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Abstract
We present an algorithmic method for aligning recall fixations with encoding fixations, to be used in looking-at-nothing
paradigms that either record recall eye movements during silence or want to speed up data analysis with recordings of recall
data during speech. The algorithm utilizes a novel consensus-based elastic matching algorithm to estimate which encoding
fixations correspond to later recall fixations. This is not a scanpath comparison method, as fixation sequence order is ignored
and only position configurations are used. The algorithm has three internal parameters and is reasonable stable over a wide
range of parameter values. We then evaluate the performance of our algorithm by investigating whether the recalled objects
identified by the algorithm correspond with independent assessments of what objects in the image are marked as subjectively
important. Our results show that the mapped recall fixations align well with important regions of the images. This result is
exemplified in four groups of use cases: to investigate the roles of low-level visual features, faces, signs and text, and people
of different sizes, in recall of encoded scenes. The plots from these examples corroborate the finding that the algorithm
aligns recall fixations with the most likely important regions in the images. Examples also illustrate how the algorithm can
differentiate between image objects that have been fixated during silent recall vs those objects that have not been visually
attended, even though they were fixated during encoding.

Keywords Episodic memory · Visual importance · Looking at nothing

Introduction

In the looking-at-nothing paradigm, participants are asked
to inspect a scene, while their eye-movements are being
recorded, and then to recall the contents of the same scene
from memory while looking at an empty display. The
researcher using this paradigm compares the fixations from
the inspection trial with those of the subsequent memory
retrieval trial, to draw conclusions of which scene elements
are prioritized in memory recall or how the visual episodic
memory is organized.
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The looking-at-nothing effect was first demonstrated
by Moore (1903), and later research established that in
the absence of other visual features (i.e. while looking at
nothing), the motion of the eyes is reminiscent of the gaze
pattern while looking at the original stimulus (Johansson
et al., 2006; Laeng et al., 2014). As part of this line of
research, Noton and Stark (1971b) and Noton and Stark
(1971a) have reported to have found that, to examine an
image, humans tend to repeat a stereotyped, personal scan-
path. However, there has been no later support for the
idea that the sequence of fixations is reiterated and/or
stored in memory (Williams & Castelhano, 2019; Kowler,
2011; Findlay & Gilchrist, 2003). All recent attempts at
replication have found that fixations during recall of the
stimulus reveal the location of objects (Ferreira et al., 2008;
Martarelli et al., 2017), but not necessarily reinstate the
sequences (Martarelli & Mast, 2013; Gurtner et al., 2019).

It has also been found that participants with a good
spatial imagery ability make fewer recall eye movements,
while participants with a poor ability make more and wider
eye movements (Johansson et al., 2012). A number of
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studies (Johansson et al., 2012; Johansson & Johansson,
2014; Laeng et al., 2014; Scholz et al., 2015; Bochynska
& Laeng, 2015; Pathman & Ghetti, 2015; Scholz et al.,
2016) have shown that eye movements during recall
play a functional role in memory retrieval. Laeng and
Teodorescu (2002) showed that inhibiting eye motion, by
asking observers to maintain fixation on a central point
during encoding, led to reduced eye motion during recall,
and inhibiting eye motion during recall led to degraded
recall performance. de Vito et al. (2014) confirmed that
inhibiting eye motion during recall decreases memory
performance. Moreover, attending to regions that have
been previously looked at before has been linked to
imagery vividness (Laeng & Teodorescu, 2002), change
detection performance (Olsen et al., 2014), memory
accuracy (Laeng et al., 2014; Scholz et al., 2016) and
recognition accuracy (Chan et al., 2011), further suggesting
that eye movements during looking at nothing correlate to
what has been encoded in memory.

There is, however, a fundamental limitation to the
looking-at-nothing paradigm: The locations of fixations
during recall exhibit a significant local displacement, i.e.
the spatial reproduction of fixation positions contains
error. This deformation of the imagery space has been
consistently reported in imagery literature and involves
shrinking, translation and not making any eye-movements
at all (Johansson et al., 2006; Johansson et al., 2012; Laeng
et al., 2014). To overcome the obstacle of shrinkage, instead
of using natural images, most previous studies employed
single face images (Chan et al., 2011; Henderson et al.,
2005) or grid-based stimuli (Martarelli & Mast, 2013;
Scholz et al., 2016; Laeng et al., 2014; Johansson &
Johansson, 2014), for which area-of-interest (AOI) methods
are sufficient to find the correspondences between encoding
fixations and recall fixations. However, for complex stimuli
such as photographic images, visual features are irregularly
distributed and rigid area-of-interest methods (commonly
used to analyse gaze data) very often fail to handle
the displacements in recall locations, forcing researchers
to perform time-consuming manual coding, often using
spoken language as a mediator to link recall fixations with
spoken scene content (Johansson et al., 2006, e.g).

In this paper, we propose a new method to computa-
tionally match fixations while viewing the original image
to fixations from spontaneously recalling the same image
from visual episodic memory. In order to match fixations
during recall to fixations during exploration, we therefore
need to compute a mapping. After applying the mapping,
we retain fixations from the exploration sequence that are
close enough to a fixation in the relocated recall. A thresh-
old on the distance between fixations in the exploration
sequence from fixations in the recall allows us to steer the
distance criteria and to control the amount of image content

being considered as recalled (more detailed in Elastic con-
sensus method for matching recall fixations onto encoding
fixations).

We then validate the matching algorithm by checking
whether the matched fixation positions coincide with
separate judgments by participants clicking in the images
on what they consider the most important scene regions.
If there is a strong correlation between clicking and the
areas highlighted by the matching algorithm, we would
have a measure of what participants prioritized in the recall
from short-term visual episodic memory. Please note that
we do not investigate visual episodic memory here, and
do not make any theoretical claims as to what is encoded
in memory, nor which models could describe retrieval
prioritization best. Our interest in this paper is only to
develop a method for empirically researching memory recall
using the looking-at-nothing paradigm.We will use the term
‘recall’ for ‘retrieval of memory content’ during looking-at-
nothing even though the recalled information is not spoken
but only exhibited through gaze.

Data acquisition of eyemovements during
encoding and recall

We first collected eye movement data during the encoding
and immediate subsequent recall of randomly selected
photographic image content. The complete data set for pairs
of exploration and recall eye movements can be found on
the project page.1

Method

Participants We recruited 28 participants for our experi-
ment (mean age = 26, SD = 4, 9 female). All reported
normal or corrected-to-normal vision. Importantly, all par-
ticipants were kept naive with respect to the aim of the study,
i.e. they had no knowledge about the purpose of recall-
ing the presented images from memory against a neutral
background. All collection of data has been approved by
the local Ethics Committee at the faculty IV of Technis-
che Universität Berlin in compliance with the Guidelines
of the German Research Foundation on Ethical Conduct
for Research involving humans. Participants were informed
about the procedure before giving their written consent and
could stop the experiment at any time. Their time was
compensated and all data were used anonymously.

Apparatus The data collection was conducted in a dark
and quiet room. A 24-inch display (0.52m × 0.32m) with
a resolution of 1920 × 1200 pixels was in front of the

1http://cybertron.cg.tu-berlin.de/xiwang/mental imagery/em.html
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observer at a distance of 0.7m. We used an EyeLink1000
desktop mount system (SR Research, Canada) to record
the eye movements at a sampling rate of 1000Hz. A chin
and forehead rest was used for stabilization. All data were
recorded during a binocular viewing condition, but only the
movements of the dominant eye were recorded.

Stimuli We used images from the MIT data set (Judd et al.,
2012), which also include eye-movement data. In order to
make sure that we will have sufficient spatial variation in
their eye-movement data, we calculated the 2D entropy
of fixation positions for each image in the complete data
set, which ranged from 0.358 to 0.587, which was deemed
sufficient, and led us to select 100 natural images randomly.
This set includes both indoor and outdoor scenes of various
complexity and exhibits a large variation in both theme and
composition. Since our main focus is to develop and test the
matching algorithm, rather than studying specific memory
effects, we chose not to control the images in any other
way. All images were presented at the centre of the display
in their original size with the largest dimension being 1024
pixels.

Procedure We first explained the task in detail. The whole
data recording consisted of 100 trials. The details of the
presentation in one trial were: First, the screen was black
with a white fixation dot in the centre (1◦ visual angle) for
0.5 seconds (500 ms). Then the image was presented for a
duration of 5 seconds. Observers were instructed to freely
explore each image in order to later be able to recognize
it in a separate memory probe. After the image had been
offset, white noise was shown for 1 second to suppress
any after-image. Then the screen was set to neutral grey
for 5 seconds, during which observers had been asked to
immediately recall the image from memory. After that the
screen turned black for 1.5 seconds before the procedure is
repeated for the next image (see an illustration in Fig. 1).

Every participant first had a trial run of 10 other
images at the beginning. The order of the 100 images
were randomized and then divided into five blocks. Each
block of 20 trials started with a standard 9-point calibration

procedure. We repeated the calibration until the average
accuracy reported in the following validation was below
0.5◦ and no validation point had an error larger than 1.0◦.
After a successful calibration, 20 trials were performed.
This procedure required roughly 5 minutes. Participants
were allowed to take a break of arbitrary duration after each
block.

The whole data acquisition lasted about one hour for each
participant. At the end of the data collection, participants
were shown 10 images, half of which were part of the 100
stimuli used in the previous trials. Images were presented
one after the other in a randomized order, and participants
had to decide if the images were among the 100 previously
presented to them. These recognition data were not used, but
only served to masquerade the data collection as a memory
task, motivating them to actively explore the images after
they initially hear about the memory probe.

Data processing and analysis

We first analyzed the eye movement statistics from all 28
observers for the encoding and recall phases. We applied
the EyeLink event detection algorithms with standard
parameter settings (with saccade velocity threshold set
to 35◦/sec and saccade acceleration threshold set to
9500◦/sec/sec) to detect fixations and saccades.

During encoding the median and mean number of
fixations was 16 (SD=2.8) during encoding, while during
recall the median and mean number was 11 (SD=3.6).
The fewer fixations in recall had a correspondingly longer
duration (M = 452.2 ms, SD = 308.0 ms) than fixations
in encoding (M = 278.0 ms, SD=73.4 ms), as depicted in
Fig. 2a. Fixation durations are plotted as a function of the
trial progression.

Fixation durations over time Durations of encoding fixa-
tions were lower during the initial 0.5s, and then constant
throughout each trial, while the durations of fixations from
recall got shorter over time. Buswell (1935) and (Unema
et al., 2005, Figures 2 and 4) propose that short initial

t=0 t=0.5 t=5.5 t=6.5 t=11.5 t=13
Time (s)

Fig. 1 Recording paradigm used in data collection 1. Each stimulus was first viewed for 5s and observers were asked to immediately recall the
image
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Fig. 2 Fixation durations and saccade amplitudes are plotted as a func-
tion of the trial progression. The comparison of fixation durations
over time in encoding and recall is shown in a and the comparison
of saccade amplitudes over time in encoding and recall is shown in

b. The curves indicate the mean durations and amplitudes and the
range within one standard deviation are depicted in green for fixations
and saccades from the encoding phase and orange for fixations and
saccades from recall

fixations reflect a period of ambient processing before focal
viewing takes over with longer fixations. In contrast, the
initial fixations of the recall data were the longest of their
kind, which could suggest that when recalling from mem-
ory, there was no ambient phase, because the overview may
already be accessible in memory.

Saccade amplitudes over time Surprisingly, we did not find
any ambient/focal effect in the encoding saccades, but rather
its opposite, short saccades in the initial half second. We
also note that recall saccades were about the same size
throughout the trials as depicted in Fig. 2b.

Gaze data from encoding The encoding fixations from all
participants for a single image can be summarized in a spa-
tial histogram (a so-called gaze density map, which is also

called the encoding map in later sections), commonly plot-
ted as a heat map for the image. We computed the spatial
histograms for our data and for the corresponding pub-
licly available MIT-data. Following Judd et al. (2012) we
removed the first centre fixation from each sequence and
applied a Gaussian filter with a kernel size equivalent to 1
degree of visual angle. The heat maps resulting from the
publicly available data and the heat maps from the explo-
ration phases in our experiment were very similar (mean
Pearson’s correlation coefficient (CC) = 0.766, SD=0.115).

Gaze data from recall Compared to encoding sequences,
recall sequences had fewer but longer fixations (see
Figure 2a). For some of the 100 photos, the correspondence
between fixations during encoding and recall was very
clear. However, for the majority, while fixations from

Exploration

Recall

Fig. 3 Pairs of exploration and recall fixation sequences from four
observers. Fixation sequences during exploration are shown in the first
row overlaid on top of the image stimuli. Corresponding fixations dur-
ing recall are shown in the second row. The temporal order of each
sequence is indicated by the numbers and consecutive fixations are

connected by line segments. Fixation duration is reflected by circle
size. Notice that fixations in recall are distorted relative to image fea-
tures and there are often no clear correspondences between fixations
during exploration and recall
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recall roughly resembled the maps from the encoding
phase, recall fixations were more constrained towards
the centre and typically fail to exactly correspond with
features in the original image that participants would have
remembered during recall. We also found that the temporal
order was in general not preserved (see Fig. 3 for some
examples). This is consistent with previous results in
imagery research (Johansson et al., 2012).

Some observers tended to stall during recall. They
stopped moving their eyes, leading to fixations that are
unlikely corresponding to image content. For 5 out of the
28 participants, the number of fixations in recall was less
than half compared to encoding. One participant reported
after the experiment that he changed his strategy through
the experiment and only recalled the single most interesting
element of the image.

Quality of individual recall data As expected from previous
studies, some participants developed certain strategies
during the data collection that distort the data in the sense
that their eye movements during recall were minimal.
Typical distortion included a low number of fixations
clustered around the centre (central bias), or fixations that
were randomly spread over the stimulus area that cannot
be used to reliably identify locations of scene elements
corresponding to one of the fixations during encoding. This
naturally presents a challenge in the matching task. For this
reason, we evaluated the quality of each data set in terms
of the degree by which participants spontaneously made
looking-at-nothing eye-movements. The median correlation
between encoding and recall gaze density maps was
CC = 0.856, when they were aggregated over all 100
stimulus images, for each participant. A few exemplary
aggregated gaze density maps from encoding and recall,
and the resulting correlation coefficients (CC) are illustrated
in Fig. 4. Previous studies have only presented these
distortions qualitatively (Johansson et al., 2006, e.g.),
while others have used other measures of gaze dispersion
(Johansson et al., 2012, e.g.), which makes quantitative
comparison with earlier work difficult.

Collection of clicking data

In our second data collection, participants were asked
to to identify the (subjectively) most important scene
element by clicking at its position after being briefly
exposed to a stimulus. Clicking has previously been used
to determine important areas (Nyström & Holmqvist,
2008), as an alternative to asking people to judge selected
image patches for importance (as in Henderson and Hayes
(2017)).

We will then compare the clicked areas with recall
fixations, to validate that the matched recall objects from
our algorithm correspond to positions judged as important
by our participants. In this, we follow studies that show how
the gist of a scene can be perceived in a single glance within
as little as hundred milliseconds (Potter & Levy, 1969;
Biederman et al., 1974; Oliva & Torralba, 2006; Castelhano
& Henderson, 2008).

Method

Participants A group of 21 participants (6 female, mean
age = 24) were recruited and their participation was
compensated. All participants had normal or corrected-to-
normal vision and none of them had taken part in previous
data collection. Consent forms were signed before the
experiment which allow us to use their data.

Apparatus The apparatus setup was identical to that used
in previous data collection. Observers’ eye movements were
tracked with a standard EyeLink 1000 in remote mode.

Stimuli and design The same set of 100 images were used
as visual stimuli. In order to help observers better locate
scene elements, grids were overlaid over the images as
inconspicuously as possible. Smoothed, semi-transparent
images were displayed during clicking. High spatial
frequencies were removed from the images and remaining
low frequencies functioned as a reminder of the visual
content. A Gaussian kernel with radius of 10 was used for

Exploration

Recall

cc = 0.924 cc = 0.915 cc = 0.912 cc = 0.856 cc = 0.853 cc = 0.708 cc = 0.681 cc = 0.616

Fig. 4 The similarity between the encoding and recall gaze density
maps for each of the 28 participants aggregated over the 100 stimu-
lus images. The 28 participants are ranked according to the correlation
between the two cumulative gaze density maps (max 0.924; median

0.856; min 0.616). Two different types of inconsistencies appear in the
least similar pairs: the distributions of recall fixations are either peaked
at one point (the last two columns) or spread randomly (the third from
the last column)
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t=0 t=0.5 t=1 t=4 t=5.5
Time (s)

Fig. 5 Recording paradigm used in data collection 2. After a brief exposure of image stimulus, observers were asked to click at the most important
scene element

smoothing and the alpha transparent blending value was set
to 0.3 (an example is shown in Fig. 5).

Procedure The procedure for each trial is illustrated in
Fig. 5. Similarly to the previous data acquisition procedure,
each trial started with a black screen with a white fixation
circle at its centre, followed by a brief encoding phase where
an image stimulus was displayed for 500 ms, which is more
than enough time to perceive the important elements in
each image. Observers were instructed to ‘select the most
important part of the image’. Subsequently, observers were
asked to ‘click at that selected position’. The amount of time
given for clicking was 3s in each trial.

Data processing

We used 2093 out of 2100 trials, for which observers clicked
within the given time. The average click latency was 1.63s

measured from the moment when the image got blurred.
This may also indicate that the short preview of 500 ms
was enough to perceive the scene and the removal of high-
frequency information may help to decrease the influence
of low-level salient features on where people click. Figure 6
shows three examples of the data where heat maps for click
data were smoothed with a Gaussian kernel of 2◦ of visual
angle. These heat maps are called the clicking maps in later
sections.

Elastic consensus method for matching
recall fixations onto encoding fixations

In the first data collection, participants were asked to
immediately recall the previously seen image in front of
an empty screen, while we measured their eye-movements
in line with the looking-at-nothing paradigm. We will now

Fig. 6 Examples of clicking results where agreement of clicking positions among all participants increases from left to right. First row shows
clicked positions after the instruction to click what is important. Below it, heat maps of the same click data
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present an algorithm that determines which scene positions
in the original image correspond to the looking-at-nothing
(recall) fixations.

The principles of relocationmapping

The challenge in establishing this mapping is that spatial
locations of the fixations in recall are distorted relative to the
locations of features in the image. Fixations during looking-
at-nothing contain a sizable deformation, and the inaccuracy
in each fixation may accumulate over time. For this reason,
we consider the operation to relocate the recall fixations
to their proper position as a composition of a global rigid
transformation (due to a lack of reference frame) and
local deformation (due to local inaccuracy and propagated
errors). We speculate that without this relocation, several
recalled elements remain unmatched, causing significant but
unwarranted changes to the mapping.

It is important to realise that the method does not aim
to match nearest neighbours. Deformation provides greater
freedom in mapping to neighbouring encoding fixations,
while the rigid transformation aims to preserve the overall
layout of recall fixations. Figure 7 provides an illustration
of how these two forces interact in the mapping principle:
The six green points in a) depict a configuration of fixations
during encoding, of which only five are being recalled
in looking-at-nothing fixations (b, red points). We may
think of the locations as being displaced by the rigid
transformation in d) and the (local) deformation in c). The
deformation contains no global rigid transformation in the
sense that moving or rotating the fixations would not make
the sum of the squared distances to the matched fixations in
encoding any smaller. Note that matching fixations in recall
and encoding cannot be found by simply considering their
distances (as in the nearest-neighbour algorithm; Anderson
et al. (2015)), as such matching will not take into account
the relative structure within recall fixations (see Fig. 3 for
some examples).

When data are corrupted by global transformation and
deformation, it is common to approximate the effects by
minimizing the squared distances between matched data
points. This presents a chicken and egg problem: The
estimated mapping is intended to improve the matching,
while the matching is needed to estimate the mapping. A
common solution is to start with a first guess about the
matching, then compute the transformation, and based on
the transformation make a better guess about the matching,
and so on until the method converges. We take our starting
point in the Iterated Closest Point method (ICP) (Besl &
McKay, 1992) to compute the global rigid transformation to
match the two partially overlapping point sets (encoding vs
recall fixations).

Our method extends ICP in two important ways: First,
rather than using a closest point matching, it matches
fixations in recall to consensus locations in the encoding
data. Since there are fewer recall fixations than encoding
fixations, we suggest computing a consensus location for
each recall fixation. The consensus location is a weighted
average of the fixation locations in encoding where the the
weights decay exponentially with distance. This would give
us three different cases to accommodate.

1. One fixation in recall maps to exactly one fixation from
encoding. The consensus calculation will then have the
effect when the single fixation in the encoding sequence
is close while the others are far away, since the closest
location will receive a large weight, while the others get
relatively small weights, so that the consensus location
will be the matching fixation.

2. One fixation in recall maps to several close fixations
from encoding, i.e. the observer recalls just one
scene element that generated several fixations during
encoding. In case several fixations from encoding are
close, all of them receive largely equal weights, and the
consensus location is the weighted centre position of
this set of fixations. This could correspond to situations
where participants carefully inspect the eyes, nose and

Fig. 7 Example of the location mismatch between fixations in encod-
ing and recall. Fixations from encoding are shown in green a; recall
fixations are subset of the fixations during encoding and are shown
in red b. Their displacement involves deformation c and global rigid
transformation d, which are used to model different types of distortion

observed in recall data. After the relocation mapping, recall fixations
are transformed to the yellow locations e. Deformation and rigid trans-
formation are computed in an iterative manner, avoiding convergence
at local minima. Please refer to The principles of relocation mapping
for more details
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Table 1 Overview of relevant fixation and gaze density maps used in the algorithm

Encoding map Gaze density map generated from original encoding fixations

Matched encoding map Gaze density map generated from matched encoding fixations,

which corresponds to the recalled content

also called map of remembered things

Leftover map Gaze density map generated from encoding fixations

that are not matched to any relocated recall fixations,

which correspond to the un-prioritized / forgotten scene elements

also called map of non-prioritised objects or map of forgotten things

Recall map Gaze density map generated from original recall fixations

Relocated recall map Gaze density map generated from relocated recall fixations

Clicking map Density map generated from click data

mouth of a face, which correspond to many fixations
during encoding, but during looking at nothing only the
face area is recalled / fixated.

3. A fixation in recall may have no corresponding fixation
in encoding (i.e. because the fixation is unrelated to the
process of recalling, the spatial error is too large to be
rectified, or a non-fixated scene element is recalled).
All fixations receive little weight, and the consensus
location is roughly where the recall fixation already is.

Figure 7e) shows the consensus locations for the situation
in b) with recall fixations are placed at the consensus
locations after applying the relocation mapping. The
mathematical modeling of the computation of consensus
locations is explained in Computing the relocation of recall
fixations. It can be controlled by a parameter wp, measured
in visual angle, which could be interpreted as the distance
of fixations that contribute significantly to the weighted
averaging procedure. We set the parameter to wp = 2◦ and
discuss this choice in Effect on the relocation mapping of
the parameters wp and wd .

The second extension of ICP is that, rather than
computing a global rigid transformation, our method is
based on a elastic mapping that has a controllable overall
deviation from a global rigid transformation. In such a way,
a global transformation offers a reference frame for the
overall fixation distribution during looking at nothing while
a local transformation provides the flexibility to adjust the
variant local distortions. Allowing elastic transformation
overcomes the problem depicted in Fig. 7d).

However, some global rigidity needs to be preserved,
i.e. the positions should not deform arbitrarily, as fixations
while looking at nothing are not arbitrary but correlated
to the spatial layout of a mental imagery during recall
(Johansson et al., 2006, e.g.). This is important, as we would
otherwise always match all recall fixations to some fixations
in encoding. For example, if we allowed arbitrary scale, it

would always be possible to scale the set of recall fixations
to a single point and then match it to one of the fixations
in encoding. To avoid such degenerated solutions where
recall fixations are mapped to the centroid of all encoding
fixations, it is important to restrict the mapping to preserve
the global structure.

Table 1 lists the definitions of the relevant maps for
clarity. Essentially the leftover map equals the encoding
map minus the matched encoding map. The matched
encoding map shares similarities with the relocated recall
map, however, the matched encoding map does not equal
the relocated recall map.

Computing the relocation of recall fixations

In this section, we describe the computation of a reloca-
tion mapping D : R2 �→ R

2 from the current positions of
the recall fixations to the desired ones. The global rigidity
of the mapping is controlled by a parameter wd , measured
in visual angle, which describes the distance of points that
may be transformed by two rigid transformations that dif-
fer significantly. If wd is large, fixations are transformed by
very similar rigid transformations, restricting the deforma-
tion; if it is small, fixations are transformed by independent
rigid transformations, allowing large deformation. We set
the parameter to wd = 10◦ and discuss this choice in Effect
on the relocation mapping of the parameters wp and wd .

The necessary steps to compute the relocation mapping
are given in pseudocode below. Once the mapping is
computed, we simply use distance as the sole criterion when
a fixation in encoding should be considered as recalled,
namely if there is a mapped fixation in recall that is closer
than the matching radius ε.

Let pi ∈ R
2 be the positions of the fixations in the

encoding sequence and rj ∈ R
2 the positions of fixations

in the recall sequence (in a common coordinate system). We
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wish to compute a relocation D : R2 �→ R
2 that is applied

to the recall locations rj with the aim to align the data with
the fixation positions during encoding.

We need two ingredients for computing the relocation:
partial matching and elastic mapping. For the elastic
mapping, we suggest Moving Least Squares (MLS) (Levin,
1998). Here, we use this framework applied to rigid
transformations, i.e. local rigid transformations are fitted
using weighted least squares. This approach has become
popular in geometric modelling where it is usually derived
as minimizing the deviation of the mapping from being
locally isometric (Schaefer et al., 2006; Sorkine & Alexa,
2007; Chao et al., 2010).

We model the relocation D as a rigid transformation that
varies smoothly over space:

D(x) = Rxx + tx. (1)

The subscript x indicates that rotation and translation
vary (smoothly) with the location x in the plane. They
are computed by solving a spatially weighted orthogonal
Procrustes problem Gower and Dijksterhuis (2004), where
the weights depend on the distances of the points to x.
Assume the desired position for rj is the position qj , then
Rx, tx are computed by solving

arg min
Rx

TRx=I,tx

∑

j

θ(‖x − rj‖)‖Rxrj + tx − qj‖22. (2)

Here, the weight function θ should be smoothly decaying
with increasing distance. We use the common choice

θd(x) = e
− x2

w2
d , (3)

which gives us control over the amount of elasticity in
the mapping with the parameter wd . The minimization can
be solved directly using the singular value decomposition
(SVD), see Sorkine-Hornung and Rabinovich (2016) for an
accessible derivation.

Note that for computing the mapping we simply assume
the desired positions qj were given. We compute them as
the distance weighted centroid of encoding fixations:

qj =
∑

i θp(‖D(rj ) − pi‖)pi∑
i θp(‖D(rj ) − pi‖) , (4)

where θp(d) quickly decreases such that points further away
are receiving relatively insignificant contribution.

Note that we are considering the distances of the
fixations pi to the relocated locations of the fixations in
the recall sequence. This means that setting the target
locations depends on the relocation mapping and computing
the relocation mapping depends on the target locations.
Consequently, we alternate the two steps as shown in
Algorithm 1.2 We start this process with D being the
identity. Then we compute the desired positions qj as
explained above. The procedure converges after very few
iterations (see Fig. 8). Note that the relocation D needs to
be evaluated only in the location rj . This means for the next
step we only need to compute Rx and tx for x = rj .

Effect on the relocationmapping of the parameters
wp and wd

The outcomes of the process for relocating recall fixations
were stable across a wide range of parameters, as Fig. 9
illustrates. We found that the radius for matching recall
fixations to encoding fixations wp should be chosen in the
range of 2◦ − 4◦ of visual angle. This means we expected
that matching fixations were usually not separated by more
than twice this amount. To limit the amount of the relocation
in the mapping we had tried values of wd ∈ [4◦, 16◦].
2Source code can be found on the project page
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Initial state 1 Iteration 2 Iteration 4 Iteration 10 Iteration 

Fig. 8 Iterations of the elastic relocation mapping algorithm. The ini-
tial state shows two fixation sets of encoding (orange) and recall

(green). The size of each circle corresponds to the duration of each fix-
ation. Pink circles are the deformed recall fixations after each iteration.
Note that the matching converges quickly after just a few iterations

Based on trial and error, we had settled for wp = 2◦ and
wd = 10◦. We applied the relocation process to each pair
(encoding/recall) of fixation sequences for all images. Then
we applied a matching using ε = 1◦, such that an encoding
fixation was matched only if there was a corresponding
relocated recall fixation within 1◦ visual angle. This was
a rather strict setting, leaving many encoding fixations
unmatched. We optioned for a small ε for stronger effects.

Figure 10 shows three examples of relocated recall
fixations based on the corresponding encoding fixations,
using this parameter setting.

Mapping relocated recall fixations onto encoding
fixations using different matching radii ε

Our algorithm in the previous section moves original recall
fixations in the stimulus space to generate a map of
relocated recall fixations. Next, we will match - based on
distance - each relocated recall fixation to one or more
original encoding fixation(s). After we have established
the mapping, we select those encoding fixations that were
matched to relocated recall fixations. Because there are
almost always fewer fixations in recall, there will be leftover
encoding fixations that - under the assumptions of this
algorithm - correspond to scene content that was never

expressed in recall fixations (in laymen terms; forgotten, not
prioritized, disregarded).

The number of leftover encoding fixation depend on the
matching radius ε, We can form a measure of the reduction
rate: the number of leftover encoding fixations divided by
the original number of encoding fixations. The graph in
Fig. 11a depicts the number of matched encoding fixations
as a function of the matching radius. As expected, when
using a small ε, the matching leads to better preservation of
encoding fixations and fewer leftover fixations.

If we would not relocate recall fixations, fewer encoding
fixations would be matched. For ε = 1◦ nearly 20%
of encoding fixations were matched to relocated recall
fixations, whereas only 5% were matched to original,
unrelocated recall fixations. Note that this effect was quite
similar across different images and observers. For values
larger than ε = 10◦, we effectively matched all encoding
fixations.

We also analysed whether the matching procedure shifts
the matched gaze density map away from the encoding
map, as opposed to just uniformly reducing the number of
fixations without shifting the resulting distribution (which
would be a flaw of the algorithm). For this we identified
in each image the region with the most fixations during
encoding, based on the smoothed spatial histogram. We

w =2°, w =4° w =2°, w =8° w =2°, w =12° w =2°, w =16° w =2°, w =32°

w =4°, w =4° w =4°, w =8° w =4°, w =12° w =4°, w =16° w =7.2°, w =8°

Encoding

Recall

Fig. 9 Matching results for a range of values for wp and wd . Origi-
nal recall fixations (in green) are matched to fixations during encoding
(in yellow) and relocated recall fixations are shown in pink. Match-
ing between recall and encoding is stable across all parameters, except

in the rightmost column, which shows cases of undesired mapping for
extreme parameter settings. More encoding fixations are considered
for matching with a larger wp while the relocation mapping is more
rigid with a larger wd
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Fig. 10 The relocation result on three different examples. Parameters
wp is set to 2◦ and wd to 10◦. Fixations during encoding are depicted
in yellow and recall fixations in green. Mapped recall fixations are

shown in pink. Encoding fixation sequences overlaid with the stimulus
and the corresponding original recall fixation sequences are illustrated
at the top-left corners

did the same for the matched encoding fixations, which
are fewer, and considered that the region had shifted if the
difference in spatial location exceeds 4◦. Figure 11b shows
the resulting difference in matched encoding fixations as
a function of the matching radius ε. As expected, for
large matching radii, the distribution of encoding fixations
that could be matched against relocated recall fixations
have a distribution very similar to the distribution of
encoding fixations that are matched against the original un-
relocated recall fixations. For smaller radii, there was a
shift in the gaze density distribution in about 30% of the
images when matching was made against relocated recall
fixations. Matching against the original recall fixations led
to distribution shifts in 40% of the images.

Figure 12 illustrates the shifting effect from varying the
threshold on the resulting gaze density maps for two of
the images, for the values ε = 1◦, 2◦, 4◦. We can observe

that some regions that attracted plenty of encoding fixations
appear to have been less fixated during recall, for example
the sign to the left in the top image. Other regions were more
fixated during recall, such as the objects in the foreground
in the top image or the tower to the right of the road in the
bottom image. These examples show that the algorithm can
indeed move the distribution when one part of the image
is less present in recall fixations, while at the same time
positioning recall fixations in what appears to be the right
places.

We have shown that the exact parameter setting is not
crucial for the result, as the method is reasonably stable
across parameters. However, as is often the case for higher-
order eye-movement methods, it can be advisable to run
our matching algorithm with a range of parameters and
make sure that the effect remains the same across parameter
settings.

(a) (b)

Original
Relocated

Original
Relocated

Fig. 11 In a, the reduction rate as a function of matching radius
ε ∈ [1◦, 10◦]. The original recall fixations are shown in blue. Because
they match with fewer of the encoding fixations, reduction rate is
higher for the original recall fixations. Recall fixations that have been
relocated are more likely to be mapped onto an encoding fixation (yel-
low), and therefore there will be fewer leftover encoding fixations and
a lower reduction rate for relocated recall fixations, in particular when
ε is small. b This figure shows for what proportion of the 100 images

the peak of the gaze density map for encoding fixations is within 4◦ of
the peak of the gaze density map for the matched encoding fixations
based on the relocated recall fixations, as a function of ε. For compar-
ison, also the matching based on the un-relocated recall fixations, for
which fewer gaze density peaks are within 4◦ of the peak for encoding
fixations. For small ε, peak position in more images are kept the same,
which demonstrates the effectiveness of the relocation mapping
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Image Stimulus  ε = 1° ε = 2°  ε = 4°

Original Heat Map

Scaled by 
Original Heat Map

Normalized 

Normalized 

Image Stimulus  ε = 1° ε = 2°  ε = 4°

 ε = 1° ε = 2°  ε = 4°

Original Heat Map  ε = 1° ε = 2°  ε = 4°

Scaled by 
Original Heat Map

Fig. 12 Matched encoding maps using different thresholds. We show
examples of ε = 1◦, 2◦, 4◦. Original heat map shows the result based
on all fixations during encoding of the image. The colour coding of the
scaled maps is based on the highest value appearing in all heat maps,

which is naturally the one generated without matching. They are used
to show the resulting maps under the same scale. The normalized map
is colour coded in its own range

Validation of the elastic consensus matching
algorithm

Our choice of validation method was to record clicking
data from participants who were asked to judge which is
the most important region in each image. If our matching
algorithm does a good job, we expect the resulting matched
encoding fixations (based on relocated recall fixations) to
fall on positions in the scene that were judged important in
the clicking map.

Domapped recall fixations coincide with
subjectively important scene elements?

We first compared the similarity between clicking maps
(such as Fig. 6) and encoding maps (i.e. gaze density maps
from encoding fixations) versus matched encoding maps
(i.e. gaze density maps from matched encoding fixations).
Area under the ROC curve (Judd et al., 2012) and CC
measures (Bylinskii et al., 2019; Holmqvist & Andersson,

2017) were used. Area under the ROC curve is a location-
based metric which computes the trade-off between true and
false positives under various thresholds. CC measures the
linear correlation between two maps. We refer our readers
to (Bylinskii et al., 2019) for computational details and
a broader discussion on properties of several commonly-
used metrics in the literature. The averaged similarity scores
are plotted on the left in Fig. 13 where encoding maps
(blue bars) and the the matched encoding maps (orange
bars) were compared to clicking maps. Additionally, we
also compared the clicking data to gaze density maps when
randomly paired recall sequences were used in mapping
(green bars).

We found a significantly smaller similarity with clicking
maps when random sequences were used compared to the
matched encoding maps (t (198) = 8.75, p � 0.01 using
ROC and t (198) = 19.84, p < .01 using CC, two-tailed
student t-test).

As shown on the right part in Fig. 13, we then conducted
similar comparisons between clicking maps and the recall
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Fig. 13 Averaged ROC and CC similarity scores. All comparisons are
made against clicking maps. On the left, the blue bars compare gaze
density maps during encoding (i.e. the encoding maps) to clicking (i.e.
the clicking maps), while the orange bars compare the matched encod-
ing fixations (i.e. the matched encoding maps) to clicking, and finally,
the green bars compare the matched encoding maps based on random
recall sequences to clicking. On the right, the blue bars instead com-
pare gaze density maps during recall (i.e. the recall maps) to clicking,

while orange bars compare the relocated and mapped recall results
(i.e. the relocated recall maps) to clicking, and the green bars show
the relocated recall maps when random encoding sequences are used
for matching. Student t-test was used with sample size n = 100. ∗∗ is
p < 0.005 and ∗ ∗ ∗ is p < 0.0005. Together the results indicate the
proposed relocation algorithm is meaningful as the resulting gaze den-
sity maps have a higher correlation to clicking (importance), depicted
by the orange and yellow bars

maps (i.e. gaze density maps from original un-relocated
recall fixations) (purple bars) versus the relocated recall
maps (i.e. gaze density maps from relocated recall fixations)
(yellow bars). Light green bars on the right show the
similarities between clicking maps and the gaze density
maps of the relocated recall fixations when randomly
selected encoding sequences were used for relocation
mapping. We observed significant decreases in matching
from randomly paired sequences comparing to matching
between the corresponding pairs (t (198) = 4.69, p � 0.01
using ROC and t (198) = 13.02, p � 0.01 using CC,
two-tailed student t-test).

The larger similarity between clicking and recall
fixations that have been relocated (yellow bars on the
right) as well as the matched encoding fixations (orange
bars on the left) suggests that the proposed matching
algorithm produces a meaningful outcome: The areas
clicked as important are largely equal to the matched
encoding fixations produced by the algorithm, which is
a correct behaviour if recall fixations during looking-at-
nothing primarily correspond to the same important image
regions as clicking maps. Note that the differences in the
formulations of the used metrics may also contribute to the
observed results. The ROC metric is most sensitive to the
similarity between the peaks of two maps while the CC
score measures pixel-wise correlation between two maps.

Examples of encodingmaps vs matched
encoding and clickingmaps

In this section, we report examples from our data set to
give a concrete impression of how the algorithms works in
practice, and what questions it can be applied for. Please
note that these examples are not the result of experimentally
controlled studies but taken as illustrative examples from
our data set.

Example 1: Increased entropybut not central bias Figure 14
shows encoding maps vs matched encoding and clicking
maps for three example photos. In all three cases, the peak
- the most prioritized area - is the same. It can also be seen
that peaks do not appear just in the center of the images,
which would be the case if central bias Tatler (2007) would
determine the choice of location in the matched encoding
maps.

However, it can be clearly seen that during encoding,
there is more gaze outside the top peak, than during
matched encoding (based on relocated recall fixations). In
the clicking map, the activity outside the peak has fallen
almost to zero. Entropy increases, but does not give rise to
central bias. It is the most interesting part of the photo that
is ever more in focus in the matched encoding maps and
clicking maps.
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Fig. 14 Examples of photographic images, gaze density maps for original encoding, for matched encoding based on relocated recall, and clicking
data. Three examples are chosen such that the differences of the ROC scores are the largest, the median and the smallest

Example 2: Low-level features Low-level features have
been shown to contribute to saccade target selection (Bad-
cock et al., 1996; Krieger et al., 2000; Kienzle et al., 2009).
Consequently, low-level features contribute significantly to
fixation-based attentional models (Itti & Koch, 2000, e.g).
Figure 15 shows three examples of un-prioritized / forgotten
scene elements. A white box in the lower right corner over
a black background in the first image draws a lot of encod-
ing fixations, possibly due to its high contrast. This box is
less dominant in the resulting heat maps as shown in the last
columns. The wall sign with the number 3 has a similar fate.
In the second example, the red car behind the trees is large
gone in the matched encoding fixations, in favour of fixa-
tions on the train. In the third example, the colourful ball
is much less fixated during recall, but the little girl became
relatively more fixated.

To quantify this effect in our non-experimental stimuli,
we therefore calculated the feature values for luminance,
chromaticity, contrast and edge-content following Tatler
et al. (2005). As shown on the left in Fig. 16, no differences
in low-level feature values could be found between positions
of the leftover fixations during encoding and the matched

(the remembered) fixations. The equal distribution of low-
level features in leftover and matched encoding fixations
may suggest that the prioritization in recall from episodic
memory is not influenced by low-level features.

Example 3: Faces, texts and signs Many high-level (or
semantic) features have been known to attract fixations
during image inspection, most prominently faces but also
signs and other artifacts as well as out-of-context objects.
We have examples of high-level objects in our stimuli in
the form of text, signs, and people. Figure 17 shows two
examples. However, the variability in these uncontrolled
photos made the comparison non-significant (Fig. 16 right).

To further examine the role of high-level features, we
excluded the half of the participants whose recall fixations
were less correlated to their encoding fixations, and then
repeated the analysis for the remaining participants - with
highly correlated fixations. The results showed a significant
effect of not prioritizing text (t (54) = 2.83, p � 0.05, two-
tailed student t-test), indicating that text elements may not
have a high recall priority once their meaning is decoded.
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Fig. 15 Examples of how low level features are not prioritized in
recall. The second column shows the encoding map of the image.
Leftover map shows the map of non-prioritised objects (very loosely
“map of forgotten things”), while matched encoding fixations are

used to generate the matched encoding map (very loosely “map of
remembered things”). Each map is normalized in its own range. Fixa-
tions triggered by low-level features are largely absent in the matched
encoding maps

Additionally, we considered all features in each category
regardless of their size. Size matters for attention, and may
affect the prioritisation. In order to investigate the effect of
size, we used the many differently sized faces in our diverse
stimulus. Faces in photos are known to be fixation magnets,
and hence also definite candidates for well-remembered
objects in future controlled studies.

Example 4: Big enough people are prioritised in recall and
matched encoding fixations There was a effect of size

of people and faces on recall fixations. If a person was
big enough, he or she would be fixated during recall,
as in Fig. 18, usually at the cost of other things in the
image. However, if people or faces were small in the
photo, like in the top two rows of Fig. 18, they are
largely un-fixated during recall. Figure 19 summarizes
this size effect for all people and faces in the photos.
In order to be fixated during recall of a photo, your
body should fill around 2◦ × 2◦ or more of the
photo.

Fig. 16 Left: The comparison of low-level feature values at fixated
positions. Compared low-level features are luminance, chromaticity,
contrast and edge-content. No difference between leftover fixations
and matched encoding fixations (i.e. the remembered fixations) can

be observed. Right: The percentage of fixations on faces, texts and
signs in the encoding phase, and the corresponding number of matched
encoding fixations (i.e. the remembered fixations) on the same objects.
For faces, the p-value is 0.09
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Fig. 17 Text in the first example is entirely un-fixated during recall
as shown in the last column, as well as the sign in the second exam-
ple, where the people are fixated during recall, at the cost of other

objects in the photos. Illegible or irrelevant text (upper row) as well as
signs without particular relevance for the scene (lower row) are almost
entirely un-fixated during recall

Fig. 18 People in the scene are fixated during encoding but their reap-
pearance during the recall fixation depends on their size in the photo.
In the upper rows, the small people are not prioritized in recall, while

in the lower rows they are big enough to be remembered. The meaning
of the colour coded images is as before
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Fig. 19 Left: the probability of a person being fixated during recall as
a function of the size of the person in the photo. Small-sized people are
forgotten, but at a certain extent, people are remembered. Right: The

probability of a face being fixated during recall as a function of the size
of the person in the photo. Faces covering a small area are forgotten,
while larger faces are commonly recalled

Figure 20 exemplifies the fact that when several
competing elements are side-by-side in the figure, the
matched encoding often consists of a redistribution of gaze
from some elements to others. The heatmaps in the matched
encoding data should coincide with the elements prioritized
during recall.

Discussion

We have presented a novel algorithmic method for use
with the looking-at-nothing (LAN) paradigm. Our elastic

matching algorithm requires no specific parameter setting
or fine-tuning, other than what we have presented in the
description of the algorithm. We could show stable results
across a wide range of parameters, which demonstrates
the consistency of the matching algorithm in retrieving
the underlying correspondences between fixations during
encoding and subsequent recall. This algorithm is useful
in variants of the LAN paradigm where the participants
are silent during recall, i.e. when there is no participant
speech to associate with recall fixations, and the only data
from recall are fixations on an empty display. The matched

Fig. 20 Effects on elements with similar meaning. The meaning of
the colour coded images is as before. In the top row, similar distribu-
tions of encoding fixations among similar items are not preserved after
matching against the recall fixations. The smaller boat in the middle

row loses in relative priority during recall, while still being dominated
by the larger boat. In the last row, the face that stands out among other
faces increases in its dominance in the matched encoding map

2065Behav Res (2021) 53:2049–2068



encoding fixations can be expected to be close to the
intended recall region of the photo, and can as such be
taken to show what has been prioritized in episodic memory
during LAN experiments.

When asked to click the most important position
in the image, participants’ click positions consistently
coincided with the peak of the gaze density map made
from the matched encoding fixations based on relocated
recall fixations. Indeed, our validation assumes that when
participants choose to make silent recall fixations on an
empty display, they prioritise to fixate positions where the
important objects from the image would have been. We
cannot know that this is what they actually do, i.e. that they
have actually retrieved the important object from memory,
but the consistent results we get nevertheless suggest that
participants actually do prioritise these important image
regions during recall.

The proposed method assumes that what is being
prioritized in episodic memory has been fixated before,
or in other words, that items not fixated during encoding
cannot be recalled. This is contradicted by Underwood
et al. (2003), who reported that of all the objects that were
not fixated while participants watched video recordings of
moving vehicles, nearly 20% were nevertheless recalled.
When asked to describe pictures, participants often talk
about objects that were never fixated before (Griffin &
Spieler, 2006). This seems to be a natural limitation not only
to the looking-at-nothing paradigm, but also of the method
of eye-tracking in general. However, fixating in recall what
was not fixated in encoding can be assumed to happen so
rarely in the LAN paradigm that it should play no role for
the results of the algorithm.

What exactly is encoded in visual episodic memory
is of less importance for the algorithm to work, as long
as this representation results in LAN eye movements
suggestive of a mental image, as found by Johansson
et al. (2006). Subjective importance, with whatever biases
participants may have, will determine what is fixated,
clicked, and encoded. If users of our algorithm want
to control importance experimentally, it is up to those
users of the algorithm to make decisions how to instruct
participants on what is important, or to control stimulus
images experimentally.

Central bias (Tatler, 2007) does not seem to explain our
results. The entropy of fixation positions the MIT data set
we used showed that the images generate a large variation in
fixation position, and this variation can be clearly seen in the
many examples of encoding, recall, clicking and matched
encoding maps that we have presented.

In addition to utilising fixation position during recall,
the duration of fixations could also be investigated. It is
known that recall fixations are longer, but it is not known
why. Possibly future experiments could attempt to tease out

the role of fixation durations in recall by manipulating the
objects to be recalled, for instance by how comment they
are or how expected they are in the context, and investigate
which manipulations lead to longer recall fixations. It is
also unclear why the durations of recall fixations decrease
over time, but it is possible to speculate that it might
reflect a decrease in priority of the corresponding recall
elements in episodic memory. The correlation between
early recall fixations from the matching algorithm and
clicking on the most important image region is 0.678, while
correlation between late recall fixations based matching and
clicking is 0.642 (t(198)=1.75, p = 0.08, two-tailed student
t-test), which may suggests that such a tendency could
exist.

Our algorithm is not a scanpath comparison algorithm
like MultiMatch, SubsMatch, Scanmatch etc (Dewhurst
et al., 2012; Kübler et al., 2017; Anderson et al., 2015). Our
algorithm entirely ignores the sequence order of fixations,
as the general consensus is that sequence information
from encoding is not repeated in recall. Furthermore, our
algorithm is based on the assumptions that there are usually
more fixations in encoding than in recall, and that the
encoding fixations are the true and static positions to which
we will move the erroneously located recall fixations. Our
algorithm does not aim to establish a distance between the
two sets of fixations, it just maps one set onto the other. That
said, some scanpath comparison methods have components
that just map one set of fixations onto another, and our
method resembles those components, such as the mapping
stage in MultiMatch

Conclusions & Outlook

The looking-at-nothing paradigms offers many possibilities
for research on encoding into and recall from visual episodic
memory. When coupled with our matching function for
encoding vs. recall fixations, it reveals the fixated content
that is spontaneously prioritized in recall from episodic
memory. Examples of such prioritization show interesting
results that differ from the prioritization during image
encoding. The proposed matching function can be used to
study eye movements during mental imagery in general,
and it also extends the possibility of using the looking-at-
nothing paradigm in specific applications.
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