
PCovR2: A flexible principal covariates regression approach
to parsimoniously handle multiple criterion variables

Sopiko Gvaladze1
& Marlies Vervloet1 & Katrijn Van Deun2

& Henk A. L. Kiers3 & Eva Ceulemans1

Accepted: 2 November 2020
# The Psychonomic Society, Inc. 2021

Abstract
Principal covariates regression (PCovR) allows one to deal with the interpretational and technical problems associated with
running ordinary regression using many predictor variables. In PCovR, the predictor variables are reduced to a limited number of
components, and simultaneously, criterion variables are regressed on these components. By means of a weighting parameter,
users can flexibly choose how much they want to emphasize reconstruction and prediction. However, when datasets contain
many criterion variables, PCovR users face new interpretational problems, because many regression weights will be obtained and
because some criteria might be unrelated to the predictors. We therefore propose PCovR2, which extends PCovR by also
reducing the criteria to a few components. These criterion components are predicted based on the predictor components. The
PCovR2 weighting parameter can again be flexibly used to focus on the reconstruction of the predictors and criteria, or on
filtering out relevant predictor components and predictable criterion components. We compare PCovR2 to two other approaches,
based on partial least squares (PLS) and principal components regression (PCR), that also reduce the criteria and are therefore
called PLS2 and PCR2. Bymeans of a simulated example, we show that PCovR2 outperforms PLS2 and PCR2when one aims to
recover all relevant predictor components and predictable criterion components. Moreover, we conduct a simulation study to
evaluate how well PCovR2, PLS2 and PCR2 succeed in finding (1) all underlying components and (2) the subset of relevant
predictor and predictable criterion components. Finally, we illustrate the use of PCovR2 by means of empirical data.

Keywords Principal covariates regression . Dimension reduction . Regressionmodels . Multiple criteria . PLS2

Introduction

Principal covariates regression (PCovR) was proposed by de
Jong and Kiers (1992) to deal with the interpretational and
technical problems that are encountered when applying ordi-
nary least squares (OLS) regression using a relatively high
number of predictor variables that are correlated to some ex-
tent. Interpreting the regression weights becomes challenging
in such cases, as the weights only indicate the unique contri-
butions of the predictor variables to the prediction problem

and, thus, do not reflect possible shared effects (Cohen,
Cohen, West, & Aiken, 2003). Moreover, the bouncing beta
problem might occur, implying that removing or adding a
single observation can already alter the regression weights
drastically (Kiers & Smilde, 2007).

In PCovR, the predictor variables are reduced to a limited
number of components that are linear combinations of the
original predictors. Simultaneously, the criterion variables
are regressed on these components. The components are ex-
tracted in such a way that they are good summarizers of the
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predictor data (i.e., explain a lot of the predictor variance), but
also predict the criterion scores well (i.e., explain a lot of the
criterion variance). PCovR has at least three attractive fea-
tures: First, a closed-form solution is available for extracting
the components. Second, the user may choose the extent to
which either reduction or prediction is emphasized through a
weighting parameter that ranges between 0 and 1. When the
weighting parameter equals 0, PCovR corresponds to reduced
rank regression (RRR, Aldrin, 2002), whereas a value of 1
implies that PCovR boils down to principal components re-
gression (PCR: Jolliffe, 1982). Third, PCovR has been found
to outperform popular methods such as partial least squares
(PLS; Wold, Ruhe, Wold, & Dunn III, 1984) and PCR
(Jolliffe, 1982) in retrieving relevant predictor components
(i.e., the subset of predictor components that explain
variance in the criterion block; see Vervloet, Van Deun, Van
den Noortgate, & Ceulemans, 2016 and Van Deun,
Crompvoets, & Ceulemans, 2018). A user-friendly R package
is available for performing all the steps of a PCovR analysis
(including preprocessing, model selection, rotation, etc.); the
use of this package is described in Vervloet, Kiers, Van den
Noortgate, and Ceulemans (2015). Note that PCovR differs
from so-called coupled matrix factorization methods (Acar,
Kolda, & Dunlavy, 2011; Acar, et al., 2014; De Lathauwer
& Kofidis, 2017; Wilderjans, Ceulemans, & Van Mechelen,
2009; Wilderjans, Ceulemans, Van Mechelen, & van den
Berg, 2011), in that PCovR treats predictors and criteria in
an asymmetric way (i.e., reversing the role of the predictors
and criteria would yield a different solution), whereas both
sets of variables are treated symmetrically and have a similar
status in coupled matrix factorization.

Performance of PCovR has mostly been studied in datasets
that include one criterion variable only, however. When
datasets contain a high number of criterion variables, PCovR
users face new interpretational problems, because the number
of regression weights will be high. Indeed, each criterion var-
iable will correspond to a separate set of regression weights.
Moreover, the criterion variables can be correlated with each
other and partly include the same information; this may not be
evident from these separate sets of regression weights, how-
ever. Finally, it might happen that some of the criteria are not
related to the predictors, and thus cannot be predicted well. In
line with what has been proposed in the PLS framework (i.e.,
PLS2, Manne, 1987), this interpretational burden can be lifted
by also reducing the criterion variables to a few components
and predicting these criterion components rather than the in-
dividual criteria. Such an approach facilitates interpretation, as
it sheds light on the interrelations among the predictors and
among the criteria, and reduces the number of regression
weights that have to be interpreted. Herewith, it is important
that the number of predictor components may differ from the
number of criterion components, if one wants to fully grasp
the predictor structure. Indeed, imposing an equality

restriction on the number of predictor and criterion compo-
nents, as is the case in PLS2, is more defendable if one is
solely focused on predicting the criteria as well as possible.

In this paper, we therefore propose PCovR2, which extends
PCovR by also reducing the criteria to a few components.
These criterion components are predicted based on the predic-
tor components, allowing both sets of components to differ in
number. In line with PCovR, users can specify howmuch they
want to emphasize reduction and prediction, by means of a
weighting parameter. We will demonstrate that due to the
weighting parameter, PCovR2 is indeed a very flexible tool.
It can accommodate different research goals that researchers
might want to pursue. Specifically, using a low weighting
value allows one to prioritize retrieving the relevant predictor
components and predictable criterion components and thus to
focus on the regression problem, whereas with a high
weighting value, the predictor and criterion components are
formed based on how much variance they can explain in the
corresponding data blocks, disregarding the link between the
two blocks.

Moverover, we also give suggestions on how to further
decide on the number of predictor components and criterion
components once the decision on the weighting value has
been taken. Especially, finding the number of relevant predic-
tor components and predictable criterion components is not
trivial. Therefore, we put forward a model selection approach
to assist users when taking this decision.

We will compare the performance of PCovR2 with two
alternative approaches: PLS2 and PCR2. As mentioned
above, PLS2 is more restrictive than PCovR2 in that it re-
quires the number of criterion components to equal the num-
ber of predictor components (Manne, 1987). We will demon-
strate that even though PLS2 has a high predictive power, it
does not necessarily reconstruct the underlying predictor and
criterion components well. PCR2 is a natural extension of
PCR that boils down to performing two separate principal
component analyses (PCA; Pearson, 1901), one on the predic-
tors and one on the criterion variables. Next, it predicts the
criterion components on the basis of the predictor components
in an additional ordinary least squares (OLS) step. We expect
that this approach will perform worse than PCovR2, if one
aims to focus on extracting the relevant predictor components
and predictable criterion components. Indeed, with PCR2, the
predictor information is completely ignored when extracting
the criterion components and vice versa. As a result, the ob-
tained predictor components may be irrelevant for predicting
the criterion components.

The remainder of the paper is structured as follows: First,
we discuss the original PCovR method. We then present the
new PCovR2 technique and discuss the model selection prob-
lem. We also show that PCR2 and PLS2 fail when the re-
search focus lies on reconstructing the underlying relevant
predictor and predictable criterion components. Second, we
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present a simulation study in which the performance of
PCovR2 is evaluated as well as the proposed PCovR2 model
selection heuristic for deciding on the number of relevant pre-
dictor components and predictable criterion components. In
the subsequent section, we analyze data from the 500
Family Study (Schneider & Linda, 2008). Discussion points
and concluding remarks are given in the final section.

From PCovR to PCovR2

Data

The data consist of a block of predictorsX (N × J ) and a block
of criteria Y (N × K), which are all measured for the same N
observations. Preprocessing the data is important, as it will
influence the results that are obtained. Specifically, we will
assume all variables to be centered (i.e., the mean of each
variable is set to zero). As holds for component analysis
methods in general, centering the data is necessary in order
to model the covariance structure of the data. Scaling is im-
portant if differences in variance between variables are con-
sidered as arbitrary, since variables with larger variances
would otherwise influence the obtained components more.
In this paper, we assume that the sum of squares of each
variable is set to one, implying that each variable has an equal
weight in the analysis.

PCovR

Model

The PCovR model (De Jong & Kiers, 1992) decomposes the
predictor matrix X as follows:

X ¼ XWXPX
0 þ EX ¼ TXPX

0 þ EX: ð1Þ

TX = XWX is the N × RX component score matrix that
holds the scores of the N observations on the RX components.
The sum of squares per column of TX is constrained to be
equal to 1. PX is the J × RX loading matrix that contains the
loadings of the predictor variables on the components. If the
columns of TX are mutually orthogonal, these loadings boil
down to the correlations among the predictors and the com-
ponents, since we assume the data to be centered around zero
and to be scaled to the sum of squares of one per variable (see
2.1). EX holds the residuals for the predictors, andWx is a J ×
RX weight matrix. The criteria in Y are regressed on the RX
components:

Y ¼ TXPY
0 þ EY; ð2Þ

where the matrix PY (K × RX) contains the regression weights
for each of the K criteria and EY the residuals for Y. As

extensively discussed in Vervloet et al. (2015), PCovR solu-
tions have rotational freedom as multiplying PY and PX by a
rotation matrix Z and counter-rotating TX by multiplying it
with (Z’)-1 does not alter the reconstructed X or Y scores.

Estimation

In a PCovR analysis, the reduction of predictor variables to
components, and the prediction of the criterion variables by
those components, is conducted simultaneously. This can
clearly be seen in the PCovR loss function LPCovR:

LPCovR ¼ α
X−TXPX

0k k2
Xk k2 þ 1−αð Þ Y−TXPY

0k k2
Yk k2 ; ð3Þ

withα being a weighting parameter, ranging between 0 and
1, that specifies to what degree reduction and prediction are
emphasized. As already mentioned in the introduction, when
α equals 0, PCovR boils down to RRR (Aldrin, 2002) and,
when α equals 1, to PCR (Jolliffe, 1982). High α values will
lead to a higher focus on strong components (i.e., components
that explain a lot of variance in X), while low α values most
likely lead to more relevant components (i.e., components that
explain a lot of variance in Y). In practice, balancing both
aspects is often desirable, as using a too high α can lead to
irrelevant components and using a too low α to uninterpret-
able ones. How this balance can be achieved is discussed in
Section “Model selection”.

Given a specific α value and number of components RX, a
closed-form solution exists for the PCovR parameters.
Specifically, TX is set equal to the first RX eigenvectors of
the matrix

D ¼ α
XX0

Xk k2 þ 1−αð ÞHXYY0HX

Yk k2 ; ð4Þ

in which HX = X(X’X)-1X’ (see Vervloet et al., 2016, for
more information). The loading matrix and regression weights
can then be calculated, respectively, as PX’ = TX’X and PY’ =
TX’Y.

Model selection

Performing model selection for PCovR is complicated, as one
should determine both the number of components and the
weighting parameter value in Eq. 3. Moreover, researchers
may have different opinions on which components they
want to retrieve. Some may aim to retrieve all important
predictor components, irrespective of their relevance. Others
may take the same stance as Vervloet et al. (2016) and con-
sider a PCovR solution to be appropriate if all components
that are relevant for predicting the criterion data, i.e., have a
non-negligible regression weight, are recovered, irrespective
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of the amount of predictor variance they explain. Different
selection criteria can be used, such as cross-validation, scree
tests, and combinations thereof. One could, for instance, first
select the number of components by performing a scree test on
the predictor data and afterwards use cross-validation to tune
the weighting parameter. This approach allows one to focus
on the number of strong components, i.e., the subset of com-
ponents that explain a lot of variance (Ceulemans & Kiers,
2009). Yet, these strong components are not necessarily rele-
vant for prediction purposes. Alternatively, one could simul-
taneously optimize the number of components and the
weighting parameter using K-fold cross-validation (Breiman,
Friedman, Olshen, & Stone, 1984). This might be cumber-
some, however, because of the large number of possible com-
binations. Moreover, the study by Vervloet et al. (2016) has
shown that cross-validation tends to extract too many compo-
nents. Importantly, the results reported by Vervloet et al.
(2013, 2016) all indicate that using a low α is a good idea, if
one is mainly interested in finding the relevant components.
Indeed, a low α will penalize extracting components that do
not help in reconstructing the criterion data.

PCovR2

Model

In PCovR2, we still assume the columns of the predictor matrix
X and the criterion matrix Y to be centered and scaled to a unit
sum of squares. The predictor matrix X is decomposed accord-
ing to Eq. 1. The criterion matrix Y is modeled as follows:

Y ¼ YWYPY
0 þ EY ¼ TYPY

0 þ EY: ð5Þ

withTY holding the N × RY scores of the N observations on
the RY criterion components and PY the K × RY loadings of the
criterion variables on the criterion components. Imposing
TY’TY = I, these loadings reflect the correlations among the
criteria and the criterion components. EY holds the residuals
for the criteria, andWY is a K × RYweight matrix. Finally, TY

is regressed upon TX:

TY ¼ TXB
0 þ ETY ; ð6Þ

where B is an RY × RX matrix that holds the associated regres-
sion weights, and ETY contains the corresponding residuals.
Because the columns of TX and TY have a sum of squares of
one, the regression weights can be directly compared in size.

PCovR2 solutions have rotational freedom, in that without
losing fit, the predictor components and criterion components
can be rotated independently from each other to facilitate in-
terpretation. Indeed, multiplying PX and PY by the rotation
matrices ZX and ZY and counter-rotating TX and TY, by mul-
tiplying them with (ZX’)

-1 and (ZY’)
-1, does not alter the re-

constructed X or Y scores. For instance, both sets of

components can be rotated using a simple structure rotation
criterion such as varimax. Obviously, such rotations would
imply that the component scores TX and TY as well as the
regression weights B need to be recalculated to take the rota-
tion into account. When applying orthogonal rotations, the
following formula can be used:

Brotated ¼ ZY
0BZX ð7Þ

Estimation

The key feature of PCovR2 is that the three sub-models—
reduction of the predictor block, reduction of the criterion
block, and prediction of the criterion components based on
the predictor components—are fitted simultaneously. This
leads to the following loss function to be minimized:

LPCovR2 ¼ α
X−XWXPX

0k k2
Xk k2 þ α

Y−YWYPY
0k k2

Yk k2 þ 1−αð Þ YWY−XWXB0k k2
YWYk k2

¼ α
X−TXPX

0k k2
Xk k2 þ Y−TYPY

0k k2
Yk k2

 !
þ 1−αð Þ TY−TXB0k k2

RY
;

ð8Þ

where RY refers to the number of criterion components with 0
< α ≤ 1. Again, α is a tuning parameter that allows one to put
more emphasis on the prediction aspect (α close to zero) or the
reduction aspect (α close to one). Note that setting α to 1
corresponds to a PCR2 approach. Moreover, setting α to 0
will lead to a method that focuses entirely on finding strongly
related predictor and criterion components, but totally ignores
how much variance of the predictor and criterion matrix is
explained by these components. The latter is not desirable
for our purposes as we want to recover the components that
underlie both predictor and criterion matrices. Therefore, we
do not recommend setting α to 0.

Given specificα, RX, and RY values,weminimize (8) under
the constraint that TX’TX and TY’TY equal an identity matrix.
To this end, we rely on an alternating lower1 squares algo-
rithm since no closed-form solution is readily available. The
PCovR2 algorithm alternates between two steps that we dis-
cuss in detail below: 1) conditional estimation of TX, PX, and
B given fixed values for TY and PY, and 2) conditional esti-
mation of TY and PY given fixed values for TX, PX, and B.
Note that step 2 consists of running an iterative procedure.
Both steps are repeated until convergence of the loss function
(i.e.,Lprevious − Lcurrent < ε, where ε is a pre-specified small
number—we used 10−6). Because of the alternating nature
of the algorithm, we advise the use of multiple starts, to avoid
ending up in a local minimum.

a) Step 1

1 We use the term alternating lower squares rather than alternating least
squares, because step 2 consists of an iterative procedure.
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Given current estimates of TY and PY, we can update TX,
PX, and B by optimizing

Lstep1 ¼ α
X−TXPX

0k k2
Xk k2 þ 1−αð Þ TY−TXB0k k

TYk k2
2

: ð9Þ

In this optimization problem, a standard PCovR problem
can be recognized, with X as the predictor matrix and TY as
the criterion matrix. Hence, this step has a closed-form solu-
tion, which boils down to setting TX equal to the first RX

eigenvectors of matrix D:

D ¼ α
XX0

Xk k2 þ 1−αð ÞHXTYTY
0HX

TYk k2 ; ð10Þ

withHX =X(X’X)-1X’. PX andB can then easily be computed
bymeans of regression steps (see Section “Estimation”), asPX
= X’TX and B = Ty’TX.

b) Step 2

Given current estimates of TX, PX, and B, the non-
constant part of the PCovR2 loss function can be re-
expressed as a function of TY and PY (and later of TY

alone, when the optimal PY is substituted by Y ′TY) as
follows:

LStep2 ¼ α
Y−TYPY

0k k2
Yk k2 þ 1−αð Þ

RY
TY−TXB

0k k2

¼ α
Y−TYPY

0k k2
Yk k2 þ 1−αð Þ

RY
TY−Uk k2

¼ −α
tr Y0TYTY

0Y½ �
Yk k2 −

2 1−αð Þ
RY

tr U0TYð Þ þ c

¼ −α
tr Y0YWYWY

0Y0Y½ �
Yk k2 −

2 1−αð Þ
RY

tr U0YWYð Þ þ c

¼ −α
tr V0Y0YV½ �

Yk k2 −
2 1−αð Þ
RY

tr U0Y Y0Yð Þ−1=2V
� �

þ c

¼ tr V0CV½ � þ tr AV½ � þ c:

ð11Þ

with U =TXB′, V = (Y ′Y)1/2WY, A ¼ − 2 1−αð Þ
RY

U0Y Y0Yð Þ−1=2,
, and c being a constant (see appendix for the detailed
derivation of Eq. 11). This is a function that can be
minimized through iterative majorization (Kiers, 2002).
In each step of this iterative majorization procedure, the
parameters are updated by solving a simple problem for
which a closed-form solution is available. Here, the
problem boils down to updating V subject to TY’TY =
WY’Y’YWY = V’V = I. Specifically, for updating V
(i.e.,Vupdate), the current estimates of V (i.e., Vcurrent)
are used to construct the matrix G:

G ¼ Aþ 2Vcurrent "C−2λVcurrent "; ð12Þ

with λ being a value higher or equal to the highest eigen-
value ofC.Next, we compute a singular value decomposition
of this matrix –G as:

svd −Gð Þ ¼ PDQ0: ð13Þ

Vupdatecan then be calculated as

Vupdate ¼ QP0: ð14Þ

This majorization procedure within step 2 is repeated until
LStep2, previous − LStep2, current < ε. Next, TY and PY are com-
puted based on the final estimate ofV. Specifically,TY =Y(Y
′Y)−1/2Vand PY =Y ′TY.

Model selection

Defining the problem If model selection was already compli-
cated for PCovR (see 2.2.3), it obviously is even more chal-
lenging for PCovR2, because one now needs to decide on RX,
RY, as well as on α. The choice regarding the RX, RY, and α
values will again depend on the research goal. Indeed, as
indicated in the introduction, some researchers aim to retrieve
all the predictor and criterion components, regardless if the
predictor components are relevant or not (i.e., explain variance
of the criterion variables) and regardless if the criterion com-
ponents are predictable or not (i.e., capture variance that is
related to the predictors). Some take a narrower regression
perspective, implying that they are only interested in retriev-
ing the relevant predictor and predictable criterion compo-
nents. On top of that, they often want to interpret the structure
of the predictors and criteria, and thus want the retrieved rel-
evant predictor and predictable criterion components to be an
accurate representation of the predictor and criterion scores.

To illustrate these two different scenarios further, let us
consider a simulated toy example. The dataset was simulated
with three predictor components and with two criterion com-
ponents. The associated loading matrices and regression
weight matrix are shown in Table 1. The true number of rel-
evant predictor and predictable criterion components can be
derived from the simulated regression weights matrix. In par-
ticular, we see that the first criterion component is predictable
(i.e., has at least one non-negligible regression weight), and
the first two predictor components are relevant (i.e., have at
least one non-negligible regression weight), whereas the sec-
ond criterion component is not predictable, and the third pre-
dictor component is irrelevant, as the associated regression
weights are all equal to zero.

To demonstrate how the reconstruction of the respective X
and Y blocks and the prediction of the criterion components,
TY, is affected by the weighting value across different RX and
RY values, we analyzed the data multiple times, where we
varied RX from 1 to 4 and RY from 1 to 3, and let α increase
from .001 to 1, in steps of 001. Afterwards, we computed how
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well X and Y were reconstructed [i.e., first part of the loss
function (8)] and how well the criterion components could
be predicted (i.e., second part of the loss function). We plotted
the obtained values in Fig. 1, where each panel represents a
different RX and RY combination. The x-axis of each plot per-
tains to the α-value and the y-axis to the loss function parts.

We first turn to the goal of retrieving all predictor and
criterion components, disregarding their relevance or predict-
ability. From Fig. 1, it can be concluded that increasing the
number of RX and RY clearly improves the reconstruction of
theX andY blocks, respectively, with this improvement being
more pronounced for high α values (i.e., larger than .5; this is
confirmed by the simulation results in Section “Recovery of
the number of relevant predictor and the number of

predictable criterion components as well as recovery of all
the simulated components”). As could be expected, this im-
provement levels off once RX = 3 and RY = 2, in that going
further up than or to the right of the RX = 3 and RY = 2 plot
hardly changes the picture any further, so this suggests that
one should not take RX and RY higher than these values. The
latter could be further verified by running a scree test (Cattell,
1966; Ceulemans & Kiers, 2006; Wilderjans, Ceulemans, &
Meers, 2013). Thus, Fig. 1 might be useful to decide on the
total numbers of predictor and criterion components.

When it comes to the regression problem and deciding on
the number of relevant predictor components and predictable
criterion components only, Fig. 1 shows that using a low α
value (i.e., lower than .2) yields clearly better prediction

Table 1 The loadings and regression weights used to simulate a toy example, next to the PCovR2 loadings and regression weights for the solutions
with RX=2, RY=1 and RX=3, RY=1 components

Values used to simulate the data Results of PCovR2 with RX=2 and RY=1 Results of PCovR2 with RX=3 and RY=1

PX PY PX PY PX PY

pc1 pc2 pc3 cc1 cc2 pc1 pc2 cc1 pc1 pc2 pc3 cc1

Loadings 1 0 0 1 0 .60 .02 .91 .88 .03 -.06 .91

1 0 0 1 0 .70 .04 .88 .89 .05 .07 .88

1 0 0 1 0 .62 −.14 .86 .91 −.12 −.07 .86

0 1 0 0 1 .61 .06 .08 −.01 .05 .91 .08

0 1 0 0 1 .52 −.05 .05 −.11 −.06 .88 .05

0 1 0 0 1 .58 .06 −.05 .01 .05 .85 −.05
0 1 0 0 1 .61 −.03 .04 .00 −.04 .89 .04

0 1 0 0 1 .61 .02 .02 .02 .01 .87 .02

0 1 0 0 1 .62 .04 −.02 .02 .03 .89 −.02
0 0 1 0 1 −.01 .88 .04 −.03 .88 .02 .04

0 0 1 0 1 .03 .86 −.04 .05 .86 .00 −.04
0 0 1 0 1 −.03 .88 −.01 −.03 .88 −.03 −.01
0 0 1 0 1 .05 .89 .05 .01 .89 .06 .05

0 0 1 0 1 .09 .87 .05 .03 .87 .09 .05

0 0 1 0 1 .00 .91 .05 −.06 .91 .05 .05

0 0 1 0 1 .02 .90 .05 −.03 .90 .05 .05

0 0 1 0 1 .02 .87 −.01 .08 .87 −.06 −.01
0 0 1 0 1 −.06 .88 −.02 −.05 .88 −.04 −.02
0 0 1 0 1 −.04 .87 .01 −.05 .87 −.02 .01

0 0 1 0 1 .00 .86 .07 .03 .86 −.04 .07

0 0 1 0 1 −.04 .88 .00 −.04 .88 −.02 .00

0 0 1 0 1 .03 .85 .02 .01 .85 .03 .02

0 0 1 0 1 .02 .89 .02 .02 .89 .00 .02

0 0 1 0 1 −.04 .87 .02 −.06 .87 .00 .02

Regression weights cc1 .71 .71 0 .95 −.02 .70 .02 −.65
cc2 0 0 0

To obtain these solutions we set α to .05. The simulated regression weights show that this example includes 3 predictor components and 2 criterion
components in total, but that only two of the three predictor components are relevant and only one of the criterion components is predictable. The
loadings and regression weights of these relevant and predictable components are printed in bold. pc1 up to pc3 denote the first up to third predictor
component and similarly cc1 and cc2 denote the first and the second criterion component
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results and is therefore clearly indicated (this will again be
confirmed by the simulation study). Moreover, we see a spe-
cific prediction trend for α values that are very close to 0: it
makes no sense to take more predictor components than there
are criterion components, as it would not further reduce the
prediction loss. Note that the models with RY = 1 and with one
to four predictor components, for example, all show quite

similar prediction error values for low α values.
Analogously, if RY = 2, taking more than two predictor com-
ponents does not lead to a decreased prediction loss, and gen-
erally, if Rx is larger than RY, this does not lead to reduced
prediction loss compared to what is found when Rx = RY.

To understand how picking low α values affects the recon-
struction part of the model given these prediction findings, we

Fig. 1 Values of the reconstruction and prediction parts of the PCovR2
loss function (shown on the Y-axis) for the toy data as a function of the
value of the weighting parameter α (shown on the X-axis). The panels
pertain to 1 to 4 predictor components (rows) and 1 to 3 criterion

components (columns). The dashed line ‘–’, dash-dot line ‘-.’ and solid
line ‘-’ denote the reconstruction error of X and Y, and the prediction
error, respectively
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inspect the associated loading and regression matrices from
the (RX = 2, RY = 1,α = .05) analysis in Table 1. Given that the
simulated data contain two relevant predictor components and
one predictable criterion component, we might a priori have
expected good recovery of these components. Yet, the predic-
tion findings in the previous paragraphs already suggest that
this might not be the case. Indeed, Table 1 shows that the
relevant predictor components are not well recovered but are
rather merged into one component2. This merged component
has a very high regression weight (.95), while the second
predictor component has a low regression weight (.02) and
corresponds to the irrelevant component. Further scrutinizing
the results, we see that in order to properly recover both rele-
vant predictor components, we actually need to extract more
predictor components. Indeed, the (RX = 3, RY = 1, α = .05)
PCovR2 solution adequately recovers the structure of the two
relevant predictor components. Note that the (RX = 3, RY = 2,
α = .05) analysis again yields merged predictor components;
this makes sense as Fig. 1 shows that for this (RX , RY) com-
bination, we need a higher α value to properly reconstruct X.
Overall, these findings indicate that model selection in terms
of retrieving the relevant predictor and predictable criterion
components is not an easymatter, and it cannot be fully solved
by scrutinizing a plot like Fig. 1. To further supplement the
decision process, and also to make automatic selection possi-
ble, in the next section, we propose a two-step model selection
heuristic that users can apply to get a better grip on this prob-
lem for a particular data set.

A two-step model selection heuristic to retrieve all relevant
and predictable components To retrieve all relevant and pre-
dictable components, we developed a two-step approach that
can be automated. To run this approach, one estimates multi-
ple PCovR2 models with RX and RY varying from 1 up to a
pre-defined number. In the first step, we decide on the number
of predictable criterion components, RY. In the second step, we
assess the number of relevant predictor components, RX. We
fixed the α-value to .05, since Fig. 1 points towards using a
small value in case one wants to focus on the relevant and
predictable components. Note that using other small α values
would lead to the same conclusions.

Step 1: Finding the number of predictable criterion
components

To decide on the number of predictable criterion compo-
nents, we assess for each criterion component how well it is
reconstructed by the predictor components. To this end, we
calculate for each criterion component the sum of the

corresponding squared entries of ETY (see Eq. 6), yielding a
criterion component-specific prediction error. Panel a of Fig. 2
shows the obtained prediction errors for the criterion compo-
nents of the toy example, revealing a lot of variation in pre-
dictability within and across solutions. At this point, we need a
rule to decide when we consider a criterion component to be
predictable. We propose to compare the prediction errors of
each criterion component to a threshold value TRy that is de-
rived from the data. To obtain this threshold, we make a his-
togram of all the prediction errors; panel b of Fig. 2 shows the
histogram for the toy example.We observe a lot of variation in
the component-specific prediction errors that seem to consist
of five groups of values (one of which is small). The gaps in
prediction errors between the five groups yield four possible
thresholds corresponding to the highest values of the first four
groups. To restrict oneself to the most predictable compo-
nents, we suggest being strict and to set the threshold TRy at
the highest value of the first group, which in this case equals
.10.We see that none of the rows of the table in panel a of Fig.
2, and thus none of the 25 considered PCovR solutions, con-
tains more than one value smaller than .10, and hence we can
conclude that, according to our rule, none of the solutions
contain more than one predictable criterion component.
Therefore, we decide that these data contain only one predict-
able criterion component. Note that if we set the threshold in a
less strict way, by using, for example, the highest prediction
error in the second group of the histogram, we would have
some rows that contain two, three, or even four predictable
criterion components, which would obviously be too high for
this dataset.

Step 2: Finding the number of relevant predictor
components

Once we have chosen the number of predictable criterion
components, we assess the number of relevant predictor com-
ponents. To do so, we examine the regression weights of the
different solutions with the selected number of criterion com-
ponents. These solutions vary with respect to the value of RX.
For instance, panel c of Fig. 2 shows these regression weights
for the toy example, with the number of predictor components
RX varying from one to five. To decide which regression
weights indicate a relevant component, we again make use
of a threshold TRx. This threshold will be computed based on
the threshold TRy from the first step. In case only one predictor
component is needed to explain the predictable criterion com-
ponent, the corresponding regression weight would amount

to
ffiffiffiffiffiffiffiffiffi
1−T

p
. As multiple relevant predictor components might

be needed however to reconstruct the predictable criterion
component, we set the threshold lower, and we somewhat

arbitrarily choose to set it at TRx ¼
ffiffiffiffiffiffiffiffiffi
1−T

p
=2 . Note that com-

puting TRx in this way allows one to automate and evaluate the
model selection method in a simulation study (see later).

2 Pilot simulations showed that when we estimate the PCovR2 model setting
RY equal to the number of predictable criterion components, we always recover
these components well, without merging or other problems occurring.
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When applying the method to real data, one could again make
a histogram of the regression weights and evaluate different
options. For the toy example, TRx equals .47, which implies
that some solutions in the regression weights table (panel c of
the Fig. 2) include one relevant predictor only and some two.
We propose selecting the most parsimonious solution with the
highest number of relevant predictor components, as in such a
solution, relevant components will probably not have been
merged and the number of irrelevant predictor components
remains low. So this means that for the toy data, we would
select the solution with three predictor components, but would
communicate that only two of these three components are
relevant. The fact that an irrelevant component shows up in
the solution is a consequence of the fact that our aim is not only
to get good predictions, but also good reconstruction of X.

PCR2 and PLS2 fail in parsimoniously recovering the relevant
predictor and predictable criterion components

Using the toy example in Table 1, the previous section dem-
onstrated how relevant predictor and criterion components can

be found in a parsimonious way with PCovR2. We now in-
vestigate how PCR2 and PLS2 handle the problem, using the
same data.

PCR2 PCR2 performs the reduction and regression steps in a
sequential way, starting with the reduction step. Therefore, we
expect that when the used RX and RY are lower than the un-
derlying ones and the relevant/predictable components are
weaker than the irrelevant/unpredictable ones, PCR2 will ex-
tract the irrelevant/unpredictable components rather than the
relevant/predictable ones. Remember that PCR2 corresponds
to setting α = 1, as confirmed by Fig. 1, indeed, noting the bad
prediction score for RX = 2 and RX = 1 solution. It becomes
clear that we need to set RX to three and RY to two to extract the
relevant predictable and predictable criterion components (see
Table 2).

PLS2 Like PCovR2, PLS2 performs the prediction and reduc-
tion steps simultaneously. However, PLS2 restricts RX to be
equal to RY and implies a one-to-one correspondence between
the respective predictor and criterion components. Therefore,
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extracted criterion 
components (cc)

Y X

cc1 cc2 cc3 cc4 cc5
1 .09
2 .09
3 .09
4 .09

1

5 .09
1 .09 1.00
2 .34 .09
3 .09 .34
4 .09 .34

2

5 .34 .09
1 1.00 .09 .99
2 1.00 .09 .34
3 .34 .09 .42
4 .09 .41 .34

3

5 .09 .41 .34
1 .99 .10 1.00 1.00
2 .09 1.00 .68 .66
3 1.00 .09 .42 .34
4 .40 .43 .09 .41

4

5 .09 .38 .43 .42
1 1.00 1.00 1.00 .10 .99
2 1.00 .10 1.00 .70 .63
3 1.00 .10 .69 .42 .65
4 .09 .43 .98 .43 .38

5

5 .42 .54 .44 .09 .38

RX Regression weights # Relev 
pc

1 .95 1
2 .95 .02 1
3 .70 .02 -.65 2
4 .70 .02 .65 .03 2
5 .70 .02 .65 .02 .09 2

a) c)
Fig. 2 (a) The sum of squared prediction errors for each criterion
component across 25 PCovR2 models, estimated with RX and RY

varying from one up to five. cc1 up to cc5 indicates the first up to the
fifth criterion component within the considered solution. Predictable

criterion components are marked in bold. (b) Histogram presenting the
distribution of all the sum of squared prediction errors reported in Fig. 2a.
(c) The regression weights that are obtained when RY is fixed to 1 and RX

varies from 1 to 5
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when the number of underlying relevant predictor compo-
nents differs from the number of predictable criterion compo-
nents, we expect PLS2 to miss out on some of these compo-
nents or to merge them. The PLS2 loadings in Table 2, ob-
tained using one, two, or three components, support this ex-
pectation. The solution with one component recovers the pre-
dictable criterion component, but merges the two relevant pre-
dictor components. When we extract one more component,
the weakest relevant predictor component is merged with the
irrelevant one. In the solution with three components, all pre-
dictor components are recovered properly, but the criterion
component that corresponds to the weakest relevant compo-
nent is not meaningful, as can also be derived from the
(criterion) component-specific sums of squared prediction er-
rors (see Table 2).

Simulation study

In this section, we report the results of a simulation study in
which we evaluate which criterion and predictor components
are recovered by the PCovR2 algorithm and how this is af-
fected by theα value. Second, we evaluate the performance of
the proposed model selection heuristic.

In line with the PCoVR simulation studies of Vervloet et al.
(2013, 2016, 2018), we manipulated the relevance and the
strength of the predictor component. Additionally, we also
varied the predictability and strength of the criterion compo-
nents. The relevance of the predictor components is defined as
follows. Predictor components that are relevant are useful in
modeling part of the criterion variance (i.e., they have at least
one large regression weight), whereas irrelevant predictor

Table 2 The loadings and the (criterion) component-specific sum of squared prediction errors for the PCR2 solution with RX=3 and RY=2 and the
PLS2 solutions with 1, 2 and 3 components

PCR2 with RX=3 and RY=2 PLS2 with
RX=RY=1

PLS2 with RX=RY=2 PLS2 with RX=RY=3

PX PY PX PY PX PY PX PY

pc1 pc2 pc3 cc1 cc2 pc1 cc1 pc1 pc2 cc1 cc2 pc1 pc2 pc3 cc1 cc2 cc3

Loadings .03 −.06 −.89 −.03 −.91 −.35 −.63 −.23 −.51 −.72 −.22 .04 .06 .7 .72 .21 −.15
.05 .08 −.91 .03 −.89 −.49 −.63 −.34 −.62 −.67 −.07 .1 .06 .89 .73 .18 .1

−.12 −.06 −.92 −.07 −.9 −.35 −.62 −.24 −.45 −.63 .06 .01 −.1 .79 .68 .05 .12

.05 .9 .03 −.86 −.05 −.79 −.06 −.83 .08 .06 .43 .89 .05 −.03 −.14 −.58 −.14
−.06 .89 .09 −.86 −.08 −.75 −.05 −.8 .13 .08 .44 .83 −.08 .02 −.17 −.62 −.17
.05 .86 −.03 −.86 .05 −.78 .06 −.8 −.02 .1 .13 .81 .04 .12 −.18 −.29 −.23
−.04 .88 .01 −.89 −.05 −.78 0 −.83 .11 .11 .4 .86 −.05 .02 −.14 −.45 .03

.01 .87 −.02 −.88 −.05 −.79 −.01 −.83 .09 .09 .38 .88 .01 −.01 −.15 −.48 −.06

.03 .9 −.04 −.85 −.01 −.82 0 −.85 .01 .13 .47 .87 .02 .1 −.21 −.62 −.12

.88 .01 .05 −.9 −.05 −.04 −.01 .11 −.6 .09 .33 .02 .88 −.07 −.15 −.45 −.1

.86 −.01 −.03 −.85 −.01 −.06 .02 .11 −.68 .07 .16 −.02 .86 .06 −.15 −.33 −.24

.88 −.04 .04 −.89 .04 0 .05 .13 −.55 .18 .47 .02 .89 −.16 −.21 −.52 .06

.89 .06 −.02 −.85 −.04 −.12 0 .04 −.66 .06 .22 .06 .89 .02 −.14 −.37 −.2

.87 .08 −.03 −.87 −.08 −.14 −.03 .01 −.63 .11 .51 .1 .88 −.01 −.16 −.6 −.01

.91 .05 .05 −.87 −.09 −.08 −.02 .09 −.69 .14 .6 .01 .9 .03 −.2 −.7 .01

.9 .07 −.01 −.87 −.04 −.12 0 .06 −.71 .11 .38 .03 .88 .09 −.15 −.46 −.01
.87 −.07 −.06 −.87 .01 −.02 .04 .14 −.66 .12 .27 −.04 .88 .01 −.18 −.38 −.1
.88 −.03 .03 −.88 .07 −.01 .02 .16 −.69 .12 .36 −.08 .86 .06 −.21 −.52 −.16
.87 −.03 .07 −.87 −.03 0 .02 .16 −.63 .12 .36 −.06 .86 −.02 −.15 −.41 .02

.86 −.03 −.04 −.88 −.04 −.04 −.04 .13 −.7 .07 .39 −.06 .85 .1 −.12 −.49 −.06

.88 −.01 .01 −.88 −.01 −.04 .02 .13 −.69 .13 .38 −.05 .87 .06 −.16 −.43 .02

.85 .03 .01 −.87 −.03 −.07 .01 .09 −.66 .12 .41 0 .85 .05 −.18 −.52 −.06

.89 −.01 −.01 −.87 −.02 −.05 .03 .11 −.65 .1 .24 .01 .89 −.02 −.15 −.34 −.09

.87 0 .05 −.87 −.05 −.03 .01 .11 −.58 .15 .53 .02 .88 −.1 −.18 −.58 .08

cc−specific prediction errors 1.00 .15 .22 .21 .95 .18 .9 .93

Loadings with absolute values higher than .40 are printed in bold
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components are not, and have regression weights of zero. The
predictability of the criterion components is also determined
by the regression weights. Whereas irrelevant criterion com-
ponents cannot be predicted based on the predictor compo-
nents and thus correspond with regression weights of zero,
predictable criterion components are associated with at least
one larger regression weight. The strength of a predictor or
criterion component is defined by the percentage of variance
that it explains in the predictor or criterion data, respectively.
We evaluate both the recovery of the relevant predictor and
predictable criterion components and the recovery of all the
simulated predictor and criterion components. We expect that
when it comes to recovery of all the components, higher α
values will do better, while if we are interested in relevant
predictor and predictable criterion components, lower α
values are going to yield better results. Moreover, we expect
the merging issue that was described in Section “Defining the
problem” to pop up in some conditions. We expect that, in
those conditions, recovery of the relevant predictor and pre-
dictable criterion components will benefit from applying the
proposed heuristic.

Data generation

All constructed datasets contained 100 observations of 24 pre-
dictor variables and 24 criterion variables. These data were
generated according to X = TXPX ′ +EXand Y = TYPY ′ +
EY, while taking into account the predictive relation between
TX and TY TY ¼ TXB0 þ ETX . The number of criterion com-
ponents RY was set to two throughout this study, while the
number of predictor components RX equaled either two or
three. We will now describe how all underlying matrices were
simulated.

The elements of the component matrices TX and TY were
randomly drawn from a standard normal distribution, taking
into account the relevance and predictability of the predictor
and criterion components. This was done as follows: the com-
ponent score matricesTX andTYwere sampled together from a
multivariate normal distribution. The diagonal entries of the (RX
+ RY) by (RX + RY) covariance matrix of this multivariate dis-
tribution were set to one, implying that this matrix is a correla-
tion matrix, and the off-diagonal entries equal zero if they per-
tain to pairs of predictor components or to pairs of criterion
components. The off-diagonal entries that refer to a combina-
tion of a predictor component and a criterion component are set
to the values of the regression weight matrix B, which imposes
the predictive relation TY ¼ TXB0 þ ETY without having to
generate ETY . Afterwards, in order to discard deviations from
orthogonality and unit variance restrictions that are due to sam-
pling, TX and TY were orthogonalized and standardized.

The loading matrices PX and PY were created using
only ones and zeros, with each variable (i.e., predictor

or criterion) having only one loading of 1 and with a
different number of 1s per component (see Table 1 for
an example). The loading matrices thus have simple
structure. Loading matrices with two components had,
respectively, three and 21 highly loading variables;
loading matrices with three components had, respective-
ly, three, six, and 15 highly loading variables. Hence,
the first component was always weak and the last com-
ponent always strong, referring to the amount of vari-
ance in the variable scores accounted for by those com-
ponents; the component that consists of six variables
can also be considered weak.

The regression weight matrix B (RY × RX) was constructed
according to Table 3 with the size of the non-zero regression
weight(s) determined according to factor 2. This manipulation
implies that in some conditions, the non-zero regression
weights amount to .995, indicating that the predictable criterion
components can be almost perfectly predicted based on the
relevant predictor components. In other conditions, the regres-
sion weights amount to .86, implying that only part of the
scores on the predictable criterion components can be captured
by means of the relevant predictor components. We also ma-
nipulated the location of the non-zero regression weights (factor
3), yielding four types of regression weight matrices. In types 1
and 3, the relevant predictor components are weak, and the
irrelevant ones are strong. In types 2 and 4, the situation is
reversed for RX = 2; for RX = 3, one weak predictor component
is relevant, as well as the strong one. Types 1 and 3 differ with
respect to the strength of the predictable criterion component: In
type 1 the predictable criterion component is weak, while in
type 3 it is strong. The same holds for type 2 and type 4.

The error matrices EX and EY were drawn from a standard
normal distribution as well, and were also standardized and
orthogonalized. The error matrices were rescaled to obtain
25% of error variance (i.e., the predictor and criterion compo-
nents explain 75% of the predictor and criterion variance,
respectively).

Next,X andYwere created bymultiplyingTX andTYwith
PX and PY, respectively, and by adding EX and EY. Finally,X
and Y were normalized so that each predictor and criterion
had a sum of squares of one.

Summarizing the above setup, the following data charac-
teristics were manipulated in a full factorial design:

1. The number of predictor components: 2, 3
2. The size of the non-zero regression weights: .995, .86
3. The strength of the relevant predictor and predictable cri-

terion components: four types of regression weight matri-
ces for each level of factor 1 (see Table 3)

For each of the 2 × 2 × 4 = 16 cells of the factorial design,
25 datasets were constructed, yielding 400 datasets in total.
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Data analysis

To investigate the recovery of the components and how
it depends on α, we first analyzed each data set six
times. Specifically, the RX and RY values were set to
the number of relevant predictor and the predictable
criterion components, on the one hand, and to all the
simulated predictor and criterion components, on the
other hand. Moreover, in each of both settings, we used
three α values: . 13, . 5, and .9 Note that when we talk
about the numbers of relevant predictor components and
predictable criterion components, we refer to the number
of components which are associated with at least one
non-zero regression weight according to the simulation
settings in Table 3.

Next, we applied the model selection heuristic to all
datasets. Here, we let RX and RY vary from one to five, yield-
ing 25 solutions. We set the α value to .05 (see
Section “Model selection”), as we wanted to retrieve the rel-
evant predictor and predictable criterion components regard-
less of their strength.

To avoid obtaining a local minimum, we always ap-
plied a multi-start procedure with 25 starts4, and set ε =
10−6 when specifying the convergence criterion. For each
solution, we varimax-rotated both the predictor loadings
and the criterion loadings, and compensated for these
rotations in the component scores and the regression
weights (see Section “Model”). Afterwards, we applied
the heuristic described in Sect. 2.5.4 to the obtained 25
solutions, to select the relevant predictor and predictable
criterion components.

Results

Recovery of the number of relevant predictor and the number
of predictable criterion components as well as recovery of all
the simulated components

PCovR2 In order to investigate the recovery of the relevant
predictor and predictable criterion components, we computed
the Tucker congruence value (Korth& Tucker, 1975) between
the estimated component loadings by the PCovR2 model with
RX and RY fixed to the number of simulated relevant predictor
and predictable criterion components (i.e., RX = 2 or 3 and RY
= 2), respectively, and the true relevant predictor and predict-
able criterion components (i.e., RX = 2 and RY = 1). When the
number of components exceeded one, we calculated the con-
gruence per component and averaged the obtained values.

Table 4 shows the mean recovery when we extract the
numbers of relevant predictor components and predictable
criterion components (i.e., taking RX = 1 or 2 based on the
level of factor 1, and RY = 1). Table 5 shows the recovery
results when extracting all the simulated components (i.e.,
setting RX = 2 or 3 based on the level of factor 1 and RY =
2) across multiple α values. As expected, when it comes to
recovering the numbers of all simulated predictor and criterion
components (hence not just the relevant ones), the higher the
α value, the better. In fact, using an α value of .9, always
yields almost perfect congruence values of .99, whereas these
values range between .67 and .92 for an α value of .1.

This is not the case when only extracting the numbers of
relevant predictor and predictable criterion components, how-
ever. For example, in the first row of Table 4, the recovery of
the criterion components goes down from .97 to .01 when we
increase α from .1 to .9. In this simulation cell, the data sets
were simulated with weak but predictable and strong but non-
predictable criterion components. When we model these data
sets with one criterion component, the algorithm extracts the
predictable criterion component if α = .1, while it selects the
strong but non-predictable criterion component with higher α
values. Moreover, there are some simulation cells for which,

3 Note that next to. 1, we also examined other low alpha values: . 04 and . 05.
The results were very similar, thus we only report the results for. 1.
4 In a pilot study, we performed 400 starts, but the first 25 starts always
contained at least one start that yielded the best encountered loss function value
across the 400 starts. Therefore, we reduced computational effort by decreas-
ing the number of random starts to 25.

Table 3 Four types of regression weight matrices B (factor 3), with either 2 or 3 predictor components (factor 1), and with “x” depicting a regression
weight of .995 or .86 (factor 2)

RX Strength of criterion
component

Type 1 Type 2 Type 3 Type 4

Weak Pred.
Comp.

Strong Pred.
Comp.

Weak Pred.
Comp.

Strong Pred.
Comp.

Weak Pred.
Comp.

Strong Pred.
Comp.

Weak Pred.
Comp.

Strong Pred.
Comp.

2 Weak x 0 0 x 0 0 0 0

Strong 0 0 0 0 x 0 0 x

3 Weak x x 0 0 x x 0 0 0 0 0 0

Strong 0 0 0 0 0 0 x x 0 0 x x
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Table 5 Mean recovery of all the simulated components with PLS, PCR2 and PCovR2. For PCovR2 we used three different α values. In all these
analyses the number of extracted predictor components and criterion components are set to the numbers of simulated ones (see factor 1)

Conditions PLS PCovR2 PCR2

α = .1 α =.5 α = .9

NofPred RegWght Type PX PY PX PY PX PY PX PY PX PY

2 .995 1 .89 .63 .89 .88 .99 .99 .99 .99 .99 .99

3 .995 1 X X .75 .90 .94 .99 .99 .99 .99 .99

2 .86 1 .89 .66 .86 .83 .99 .99 .99 .99 .99 .99

3 .86 1 X X .80 .89 .94 .99 .99 .99 .99 .99

2 .995 2 .87 .99 .72 .88 .79 .99 .99 .99 .99 .99

3 .995 2 X X .82 .89 .89 .99 .99 .99 .99 .99

2 .86 2 .85 .98 .70 .91 .79 .99 .99 .99 .99 .99

3 .86 2 X X .79 .87 .85 .99 .99 .99 .99 .99

2 .995 3 .97 .56 .90 .71 .99 .77 .99 .99 .99 .99

3 .995 3 X X .83 .71 .94 .75 .99 .99 .99 .99

2 .86 3 .96 .57 .92 .75 .99 .79 .99 .99 .99 .99

3 .86 3 X X .79 .72 .94 .80 .99 .99 .99 .99

2 .995 4 .98 .86 .75 .72 .86 .81 .99 .99 .99 .99

3 .995 4 X X .83 .67 .90 .76 .99 .99 .99 .99

2 .86 4 .92 .66 .69 .73 .77 .83 .99 .99 .99 .99

3 .86 4 X X .81 .71 .87 .82 .99 .99 .99 .99

The ‘X’ denotes the cases where the simulated number of predictor components differs from the number of simulated criterion components, implying
that PLS cannot be applied

Table 4 Mean recovery of the relevant predictor components and
predictable criterion components with PLS, PCR2, and PCovR2. For
PCovR2, we used three different α values. In all these analyses, the
number of extracted predictor and criterion components is set to the

number of relevant predictor components and predictable criterion
components. The “X” denotes the cases for which the number of
relevant predictor components differs from the number of predictable
criterion components, implying that PLS cannot be applied

Conditions PLS PCovR2 PCR2

α = .1 α =.5 α = .9

NofPred RegWght Type PX PY PX PY PX PY PX PY PX PY

2 .995 1 .80 .98 .97 .97 .01 .01 .01 .01 .01 .01

3 .995 1 X X .41 .98 .43 .86 .50 .01 .50 .01

2 .86 1 .79 .97 .94 .95 .01 .01 .01 .01 .01 .01

3 .86 1 X X .41 .97 .43 .67 .50 .01 .50 .01

2 .995 2 1.00 .99 1.00 .98 1.00 .96 1.00 .01 1.00 .01

3 .995 2 X X 1.00 .98 1.00 .91 1.00 .01 1.00 .01

2 .86 2 1.00 .98 1.00 .97 1.00 .85 1.00 .01 1.00 .01

3 .86 2 X X .99 .97 .99 .81 1.00 .01 1.00 .01

2 .995 3 .95 1.00 .98 1.00 .97 1.00 .01 1.00 .01 1.00

3 .995 3 X X .42 1.00 .43 1.00 .49 1.00 .51 1.00

2 .86 3 .93 1.00 .97 1.00 .87 1.00 .01 1.00 .01 1.00

3 .86 3 X X .42 1.00 .43 1.00 .49 1.00 .50 1.00

2 .995 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 .995 4 X X 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 .86 4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 .86 4 X X 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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regardless of α, the recovery is never good enough. For ex-
ample, in the second row of the table, the recovery of the
predictor loadings is never higher than .5. This is due to the
merging issue, demonstrated in Section “Model selection”,
which occurs when the number of relevant predictor compo-
nents differs from the number of predictable criterion compo-
nents. For such scenarios, the model selection heuristic, pro-
posed in Section “Model selection”, might yield better results.

PLS2 and PCR2 We also examined the performance of PLS2
and PCR2, by investigating how well these methods recov-
ered the relevant predictor and predictable criterion compo-
nents on the one hand and all the simulated predictor and
criterion components on the other hand. As discussed earlier
in this paper, PLS2 imposes an equality restriction on the
number of predictor and criterion components.Therefore, we
only applied PLS2 in the conditions where the number of
simulated components equalled two. Like PCovR2, PCR2
does not restrict the numbers of predictor and criterion com-
ponents to be the same. Hence, PCR2 could be applied in all
conditions.

The results are presented in Tables 4 and 5. Like PCovR2,
PLS2 seems to be affected by the strength of the relevant
predictor and predictable criterion components, when

focusing on these components only. Indeed, as can be seen
in Table 4, PLS2 performs worst, when the relevant predictor
and predictable criterion components are both weak (i.e., with
type 1 regression weights, see Table 3). Moreover, the recov-
ery of all simulated components (Table 5) is worse than that of
the relevant and predictable ones (Table 4). The latter is not
surprising as PLS2 is designed to find predictor and criterion
components that are related to one another. If we compare the
PLS2 results to the PCovR2 ones, we see in Table 4 that with
α = .1, PCovR2 performs sligtly better than PLS2. Table 5
shows that when targeting all the simulated components,
PCovR2 analyses with higher α values recover the compo-
nents better than PLS2. The PCR2 results in both tables are
very similar to the ones of PCovR2 with α = .9. This makes
sense, since PCR2 equals PCovR2 with α = 1. Overall, this
comparison of PLS2, PCR2, and PCovR2 under two different
scenarios (focusing on the relevant predictor and predictable
criterion components only or on all the components) demon-
strates the benefits of the PCovR2 weighting parameter.

Model selection

First, we checked whether the model selection heuristic
yielded the correct number of relevant predictor components,
which amounts to one when RX = 2 and to two when RX = 3,
and the number of predictable criterion components, which
always equaled one. Table 6 shows the number of datasets
for which the model selection heuristic found the correct num-
ber of relevant predictor and predictable criterion components.
Specifically, the heuristic yielded a correct result for 365 out
of the 400 datasets. Performance is mostly affected by the
number of predictor components and the size of the non-
zero regression weights, respectively, as 32 and 26 of the 35
mistakes occurred when the number of predictor components
equaled two and when the non-zero regression weight
amounted to .86. The effect of the strength of the components
is less outspoken. Further analyzing the 35 mistakes, the first
step of the model selection rule yielded an incorrect result,
which is a too high number of predictable criterion compo-
nents, for 24 of them. This implies that for the remaining 16
cases, model selection went wrong when assessing the num-
ber of relevant predictor components. Again, all mistakes
pertained to selecting too many components.

Next, we again investigated the recovery of the relevant
and predictable components by computing the Tucker congru-
ence value between the estimated component loadings and the
true relevant predictor and predictable criterion ones. When
too many components were extracted, we computed the con-
gruence value for the components that resembled the true ones
the most. The last two columns of Table 5 show the recovery
of the predictor and criterion loadings. Per cell of the design,
the number before the vertical line indicates mean recovery for
the datasets for which the model selection heuristic returned

Table 6 The number of datasets for which the correct number of
relevant predictor and predictable criterion components were found, as
a function of the number of predictor components, the size of the non-zero
regression weight (RegWght), and type of regression weights matrix

Conditions Frequency of
finding the correct
number of
components

Mean recovery
of the loadings

RX RegWght Type PX PY

2 .995 1 25 .97 .97

3 .995 1 25 .99 .98

2 .86 1 18 .95 | .98 .96 | .94

3 .86 1 25 .99 .97

2 .995 2 21 1 | .99 .99| .98

3 .995 2 25 1 .98

2 .86 2 18 1 | 1 .97 | .96

3 .86 2 23 .99 | 1 .97 | .98

2 .995 3 25 .98 1

3 .995 3 25 .99 1

2 .86 3 19 .97 | .98 1 | 1

3 .86 3 24 .99 | .99 1 | 1

2 .995 4 20 1 | .99 1 | 1

3 .995 4 25 1 1

2 .86 4 22 1 | .99 1 | 1

3 .86 4 25 1 1

The last two columns present the mean recovery of the relevant predictor
and predictable criterion loadings, in case of correct and incorrect model
selection (separated by a vertical line)
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the correct numbers of relevant predictor components and
predictable criterion components. The number after the line
corresponds to the datasets for which the heuristic returned an
incorrect result. The high Tucker congruence values for the
datasets, for which the model selection heuristic returned an
incorrect result, show that even for these datasets, the relevant
predictor and predictable criterion components were ade-
quately recovered. The average Tucker congruence values in
Table 5 are higher or equal to .95, which, according to
Lorenzo-Seva & ten Berge (2006), indicates that the compo-
nents compared can be considered as equal. The average
Tucker congruence seems to be affected by the strength of
the relevant and predictable components: In type 1, both the
relevant predictor and predictable criterion components are
weak, yielding worst recovery. In contrast, in type 4, the pre-
dictable criterion component and one of the relevant predictor
components are strong, yielding about perfect recovery.

Conclusion

The simulation study showed that if one is interested in recov-
ering all the predictor and criterion components, regardless if
they are relevant or predictable, one best uses PCovR2 with a
high α value or PCR2. In contrast, lower α values lead to a
better recovery of the subset of relevant predictor and predict-
able criterion components. In case the number of relevant

predictor components equals the number of predictable crite-
rion components, PLS2 yielded similar results. However,
when the latter does not hold, PLS2 cannot be applied, and
naively applying PCovR2 with the true number of relevant
predictor and predictable criterion components did not yield
good enough results. The latter is due to the merging issue
described in Section “Defining the problem”. For such cases,
the model selection heuristic, proposed in Section “A two-step
model selection heuristic to retrieve all relevant and predict-
able components”, was useful. Indeed, using this heuristic, the
mean recovery of the relevant predictor and predictable crite-
rion loadings outperformed that of analyses with the number
of relevant predictor and predictable criterion components.

Illustrative application

In this section, we analyze survey data of 192 fathers and their
child, taken from “The 500 Family Study” (Schneider &
Linda, 2008). For each family, the father filled in eight ques-
tionnaires, regarding their relationships, feelings, etc., and the
child seven questionnaires (see Table 7). Like Gu and Van
Deun (2018), we calculated a single score for each question-
naire, by summing the scores on the questions within the
questionnaire. We thus obtained anXmatrix with dimensions
192 × 8 pertaining to the father data, and a Y matrix with
dimensions 192 × 7 concerning the child data. This means

Table 7 Varimax rotated loadingmatrices and regression weights of three interesting PCovR2 solutions; loadings and regression weights above .40 are
shown in bold

Father variables RX=1, RY=1, α=.05 RX=2, RY=1, α=.05 RX=2, RY=2, α=.05

FathComp1 FathComp1 FathComp2 FathComp2 FathComp1

Relationship with partners -29 .22 .51 .11 .60

Argue with partners .05 -.07 .81 -.05 .36

Child’s bright future .81 .82 .03 .86 .02

Activities with the child .02 .01 .07 -.01 .09

Feelings about parenting .36 .32 .35 .35 .12

Communication with the child .26 .24 .11 .02 .74

Argue (aggressively) with the child .45 .36 .64 .38 .30

Confidence about oneself .15 .05 .71 .14 .12

Child variables ChiComp1 ChiComp1 ChiComp1 ChiComp2

Self-confidence/esteem .72 .71 .47 .65

Academic performance .79 .79 .87 .07

Social life and extracurricular activities .07 .07 .02 .16

Importance of friendship .23 .23 -.04 .59

Self-image .13 .12 -.09 .51

Happiness .26 .25 -.02 .61

Confidence about the future .50 .50 .18 .73

Regression weights FathComp1 FathComp1 FathComp2 FathComp1 FathComp2

ChiComp1 .46 .46 .05 .44 -.01

ChiComp2 .10 .33
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that, in our analyses, we examine the extent to which the child
questionnaires can be predicted by the father ones. After pre-
processing (centering the data and setting the sum of squares
per questionnaire to 1), the data were analyzed with PCovR2.

In order to decide on the number of relevant predictor and
predictable criterion components, we applied the model selection
rule that we described in Section “Model selection”. First, letting
RX andRY vary from 1 to 5, we fitted 25 PCovR2models. Again,
we fixed the α value to .05, because the simulation study con-
firmed that low α values are preferable when one wants to focus
on the regression problem. To decide on the number of predict-
able criterion components, we considered the criterion
component-specific prediction errors in panel a of Fig. 3, and
the associated histogram (panel b). Based on the grouping struc-
ture in the histogram, we put the threshold TRy for distinguishing
predictable and unpredictable components to .79.Given that each
considered solution contains no more than one predictable crite-
rion component, we conclude that this dataset contains one pre-
dictable criterion component and set RY to one.

Panel c of Fig. 3 shows the regression weights of the
PCovR2 solutions with one criterion component and the num-
ber of predictor components varying from one to five. Based

on the formula TRx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−TRy
� �q

=2, we compute the thresh-

old for the regression weights TRx as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−:79ð Þp

=2 ¼ :23.
Comparing the regression weights to this threshold, we see
that each considered solution contains only one relevant pre-
dictor component. Thus, we conclude that this dataset has one
relevant predictor and one predictable criterion component
and retain the RX = 1 and RY = 1 solution.

However, attentive readers might note that the heuristic in-
cludes some arbitrary decisions. For example, panel b of Fig. 3 is
not very clear, and if we would have used a different number of
bins, we might have ended up with a less strict threshold and
possibly a higher number of predictable criterion components.
Therefore, we supplement Fig. 3 with Fig. 4. This figure plots
how wellX andY are reconstructed and howwell TY is predict-
ed, as a function of theα value used and the number of extracted
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errors of each of the 
extracted criterion 
components (cc)

Y X

cc1 cc2 cc3 cc4 cc5
1 .79
2 .79
3 .79
4 .79

1

5 .79
1 .79 1
2 .88 .81
3 .88 .81
4 .88 .81

2

5 .81 .88
1 1 .79 1
2 .89 .98 .82
3 .81 .91 .90
4 .89 .91 .82

3

5 .89 .91 .82
1 .83 1 .96 1
2 .89 1 .83 .98
3 .95 .93 .90 .83
4 .84 .89 .95 .90

4

5 .84 .90 .94 .89
1 1 1 .89 .93 .97
2 .93 .98 .92 1 .86
3 .86 .97 .99 .91 .89
4 .91 .96 .98 .85 .89

5

5 .97 .85 .88 .96 .91

RX Regression weights # Relev. 
pc

1 .46 1
2 .46 .05 1
3 .46 .05 .04 1
4 .44 .09 .04 .09 1
5 .43 -.07 .02 -.08 -.12 1

a) c)
Fig. 3 (a) The sum of squared prediction errors for each criterion
component across 25 PCovR2 models, estimated with RX and RY

varying from one up to five for the illustrative application. cc1 up to
cc5 indicates the first up to the fifth criterion component within the

considered solution. Predictable criterion components are marked in
bold. (b) Histogram presenting the distribution of all the sum of
squared prediction errors reported in Fig. 3a. c) The regression weights
that are obtained when RY is fixed to 1 and RX varies from 1 to 5
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predictor and criterion components. We see that next to (RX = 1,
RY = 1, α = .05), the (RX = 2, RY = 1, α = .05) as well as (RX = 2,
RY = 2, α = .05) might also be interesting solutions. Regarding
(RX = 2, RY = 1), the reconstruction ofX clearly benefits from the
added predictor component. Similarly, for (RX = 2, RY = 2),
adding one more criterion component also improves the recon-
struction of Y, while the prediction curve does not worsen as

much. Note that increasing the number of criterion components
will generally lower the average predictability of those compo-
nents, because the first criterion component extracted will always
be the most predictable one.

Table 6 shows these three solutions. The father’s first com-
ponent is highly similar across the solutions and can be la-
beled as optimism about their child’s future. The second father

Fig. 4 Values of the reconstruction (dashed) and prediction (solid) parts
of the PCovR2 loss function (Y-axis) for the illustrative application as a
function of the value of the weighting parameter α (X-axis). The panels
pertain to 1 to 3 predictor components (rows) and 1 to 3 criterion

components (columns). The dashed line ‘–’, dash-dot line ‘-.’ and solid
line ‘-’ denote the reconstruction error of X and Y, and the prediction
error, respectively

1664 Behav Res  (2021) 53:1648–1668



component differs across the solutions, however, and is a
strong but irrelevant component in the (RX = 2, RY = 1, α =
.05) solution, and a weaker but relevant one in the (RX = 2, RY
= 2, α = .05) solution, where it seems to be related to relation-
ship and communication quality. The first child component is
also very stable across the solutions and pertains to self-esteem
and academic performance and confidence about their future.
The regression weights show that regardless of which solution
we examine, the father’s optimism about their child’s future is
moderately related to the child’s self-esteem and academic
performance and confidence about their future. The second
criterion component in the (RX = 2, RY = 2, α = .05) solution
encompasses most non-performance-related aspects. This
component is moderately related to the relationship and com-
munication quality component of the father.

Discussion

In this paper, we proposed PCovR2, an extension of PCovR, in
which both the predictor variables and the criterion variables are
reduced to components. Simultaneously, the criterion compo-
nents are regressed on the predictor components. The PCovR2
weighting parameter can be flexibly used to focus on the recon-
struction of the predictors and the criteria, or on filtering out the
"relevant” predictor components and “predictable” criterion com-
ponents. Model selection is challenging, however, especially in
the latter case: on the one hand, we want to find predictor com-
ponents that can predict the criterion components and criterion
components that can be predicted by those predictor components.
On the other hand, we want these components to be an accurate
representation of the underlying components. To aid researchers
in this decision, we proposed inspecting a matrix plot of out-
comes of the different loss parts for different model choices, as
well as a model selection heuristic. The matrix plot of outcomes
also yields further information on the range of suitable α values.
In case one is only interested in the relevant predictor and pred-
icable criterion components, one should selectα values for which
the prediction part of the loss is low. In case one wants to extract
all the components, the reconstruction parts should be observed.
Inspection of such plots shows that the range of α values that are
low enough in the first case or high enough in the second case
might vary from dataset to dataset. Yet, as a rule of thumb, .05
and .9 will often work well as low and high α values.

We performed a simulation study to investigate the perfor-
mance of PCovR2 and the proposed model selection heuristic
for filtering out the relevant predictor components and the pre-
dictable criterion components. The results indeed show that
high α values yield good performance, when one wants to
extract all predictor and criterion components, whereas low α
values have to be preferred when one aims to find the relevant
predictor and predictable criterion components. Applying the
model selection heuristic further improved the results in the

conditions where the number of relevant predictor components
exceeded the number of predictable criterion components. It
should be noted that the simulated conditions were not easy,
as in some conditions, the relevant predictor and predictable
criterion components were very weak. Note that even though
the latter conditions might be considered extreme, we included
them to evaluate and showcase the benefits of PCovR2.

Comparing PCovR2 with competitor methods, we have
shown that when focusing on the subset of relevant predictor
components and predictable criterion components, PLS2 also
predicts the criterion variables well, but does not adequately
recover the underlying predictor components, if more than one
predictor component is needed to reconstruct a criterion com-
ponent. In case the number of relevant predictor components
equals the number of predictable criterion components, PLS2
and PCovR2 with a low α value had a very similar and mostly
good recovery performance, however. Performance of PCR2
is worse in these analyses because it focuses on the strength of
components rather than on their relevance/predictability. Yet,
when we focused on retrieving all simulated components,
PCR2 and PCovR2with a highα value yield equally excellent
results, whereas PLS2 did worse.

PCovR2 has some disadvantages, of which an important
one pertains to model selection. Using the matrix plot involves
many computations, and it may not be all that easy to compare
the subplots, and find a useful compromise across the loss
parts. The proposed model selection heuristic might still seem
quite complicated, as it involves two steps to find the correct
number of relevant predictor and predictable criterion compo-
nents, and it is based on rather arbitrary thresholds. Another
disadvantage is that one cannot simply fix RX and RY to the
numbers of relevant predictor and predictable criterion com-
ponents. Indeed, as we showed for our toy data set, one often
needs to extract additional components to model the relevant
and predictable components correctly.

Future research might further investigate model selection.
In pilot simulations, we tried to tune the α value through
cross-validation, for instance. The tricky part is that it is not
so obvious which criterion should be optimized and evaluated
in the cross-validation. In the pilot simulations, we optimized
the predictability of the criterion scores based on the predictor
scores. Yet, this criterion does not explicitly take the recovery
of the predictor and criterion structure into account. An inter-
esting alternative might be to use stability selection
(Meinshausen & Bühlmann, 2010), although, like cross-vali-
dation, this procedure is computationally intensive.

PCovR2 holds promise for dyadic studies, as illustrated in
the previous section. This research area has seen a significant
increase in the last decade and many researchers are involved
in the development of dedicated methods (e.g., Bodner et al.,
2018; Butler, 2011; Gates & Liu, 2016). Often the major
questions steering the analysis of such data focus on the inter-
relations between both dyadic partners, which is precisely
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what PCovR2 aims to unravel. Since many dyadic studies
repeatedly measure the same dyad across time, it would be
interesting to study how PCovR2 can be extended to take
serial dependencies between observations into account. The
recent surge of psychometric research on vector
autoregressive modeling can be inspiring in this regard (e.g.,
Bulteel, Tuerlinckx, Brose, & Ceulemans, 2018; Epskamp
et al., 2018; Hamaker et al., 2018). Moreover, so far,
PCovR2 is an asymmetric method, implying that the analysis
focuses on the effect that one partner has on the other and not
vice versa. Further developments are needed that extend the
regression weights and the PCovR2 loss function and algo-
rithm, so as to take bi-directional influences into account.

To conclude, we presented PCovR2, a new method for
multivariate regression problems with a relatively high num-
ber of predictors and criteria, and compared it to PLS2 and
PCR2. The proposed PCovR2 algorithm yields comparable
results to PCR2 when trying to retrieve all components in
the data and comparable results to PLS2 when focusing on
finding back the relevant predictor components and predict-
able criterion components and in case the numbers of the latter
components are equal. Yet, unlike PLS2, PCovR2 can also
handle settings in which these numbers are not the same, al-
though model selection is challenging.
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Appendix

The extended derivation of LStep2 (Eq. 11)
Given current estimates of TX, PX, and B, the non-

constant part (i.e., we will drop the constant part
throughout) of the PCovR2 loss function can be re-
expressed as

LStep2 ¼ α
Y−TYPY

0k k2
Yk k2 þ 1−αð Þ

RY
TY−TXB

0k k2

Let us define U=TXB′ and replace PY′with TY ′Y. The
latter results from Y=TYPY′. If we left-multiply both sides
of the equation withTY′, it follows thatTY ′Y=TY ′TYPY ′ =
PY′, due to the constraint TY ′TY = I.

Thus, LStep2 can be rewritten in the following way:

LStep2 ¼ α
Y−TYTY

0Yk k2
Yk k2 þ 1−αð Þ

RY
TY−Uk k2 ¼ α

tr Y−TYTY
0Yð Þ0 Y−TYTY

0Yð Þ� �
Yk k2 þ 1−αð Þ

RY
TY−Uk k2

¼ α
tr Y0−Y0TYTY

0ð Þ0 Y−TYTY
0Yð Þ� �

Yk k2 þ 1−αð Þ
RY

TY−Uk k2

¼ α
tr Y

0
Y−Y

0
TYTY

0Y−TYTYYþY0TYTY
0TYTY

0Y
� �

Yk k2 þ 1−αð Þ
RY

TY−Uk k2

¼ α
tr Y

0
Y−Y

0
TYTY

0Y−Y
0
TYTY

0YþY0TYTY
0Y

� �
Yk k2 þ 1−αð Þ

RY
TY−Uk k2 ¼ α

tr Y
0
Y−Y

0
TYTY

0Y
� �

Yk k2 þ 1−αð Þ
RY

TY−Uk k2

¼ α
tr Y

0
Y

� �
Yk k2 −α

tr Y
0
TYTY

0Y
� �

Yk k2 þ 1−αð Þ
RY

TY−Uk k2 ¼ constant−α
tr Y

0
TYTY

0Y
� �

Yk k2 þ 1−αð Þ
RY

TY−Uk k2

¼ −α
tr Y

0
TYTY

0Y
� �

Yk k2 þ 1−αð Þ
RY

tr TY−Uð Þ0 TY−Uð Þ� � ¼ −α
tr Y

0
TYTY

0Y
� �

Yk k2 þ 1−αð Þ
RY

tr TY
0−U0ð Þ TY−Uð Þ½ �

¼ −α
tr Y

0
TYTY

0Y
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RY
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� �
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RY

constant−2tr U
0TY

h i
þ constant

� �
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tr Y
0
TYTY

0Y
� �

Yk k2 −
2 1−αð Þ
RY

tr U0TY½ �
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Let us defineV = (Y ′Y)1/2WY. This implies thatWY = (Y
′Y)−1/2Vand TY =YWY =Y(Y ′Y)−1/2V. Now, LStep2 can be
rewritten in the following way:

LStep2 ¼ −α
tr Y0Y Y0Yð Þ−1=2VV0 Y0Yð Þ−1=2Y0Y
h i

Yk k2

−
2 1−αð Þ
RY

tr U0Y Y0Yð Þ−1=2V
h i

Here wewill use the following properties of the trace function

tr[AB] = tr[AB] ′ = tr[B ′A′] = tr[A ′B′]

LStep2 ¼ −α
tr V0 Y0Yð Þ−1=2Y0YY0Y Y0Yð Þ−1=2V
h i

Yk k2

−
2 1−αð Þ
RY

tr U0Y Y0Yð Þ−1=2V
h i

¼ −α
tr V0Y0YV½ �

Yk k2

−
2 1−αð Þ
RY

tr U0Y Y0Yð Þ−1=2V
h i

Let us define A ¼ − 2 1−αð Þ
RY

U0Y Y0Yð Þ−1=2 and C ¼ −αY0Y
Yk k2 .

Finally, we have:

LStep2 ¼ tr V0CV½ � þ tr AV½ �
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