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Abstract
Although many studies of reaction time (RT) focus on a single measure of central tendency such as the mean RT, a more detailed
picture of the underlying processes can be gained by looking at full distributions of RTs. Unfortunately, for practical reasons it is
sometimes difficult to obtain enough trials per participant in a condition of interest to construct such a distribution with existing
methods. The purpose of this article is to propose a method of forming group RT distributions that can be used to compare the full
distributions of RTs even in an infrequent condition with only a few trials per participant. In brief, the percentile ranks of each
participant’s infrequent-condition RTs are scored relative to a larger pool including that participant’s RTs in other conditions, and
a histogram of the infrequent-condition’s percentile ranks is then formed by pooling across participants. The resulting histogram
of infrequent-condition RT ranks shows where the RTs in that condition tend to fall relative to the other conditions, and this
histogram can reveal systematic patterns in the infrequent-condition’s RT distribution. To illustrate the method, I present
histograms of the ranks of infrequent error RTs (~ 5% of trials), ranked relative to correct responses, in real data sets from
Simon and lexical decision tasks.

Keywords Group reaction time distributions . Infrequent conditions

Psychologists have increasingly turned to the study of the
distributional properties of the reaction times (RTs) observed
in cognitive tasks. A major reason for this trend is that distri-
butional properties can provide useful information beyond
what is available in mean RTs (e.g., Luce, 1986). For exam-
ple, between-condition comparisons of the estimated parame-
ters for specific RT distribution models (e.g., the ex-Gaussian)
provide a more nuanced description of experimental effects
than a simple comparison of mean RTs (e.g., Balota & Yap,
2011; Heathcote, Popiel, & Mewhort, 1991). Comparisons of
RT distributions have also been used extensively to study the
time course of experimental effects (e.g., De Jong, Liang, &
Lauber, 1994; Reingold, Reichle, Glaholt, & Sheridan, 2012)
and to test distributional predictions of RT models (e.g.,
Miller, 1982; Ratcliff & McKoon, 2008; Ruthruff, 1996).

Because distributional comparisons allow a more in-depth
examination of results, several techniques have been devel-
oped for the analysis of RT distributions. All of these start by

estimating the simple or cumulative distributions of RTs in
each single condition (e.g., Van Zandt, 2000), after which it
is possible to compare conditions using delta plots (e.g., De
Jong et al., 1994), quantile-quantile plots (e.g., Myerson,
Adams, Hale, & Jenkins, 2003), estimated divergence points
(e.g., Reingold & Sheridan, 2014), or other distribution-based
techniques (e.g., quantile regression).

Unfortunately, to study the RT distribution in a given con-
dition, it is usually necessary to have many trials from each
participant in that condition (Van Zandt, 2000). For example,
hundreds of trials per condition are needed to evaluate full
distributional predictions of RT models (e.g., Thomas &
Ross, 1980). The ubiquity of individual differences implies
that RTs from different participants come from different dis-
tributions, however, so RTs cannot be simply pooled together
into a “group” distribution as if they were homogeneous (e.g.,
Engmann & Cousineau, 2011).

Instead of simple pooling, two specialized methods have
commonly been used to form a single group RT distribution
from the RTs of different participants, and both of these
methods estimate the cumulative form of the group distribu-
tion. One is quantile averaging (e.g., Ratcliff, 1979; Vincent,
1912). With this method, for each condition, the RTs at a
given set of percentiles (e.g., 5%, 15%,...95%) are computed
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separately for each participant and then arithmetically aver-
aged across participants to obtain the quantile estimate for the
overall group distribution1. The other method, which might be
called “bin averaging” and is commonly used in the analysis
of delta plots (e.g., De Jong et al., 1994), is to divide each
participant’s RTs into bins (e.g., the fastest 10%, the second-
fastest 10%, etc.), compute each participant’s average RT in
each bin, and then average the resulting bin averages across
participants. Both of these methods seem to work well when
there are many trials per participant in each condition, because
having a large number of trials allows the researcher to esti-
mate many percentiles or bin averages for each participant.

The existing methods of forming group distributions are
not appropriate, however, when there are relatively few trials
per condition. With both quantile and bin averaging, the num-
ber of trials per participant limits the resolution of the estimat-
ed distribution. With ten trials per participant, for example, the
researcher can estimate at most ten percentiles (i.e., 5, 15,...95)
or ten bin averages per participant, and of course the resolution
is even poorer with fewer trials than that. The problem of
small trial numbers is further aggravated if the number of trials
in the condition varies across participants.When that happens,
different participants provide estimates of RTs at different
percentile ranks or bins, so there are no common points at
which to compute averages. For example, a participant with
ten RTs provides estimates at the percentile ranks of 5, 15,
25,...95, whereas a participant with nine RTs provides esti-
mates at the ranks of 6, 17, 28, 39,...94. Since these percentile
ranks do not match, it is not clear how to get percentile aver-
ages. This is not an uncommon problem, because the number
of trials in a condition might vary across participants either
because occasional trials are lost or excluded (e.g., outlier
RTs, equipment malfunction) or because the condition is at
least partly defined by factors beyond the researcher’s control
(e.g., erroneous responses).

The purpose of this article is to suggest a very simple and
flexible nonparametric method of “percentile rank pooling”
that can be used to examine group RT distributions for condi-
tions in which there are only a few trials per participant2. The
method aims to fill the gap where existing methods are diffi-
cult or impossible to use, providing researchers with a new
tool to investigate RT distributions in conditions that were

previously unexamined for lack of adequate numbers of trials.
As will be seen, percentile rank pooling can reveal interesting
patterns in participants’ underlying true RT distributions, even
when there are only a few RTs per participant and even when
there are substantial individual differences between partici-
pants in the location, scale, skew, and even the shape of RT
distributions.

Using percentile ranks to normalize
across participants

In percentile rank pooling, each RT from each participant is
normalized by computing its percentile rank, RTpr, within a
large comparison set of RTs from that participant. Histograms
of the ranks are then tabulated by simply pooling the ranks
across all participants, separately for each condition. The
resulting histograms show where the RTs in each condition
tend to fall relative to the other conditions. As is illustrated
later with examples, the appropriate set of comparison RTs for
computing percentile ranks will depend on the research ques-
tion, and it could include RTs from all of the participant’s
trials or just the trials from a relevant subset of conditions.

Within a given set of comparison trials, the percentile rank
of each RT value t is computed as

RTpr tð Þ ¼ Lþ 0:5� E
N

� 100 ð1Þ

where L is the number of RTs in the comparison set that are
less than t, E is the number of RTs equal to t, and N is the total
number of RTs in the comparison set. If there are 100 RTs in
the comparison set and no ties, for example, then the percen-
tile ranks of the RTs, from smallest to largest, will be 0.5, 1.5,
2.5,...99.5. A few of these percentile ranks would reflect RTs
from trials in the infrequent condition of interest, whereas the
rest would reflect the other RTs in the comparison set.

The rationale for converting to percentile ranks is that these
are necessarily in a comparable 0–100 range for all partici-
pants, even if the original RTs of the different participants
were quite different due to individual differences in mean,
standard deviation, skewness, or even distribution shape
(e.g., ex-Gaussian, gamma, lognormal). It thus is reasonable
to pool percentile ranks across participants, even though it
would be inappropriate to pool their actual RTs. In this sense,
transforming to percentile ranks works much like
transforming scores on different scales to Z-scores for com-
parison, but without the implicit assumption of a symmetric,
approximately normal distribution.

By definition, the histogram of percentile ranks across the
whole comparison set is necessarily uniform (i.e., all percen-
tile ranks are equally frequent) for each individual participant
and thus also for the ranks pooled across participants. For

1 Cousineau, Thivierge, Harding, and Lacouture (2016) suggested a variant of
this method in which the RTs of individual participants at each percentile are
transformed and geometrically averaged, arguing that this variant may produce
group distributions that are more similar to the form of the underlying
individual-participant distributions, which are not necessarily reproduced with
standard quantile averaging (Thomas & Ross, 1980).
2 Other nonparametric techniques have also been suggested for examining RT
distributions (e.g., Lombardi, D’Alessandro, & Colonius, 2019; Maris &
Maris, 2003), but these require many trials per participant and have been
focused on testing a specific model prediction known as the race model in-
equality (Miller, 1982) rather than on obtaining a general picture of RT
distributions.
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example, suppose there are 100 RTs per participant in the
comparison set, with no ties. For each participant, one of the
100 RTs is the fastest and receives the lowest percentile rank
(0.5%), another is the second fastest and receives the second-
lowest percentile rank (1.5%), and so on up to the slowest RT
receiving the largest percentile rank (99.5%). It follows that
each of the possible percentile ranks is obtained once for each
participant, and the resulting pooled percentile ranks are per-
fectly uniform across the 0–100 range. The principle is the
same even if there are different numbers of trials for the dif-
ferent participants: Each participant will have one RT at each
of the percentile ranks possible with their own value of N, so
every participant’s percentile ranks will be spread evenly
across the 0–100 range, and the resulting pooled histogram
will also have evenly spread percentile ranks.

Although the overall histogram of all of the pooled
percentile ranks must necessarily be uniform, the histo-
grams of percentile ranks in each condition will gener-
ally not be. To the extent that condition A is faster than
condition B, for example, condition A will tend to have
a preponderance of the smaller pooled percentile ranks
and B will have a preponderance of the larger ones.
(More complex histogram patterns will be illustrated
shortly.) Thus, differences in the distributions of the
pooled percentile ranks in the two conditions will tend
to reflect systematic differences in their underlying RT
distributions. If the two conditions do happen to have
identical RT distributions, however, then any RT is
equally likely to come from either condition, and both
conditions will necessarily have uniform distributions of
pooled percentile ranks.

Using the ex-Gaussian distribution as a convenient
model of observed RTs (e.g., Hohle, 1965; Luce,
1986), Fig. 1 illustrates how percentile rank pooling
can reveal the general features of the RT distribution
in the infrequent condition relative to those of the fre-
quent condition and can thereby provide new informa-
tion about the infrequent condition’s RT distribution.
Suppose that the overall mean RT in a frequent condi-
tion (occurring in 90% of trials) is 100 ms faster than in
an infrequent one (10% of trials). At the distributional
level, this difference in means might arise in any of the
three different ways shown in Fig. 1a–c. In Fig. 1a, the
mean RT difference primarily reflects a difference at the
fastest end of the RT distributions, with very few or
none of the fastest trials coming from the infrequent
condition, as would be produced by a 100-ms increase
in the μ parameter of the ex-Gaussian in the infrequent
condition. For example, fewer than 2% of the trials with
RTs less than 500 ms come from the infrequent condi-
tion, although 10% of all trials come from that condi-
tion. Alternatively, in Fig. 1c, the difference between
conditions is mainly due to the stretched upper tail of

the infrequent condition distribution (i.e., increased τ
parameter), so the increase in mean RT is largely due
to an increase in the proportion of very slow trials. For
example, more than 20% of the trials with RTs greater
than 1000 ms come from the infrequent condition, as
compared with 10% of all trials. Figure 1b represents
a compromise between these two extremes, with half of
the mean RT difference associated with a shift in the
infrequent distribution (i.e., increased μ) and half asso-
ciated with a stretch in its upper tail (i.e., increased τ).

Figure 1d–f shows that percentile rank pooling can accu-
rately recover these true differences between the pairs of un-
derlying distributions shown in Fig. 1a–c. To obtain the
displayed histograms of pooled percentile ranks in a concrete
and easily visualized way, I simulated 10,000 participants for
each pair of underlying RT distributions shown in Fig. 1a–c3.
Two hundred simulated RTs were generated for each partici-
pant, and all RTs were generated independently either from
the frequent condition, with probability 90%, or from the in-
frequent one, with probability 10%. The 200 simulated RTs of
each participant were converted to percentile ranks using Eq. 1
with N = 200, and these percentile ranks were pooled across
all participants to form separate histograms for the frequent
and infrequent conditions.

Several patterns are visible in the pooled percentile rank
histograms of Fig. 1d–f. First, the total frequencies shown in
the histograms are much higher for the frequent condition
than for the infrequent one, which was of course inevitable
because there were 90% and 10% of trials in these two con-
ditions, respectively. Second, the histograms for the frequent
conditions are nearly uniform. Aswasmentioned earlier, the
overall histogram of percentile ranks is necessarily uniform
(i.e., pooling across conditions), and the histogram of the
frequent condition cannot deviate too much from that be-
cause it includes most of the trials. Thus, percentile rank
pooling provides little information with respect to the distri-
bution of RTs in the frequent condition, and it would bemore
informative to examine these distributions with a traditional
method such as quantile averaging.

Third and most importantly, the infrequent-condition his-
tograms of Fig. 1d–f clearly differentiate between the different
types of distribution-level effects shown in Fig. 1a–c. In Fig.
1d, the virtual absence of infrequent RTs with percentile ranks
in the 0–20 range makes it clear that this condition is slower
than the frequent one because it produces hardly any of the
fastest responses. In contrast, there are many infrequent RTs
with low percentile ranks in Fig. 1f, but here the infrequent
condition has a disproportionately large number of quite slow

3 These percentile rank histograms can also be computed directly with a nu-
merical approximation, as is described in the Appendix, and the dotted lines
show the approximations obtained in this manner.
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RTs (i.e., percentile ranks of approximately 80–100)4. The
infrequent condition of Fig. 1e shows a pattern intermediate
between these two extremes, corresponding to the compro-
mise between shift and stretch effects in the infrequent distri-
bution of Fig. 1b.

Figure 1g–i shows that percentile rank pooling can also
recover the main features of the infrequent-condition RT

distribution when there is participant-to-participant variation
in the underlying RT distributions. These histograms were
obtained by simulations analogous to those used to produce
Fig. 1d–f, except that the parameters of the true underlying
frequent and infrequent RT distributions were generated ran-
domly for each participant. Specifically, for the frequent con-
dition, each participant’s ex-Gaussian μ parameter was ran-
domly selected from a normal distribution with mean 400 ms
and standard deviation 40 ms, and each participant’s τ param-
eter was randomly selected from a normal distribution with
mean 200 ms and standard deviation 20 ms. In addition, for
each participant the amount of slowing in the infrequent con-
dition was randomly selected from a normal distribution with
mean 100 ms and standard deviation 10 ms, and this slowing
either increased the infrequent condition’s μ parameter (Fig.

4 The complementary relationship between the frequent and infrequent histo-
grams can also be seen in Fig. 1d–f. Specifically, for each RT percentile, there
is a fixed sum of the simulated histograms for the frequent and infrequent
conditions, so if the simulated count in the infrequent condition increases at
a given RT percentile, the simulated count in the frequent condition must
correspondingly decrease. This complementary relationship is simply a con-
sequence of the fact that the overall distribution of RT percentile ranks must be
uniform pooling across conditions.

Fig. 1 True underlying distributions of RT (a–c) and simulated
histograms of percentile ranks (d–i) for frequent (90%) and infrequent
(10%) conditions. All of the underlying true RT distributions were ex-
Gaussian, and the distribution parameters in the frequent condition were
always μ = 400 ms, σ = 30 ms, and τ = 200 ms. The distribution
parameters of the infrequent condition in each column are shown above
panels a–c. In a–c, the densities for the frequent and infrequent conditions
have been scaled to 75% and 25% of their true values to reflect the
difference in simulated trial frequency. This is not to scale—the actual

simulated frequencies were 90% and 10%, but the infrequent distribution
is difficult to see when the distributions are shown to that scale. Panels d–
f show histograms of RT percentiles computed from RTs simulated ac-
cording to the distributions shown in a–c. The dotted lines in d–f show
approximations of the expected histograms computed as described in the
Appendix. Panels g–i show histograms of RT percentiles computed from
RTs simulated with random variation among participants in the parame-
ters of the underlying RT distributions (see text for details)
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1g) or τ parameter (Fig. 1i), or had half of its effect on each of
these (Fig. 1h). Once the parameters of a simulated partici-
pant’s frequent and infrequent RT distributions had been ran-
domly selected, that participant’s RTs for the frequent and
infrequent conditions were randomly generated and analyzed
just as in Fig. 1d–f. Importantly, despite the participant-to-
participant parameter variation, the percentile ranks of the
simulated RTs again clearly show different distributional-
level slowing effects comparable to those in Fig. 1d–f.

In sum, percentile rank pooling can provide information
about the RT distribution in an infrequent condition. By
pooling this condition’s percentile ranks across many partici-
pants, the researcher can build up a fine-grained distribution-
level picture of how the RTs in this condition relate to the RTs
in a frequent condition. As was explained in the introduction,
it would be difficult or impossible to get a comparably fine-
grained distributional picture with a standard technique like
quantile averaging because of the small numbers of trials per
participant in this condition, especially if this number varied
across participants.

The nonparametric (i.e., rank-based) character of percentile
rank pooling implies that it is robust with respect to variation
in the parameters and even the shapes of the underlying RT
distributions. This is because the method depends directly
only on the theoretical distributions of percentile ranks (i.e.,
analogous to the histograms shown in Fig. 1d–f), not on the
underlying distributions of RTs that give rise to those theoret-
ical distributions (i.e., analogous to those shown in Fig. 1a–c).
This means that the pooled histogram of percentile ranks will
reflect any pattern that is common across the true percentile
rank distributions of the individual participants, even if those
participants have radically different RT distributions—
potentially even more different than those simulated in Fig.
1g–i. For example, if all participants had a disproportionately
large number of infrequent-condition RTs with percentile
ranks in the range of 50–70, then the pooled percentile rank
histogram would likewise have a high proportion of ranks in
this range, regardless of the similarity of the underlying
individual-participant RT distributions. This would be true
even if different participants had different shapes of underly-
ing RT distributions—for instance, some ex-Gaussian, some
ex-Wald, some lognormal, some gamma, etc.—because the
technique uses only nonparametric information about percen-
tile ranks.

Illustration: Error RTs in Simon tasks

To evaluate the method’s performance with respect to real
data, I began with a situation for which some information
about the true underlying distribution is independently
available—the Simon task (for a review, see e.g., Hommel,
2011). As is explained below, existing evidence has some

implications concerning the distribution of error RTs in this
task, even though errors are infrequent.

To review briefly, in a common visual version of the Simon
task, participants must respond with the left or right hand
depending on the color of a stimulus square (e.g., Mittelstädt
& Miller, 2020). Each stimulus square is presented to the left
or right of fixation, with location being irrelevant to the correct
response. Responses are faster and more accurate when the
stimulus location is congruent with the required response hand
(i.e., square on the left requiring a left-hand response) than
when it is spatially incongruent (i.e., square on the left requir-
ing a right-hand response). Moreover, when the difference in
accuracy (congruent minus incongruent) is plotted as a func-
tion of RT (an accuracy “delta plot”; e.g., De Jong et al., 1994;
Dittrich, Kellen, & Stahl, 2014), the accuracy advantage for
the congruent condition decreases as RT increases. This pat-
tern implies that errors must tend to be especially fast in the
incongruent condition, and it is of interest to see whether
percentile rank pooling would also yield that conclusion.

To check the pattern of Simon task error RTs with percen-
tile rank pooling, I analyzed the RT data of Experiments 1–4
of Mittelstädt and Miller (2020). Each of these experiments
compared congruent versus incongruent RTs under two con-
ditions differing in task difficulty. For example, in Experiment
1 the color discrimination was easy or difficult, and in
Experiment 4 the responses were made with the hands
(easy) or feet (difficult). The type of difficulty manipulation
had little effect on the distribution of error RTs, so the results
shown here are collapsed across the four experiments. For
each participant in each experiment, percentile ranks of all
RTs were obtained separately for the four combinations of
congruent/incongruent and easy/difficult conditions, which
had overall error rates of 3.9% (congruent, easy), 5.9% (con-
gruent, difficult), 6.1% (incongruent, easy), and 7.5% (incon-
gruent, difficult). Histograms of the resulting percentile ranks
for correct and error trials are shown in Fig. 2.

The histograms for the correct trials are nearly uniform, as
was necessarily the case since these were most of the trials
entered into the percentile ranking. The histograms for errors
are much more interesting. In the incongruent conditions, the
histograms of error RT percentile ranks appear somewhat bi-
modal, with a large mode of fast RTs (percentile ranks ≈ 0–20)
and a smaller mode of slow RTs (percentile ranks ≈ 90–100).
The large mode of fast RTs is consistent with the previously
reported pattern of a larger congruency effect on the accuracy
of faster RTs mentioned earlier, so the method successfully
recovered this expected pattern, which would also be evident
in a comparison of correct versus error mean RTs. The in-
creased error rate for the slowest incongruent responses has
not previously been discussed, however. Interestingly, the
congruent conditions also show a slightly increased number
of errors in the highest RT percentile ranks, just like the in-
congruent ones. The preponderance of slow errors in both
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congruent and incongruent conditions would not be evident in
the usual accuracy delta plots if the increased error rates for
slow responses were about equal between these conditions,
because these plots are only sensitive to the accuracy differ-
ence between conditions. Thus, the percentile rank pooling
method not only reveals the pattern seen in delta plots but also
provides additional information. In this case, the mode for
slow errors suggests that some condition-independent source
of trial-to-trial variability tended to make responses both quite
slow and also inaccurate.

Illustration: Error RTs in lexical decision tasks

As another illustration of the percentile rank pooling method
with real data, I applied it to the RT distributions of errors in
lexical decision tasks using the large, publicly available data
sets of Ferrand et al. (2010) and Hutchison et al. (2013). After
excluding some problematic participants and RTs (e.g., RTs
less than 200 ms), these data sets included 1,862,117 and
828,963 trials, respectively, from 944 and 503 participants,
with error rates of 7.61% and 4.06%. Responses were substan-
tially faster to word stimuli than nonwords in both data sets, so

I computed RT percentile ranks separately for these two stim-
ulus types for each participant. The histograms of RT percen-
tile ranks for trials with correct responses versus errors were
then tabulated across participants, and the results are shown in
Fig. 3.

Again, the histograms for the correct trials are nearly uni-
form, as they had to be. The histograms of error RTs are not
uniform, and in fact they appear to differ for words versus
nonwords. For words, errors were most often relatively slow,
suggesting that participants sometimes considered words for a
relatively long time before incorrectly concluding that they
were nonwords.

For nonwords, in contrast, the histograms of RT percentile
ranks for errors were again bimodal, like those seen in the
incongruent trials of the Simon task. The mode of fast errors
to nonwords could be due to the presence of some highly
word-like nonwords in the stimulus sets, and these nonwords
could presumably be identified by examining the error rates
and average RT percentile ranks for the individual nonword
stimuli. Alternatively, the fast errors to nonwords could reflect
fast guesses of the “word” response, in which case they would
be distributed randomly across the different nonwords. In that
case, the absence of comparable fast errors to word stimuli

a b

c d

Fig. 2 Frequency distributions of RT percentile ranks of correct and error
trials in the congruent and incongruent conditions of the Simon tasks
reported in experiments 1–4 of Mittelstädt and Miller (2020). The exper-
iments used different manipulations of task difficulty, but the results have

been pooled across experiments because these produced no clear differ-
ences in the histograms of RT percentiles. a Congruent trials, easy task. b
Incongruent trials, easy task. c Congruent trials, difficult task. d
Incongruent trials, difficult task
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would indicate that there were many fewer fast guesses of the
“nonword” response.

There also appears to have been a small mode of slow
errors for the nonwords, at least relative to the frequency of
errors with percentile ranks in the range of approximately 30–
70%. Like the slow errors to word stimuli, these could reflect
stimulus items about which participants had considerable
doubt. Again, it would be illuminating to examine the specific
nonword stimuli with relatively high error rates and relatively
high RT percentile ranks.

Converting RT percentile ranks back to RTs

Although histograms of percentile ranks convey a great deal
of distributional information, for some purposes it might be
useful to estimate the RT distributions of the frequent and
infrequent conditions in terms of actual RTs rather than in
terms of the RT percentile scores RTpr produced by the per-
centile rank pooling method. For example, one might want to
test an RT model predicting the forms of the correct and error
RT distributions.

The percentile rank pooling method can be extended to
generate RT scores in the original millisecond scale. This

requires the additional step of estimating a group-average cu-
mulative RT distribution function, F(t), which requires some
parametric assumptions. Once that distribution has been
determined—by whatever means—the RT percentile ranks
of the frequent and infrequent conditions can be converted
back onto the millisecond scale via the inverse function F−1.

To illustrate this process, I used the RTs to nonword stimuli
from the Semantic Priming Project that were used to construct
Fig. 3b. To estimate the group-average RT distribution para-
metrically, I first estimated the ex-Gaussian parameters μ, σ,
and τ for all nonword RTs (i.e., corrects and errors combined)
of each participant separately. I then estimated the overall
group distribution as the ex-Gaussian with the means of the
estimated individual-participant’s μ, σ, and τ parameters. The
regular and cumulative probability densities of this estimated
group distribution are shown as the solid lines in Fig. 4a and b.
I checked this estimated group distribution by computing the
corresponding quantile-averaged cumulative distributions,
shown as the dotted line in Fig. 4b. Visually, the ex-
Gaussian and quantile-averaged group distributions are in
very good agreement, suggesting that either would be a rea-
sonable estimate for the group distribution. I used the ex-
Gaussian distribution estimate because it was more conve-
nient computationally.

Fig. 3 Frequency distributions of RT percentile ranks of correct and error trials in lexical decision tasks for trials with word and nonword stimuli in the
data sets from the Semantic Priming Project (SPP; Hutchison et al., 2013) (a, b) and the French Lexicon Project (FLP; Ferrand et al., 2010) (c, d)
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Using the group-average cumulative ex-Gaussian distribu-
tion F(t) just estimated, I computed the underlying RT asso-
ciated with each of the percentile ranks RTpr shown in Fig. 3b
using the inverse cumulative distribution function F−1(RTpr).
These RTs were then tabulated separately for correct and error
trials, and the resulting histograms are shown in Fig. 4c. These
histograms could be used, for example, to test RT models
predicting specific shapes of the correct and error RT distri-
butions. Note also that the preponderance of fast errors seen in
the RT percentile ranks of Fig. 3b is quite visible in the RT
values of Fig. 4c, but the preponderance of slow errors is not.
Evidently, the spread in the long tail of the RT distribution
makes it harder to compare the conditions with respect to their
slow RTs in the millisecond scale. This difficulty is not pres-
ent with the RT percentile ranks because these are bounded at

100%, effectively eliminating the stretch in the upper tail.
Thus, percentile rank pooling may be especially helpful in
checking for between-condition differences in particularly
slow responses.

General discussion

The percentile rank pooling method involves computing the
percentile ranks for each individual’s RTs pooled together
across a relevant set of to-be-compared conditions. These per-
centile ranks are then pooled across participants and tabulated
into histograms separately for each condition. The resulting
histograms show where the ranks of the RTs in the different
conditions tend to fall relative to one another. These

Fig. 4 Illustration of converting RT percentile ranks into RTs using an
estimated group-average RT distribution. Regular (a) and cumulative (b)
group-average RT distributions computed from the RTs to nonwords in
the data from the Semantic Priming Project (SPP; Hutchison et al., 2013).
The solid lines represent the group distribution formed by fitting ex-
Gaussian distributions to each participant’s RTs individually and

averaging the fitted parameters across individuals. It is an ex-Gaussian
distribution with μ = 552.65, σ = 51.48, and τ = 197.06. The dotted line
represents the cumulative group distribution formed by quantile averag-
ing. c Frequency distributions of correct and error RTs derived from the
percentile ranks shown in Fig. 3b by retrieving the group-average RT
score with the corresponding percentile
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histograms can reveal systematic differences between the RT
percentile ranks of conditions at any point(s) in the distribu-
tions of ranks, including conditions with only a few trials per
participant.

Percentile rank pooling is proposed as a supplement to—not
a replacement for—existing methods of examining RT distri-
butions. When researchers have enough RTs to estimate the
distribution for each participant in each condition, comparisons
of these distributions in their original millisecond units would
seem to allow simpler interpretations than percentile-ranked
distributions. As mentioned earlier, simple or cumulative distri-
butions can be compared directly (e.g., Miller, 1982; Ruthruff,
1996), or these can serve as the basis for comparing delta plots
(e.g., De Jong et al., 1994), quantile-quantile plots (e.g.,
Myerson et al., 2003), or estimated divergence points (e.g.,
Reingold et al., 2012; Reingold & Sheridan, 2014, 2018).
When there are not enough RTs to accurately estimate the dis-
tribution in each condition, however, percentile rank pooling
seems promising as an alternative method for gaining insight
into the differences between distributions.

In this article, I have focused on comparing the RT histo-
grams of frequent and infrequent conditions, because the new
method seems to be the first allowing examination of RT dis-
tributions in conditions with so few RTs per participant. The
method was illustrated by examining the RT histograms of
errors in several data sets, because errors are infrequent in most
RT experiments, yet their RT distributions can be theoretically
informative. As noted earlier, distributions of error RTs cannot
be computed by standard methods like quantile averaging, be-
cause these methods require more trials per participant.

Percentile rank pooling could also potentially be useful
in a number of other situations where it is difficult to get
large numbers of trials per participant in a condition of
interest. For example, in some studies the nature of the
research question dictates that relatively small numbers of
trials will be available in a particular condition. In studies
manipulating stimulus probability, response probability,
or expectancy, for example, it is inherent in the experi-
mental manipulation that there are relatively few trials per
participant in low-probability and unexpected conditions
(e.g., Crossman, 1953; Hyman, 1953; Katzner & Miller,
2012; Klein, 1994; Mattler, 2003; Miller & Pachella,
1973; Starns & Ma, 2018). Furthermore, in addition to
errors, certain interesting types of trials may be uncom-
mon even when they are obtained in high-probability con-
ditions (e.g., trials at low levels of practice). In conditions
with relatively few trials, RT distributions have rarely if
ever been examined with existing methods, and percentile
rank pooling could provide new information.

The percentile rank pooling method might also be use-
ful for comparing RT histograms in data sets with many
infrequent conditions and no frequent one, which can
arise in studies with multi-factor within-subject designs.

For example, with a 2 × 3 × 3 × 4 design, it would
usually be difficult to get more than approximately 10
trials per participant in each condition, which would at
best provide only a crude picture of the within-condition
RT distributions. Computing each RT’s percentile rank
pooled across all conditions, however, provides a
percentile-based normalization of each participant’s RTs
relative to their full set of RTs for the experiment as a
whole. Pooling these percentile ranks across participants
to form condition-specific percentile rank histograms
could provide a detailed picture of where the RTs in each
condition fell in comparison to all of the other conditions.

One clear limitation of the percentile rank pooling method
is that it can only be used for within-subject comparisons. The
RTs of the conditions being compared must be ranked after
combining all of the scores together, and this is only appro-
priate if they come from the same participant.

A second limitation is that the method is only useful
when the RT distributions of different conditions overlap.
If all of the RTs in one condition are faster than all of the
RTs in the other, then the pooled percentile ranks for one
condition would be uniform within the range of 0–P%, and
those of the other condition would be uniform in the range
of P–100%, where P is the proportion of trials in the faster
condition5. In such cases, pooling would not provide new
information about the shapes of the RT distributions in the
two conditions. Given the large natural trial-to-trial variabil-
ity of RTs for a given participant, however, observed RT
distributions in different conditions virtually always overlap,
so the percentile rank pooling method will nearly always
provide some further information about distribution shapes.

A third limitation of the method is that there is currently no
simple approach for testing the statistical significance of any
patterns that might appear in the pooled percentile rank distri-
butions. Each participant provides multiple RTpr values to each
constructed histogram (e.g., Fig. 2), so the values are not all
independent of one another, making it problematic to use stan-
dard techniques for distributional comparisons (e.g., Engmann
& Cousineau, 2011). Bootstrapping and randomization tech-
niques appear to be promising approaches for significance test-
ing, though these would have to be adapted on a case-by-case
basis. For the error trials shown in Fig. 3b, for example, 95%
bootstrap confidence intervals6 show no overlap in bin propor-
tions among any of the top three bins or any of the bottom three
bins, suggesting that the preponderance of quite fast and quite
slow errors is a real phenomenon rather than a statistical fluke.
There may also be situations in which inferential techniques are
unnecessary, of course, such as when there are strong patterns

5 The boundary at P would be step-like if the proportion of trials in each
condition was fixed experimentally (e.g., stimulus probability), but there
would be some smearing at the boundary if the proportion in each condition
varied across participants (e.g., correct versus errors).
6 Computed by sampling participants with replacement.
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in a large data set or when the same patterns are replicated
across multiple experiments. Even without statistical testing,
the method can also be used for descriptive purposes and ex-
ploratory research. Furthermore, certain types of descriptive
distributional results may point toward more focused follow-
up analyses for which standard inferential techniques can be
used even with small numbers of trials (e.g., comparisons of
RT variability).
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Appendix

An Approximation to the Distribution of Percentile Ranks As
defined in the main text (Eq. 1), the distribution of pooled
percentile ranks is a discrete distribution with N possible
values, where N is the number of RTs pooled together for
computation of percentile ranks. This appendix shows how
to compute a continuous approximation to this discrete distri-
bution. The approximation is a convenient alternative to tab-
ulating percentile rank distributions by simulation for any spe-
cific set of assumptions about the underlying RT distributions.

Assume that k ≥ 2 conditions are pooled together for the
computation of percentile ranks, with pi being the proportion
of trials in condition i, i = 1...k. Assume further that the RTs in
condition i come from a probability distribution with cumula-
tive probability function Fi. The overall distribution of the
pooled RTs is thus a mixture distribution FM, with

FM tð Þ ¼ ∑
k

i¼1
pi � Fi tð Þ ð2Þ

(e.g., Everitt & Hand, 1981)7.

We seek the probability distribution of the percentile
ranks of the RTs in condition i, the cumulative form of
which can be denoted as Fpr,i(r).

Fpr;i rð Þ ¼ Pr RTpr;i≤r
� �

¼ Pr FM RTið Þ≤rð Þ
¼ Pr RTi≤ F−1

M rð Þ� �

¼ Fi F−1
M rð Þ� �

ð3Þ

Thus, for any given set of conditions occurring with prob-
ability pi and having RT distributions Fi, a continuous approx-
imation to each condition’s distribution of pooled percentile
ranks can be computed numerically.
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