained from MLR may have been substantially inflated in the
case of a small sample size of n = 200 or in the case of asym-
metric data with three or fewer categories. However, the degree
of inflation diminished as sample size or the number of observed
variables' categories increased. In general, in terms of controlling
the Type I error rate in both measurement and SEMmodels, the
performance of DWLS surpassed that of MLR on the evaluation
of overall model fit across all conditions, as predicted.

Discussion

The main purpose of this study was to extend previous simu-
lation studies on structural equation models with categorical
observed variables by comparing the relative performance of
the MLR and DWLS estimation methods in structural equa-
tion models with a mixture of continuous and categorical

observed variables across different experimental conditions
(i.e., numbers of observed variables' categories, categorical
observed distributions, and sample sizes). Statistical estima-
tion of SEM models with mixed scale observed variables has
been examined repeatedly in the Bayesian framework, but
never systematically for the two most popular frequentist
methods. The primary contribution of this article is to compare
the estimation performance of MLR and DWLS in a model
with mixed continuous and categorical observed variables,
which further informs research practice and our knowledge
about the importance of selecting appropriate estimators in
different research conditions. Findings from this study are of
particular interest to applied researchers and methodologists in
the social and behavioral sciences. Several general findings
are summarized and discussed in this section.

First, results indicated neither estimation method was sub-
ject to convergence failures across any tested experimental
condition, except two cases of nonconvergence in SEM
models where the number of observed variables' categories
(i.e., 2 or 3) and sample size (i.e., n = 200) were both small.
However, in the SEM estimation, both MLR and DWLS pro-
duced a few inadmissible solutions in the smallest sample size
n = 200 conditions, with a slightly higher likelihood of pro-
ducing inadmissible solutions in the DWLS estimation. This
finding is in line with results from previous simulation studies

Fig. 7 The relative bias (RB) of chi-square statistics and rejection rates associated with the LR test
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in which inadmissible solutions more frequently occur with
small sample sizes (Herzog et al., 2007; Li, 2016b; Rhemtulla
et al., 2012; Forero et al., 2009). Therefore, it is generally
recommended that a sample size of 500 observations is suffi-
cient to produce converged and admissible solutions for the
both estimation methods in an SEM model with a mixture of
continuous and categorical variables, regardless of the number
of observed variables' categories, categorical observed distri-
bution shape, and sample size.

Second, this study replicated previous findings that DWLS
consistently surpasses MLR in estimating factor loadings of
categorical observed variables (Beauducel & Herzberg, 2006;
Flora & Curran, 2004; Forero et al., 2009; Li, 2016a;
Rhemtulla et al., 2012), while MLR and DWLS factor loading
estimates of continuous observed variables were comparable,
in terms of biasness and precision. Interestingly, on the basis
of this simulation study, a clear superiority of DWLS over
MLR in estimating factor loadings for a measurement model
with both continuous and categorical observed variables was
evident, irrespective of number of observed variables' catego-
ries, categorical observed distribution shape, and sample size.
Additionally, a distinct finding from this study adding value to
the existing literature is that DWLS outperforms MLR at es-
timating factor loadings of continuous observed variables with
a high proportion of categorical observed variables (i.e., 75%)
within the same latent construct. Another important contribu-
tion in this paper is to clearly demonstrate the practical advan-
tage of DWLS overMLR at estimating factor loadings as long
as any categorical observed variable is present in a measure-
ment model, which has never been validated in previous sim-
ulation studies. These findings call into question the appropri-
ateness of using MLR estimation and directly translate into
practical benefits of using DWLS estimation when there are
mixed item response types within the same measurement
model.

Third, when a mixture of continuous and categorical ob-
served variables was employed in structural equation models,
DWLS generally yielded slightly more biased inter-factor cor-
relations but relatively less biased structural paths across near-
ly all conditions, compared to MLR. However, DWLS and
MLR appeared to be comparable in estimating inter-factor
correlations and structural paths, considering relative mean
squared error. In order to gain a deeper understanding of this
scenario, the value of RMSEA was partitioned into two com-
ponents: squared bias and sampling variance. As shown in
Table 4, DWLS generally displayed a higher bias in inter-
factor correlation estimates thanMLR (about 4~6 times more)
in the combination of asymmetric categorical data and sample
size n = 200, despite lower RMSEA values obtained from
DWLS estimation. Specifically, DWLS produced more bi-
ased, but less variable, inter-factor correlation estimates, indi-
cating that the estimates obtained in any given replications are
likely to be close to each other, but relatively far from the

population value. DWLS, on the other hand, exhibited higher
RMSEA values than MLR due to a great deal of sampling
variance in the condition with asymmetric data and sample
size n = 200, despite a generally smaller amount of bias in
structural path estimates produced by DWLS estimation
(about 1.5~4 times less) in Table 4. Although DWLS pro-
duced less biased structural path estimates, it had relatively
higher sampling variance than MLR, indicating that its esti-
mates across replications tend to be not far from the popula-
tion value, but are spread out to some degree. Such occur-
rences disappeared as sample size increased, reflecting that a
large sample size can wash out the difference between two
estimation methods. Overall, it is advisable to use either
MLR or DWLS in an SEM model with a mixture of continu-
ous and categorical variables if capturing the structural rela-
tionships (inter-factor correlations and structural paths) is the
primary concern for applied researchers in their study.

Fourth, after applying robust corrections to standard errors,
it was observed that MLR consistently gave less biased stan-
dard error estimates than DWLS across most conditions. This
finding contradicts the existing literature, showing that DWLS
performs better at estimating the standard errors of inter-factor
correlations than MLR does (Rhemtulla et al., 2012; Yang-
Wallentin et al., 2010), partly because SEM models with
mixed continuous and categorical observed variables were
analyzed in this study. The accuracy of standard error
estimates improved with increasing sample size. That is,
robust standard errors obtained from MLR and DWLS are
comparable when sample size reaches 500 or more, which is
similar to the conclusion of Li (2016b) that at least a medium
sample size of n = 500 is needed to obtain stable standard error
estimates from DWLS. However, robust standard error esti-
mates were not so sensitive to the shape of categorical ob-
served distributions and the number of observed variables'
categories in this study. More importantly, applied researchers
should be cautious about unstable standard error estimates and
potentially unreliable model parameter inference when using
DWLS in the sample size of 200 conditions, particularly for
small structural coefficients. This study also contributes to the
current literature by highlighting potential pitfalls of using
DWLS in a small sample, such as biased standard errors of
model parameters. An additional analysis of comparing
DWLS and MLR standard error estimates of model parame-
ters is warranted in research practice.

Fifth, in the evaluation of overall model fit using robust
chi-square statistics, DWLS had empirical rejection rates
within the acceptable range of 2.5% and 7.5%, close to the
nominal Type I error α = .5, whereas MLR tended to over-
reject the hypothesized SEM models more often than expect-
ed. MLR produced unacceptable rejection rates due to mod-
erate to substantial inflation of the chi-square statistics.
Acceptable rejection rates associated with MLR chi-square
statistics might not be observed until the sample size reaches
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1000. This finding seemingly raises another empirical ques-
tion about the necessity of using some supplemental fit index
(e.g., RMSEA, CFI, TLI) as an alternative to evaluate model
plausibility when MLR is employed in applications. Future
research assessing the performance of mean- and variance-
adjusted maximum likelihood (MLMV) on overall model in-
ference is still suggested, given that MLMV was considered
the optimal choice for goodness-of-fit testing under non-
normal data conditions (Maydeu-Olivares, 2017). Yet, the
use of DWLS is practically effective when applied researchers
use the likelihood ratio test to assess overall model fit across
all conditions investigated in this study.

Finally, there are numerous combinations to manipulate in a
single simulation study, but one can only focus on certain factors
of particular interest to make the research design feasible and
manageable. One drawback of carrying out a Monte Carlo study
is that results are conditional on the simulation design. This study
shares the same limitation as all Monte Carlo simulation studies,
in that generalizations are constrained by the specification of the
experimental conditions employed in this study. Although the
trends found within the experimental conditions may behave in
a predictable way outside the scope of the study’s design, such
predictions can become less reliable as conditions depart further
from those investigated in the study. Generalizing any results
beyond the scope of this study should be done with caution.
For example, the present study does not pursue the potential
effects of model specification errors; a worthy topic for future
research is to evaluate the performance of different estimation
methods on chi-square goodness of fit statistics and ad hoc fit

indices under different levels of modelmisspecification (see, e.g.,
Bandalos, 2014; Yang-Wallentin et al., 2010). Moreover, as the
Bayesian approach has recently been applied to many complex
SEM models in small samples, a natural extension of this study
might compare the relative performance of Bayesian and
frequentist methods for statistical estimation of SEM models
(see, e.g., Holtmann et al., 2016; Lee & Song, 2004; Liang &
Yang, 2014) when mixed scale observed variables are specified.
Lastly, this study did not empirically examine the effects of vio-
lation of normality assumption in the latent variables or continu-
ous observed variables. Although previous simulation studies
have suggested that MLR exhibits mild robustness to non-
normal observed data (Asparouhov & Muthén, 2005; Maydeu-
Olivares, 2017; Yuan et al., 2005) and DWLS is deemed robust
against moderate violations of underlying normal distributions
(Coenders et al., 1997; Flora & Curran, 2004; Liang & Yang,
2014), further investigation into various violations of normality
assumption is suggested to deepen our understanding of statisti-
cal estimation performance under these conditions.

Conclusions

Many applications of measurement models in social and be-
havioral research use a mixture of continuous and categorical
observed variables. DWLS has been intentionally developed
to deal with categorical data, and existing scholarship on cat-
egorical CFA and SEM models suggesting DWLS with its
robust corrections as a viable estimator has made important

Table 4 Partition of the average relative mean squared error (RMSEA) for structural model parameters (n = 200)

Structural model parameters WLSMV RMSEA

φ γ β

Dis. Cat. Est. Squared
bias

Sampling
variance

RMSEA Squared
bias

Sampling
variance

RMSEA Squared
bias

Sampling
variance

RMSEA

asym 2 MLR 0.000154 0.088746 0.0889 0.000829 0.913271 0.9141 0.000380 0.548320 0.5487

DWLS 0.001018 0.093182 0.0942 0.000380 0.995620 0.9960 0.000199 0.598701 0.5989

3 MLR 0.000234 0.086166 0.0864 0.001274 0.826926 0.8282 0.000552 0.478548 0.4791

DWLS 0.001102 0.087798 0.0889 0.000552 0.834448 0.8350 0.000216 0.483984 0.4842

4 MLR 0.000303 0.083397 0.0837 0.000586 0.735914 0.7365 0.000151 0.447349 0.4475

DWLS 0.001056 0.082544 0.0836 0.000151 0.759849 0.7600 0.000046 0.462554 0.4626

5 MLR 0.000177 0.081423 0.0816 0.000299 0.663401 0.6637 0.000059 0.393141 0.3932

DWLS 0.000824 0.078876 0.0797 0.000135 0.687965 0.6881 0.000024 0.404276 0.4043

6 MLR 0.000169 0.080231 0.0804 0.000324 0.667876 0.6682 0.000094 0.395706 0.3958

DWLS 0.000676 0.077524 0.0782 0.000151 0.680849 0.6810 0.000061 0.397139 0.3972

7 MLR 0.000202 0.081398 0.0816 0.000225 0.654275 0.6545 0.000055 0.390545 0.3906

DWLS 0.000864 0.079136 0.0800 0.000052 0.656548 0.6566 0.000017 0.386183 0.3862

Note. Dis. = distribution type, Cat. = number of categories, Est. = estimation methods, and asym = slightly asymmetric distribution. MLR = robust
maximum likelihood and DWLS = diagonally weighted least squares.φ = inter-factor correlations, γ = structural paths between latent endogenous and
latent exogenous variables, and β = structural paths among latent endogenous variables
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advances, but its performance when continuous and categori-
cal observed variables are mixed within a measurement model
was previously not well understood. MLR, on the other hand,
was expected to produce better statistical estimates when ob-
served variables had mixed scale types than when they were
exclusively categorical. By carrying out a Monte Carlo simu-
lation study, this first attempt was made to address research
gaps in the established literature about the impact of mixed
item scale types (continuous and categorical observed vari-
ables) on parameter estimates (factor loadings, inter-factor
correlations, and structural paths), standard errors, and chi-
square statistics using the two popular estimation methods
MLR and DWLS.

This study provides evidence that DWLS performs better
thanMLR inmany conditions. DWLSmerely requires a small
sample size (e.g., n = 200) for the recovery of population fac-
tor loadings and structural coefficients, and to evaluate overall
model fit using robust chi-square goodness of fit statistics in
an SEM model with a mixture of continuous and categorical
observed variables. Although this study suggests that DWLS
can be generally recommended in research practice, it is
worthwhile to point out that DWLS indeed has its own limi-
tations. For example, this study has revealed that DWLS may
not produce stable standard errors estimates unless at least a
medium sample (e.g., n = 500) is used, which may potentially
undermine the reliability of statistical inference for parameter
estimates. In addition, some applied researchers may be lim-
ited in the choice of software programs or by estimation avail-
ability of certain software programs that they are familiar with.
Compared to the popularity of maximum likelihood in appli-
cations, DWLS is currently implemented in Mplus, LISREL,
SAS, and R but unavailable in some statistical programs (e.g.,
EQS, Amos, and STATA).

Generally speaking, the moderate to substantial underesti-
mation of factor loadings of categorical observed variables,
and considerable inflation of chi-square goodness of fit statis-
tics makeMLR less attractive and favorable in an SEMmodel
with mixed scale observed variables. However, the small
amount of bias in structural coefficient and standard error
estimates makes MLR practically recommendable when ap-
plied researchers are primarily concerned with structural rela-
tionships among latent variables. It is also worth noting that
once applied researchers confront the problem of missing data
or conduct the analysis of latent variable interaction in an
SEM model, MLR with full information estimation is
considered as a promising approach to handling missing
data or moderating effects properly. Yet, the treatment
of missing data and latent moderated structures in
DWLS remains technically underdeveloped (Muthén &
Muthén, 1998–2017).

In closing, this study has shifted the previous simulation
focus on categorical data by exploring a mixture of continuous
and categorical observed variables in the latent variable

modeling framework. This distinction is theoretically and
practically important because the promise of this study can
extend this line of inquiry and vertically advance scholarly
understanding of the performance of these two frequentist
estimation methods in the context of structural equation
modeling with a mixture of continuous and categorical
variables.

It is expected to inform the work of applied researchers in
suboptimal circumstances where observed variables of mixed
scale types are needed, emphasizing the distinct advantage of
latent variable modeling techniques.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.3758/s13428-021-01547-z.
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