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Abstract
In meta-analysis, primary studies often include multiple, dependent effect sizes. Several methods address this dependency, such
as the multivariate approach, three-level models, and the robust variance estimation (RVE)method. As for today, most simulation
studies that explore the performance of these methods have focused on the estimation of the overall effect size. However,
researchers are sometimes interested in obtaining separate effect size estimates for different types of outcomes. A recent simu-
lation study (Park & Beretvas, 2019) has compared the performance of the three-level approach and the RVE method in
estimating outcome-specific effects when several effect sizes are reported for different types of outcomes within studies. The
goal of this paper is to extend that study by incorporating additional simulation conditions and by exploring the performance of
additional models, such as the multivariate model, a three-level model that specifies different study-effects for each type of
outcome, a three-level model that specifies a common study-effect for all outcomes, and separate three-level models for each type
of outcome. Additionally, we also tested whether the a posteriori application of the RV correction improves the standard error
estimates and the 95% confidence intervals. Results show that the application of separate three-level models for each type of
outcome is the only approach that consistently gives adequate standard error estimates. Also, the a posteriori application of the
RV correction results in correct 95% confidence intervals in all models, even if they are misspecified, meaning that Type I error
rate is adequate when the RV correction is implemented.
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Meta-analysis is defined as the set of statistical tools that allow
the combination of evidence from different studies to get a
more detailed and general conclusion (Glass, 1976). In me-
ta-analysis, effect sizes from studies that address the same
research question are pooled together. There are in general
two types of statistical models to combine effect sizes: the
fixed-effect model and the random-effects model. The use of
a fixed-effects model without moderators implies the assump-
tion that there is a unique underlying overall effect, whereas

the use of a random-effects model accounts for the possibility
that each study represents its own population effect (and typ-
ically it is assumed that these follow a normal distribution). A
random-effects model is expressed as:

d j ¼ γ0 þ e j þ uj; ð1Þ

where dj is the effect size reported in study j. This model
assumes that each effect size deviates from the overall effect,
γ0, due to differences in samples, and due to the differences
across studies. Specifically, there are two random effects, ej
and uj. The commonly used maximum likelihood (ML) or
restricted maximum likelihood (REML) estimation proce-
dures assume that these random effects are normally distrib-
uted with mean 0 and variance σ2

e j
and σ2

u, respectively. The

variance σ2
e j
is the sampling variance of the observed effect

size, which is typically estimated in advance and therefore
assumed to be known in the meta-analysis itself. The term
σ2
u refers to the between-studies variance, or in other words,

to the heterogeneity of effect sizes due to differences between
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studies. If σ2
u equals 0, then the model of Eq. (1) reduces to a

fixed-effect model. Note that this model is equivalent to a two-
level model, where effect sizes vary due to between-study
differences (level 2) and due to differences between random
samples (level 1) (Raudenbush & Bryk, 1985). Nevertheless,
the model above is not adequate if several effect sizes are
reported within primary studies.

In applied research, it is quite common that, within a single
study, researchers use several effect sizes or outcomes to mea-
sure a common construct, or that researchers compare several
treatment groups with a common control group, or that they
measure a target group in several follow-ups. Effect sizes re-
ported in the same study are likely to be more similar, espe-
cially if they are based on the same sample. Ignoring this
dependency by, for instance, fitting the random-effects model
of Eq. (1), might lead to biased standard error estimates, that
eventually may lead to inflated Type I error rates (Becker,
2000). Several methods exist for dealing with dependent ef-
fect sizes in meta-analyses, namely the multivariate approach
(Kalaian & Raudenbush, 1996; Raudenbush, Becker, &
Kalaian, 1988), the application of three- (or more) level
models (Cheung, 2014; Van den Noortgate, López-López,
Marín-Martínez, & Sánchez-Meca, 2013, 2015), or the use
of the robust variance estimation method for a random-
effects model (RVE; Hedges, Tipton, & Johnson, 2010).

In this study, we describe and compare the application of
these methods in situations where within studies, multiple
types of outcomes may have been studied and for each type
of outcome multiple effect sizes might have been observed,
for instance because the same type of outcome has been mea-
sured with two or more different instruments, or because the
sample is repeatedly measured in several follow-ups.

For instance, Spruit, Assink, Van Vugt, Van der Put, and
Stams (2016) performed a meta-analysis on the relationship
between physical activity interventions and internalizing be-
haviors. In this meta-analysis, the authors were interested in
getting the overall effects of different types of internalizing
behaviors, namely depression, anxiety, or other, and in some
studies, several effect sizes referred to the same type of out-
come. A similar example is found in the meta-analysis of
Lebuda, Zabelina, and Karwowski (2016), where the relation-
ship between mindfulness and creativity was tested. After get-
ting an overall estimate of this relationship, authors also
wanted to compare the overall estimates of different aspects
of creativity, namely fluency, flexibility, originality, insight
problem-solving skill, and composite divergent thinking. A
last example is found in the meta-analysis of Owen et al.
(2016), where the relationship between physical activity and
school engagement was evaluated. Authors were also interest-
ed in getting separate overall estimates for different types of
engagement: behavioral, cognitive, and emotional
engagement.

The examples mentioned above are only a small sample of
meta-analyses in which the interest is in estimating outcome-
specific effects. However, many simulation studies that ex-
plore the performance of methods that deal with dependent
effect sizes have focused on the estimation of an overall effect
size (i.e., Hedges, et al., 2010; Lee, 2014; Moeyaert et al.,
2017; Van den Noortgate et al., 2013, 2015), rather than in
the estimation of outcome-specific effects. Therefore, the aim
of this study to test which method for treating dependent effect
sizes (i.e., multivariate approach, multilevel techniques, or
RVE) is better for estimating outcome-specific pooled effect
sizes and their standard errors. In the following sections, we
describe different models that can be used to apply each of
these methods to estimate outcome-specific pooled effects.

Model 1: Multivariate model

If primary studies include effect sizes referring to, let us say,
three different outcomes, a multivariate two-level meta-re-
gression model could be applied. At the first level, the model
describes variation between effect sizes within studies:

dij ¼ β1 j*Type 1ij þ β2 j*Type 2ij þ β3 j*Type 3ij þ eij; ð2Þ

where dij refers to the observed effect size i reported in study j.
These effect sizes are regressed on dummy indicators for three
types of outcomes, Type_1, Type _2, and Type _3. Their
weights, β1j, β2j, β3j, refer to the population effect sizes for
study j for these three types, respectively. Note that this model
assumes that effect sizes belonging to the same type of out-
come have the same population effect. The estimation proce-
dure usually used in this model, namely ML or REML, as-
sumes that the vector of residuals e within study j follows a
multivariate normal distribution with mean 0 and with the
following I x I variance-covariance matrix (V), being I the
total number of effect sizes within a study:

e1 j
e2 j
⋮
eIj

2664
3775∼MVN

0
0
⋮
0

264
375; σ2

e1
σe1e2 σ2

e2
⋮
σe1eI

⋮
σe2eI

⋱
… σ2

eI

2664
3775

0BB@
1CCA:

At Level 2, the study-specific population effects can be
allowed to randomly vary across studies:

β1 j ¼ γ10 þ u1 j
β2 j ¼ γ20 þ u2 j
β3 j ¼ γ30 þ u3 j

8<: ð3Þ

where γ10, γ20, and γ30 are the outcome-specific mean effects.
The study-specific random effects u1j, u2j, and u3j are assumed
to follow a multivariate distribution:
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u1 j
u2 j
u3 j

24 35∼MVN
0
0
0

24 35; σ2
u1

σu1u2 σ2
u2

σu1u3 σu2u3 σ2
u3

264
375

0B@
1CA;

where the variances σ2
u1 , σ

2
u2 , and σ2

u3 are the between-studies

variances of the population effect sizes for outcomes of
Type_1 (γ10) , Type_2 (γ20), and Type_3 (γ30), respectively.
Note that the model allows that the between-study variance
depends on the outcome type. For instance, in the study of
Spruit et al. (2016), it could be the case that effect sizes for
‘anxiety’ outcome varied more across studies than the effect
sizes for ‘depression’ outcome (but effects of both types of
outcomes are still likely positively correlated).

The multivariate approach has the advantage of yield-
ing separate pooled effect size estimates for each type
of outcome, enabling the statistical comparison among
them. However, a disadvantage of using this approach is
that, in the same way as in univariate meta-analysis the
sampling variances of the observed effect sizes should
be estimated before doing the meta-analysis, a multivar-
iate meta-analysis assumes that the sampling variance-
covariance matrix can be estimated in advance.
Unfortunately, primary studies often do not report
enough information to estimate the covariances. For in-
stance, if a given construct has been measured using
different outcomes (within studies), then the correlation
between these outcome variables would be necessary to
calculate the covariance among effect sizes.

Model 2: Three-level model with one random
study effect

A second approach to account for dependent effect sizes
consists in the application of three-level models
(Cheung, 2014; Van den Noortgate et al., 2013, 2015).
Additional random effects can be added to the model of
Eq. (1) to address dependency among effect sizes within
studies. One possible model specification for the scenar-
io that is being considered throughout this study (i.e.,
existence of multiple effect sizes within multiple types
of outcomes), is the following:

dij ¼ γ10*Type 1ij þ γ20*Type 2ij þ γ30*Type 3ij þ eij

þ rij þ u0 j: ð4Þ

The variance of the three random effects, eij, rij, and u0j
refer, respectively, to the sampling variance of the observed
effect sizes (Level 1; estimated in advance), the within-study
variance between true effect sizes (Level 2), and the between-
studies variance once the effect of the three dummy variables
has been taken into account (Level 3).

Model 3: Three-level model with separate
random study effect

In Model 2, there is only one random effect at the study level.
This assumes that the effect of the study on the expected effect
sizes is the same for all types of outcomes in the study, and
that the between-studies variance (σ2

u ) is assumed to be the
same for the three types of outcomes. However, we can also
specify a three-level model with a random study effect for
each type of outcome (as in Model 1):

dij ¼ γ10 þ u1 j
� �

*Type 1ij
� �þ γ20 þ u2 j

� �
*Type 2ij

� �
þ γ30 þ u3 j
� �

*Type 3ij
� �þ eij þ rij: ð5Þ

Now, at Level 3, there are three random effects: u1j, u2j, and
u3j, that are assumed normally distributed with mean 0 and
variances σ2

u1 , σ
2
u2 ; and σ

2
u3 if the estimation procedure used is

ML or REML. Each of these variances refers to the between-
studies variances of the three outcome-specific pooled effect
sizes.

Model 4: Separate three-level models

Another strategy to carry out a meta-analysis that estimates
pooled-specific outcome effects is to separately carry out a
three-level meta-analysis for each different type of outcome.
At this point it is important to recall that we are considering the
scenario in which there are several effect sizes per type of
outcome within studies, so even if each type of outcome’s
effect size is separately synthesized, there will be still several
effect sizes within studies, and hence the inclusion of a ran-
dom outcome effect is appropriate. For each type of outcome
separately, the following three-level model is used:

dij ¼ γ0 þ eij þ rij þ u0 j; ð6Þ

A main difference with respect to the previous three-level
models is that in this case, the pooled outcome-effect esti-
mates cannot be statistically compared.

Unlike the multivariate approach, meta-analytic three-level
models (wrongly) assume that the sampling covariances
among effect sizes within studies are zero. However, simula-
tion studies have shown that meta-analytic three-level models
are robust to this misspecification of the correlation structure
due to the incorporation of an additional random effect,
rij (Van den Noortgate et al., 2013, 2015). Three-level models
are especially advantageous when information for calculating
covariances among effect sizes is not available. On the other
hand, the main downside is that the covariance among each
pair of effect sizes is implicitly assumed to be the same (Van
den Noortgate et al., 2013, 2015), and this might not be a very
realistic assumption.
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Model 5: Two-level model (with the RVE
method)

As mentioned earlier, the use of ordinary two-level models
(without a random outcome effect) may result in biased stan-
dard errors and therefore in flawed inferences. The RVEmeth-
od (Hedges et al., 2010; Tipton, 2013, 2015) corrects the stan-
dard error(s) of the fixed effect(s) estimates (i.e., pooled effect
size and moderator effects) using sandwich variance estima-
tors. The general meta-regression can be written as:

d ¼ Xγ þ ε; ð7Þ

where d is a vector of stacked observed effect sizes across
studies, X is a design matrix whose number of rows equal the
total number of effect sizes, and whose number of columns
equal the number of covariates tested in the meta-regression.
When no covariates are tested, then X equals a column vector
of ones. The term γ refers to the vector of regression coeffi-
cients that have to be estimated, and finally ε is a vector of
residuals. To get an estimate of γ, this equation is used:

bγ ¼ XWXð Þ−1 XWdð Þ; ð8Þ
where W is a diagonal matrix with the weights assigned to
each effect size along the diagonal.

The meta-regression model of Eq. (1) is the same for both a
fixed- and a random-effects model. The difference is in the
weights assigned to the effect sizes under each of these
models. Under a fixed-effects model, the weights of the effect
sizes belonging to study j equal 1

k j v� jð Þ, where k refers to the

number of effect sizes within study j, and v� j is the average
sampling variance of the k effect sizes in study j. Under a
random-effects model, the weights equal 1

k j v� jþbτ2� � ; where
bτ2 is an estimate of the between-study variance.

In order to estimate the variances of the estimated pooled
effects (bγ ), Hedges et al. (2010) proposed to use the cross-
products of the within-study residuals as a rough estimate of
the covariance matrix for observed effect size estimates within
studies. Their study shows that with a large number of studies,
this rough estimation of the covariance matrix leads to unbi-
ased standard error estimates.

V bγ� �
¼ ∑

k

j¼1
X

0
jW jX j

 !−1

∑
k

j¼1
X

0
jW jε jε

0
jW jX j

 !
∑
k

j¼1
X

0
jW jX j

 !−1

ð9Þ

The term εj refers to a vector of the study residuals in study
j, and ε j¼d j−X jbγ. Note that εj will have a different value
under a fixed- and under a random-effects model because the
estimate of bγ will be different due to the use of different
weights for its estimation. For calculating the between-study

variance, we refer to the original paper, but an important as-
pect of its calculation is that the value of the correlation be-
tween effect sizes within the same study is needed. However,
Hedges et al. (2010) showed that the value of the correlation
selected has little effect on the parameter and standard error
estimates. Therefore, this approach can be applied even if the
researcher does not have information about the correlation
between the effect size estimates. Another advantage is that
RVE does not make strict assumptions about the distribution
of the data.

Current study

In the present study, we will study which of these five models
will result in the best outcome-specific effect estimates, their
standard errors and their 95% confidence intervals (CIs). In
addition, we will explore whether the performance when using
the first four models can be further improved by using an a
posteriori robust variance correction to the standard errors, as
proposed recently (Pustejovsky, Tipton, & Aloe, 2018;
Tipton, Pustejovsky, & Ahmadi, 2019). This a posteriori ro-
bust variance correction consists in applying the reduced-
linearization correction proposed by Bell and McCaffrey
(2002) to the observed variance-covariance matrix of a set of
regression coefficients. More technical information about this
adjustment can be found in Pustejovsky & Tipton (2017).

Park and Beretvas (2019) have recently performed a simu-
lation study in which they have compared the performance of
a meta-analytic three-level meta-regression (that specified dif-
ferent study-effects for each type of outcome) with the perfor-
mance of a random-effects model with RVEmethod regarding
the parameter recovery of the outcome-specific effects, stan-
dard errors, and between-studies variances. They concluded
that a random-effects model using RVE method accurately
estimated outcome-specific pooled effect sizes and their stan-
dard errors. However, this method sometimes underestimated
the between-studies variance, especially when the true
between-studies variance and the correlations between study
residuals were large. On the other hand, the three-level model
did not converge under some circumstances, especially when
the number of primary studies was 20, the between-studies
variance was small, and when datasets were unbalanced.
Both methods performed equally when the number of primary
studies was 50.

The present simulation study aims to extend the study of
Park and Beretvas (2019) in three important ways. First, Park
and Beretvas (2019) only tested the performance of the mul-
tilevel approach (estimating separate between-studies vari-
ances for each outcome-specific effect) and of the random-
effects model using RVE method, whereas in this study we
will additionally explore the performance of the multivariate
approach and of alternative specifications of the three-level
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model that are more widely used in practice (e.g., a three-level
model that assumes a common study-effect for all effect sizes
or separate three-level models for each type of outcome).
Additionally, this study will shed light on the value of
correcting standard errors a posteriori (Pustejovsky, Tipton,
& Aloe, 2018; Tipton, Pustejovsky, & Ahmadi, 2019)

A second difference between the study of Park and
Beretvas (2019) and this study is the way data are generated.
They generated data from a three-level model, and we will
generate data from a multivariate two-level model, with a
sample-level and a between-study level (Kalaian &
Raudenbush, 1996; Raudenbush, et al., 1988). Previous sim-
ulation studies have followed this strategy of generating mul-
tivariate meta-analytic data and then analyzing them using
three-level models (e.g., Van den Noortgate et al., 2013,
2015), because the multivariate two-level model is generally
assumed to be the actual correct model in meta-analysis (i.e.,
correlated effect sizes are nested within studies).

Finally, a third difference is that Park and Beretvas (2019)
generated between one and 15 effect sizes per study (five
effect sizes per type of outcome), but it was equally likely that
a study included eight effect sizes than that a study reported 12
effect sizes. However, a recent systematic review (Fernández-
Castilla et al., 2020) has shown that an important percentage
of primary studies in the field of behavioral and social sci-
ences (42.27%) include only one effect size, whereas 18%
include five effects or more. In the present simulation, we will
base the data generation on this more authentic pattern that
was found. Furthermore, we will add another simulation factor
condition in which the between-studies variances are different
for the three types of outcomes (i.e., effect sizes belonging to
one type of outcome vary more across studies than effect sizes
belonging to another type of outcome). If the true between-
studies variance of each level of the moderator (i.e., of each
type of outcome) is different, but a common variance is as-
sumed (Model 2 and Model 5), we expect to get biased stan-
dard error estimates.

In this study, we will mainly focus on the overall type-of-
outcomes estimates and on their standard errors, because ap-
plied researchers are often mostly interested in testing and
comparing outcome effects. We will only summarize general
results on the variance components; more information can be
found in supplementary material.

Method

Data generation First, Cohen’s dwere directly simulated from
the multivariate two-level model described above (Model 1),
with a separate dependent variable for each effect size. We
have chosen to draw effect sizes directly to make our results
more easily generalizable to other effect size measures with
approximately normal sampling distributions (such as Fisher’s

z transformed correlations and log odds ratios). A drawback
is, however, that this is less good mimicking real meta-
analyses in which effect sizes are calculated on raw data. At
the first level (Eq. 2), observed effect sizes are regressed on
dummy indicators for three types of outcomes, Type_1, Type
_2, and Type _3, using a model without intercept. Effect sizes
belonging to the same type of outcome had the same popula-
tion effect. The sampling variances-covariances were calcu-
lated with the formulas of Gleser and Olkin (1994) for
Cohen’s d effects1.

Initially, 30 effect sizes per study were generated (I = 30).
For each study, the first ten effect sizes referred to the type of
outcome one (Type_1), the next ten effect sizes referred to the
type of outcome two (Type_2), and the last ten effect sizes
referred to the type of outcome three (Type_3). Afterwards,
most of these effect sizes were removed in order to generate
two types of balanced/unbalanced scenarios and to still keep
the number of effect sizes per study fixed. These two
balanced/unbalanced scenarios are explained below.

In practice, it is unlikely that effect sizes are equally dis-
tributed over types of outcome. For instance, in the meta-
analysis of Spruit et al., (2016), depression outcome effect
sizes were more numerous (i = 38) than effect sizes for anxiety
(i = 26) or for the other outcome category (i = 12). We
accounted for this scenario in the ‘balanced- versus ‘unbal-
anced-type of outcome’ condition. In the ‘balanced type of
outcome condition’, there were the same number of effect
sizes per type of outcome: 67% of the effect sizes referring
to outcome Type_1, 67% of the effect sizes referring to out-
come Type_2, and 67% of the effect sizes referring to out-
come Type_3 were randomly removed. In the ‘unbalanced
type of outcome’ condition, 40% of the effect sizes referring
to outcome Type_1, 70% of the effect sizes referring to out-
come Type_2, and 90% of the effect sizes referring to out-
come Type_3 were deleted. In both the balanced and unbal-
anced conditions, the expected number of effect sizes within
studies after the deletion was ten.

Furthermore, it is also unlikely that all studies report the
same number of effect sizes. Therefore, after generating the
‘(un)balanced type of outcome’ condition, we generated an
additional condition called ‘balanced-’ or ‘unbalanced effect
sizes’ across studies condition. A recent systematic review
about characteristics of meta-analyses of multiple outcomes
in different research fields (Fernández-Castilla et al., 2020)
has found that in the field of behavioral and social sciences,
42.27% of primary studies report only one effect size, 22.87%
of studies report two effect sizes, 7.88% of studies provide
three effect sizes, 8% of studies report four effects, and 18%
report five or more effect sizes. Therefore, in the ‘unbalanced

1 σdij dij
0 ¼ ncþne

nc
ne þ δij

δij0 ρ2ij ij0
2 ncþneð Þ. nc and ne refers to the sample size of

the experimental and control group. δij and δij′ refer to the population
effect of effect size i within study j, and ρij ij′ refers to the correlation
between outcome variables.
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effect sizes’ condition, we replicated these percentages. On
the other hand, in the ‘balanced effect sizes’ condition, we
randomly chose two or three effect sizes per study. The ex-
pected number of effect sizes in the meta-analysis was the
same in both balanced and unbalanced condition: 56 effect
sizes when the number of studies generated was 20, and 120
effect sizes when the number of studies generated was 40.

Data analysis After generating these data, effect sizes were
analyzed according to the five models described above. For
the multivariate approach (using Model 1), the variance-
covariance matrix used to fit the multivariate approach was
calculated using the population correlation between outcome
variables and the population effects that were used during the
data generation, meaning that it was assumed that the correla-
tion between outcome variables was accurately known for
each study. Of course, these correlations are not known in
practice and should be estimated (which is exactly the main
drawback of the multivariate approach). By proceeding in this
way, however, we can use the multivariate approach as a
benchmark, because the model used is the correct model and
because no bias is induced by using estimated correlation
coefficients. For the RVE approach (using Model 5), we used
the small sample adjustment proposed by Tipton (2015), i.e.,
using the Satterthwaite approximation for the degrees of free-
dom for the t-statistic used to build CIs are obtained using (the
default option in the software we used).

The estimation procedure used for Model 1 to 4 was the
restricted maximum-likelihood (REML). As mentioned earli-
er, we first applied Model 1 to 4 using the REML estimation
method, and then we applied the robust variance correction.
As a result, we obtained nine different sets of estimates from
five models: four sets of estimates (from Model 1 to Model 4)
in which the standard errors of the fixed effects were not
corrected, four sets of estimates (from Model 1 to Model 4)
in which the standard errors of the fixed effects were after-
wards corrected using RVE method, and then one set of esti-
mates where only RVE was applied (Model 5).

Conditions

Several characteristics of the datasets were systematically varied
besides the ones already described (i.e., the (un)balanced type of
outcome condition and the (un)balanced effect sizes condition).
According to the systematic review of Fernández-Castilla et al.
(2020), the median number of studies (k) included in meta-
analyses in the field of behavioral and social sciences is 39,
and the first quartile is 23. Therefore, we chose two conditions
for the number of studies: 20 and 40.

The same systematic review indicates that the median sample
size of primary studies (n) in the same field is 107, and the first
quartile is 50. Because the sample size is typically unbalanced

across primary studies, for each primary study we extracted a
number from a lognormal distribution n ~ LnN (3.91, 0.7) or
LnN (4.61, 0.7). The mean sample size in each meta-analysis
was therefore 50 (when the LnN mean was 3.91) or 100 (when
the LnNmean was 4.61), mimicking the results of the systematic
review. Because the covariance between effect sizesmight not be
accurately estimated if the sample size is smaller than 200, we
included another condition inwhich the expected average sample
size was 280 (this number corresponds to the 3rd quartile of the
same systematic review). The distribution fromwhich the sample
size value was extracted was LnN (5.63, 0.7).

Three values for the correlation between outcome variables
within primary studies were selected. In one condition, the vari-
ables that represented the same outcome correlated .4 and the
variables representing different outcomes correlated .2. In a sec-
ond condition, both correlations were higher: the correlation be-
tween variables belonging to the same outcome was .6, and the
correlation between variables belonging to different outcomes
was .4. In a third condition, the variables were uncorrelated
(ρ= 0). This last condition was included to get a better insight
in how results depend on the correlation, but it is unlikely that
outcomes that are supposed to belong to the same category are
uncorrelated.

Regarding the between-studies variances (σ2
u1 ,σ

2
u2 ;σ

2
u3Þ, three

different conditions were simulated. In the first one, the three
variances had the same value, 0.072. This value corresponds to
the median between-studies variance obtained in the systematic
review of Fernández-Castilla et al. (2020) for Hedges’ g in the
field of behavioral and social sciences. In a second condition, the
variance of the first outcome (σ2u1 ) had a value of 0.017, corre-

sponding to the first quartile found in the aforementioned sys-
tematic review, the between-studies variance of the second out-
come (σ2

u2Þwas set to 0.072, and the between-studies variance of
the third outcome (σ2

u3Þ equaled 0.153, that corresponds to the

third quartile. In a third condition, the between-studies variances
of the first, second, and third outcome were set to 0.153, 0.072,
and 0.017, respectively. The correlation selected to calculate the
covariances between study residuals (σu1 u2;σu1 u3; and σu2 u3 )
were 0, .2, or .4, which are intermediate values from the ones
used by Park and Beretvas (2019). Finally, the mean outcome
effectswere chosen to be γ10= 0.20, γ20= 0.40, and γ30=0.60, that
are the values also selected by Park and Beretvas (2019).

All these factors resulted in 2 (balanced/unbalanced type of
outcome condition) * 2 (balanced/unbalanced effect sizes con-
dition) * 2 (number of studies) * 3 (mean sample size) * 3
(correlation between variables) * 3 (between-studies variance
values) * 3 (correlation between study residuals) = 648 con-
dit ions. For each condit ion, 1,000 datasets were
generated. The simulated factor conditions are summarized
in Table 1.

R software was used to generate and analyze the data (R
Core Team, 2012). To fit the multivariate and multilevel meta-
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analytic models (Model 1 to 4), package metafor
(Viechtbauer, 2010) was used, specifically the rma.mv func-
tion. To fit the random-effects model with RVE as estimation
method (Model 5), the function robu from package robumeta
was used (Fisher, Tipton & Zhipeng, 2017). To correct the
fixed parameters with RVE method, the package
clubSandwich (Pustejovsky, 2018) was applied, specifically
the coef_test function. The R code used to fit the five different
models plus a generated dataset to run the code can be found
in the following link: https://osf.io/ywum6/

Evaluation of the approaches

The fixed effect estimates were summarized across the 1000
iterations. The bias of fixed effect estimates was calculated by
subtracting the real value from the average estimated value.
By dividing this bias by the true value (and multiplying it by
100), we obtained the relative bias (RB), expressed as a per-
centage. Following the cutoffs proposed by Hoogland and
Boomsma (1998), RBs between 5% and 10%were considered
as acceptable, whereas RBs above 10% were considered as
unacceptable. Furthermore, the accuracy of the fixed-effect
estimates was evaluated by calculating the mean square error
(MSE).

Bias of the standard errors of the fixed effect estimates was
approximated by comparing the median of the standard error
estimates of a certain condition with the standard deviation of
the estimates in that condition. The standard deviation of the
fixed-effects estimates can be considered as an accurate ap-
proximation of the true standard error because we simulated a
large number of datasets (i.e., 1000). We decided to use the
median standard error and not the mean because of the known
skewed distribution of standard errors. We also looked at the
coverage percentages of the 95% confidence intervals (CI) in
each condition.

The non-converge rates were calculated for each model
separately. To get this percentage, the number of datasets
where the model did not converge was divided by the total
number of datasets (i.e., 648,000), and then this number was
multiplied by 100.

Last, in order to find out which conditions were re-
lated to bias, we performed analyses of variance
(ANOVAs) where the dependent variable was the fixed
effect or standard error bias, and the independent vari-
ables were the simulation factor conditions. Simulation
factors with an eta squared (η2) larger than .14 were
considered influential. This cutoff is based on Cohen’s
rule of thumb (Cohen, 1988), where .14 can be consid-
ered as a large effect. Only main effects were tested,
with the exception of the interaction between the factor
condition (un)balanced-type of outcome and the pattern
of between-studies variances for each outcome (i.e.,
whether between-studies variances were the same or

different across outcomes). The purpose of including
this interaction is to test the extent to which the stan-
dard errors are affected when the most reported outcome
(i.e., outcome 1 in the unbalanced-type of outcome con-
dition) is the one with a largest between-studies vari-
ance (i.e., condition where σ2

u1 = 0.153, σ2
u2 = 0.072,

and σ2
u3 = 0.017) or the one with the lowest between-

studies variance (i.e., condition where σ2
u1 = 0.017, σ2

u2

= 0.072, and σ2
u3 = 0.153).

Results

An important first result is that outcome-specific pooled
estimates were unbiased in all models and across con-
ditions, so they are not further discussed. In contrast,
the MSEs, standard errors estimates, and coverage pro-
portion of 95% CIs differed across conditions and
models. The MSE is smallest using the multivariate
model (Model 1), followed by the two-level model with
RVE (Model 5), the use of separate three-level models
for each type of outcome (Model 4), three-level models
with separate random study-effects (Model 3) and final-
ly three-level models with one random study effect
(Model 2) (see Table2 ). In the following section, we
first discuss the non-convergence rates, and then the
standard error estimates and coverage proportion of
95% CIs of the outcome-specific effects.

Non-convergence rates

The multivariate model (Model 1) and the three-level model
that specified different study-effects for each type of outcome
(Model 3) did not converge in 0.12% of the analyses. For
Model 1, the conditions most associated with the non-
convergence rates were small mean sample sizes and balanced
effect sizes within types of outcomes. For Model 3, the con-
ditions most associated to the non-convergence rates were
when the number of primary studies was small and effect sizes
within types of outcomes were unbalanced. The three-level
model that specified a common study-effect for all effect sizes
(Model 2) did not converge in 0.005% of the conditions.
When three different three-level models were applied for each
type of outcome separately (Model 4), there was no conver-
gence in 0.10%, 0.08% and 0.34 % for the analyses of the
three types, respectively. The factor levels related to the non-
convergence rates of these models were small mean sample
sizes, small number of primary studies, and balanced effect
sizes within types of outcomes. Finally, the random-effects
model (Model 5) estimated using the RVE method always
converged.

708 Behav Res  (2021) 53:702–717

https://osf.io/ywum6/


Standard errors and coverage proportion of the 95%
CIs of the fixed effects estimates

Before analyzing in detail the standard error estimates yielded
by each model, we first calculated the MSE and mean relative
standard error bias (RSEB) for each type of outcome and
model (see Table 2). Figure 1 shows the mean standard error
bias of type of outcome 1 for all models disaggregated by each
simulation factor condition2.

The multivariate approach resulted in the lowest MSEs,
followed by the random-effects model with RVE method.
Model 2 (three-level model with one random study effect)
led to less precise fixed effect estimates. The lowest RSEBs
were obtained when using Model 4 (separate three-level
models; RSEBs = – 1.62%, – 3.20%, and – 5.30% for bγ10, bγ20
and bγ30, respectively). In contrast, the largest RSEBs were

obtained when Model 2 was applied (RSEBs = – 15.83%, –
20.21%, and – 19.30% for bγ10, bγ20; and bγ30, respectively). On
average, the robust variance correction led to slightly more
underestimated standard errors in all models, except for
Model 2 (three-level model with one random study effect),
where the robust variance correction substantially improved
estimation of the standard errors. Interestingly, despite aver-
age standard errors were still underestimated by most models
even if the robust variance correction was applied, the cover-
age proportion of the 95% CIs were still adequate. In contrast,
the coverage proportion of the 95%CIs obtained in themodels

where RVE correction was not applied were too low, aligning
with the results observed for the RSEB.

Figure 1 shows that Model 4 (separate three-level models)
led to smaller standard error bias in all conditions. On the
other hand, the three-level model that specified a common
study-effect for all effect sizes showed the largest standard
error biases in all conditions. In these graphs, we can also
observe two strong interactions between the model fitted and
the simulation factor levels. First, the robust variance correc-
tion led to better standard error estimates of the three-level
model that specified a common study-effect for all outcomes,
but this correction did not seem to improve estimates for the
other models. Second, the same three-level model performed
much worse than the other models in estimating the standard
error for the first outcome type when its variance was very
large, and also when all between-studies variances were equal
to 0.072. In the following sections, the performance of each
method is described in detail.

Model 1: Multivariate model

The simulation factors that had a larger influence in the stan-
dard error bias were the number of studies (η2 = .344, .705,
.360 for SE[bγ1�, SE[bγ2�, and SE[bγ3�, respectively), whether
the moderator variable ‘type of outcome’ was (un)balance
across studies (η2 = .170, .015, .273), and whether effect sizes
were (un)balanced across studies (η2= .106, .139, .040).
Table 3 shows the RSEBs under this combination of condi-
tions. When the number of primary studies was 20, all stan-
dard errors were underestimated, except the standard error ofbγ1, that was properly estimated when the probability of
reporting the type of outcome 1 was higher than the one of

2 Figure 1 only includes the standard error bias of outcome Type_1 for sim-
plicity. The graphs for the standard error bias of Type_2 and Type_3 are
available at https://osf.io/ywum6/. Please note that in the graph for the
standard error bias of Type_3, the scale of the y-axis is slightly larger.

Table 1 Summary of the simulated factor conditions

Factor (number of conditions) Simulation conditions

Number of studies (2) k = 20, 40

Mean sample size (3) n = 50, 100, 280

Within-study correlation among
outcome variables (2)

ρ = 0
ρ = .4 if ESs belong to the same outcome and .2 if they belong to different outcomes;
ρ = .6 if ESs belong to the same outcome and .4 if they belong to different outcomes

Between-studies variances (3) σ2
u1 ¼ σ2

u2 = σ2
u3 ¼ 0:072;

σ2
u1 ¼ 0:017;σ2

u2 ¼ 0:072;σ2
u3 ¼ 0:153;

σ2
u1 ¼ 0:153;σ2

u2 ¼ 0:072;σ2
u3 ¼ 0:017

Correlation between study random
effects (3)

ρu1 u2 ¼ ρu1 u3 ¼ ρu2 u3 ¼ 0; 0:2; 0:4

(Un)balanced type of outcome (2) Unbalanced: The probability of reporting outcome Type_1, Type_2 and Type_ 3 was .60, .30 and .10,
respectively. Balanced: The probability of reporting outcome Type_1, Type_2 and Type_3 was .33, .33
and .33, respectively.

(Un)balanced ESs (2) Unbalanced: Studies reported different number of ESs.
Balanced: Studies reported the same number of ESs.

Mean effects (1) γ10 = 0.20, γ20 = 0.40, γ30 = 0.60

Notes. ESs = effect sizes
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reporting type of outcome 2 or type of outcome 3. In contrast,
almost all standard errors showed acceptable RSEB when the
number of primary studies was 40, except the standard error ofbγ1, that was underestimated when types of outcomes were
balanced and effect sizes were unbalanced across studies,
and the standard error of bγ3, that was underestimated when
the types of outcomes and the effect sizes across studies were
unbalanced. The standard error of bγ3 was especially
underestimated when the probability of reporting type of out-
come 3 was smaller than the probability of reporting type of
outcome 2 or type of outcome 1. The coverage proportion of
the 95% CIs followed the same pattern as the RSEBs, being
smaller than 95% in most conditions.

Model 2: Three-level model with one random study effect

The simulation factor conditions that predicted the bias of the
standard errors estimated under this model were: the applica-
tion of robust variance correction (η2=.119, .370, and .065 for
SE[bγ1�, SE[bγ2�, and SE[bγ3�, respectively), the number of pri-
mary studies (η2=.024, .148, and .092), whether effect sizes
were (un)balanced across studies (η2=.038, .188, and .038),
and whether the variable types of outcome was (un)balanced
across studies (η2=.017, .027, and .086). Whether between-
studies variances were the same or different for the three types
of outcomes did not emerge as an influential factor condition,
although theoretically it should have had an effect on the stan-
dard error estimates. Therefore, we have also included this
factor in Table 4, where the RSEBs for each combination of
conditions are reported. The other factors that did not result
influential are fixed to intermediate levels.

As can be seen in Table 4, The RSEBs were out of the
recommended bounds in almost all conditions when the

robust variance correction was not applied. When the three
between-studies variances were equal to 0.072, all standard
errors were underestimated. When the between-studies vari-
ance of bγ1 was small, the standard error of bγ1 was
overestimated, especially when the types of outcomes and
effect sizes were balanced across studies. The same pattern
was found for bγ3 : its standard error was overestimated when
its between-studies variance was small and the variable ‘type
of outcomes’ and effect sizes were balanced across studies.
The standard error of bγ2 was always underestimated.

The RSEBs substantially improved when the robust vari-
ance correction was applied. When the number of primary
studies was 20, standard errors were still underestimated, es-
pecially the ones of bγ3, although in a lesser extent. When the
number of studies was 40, all standard errors were appropri-
ately estimated. Furthermore, the coverage proportion of the
95% CIs were very close to the nominal levels despite stan-
dard errors were sometimes underestimated. In contrast, when
the robust variance correction was not applied, the coverage
proportions were too small in the conditions where the RSEBs
were outside the recommended bounds.

Model 3: Three-level model with separate random study
effects

This model yielded almost identical results to the ones of the
multivariate model (see Table 3). The factors that influenced
the standard error bias in a larger extent were the number of
studies (η2= .352, .692, and .356 for SE[bγ1�, SE[bγ2�, and
SE[bγ3�, respectively), whether the variable ‘types of outcome’
was (un)balance across studies (η2= .169, .014, and .270), and
whether effect sizes were (un)balanced across studies (η2=
.124, .157, and .047). The RSEB were almost the same as that

Table 2 Mean squared error of fixed effects, relative standard error bias by model, and percentage of conditions in which each model led to
unacceptable relative standard error bias

Mean square error x 1000 Mean % relative bias Coverage proportion of the 96% CIs

bγ1 bγ2 bγ3 SE(bγ1Þ SE(bγ2Þ SE(bγ3Þ bγ1 bγ2 bγ3
Model 1 .014 .040 .040 – 2.89 – 9.02 – 11.87 .93 .92 .90

Model 1+ RVc .014 .040 .040 – 4.22 – 9.60 – 17.44 .94 .93 .92

Model 2 .039 .113 .114 – 15.84 – 20.21 – 19.30 .88 .87 .86

Model 2 + RVc .039 .113 .114 – 5.04 – 7.86 – 8.35 .94 .94 .94

Model 3 .032 .103 .103 – 3.28 – 8.86 – 12.36 .93 .91 .90

Model 3 + RVc .032 .103 .103 – 4.52 – 9.62 – 17.47 .94 .93 .92

Model 4 .030 .101 .101 – 1.62 – 3.19 – 5.27 .93 .93 .92

Model 4 + RVc .030 .101 .101 – 1.98 – 3.20 – 5.77 .95 .95 .95

Model 5 .026 .074 .074 – 4.66 – 6.23 – 10.61 .95 .95 .04

Notes.Model 1: Multivariate model; Model 2: Three-level model with one random study effect; Model 3: Three-level model with separate random study
effect; Model 4: Separate three-level models; Model 5: Two-level model (with the RVE method); RSEBs: Relative standard error bias; RVE: robust
variance estimation method; RVc = robust variance correction; SE(bγ1Þ; SE bγ2ð Þ, and SE(bγ3Þ = standard error of the outcome Type_1, Type_2, and
Type_3 estimates, respectively. CIs confidence intervals. Mean squared errors have been multiplied by 1000
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observed for the multivariate approach and followed exactly
the same pattern. The coverage proportion of the 95%CIs also
followed the same pattern as the RSEBs: they were smaller
than the nominal level, .95, especially if the number of studies
was small.

Model 4: Separate three-level models

The simulation factors that predicted the standard error bias of
these models were the number of primary studies (η2=.264,
.527, and .380 for SE[bγ1�, SE[bγ2�, and SE[bγ3�, respectively),
whether the moderator variable ‘type of outcome’ was
(un)balanced across studies (η2=.078, .019, and .233), and

whether effect sizes were (un)balanced across studies
(η2=.045, .048, and .020). When the number of primary stud-
ies was 20, the standard error of bγ3 was underestimated, espe-
cially if the variable ‘type of outcomes’ was unbalanced (see
Table 3). The standard error of bγ2 was underestimated when
the variable ‘type of outcomes’ and the number of effect sizes
across studies was unbalanced, and the standard error of bγ1
was adequately estimated. When the number of studies was
larger (k = 40), all RSEBs were within the appropriate cutoffs.
The results from the coverage proportion of the 95% CIs
followed a similar trend than the results from the RSEB: they
were smaller than .95, especially if the standard error very
underestimated.

Fig. 1 Mean standard error bias of outcome Type_1 for each model and
simulation factor condition when robust variance correction was not
applied (except for the first graph). In the last graph, 1 refers to the
condition where all between-studies variances are equal to 0.072; 2 =

condition where σ2
u1 = 0.017, σ2

u2 = 0.072, and σ2
u3 = 0.153; 3 = condition

where σ2
u1 = 0.153, σ2

u2 = 0.072, and σ2
u3 = 0.017. SE = standard error;

RVE = robust variance estimation
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Model 5: Two-level model (with RVE method)

The number of primary studies (η2=.299, .558, and .281 for
SE[bγ1�, SE[bγ2�, and SE[bγ3�, respectively), whether the vari-
able ‘type of outcome’ was (un)balanced (η2=.146, .026, and
.263), and whether effect sizes were balanced across studies
(η2=.077, .192, and .137) were the most influential factors in
predicting the standard error bias of the random-effects model
with RVE method. Surprisingly, whether the between-studies
variances were equal or different for each type of outcome did
not have an influential effect on the bias (η2=.015, .00007,
.016 for SE[bγ1�, SE[bγ2�, and SE[bγ3�, respectively), although
standard errors depend on the between-studies variance esti-
mate. Because theoretically this factor condition must influ-
ence the standard error estimates, we have included it in
Table 5, where the RSEBs of this combination of conditions
is shown.

When the number of primary studies was 40, almost all
standard errors were properly estimated. When the meta-

analysis included 20 studies, the standard error of bγ1 was
underestimated when the three types of outcomes were equal-
ly likely to be reported and the between-study variance was
small (0.017) or medium (0.072). The standard error of bγ2 was
sometimes underestimated when the other between-studies
variances were different, and the standard error of bγ3 was
underestimated in almost all conditions, except when the types
of outcomes and the number of effect sizes across studies were
unbalanced. Although we find some differences in the RSEBs
across the different patterns of between-studies variances,
these differences are not the ones expected theoretically. A
last observation is that, although standard errors were
underestimated under some conditions, the coverage propor-
tions of the 95% CIs were always close to the nominal level.

Variance components

Table 6 shows the average between-studies variance estimates
and their relative bias segregated by Model type and by their

Table 3 Relative standard error bias and coverage proportion of the
95% confidence intervals (in italic) yielded by the multivariate model
(Model 1), the three-level model that specifies outcome-specific study-

effects (Model 3), and the three separate three-level models for each type
of outcome (Model 4)

Model
fitted

Type
out.

ESs k = 20 k = 40

SE(bγ1Þ SE(bγ2Þ SE(bγ3Þ SE(bγ1Þ SE(bγ2Þ SE(bγ3Þ
Model 1 Unbal. Unbal. – 9.28

.92
– 16.30

.88
– 30.65

.84
– 6.47

.92
– 7.96

.92
– 16.02

.90

Bal. – 5.38
.93

– 12.00
.90

– 26.19
.86

– 1.48
.94

4.46
.96

– 3.76
.94

Bal. Unbal. – 14.03
.89

– 11.92
.90

– 14.08
.90

– 11.57
.91

– 8.43
.91

– 8.56
.92

Bal. – 14.92
.90

– 14.26
.89

– 14.77
.89

– 2.88
.93

0.77
.94

– 3.86
.93

Model 3 Unbal. Unbal. – 9.19
.91

– 16.61
.88

– 31.90
.83

– 5.92
.92

– 7.83
.91

– 15.56
.90

Bal. – 5.40
.92

– 12.20
.90

– 26.56
.86

– 1.11
.94

4.55
.95

– 2.97
.94

Bal. Unbal. – 14.01
.89

– 11.75
.90

– 15.12
.89

– 11.44
.91

– 8.20
.91

– 9.03
.93

Bal. – 14.77
.89

– 13.89
.88

– 14.58
.89

– 2.59
.93

1.52
.94

– 3.63
.93

Model 4 Unbal. Unbal. – 5.23
.92

– 11.48
.90

– 15.13
.88

– 4.06
.93

– 1.21
.93

– 2.54
.93

Bal. – 3.24
.93

– 5.61
.92

– 15.30
.88

– 1.24
.94

4.99
.95

– 1.98
.94

Bal. Unbal. – 7.01
.91

– 2.89
.92

– 7.02
.91

– 6.41
.92

– 0.66
.93

– 1.23
.94

Bal. – 9.22
.91

– 7.62
.90

– 10.01
.90

– 2.18
.93

1.49
.94

– 3.63
.93

Notes. Notes.Model 1: Multivariate model; Model 3: Three-level model with separate random study effect; Model 4: Separate three-level models; SE =
standard error; ESs = effect sizes; Type out. = Type of outcome; k = number of primary studies; Bal. = balanced; Unbal.= unbalanced; Values in bold
indicate unacceptable relative bias values. The other simulation factors were fixed to intermediate levels: average sample size = 100, correlation between
study-residuals = .2, correlation between variables = .2 - .4, all between-studies variances are 0.072, and the robust variance correction was not applied
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Table 4 Relative standard error bias and coverage proportion of the 95% confidence intervals (in italic) of the three-level model that specified a
common study-effect for all effect sizes (Model 2) for the conditions that resulted relevant in the ANOVA

Variances Type
out.

ESs k = 20 k = 40

SE(bγ1Þ SE(bγ2Þ SE(bγ3Þ SE(bγ1Þ SE(bγ2Þ SE(bγ3Þ
No RV

corr.

σ2u1 = σ2
u2 = σ2

u3 =
0.072

Unbal. Unbal. – 22.36

.86
– 25.88

.85
– 29.39

.85
– 22.38

.87
– 26.71

.84
– 25.02

.87
Bal. – 13.49

.91
– 16.43

.89
– 24.59

.88
– 21.91

.88
– 19.00

.89
– 19.42

.88
Bal. Unbal. – 24.71

.86
– 21.82

.88
– 23.09

.87
– 24.75

.87
– 22.96

.87
– 23.30

.86
Bal. – 17.62

.89
– 16.14

.89
– 18.00

.88
– 24.77

.84
– 22.09

.87
– 24.10

.86
σ2u1 ¼ 0.017
σ2u2 ¼ 0.072
σ2u3 ¼ 0.153

Unbal. Unbal. – 0.64

.94
– 28.34

.84
– 46.43

.72
– 0.04

.96
– 28.86

.84
– 43.54

.72
Bal. 9.21

.96
– 25.75

.85
– 42.68

.75
4.25

.96
– 34.76

.79
– 49.25

.66
Bal. Unbal. 4.72

.97

– 20.63

.86
– 36.26

.77
12.71

.97
– 19.84

.88
– 38.71

.77
Bal. 22.62

.98
– 13.79

.90
– 35.12

.80
21.00

.98
– 19.75

.87
– 38.62

.75
σ2u1 ¼ 0.153
σ2u2 ¼ 0.072
σ2u3 ¼ 0.017

Unbal. Unbal. – 30.70

.83
– 21.61

.87
– 8.57

.94
– 28.06

.83
– 19.40

.90
1.35

.94
Bal. – 19.92

.88
– 6.23

.93
0.38

.97
– 31.48

.82
– 8.61

.91
24.94

.97
Bal. Unbal. – 38.42

.77
– 19.44

.89
4.64

.95
– 37.67

.77
– 22.46

.86
8.24

.96
Bal. – 32.07

.81
– 13.94

.90
22.46

.98
– 39.31

.77
– 21.26

.86
17.46

.97
RV

corr.

σ2u1 = σ2
u2 = σ2

u3 =
0.072

Unbal. Unbal. – 10.10

.94
– 13.00

.93
– 20.70

.94
– 6.63

.93
– 9.57

.94
– 8.83

.95
Bal. – 4.45

.94
– 7.09

.94
– 21.31

.94
– 2.09

.94
1.34

.95
– 0.80

.94
Bal. Unbal. – 13.31

.93
– 10.00

.94
– 12.35

.94
– 8.31

.94
– 6.66

.93
– 6.90

.94
Bal. – 11.29

.93
– 8.55

.94
– 12.11

.93
– 3.15

.95
0.37

.95
– 3.19

.94
σ2u1 ¼ 0.017
σ2u2 ¼ 0.072
σ2u3 ¼ 0.153

Unbal. Unbal. – 7.16

.94
– 10.18

.94
– 21.97

.94
– 4.10

.95
– 6.08

.94
– 7.25

.94
Bal. – 3.59

.94
– 10.78

.93
– 15.79

.94
1.97

.96
– 3.93

.95
– 7.11

.93
Bal. Unbal. – 10.85

.95
– 10.94

.94
– 7.87

.94
– 1.09

.96
– 5.50

.94
– 5.95

.94
Bal. – 6.23

.96
– 8.72

.93
– 11.40

.93
1.26

.95
0.39

.96
3.79

.96
σ2u1 ¼ 0.153
σ2u2 ¼ 0.072
σ2u3 ¼ 0.017

Unbal. Unbal. – 7.16

.94
– 10.18

.92
– 21.97

.95
– 4.10

.94
– 6.08

.94
– 7.25

.94
Bal. – 3.59

.96
– 10.78

.93
– 15.79

.96
1.97

.94
– 3.93

.94
– 7.11

.96
Bal. Unbal. – 10.85

.93
– 10.94

.95
– 7.87

.94
– 1.09

.95
– 5.50

.93
– 5.95

.94
Bal. – 6.23

.94
– 8.72

.94
– 11.40

.95
1.26

.96
0.39

.94
3.79

.94

Notes. σ2
u1 ; σ

2
u2 , and σ2

u3 = between-studies variances of outcome Type_1, Type_2, and Type_3, respectively; SE = standard error; bγ1, bγ2, and bγ3 =
estimated mean effect of outcome Type_1, Type_2, and Type_3 respectively; SE = standard error; ESs = effect sizes; k = number of primary studies; No
RV corr. = robust variance correction was not applied. RV corr.: robust variance correction was applied after fitting the model; Bal. = balanced;
Unbal.=unbalanced. Values in bold indicate unacceptable relative bias values. The other factors were fixed to intermediate values: average sample size
= 100, correlation between study-residuals = .2, correlation between variables = .2 - .4
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real values. We have only included those models that estimate
a different between-studies variance for each type of outcome,
namely the Multivariate model (Model 1), the three-level
model with separate random study effects (Model 3), and the
three-level models applied separately for each type of out-
come (Model 4). On average, when the variability of the effect
sizes across studies was the same for all types of outcomes
(σu1 = σu2 = σu3 = 0.072), the three models led to unbiased
between-studies variance estimates. However, all models
overestimated the between-studies variance when this vari-
ance was small (σu= 0.017). Generally speaking, between-
studies variances estimated by Model 1 (multivariate ap-
proach) were mostly influenced by the number of studies
and by the sample size of primary studies: if both the number
of studies and the average sample size were small (k =20 and
average n = 50), a relative bias of about – 15% was observed.
In contrast, the between-studies variance estimates yielded by
the multilevel approaches (Model 3 andModel 4) were mainly
affected by the number of studies and by the correlation

between outcome variables. When the number of studies
was high (k =40), almost all between-studies variances were
adequately estimated. However, when there were only 20
studies in the meta-analysis, the between-studies variances
were often underestimated and, in some conditions,
overestimated (when the true variance was small and when
outcome variables were highly correlated). Even so, the rela-
tive bias observed in Model 4 (separate three-level models)
was larger (about 25%) than the ones observed in Model 3
(three-level model with separate random study effects; about
15%). More information about between-variance estimates
and their relative bias can be found in the supplementary ma-
terial: https://osf.io/ywum6/.

Discussion

This study aimed to explore which method that addresses
dependency between effect sizes performs better when the

Table 5 Relative standard error bias and coverage proportion of the 95% confidence intervals (in italic) yielded by random-effects model (Model 5)
estimated using RVE method

Variances Type
out.

ESs k = 20 k = 40

SE(bγ1Þ SE(bγ2Þ SE(bγ3Þ SE(bγ1Þ SE(bγ2Þ SE(bγ3Þ
σ2u1 = σ2

u2 = σ2
u3 =

0.072
Unbal. Unbal. – 7.27

.94
– 19.54

.92
– 26.96

.94
– 6.10

.94
– 5.18

.94
– 13.13

.94

Bal. – 5.55
.95

– 7.68
.94

– 19.46
.95

– 1.77
.95

1.93
.96

– 2.38
.96

Bal. Unbal. – 13.33
.93

– 7.18
.95

– 8.88
.95

– 8.25
.94

– 5.44
.95

– 4.83
.94

Bal. – 10.82
.94

– 9.95
.94

– 12.45
.93

– 1.46
.95

– 0.1
.95

– 2.8
.94

σ2
u1 ¼ 0.017

σ2
u2 ¼ 0.072

σ2
u3 ¼ 0.153

Unbal. Unbal. – 5.29
.94

– 9.73
.95

– 27.03
.95

– 3.44
.95

– 4.84
.94

– 12.81
.96

Bal. – 3.05
.94

– 12.11
.93

– 14.29
.95

0.53
.96

– 4.78
.95

– 5.48
.94

Bal. Unbal. – 10.78
.94

– 10.36
.94

– 6.82
.96

– 2.73
.95

– 3.35
.95

– 3.06
.96

Bal. – 6.93
.95

– 8.78
.93

– 12.21
.93

4.39
.96

– 0.98
.95

1.60
.96

σ2
u1 ¼ 0.153

σ2
u2 ¼ 0.072

σ2
u3 ¼ 0.017

Unbal. Unbal. – 7.17
.94

– 12.44
.94

– 26.53
.95

– 2.61
.95

– 5.43
.94

– 8.85
.95

Bal. – 2.29
.95

– 6.68
.94

– 17.5
.95

– 2.58
.94

– 2.86
.94

– 2.7
.95

Bal. Unbal. – 8.68
.95

– 9.07
.95

– 8.37
.95

– 4.5
.94

– 7.02
.94

– 6.08
.93

Bal. – 6.62
.95

– 11.21
.95

– 7.04
.96

2.86
.96

– 2.56
.94

– 0.47
.94

Notes. σ2
u1
; σ2

u2
, and σ2

u3
= between-studies variances of outcome Type_1, Type_2, and Type_3, respectively; SE = standard error; bγ1, bγ2, and bγ3 =

estimated mean effect of outcome Type_1, Type_2, and Type_3, respectively; k = number of primary studies; ESs: effect sizes; Type out.: type of
outcome; Bal. = balanced; Unbal.=unbalanced. Values in bold indicate the relative standard error bias was out of the recommended thresholds. The other
simulation factors were fixed to intermediate values: average sample size = 100, correlation between study-residuals = .2, correlation between variables =
.2 - .4
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interest is in the effects for different types of outcome (i.e., in
their estimates, estimated standard errors and 95% CI cover-
age proportions). The manuscript extends the study of Park
and Beretvas (2019) in three ways. First, it explores the per-
formance of the multivariate approach, three three-level
models (a model including one random study effect, a model
with a random study effect for each type of outcome, and a
separate three-level model for each type of outcome), and a
two-level model. Three-level models with one random effect,
or separate three-level models are the ones most commonly
applied in practice, so learning about their performance is
highly necessary. Second, in this study data have been gener-
ated following a more realistic model (i.e., multivariate two-
level hierarchical model). Third, this study includes additional
conditions, including the situation in which each category of
the moderator variable (i.e., each outcome) have a different
between-studies variance.

A first conclusion is that all approaches included in this
study give accurate estimates of the effect sizes. Regarding
the non-convergence rates, the multivariate two-level hierar-
chical model and the three-level model that specified different
study-effects converged in more than the 99% of the analyses.
This contrasts with the results of Park and Beretvas (2019),
who found that the three-level model had convergence prob-
lems when the number of primary studies was small, sampling
variance was larger compared to the within-study and
between-studies variance, sample sizes were different across
studies (in our simulation, sample sizes were always different
across studies), and when the number of effect sizes and the
number of outcomes were unbalanced across studies. In our
simulation study, we did not have a condition where the three
between-studies variances were small, so that might explain
the differences between the results.

A second general result is that the robust variance correc-
tion did not lead to better standard error estimates when it was

applied to the estimates yielded by the model that was used to
generate the data (i.e., multivariate two-level); actually, in this
case the standard errors were still underestimated. However,
due to the small sample correction proposed by Tipton (2015),
the coverage proportion of the 95% CIs was still adequate,
meaning that the Type I error was under control even if stan-
dard errors were underestimated. In fact, the a posteriori RV
correction led to correct 95% CIs in all models even if they
were misspecified. Therefore, we do recommend the routine
implementation of the robust variance correction after carry-
ing out any of these models.

Taking a closer look at the performance of each model, we
can conclude that the separate three-level meta-analysis for
each type of outcome is the best option to get adequate esti-
mates of the fixed effect standard errors as long as there are
enough effect sizes within each type of outcome. However,
with this approach it is not possible to statistically compare the
overall outcome-specific effects with each other, and it should
be also kept in mind that between-studies variances are often
underestimated in this model. Moreover, compared to the use
of a two-level model, this approach results in less precise
(though still unbiased) estimates of the effect sizes. When
the number of primary studies is large enough (around
40), the multivariate model, the three-level model that
specifies different study-effects for each type of out-
come, and the random-effects model with RVE method
also give, in general, proper estimates of the standard
errors and of the variance components if there are 40
studies or more. In addition, when the robust variance
correction is applied using the small sample correction,
the CIs are properly estimated in all models, being the
false positive rate close to the optimal .05 level.
Furthermore, these three models allow the statistical
comparison of the overall outcome-specific effects,
which is an additional advantage.

Table 6 Average between-studies variance estimates and relative bias between parenthesis

Original values of the between-studies variance

σ2
u1= 0.017, σ2

u1 = 0.072,
σ2
u3 = 0.153

σ2
u1= 0.072, σ2

u1 = 0.072,
σ2
u3 = 0.072

σ2
u1= 0.153, σ2

u1 = 0.072,
σ2
u3 = 0.017

bσ2
u1 (RB) bσ2

u2 (RB) bσ2
u3 (RB) bσ2

u1 (RB) bσ2
u2 (RB) bσ2

u3 (RB) bσ2
u1 (RB) bσ2

u2 (RB) bσ2
u3 (RB)

Model 1 0.018 (7.92%) 0.071
(– 1.78%)

0.150 (1.90%) 0.070
(– 2.35%)

0.071
(– 1.48%)

0.074
(2.22%)

0.148
(– 3.02%)

0.071
(– 2.04%)

0.022
(31.02%)

Model 3 0.023
(37.62%)

0.074
(3.44%)

0.152
(– 0.60%)

0.075
(4.22%)

0.075
(3.60%)

0.076
(6.23%)

0.152
(– 3.02%)

0.074
(– 2.04%)

0.025
(31.02%)

Model 4 0.022
(27.00%)

0.072
(– 0.67%)

0.140
(– 8.77%)

0.073
(1.86%)

0.071
(– 0.84%)

0.067
(– 7.04%)

0.150
(– 1.75%)

0.071
(– 1.05%)

0.019
(12.97%)

Notes.Model 1:Multivariate model;Model 3: Three-level model with separate random study effects;Model 4: Separate three-level models. RB= relative
bias; σ2

u1 = between-studies variance of effect sizes belonging to Type of Outcome 1; σ2
u2 = between-studies variance of effect sizes belonging to Type of

Outcome 2; σ2
u3 = between-studies variance of effect sizes belonging to Type of Outcome 3; RB= relative bias. Values in bold indicate the relative

standard error bias was out of the recommended thresholds
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There are some results from each specific method that are
worth mentioning. First, the multivariate approach and the
three-level model that specified different study-effects for
each type of outcome performed very similar, aligning with
the results of Van den Noortgate et al. (2013). However, it is
important to mention we have used the population correlation
between outcomes variables within studies for applying the
multivariate method, which in practice it is not known.
Therefore, in practice the multivariate approach is expected
to perform worse because most of the correlations will be
approximations or estimates of the true one. Also, this was
the method that led to the most accurate between-studies var-
iance estimates.

Second, we observed that when the robust variance correc-
tion was not applied, the three-level model that assumed a
common study-effect for all effect sizes led to underestimated
standard errors. This result was expected, because this model
estimates a common between-studies variance for the three
outcomes (normally this estimate is close to the average of
the three true between-studies variances). This estimated
between-studies variance is the one used to calculate the
weights of all effect sizes, and the sum of these weights is
directly related to the standard error estimate of the overall
effect. Under some conditions, the between-studies variances
were different for the three outcomes (e.g., σ2

u1 = 0.017, σ2
u2 =

0.072, and σ2
u3 = 0.153). Therefore, we expected that this

misspecified three-level model overestimated the standard er-
ror of outcome Type_1 or of outcome Type_3 when their true
between-studies variances were 0.017 (because the model
assigned a larger between-studies variance, close to 0.081, to
the effect sizes weights), and that it underestimated the stan-
dard error of outcome Type_1 or outcome Type_3 when their
true between-studies variances were 0.153. This pattern is
indeed reproduced in the results. However, this pattern disap-
peared once the robust variance correction was applied. With
the robust variance correction, standard errors were still
underestimated when the number of primary studies was 20,
but when the number of studies increased to 40, all standard
errors were properly estimated. Furthermore, coverage pro-
portion of the 95% CIs were adequate when the robust vari-
ance correction was applied in all conditions. These results are
very relevant, because this model is commonly applied in
practice, and until this study, no research has indicated that
the standard errors of moderator effects yielded by these
models can be very biased. For future meta-analysis, we rec-
ommend researchers apply this model together with the robust
variance correction to get robust standard error estimates and
proper 95% CIs.

Third and last, regarding the two-level model that used
RVE to correct standard error estimates, we see that when
the number of studies was 40, almost all standard errors were
properly estimated, despite the fact that this model also gives

only one global estimate of the between-studies variance.
More importantly, when the RVE method was applied using
the small sample correction, the coverage proportion of the
95% CIs was always close to .95, meaning that the Type I
error rate was always under control, even when the number of
studies is small.

The present simulation study is not free of limitations. First,
the conclusions extracted only apply to the conditions gener-
ated in the simulation. Although we have tried to simulate
realistic data by taking characteristics of observed meta-anal-
yses, it is impossible to account for all data structures that can
be found in practice. Also, it should be kept in mind that in this
simulation study, effect sizes have been directly generated
from a normal distribution instead of calculated from simulat-
ed raw data. Therefore, results are only generalizable to situ-
ations where effect sizes are actually normally distributed. In
addition, another limitation is that we have not explored the
performance of other competing models, such as a multivari-
ate model where the three between-studies variances are
constrained to be the same, a model that would be more com-
parable to the random-effects with RVE method and to the
three-level model that specified a common study-effect for all
outcomes. In addition, regarding data generation, we have
assumed that effect sizes that represent the same type of out-
come are exactly the same. However, this might not be a
realistic assumption, as it can be expected that there is some
variation between effect sizes that refer to the same type of
outcome. Future studies can extend this study by accounting
for these alternative scenarios.
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