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Abstract
A problem in the study of face perception is that results can be confounded by poor stimulus control. Ideally, experiments
should precisely manipulate facial features under study and tightly control irrelevant features. Software for 3D face
modeling provides such control, but there is a lack of free and open source alternatives specifically created for face
perception research. Here, we provide such tools by expanding the open-source software MakeHuman. We present a
database of 27 identity models and six expression pose models (sadness, anger, happiness, disgust, fear, and surprise),
together with software to manipulate the models in ways that are common in the face perception literature, allowing
researchers to: (1) create a sequence of renders from interpolations between two or more 3D models (differing in identity,
expression, and/or pose), resulting in a “morphing” sequence; (2) create renders by extrapolation in a direction of face
space, obtaining 3D “anti-faces” and caricatures; (3) obtain videos of dynamic faces from rendered images; (4) obtain
average face models; (5) standardize a set of models so that they differ only in selected facial shape features, and (6)
communicate with experiment software (e.g., PsychoPy) to render faces dynamically online. These tools vastly improve
both the speed at which face stimuli can be produced and the level of control that researchers have over face stimuli. We
validate the face model database and software tools through a small study on human perceptual judgments of stimuli
produced with the toolkit.
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Psychophysics is the quantitative study of the relation be-
tween physical stimuli and perception (Kingdom and Prins,
2016). As such, its success is determined by our ability to
precisely manipulate and measure physical stimuli. This is
a relatively straightforward task when the focus is on low-
level stimulus features, such as brightness, color, contrast,
or spatial frequency information, among others. However,
the task becomes more complex when one is interested in
the stimulus features that affect our perception of complex
objects and scenes. We sorely lack methods to produce
naturalistic stimuli in a controlled manner, or to measure
their relevant properties.

In vision science, faces are one class of complex objects for
which we have made important advances. An advantage of
faces over other complex objects is that images of different

faces can be aligned in their main features (e.g., nose, eyes,
mouth). This has enabled the adoption of morphing tech-
niques as a way to manipulate complex face dimensions in a
relatively controlled manner (e.g., Steyvers, 1999), the appli-
cation of traditional psychophysical techniques to estimate
templates used to classify faces, such as reverse correlation
or bubbles (e.g., Gosselin and Schyns, 2001; Macke and
Wichmann, 2010; Mangini and Biederman, 2004; Schyns
et al., 2002; Soto, 2019), and the application of multivariate
statistics to study the distribution of naturally varying faces,
through principal component analysis (PCA) and related tech-
niques (Calder et al., 2001; O’Toole et al., 1993; Turk and
Pentland, 1991). For the past two decades, research on face
perception has been strongly supported by the availability of
such techniques and a vast number of face photograph data-
bases (e.g., Dailey et al., 2001; Ebner et al., 2010; Lucey et al.,
2010; Lundqvist et al., 1998; Ma et al., 2015; Strohminger
et al., 2016).

However, naturalistic face databases and two-dimensional
image manipulation techniques are sometimes insufficient to
obtain the tight stimulus control required to answer certain
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questions in face perception research. For example, imagine
an experiment aimed at determining whether people perceive
males as angrier than females (e.g., Aguado et al., 2009; Bayet
et al., 2015; Becker et al., 2007). An experimenter obtains
photographs of male and female actors showing angry expres-
sions, and it is observed that people are faster at recognizing
anger in males than in females. Unfortunately, such results
could have nothing to do with face perception, and everything
to dowith the production of expressions by the actors. If males
simply produce stronger expressions of anger, then the ob-
served results are not due to perception, but to the specific
stimuli used. The exact poses by actors and the strength of
their expression are difficult to control using naturalistic pho-
tographs and morphing techniques. It would be desirable to
have a way to obtain the exact same expression pose from
faces with different identities and sexes. It would also be de-
sirable to easily standardize a set of faces with regard to fea-
tures that are not of interest in a particular study. Examples
include texture and coloration of the face, shape of external
features like ears and neck, eye color, and facial hair. Other
studies would want to precisely manipulate such features rath-
er than simply control them. For example, one might want to
answer the question of whether neck width, face color, or
facial hair, all of which differ between sexes, is what facilitates
perception of anger in male faces. Such control can possibly
be achieved using two-dimensional image manipulation, but
the process is painstaking and has traditionally involved some
degree of manual image manipulation.

Morphing sequences are also used as a way to obtain dy-
namic stimuli. For example, some studies on face expression
have presented morphing sequences going from neutral to
some target expression, by concatenating them in a video
representing dynamic emotional expressions. However, this
approach has been criticized on the basis that such morphing
sequences might not reflect the changes in face shape that
would occur naturally during dynamic expression (Bernstein
and Yovel, 2015; Roesch et al., 2011).

An additional limitation imposed by techniques that ma-
nipulate two-dimensional images is that they tend to be ob-
scure regarding the specific properties of the physical object
that are being modified and the extent of such changes. Take
the example of face morphing. There are several different
algorithms that can be used to produce morphed sequences.
They all first require templates to be manually created for each
two-dimensional image that will be included in the morph,
which characterize the position of landmark features of the
depicted objects. Such templates are used to apply a complex
nonlinear transformation from one image to another, which is
summarized by a single number representing “percentage of
change”. Both the morphing transformation space and the
changes produced within it are hard to interpret. Ideally, one
would want to have the ability to more precisely manipulate
specific shape features of the relevant object, and to describe

transformations in terms of such interpretable shape features.
Similarly, results from PCA and related multivariate tech-
niques are often difficult to interpret, as the analysis is per-
formed in the space of image pixels rather than in a space
composed of higher-level face features. In addition, the ob-
tained statistical description applies to face images obtained
from a specific viewpoint (usually frontal).

The use of three-dimensional computer graphics face
models provides researchers with more precise control over
face stimuli. Indeed, some researchers in the visual neurosci-
ence community conclude that the level of control necessary
to answer some important standing questions can only be
achieved through the use of computer-generated face stimuli
(Anzellotti and Caramazza, 2014). However, such models are
usually described by thousands of parameters that are not
more interpretable than image pixels. For this reason, it would
be desirable to have software able to create and manipulate
realistic three-dimensional face models that are described
through a smaller number of parameters that are easily inter-
pretable by researchers.

Face research toolkit (FaReT)

The use of three-dimensional models to generate stimuli for
face research has the advantage of providing strong stimulus
control without losing a naturalistic appearance. However,
such models are usually described as meshes with thousands
of parameters, making them just as difficult to interpret as
two-dimensional images described in terms of pixel lumi-
nance. In addition, such complexity is usually encapsulated
by intentional obscurity: the available face databases and rel-
evant morphing software are often proprietary and closed-
source, limiting the community’s ability to access, expand,
and comprehend the resources. Thankfully, MakeHuman
(http://www.makehumancommunity.org/; Bastioni et al.,
2008; Ceipidor et al., 2008) is a free and open-source comput-
er graphics software that allows users to create three-
dimensional face models via description through a relatively
small number of easily interpretable and sensibly named pa-
rameters (nostrils angle, cheeks outer volume, etc.). In
MakeHuman, any face model can be described as a point in
a multidimensional shape space, with each shape parameter
representing one dimension, as depicted in Fig. 1. The soft-
ware uses smart algorithms to convert changes in this shape
space into changes in the higher-dimensional space of a face
mesh.

Our goal is to enhance MakeHuman’s capabilities in order
to facilitate its use by face perception researchers. With this
goal in mind, we have developed the Face Research Toolkit,
or FaReT, which is composed of several Python plugins that
add utilities toMakeHuman. These plugins were developed to
provide face researchers transitioning from image morphs/
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manipulations with functionality that they would appreciate,
being analogous to manipulations that they already use but
providing much more control and interpretability. In addition,
FaReT includes a database of 27 identity models and 6 expres-
sion pose models (sadness, anger, happiness, disgust, fear, and
surprise), so researchers can easily get started generating face
stimuli using our plugins.

MakeHuman

Originally, MakeHuman was intended to help game designers
and animators easily create and rig human models, even going
so far as to supply a base set of skin textures, clothing assets,
and several skeletons with varying complexity. The
MakeHuman developers managed to reduce thousands of pa-
rameters (the positions of every vertex of a human bodymesh,
which consists of exclusively quadrilateral polygons) to
dozens that are identified through sensible, easily interpreted
names (nostrils angle, cheek outer volume, etc.), while also
adding safeguards to help keep the mesh’s vertices smooth
(Bastioni et al., 2008).

MakeHuman allows one to easily change common face
parameters like sex, age, ethnicity, and level of face fat of
the face models, by manipulating a single slider. In theory,
any identity can be reproduced through the software, and it
is also possible to create completely new realistic faces.
Interaction with the software is through an intuitive graphical
user interface that does not require prior knowledge or train-
ing. Skin texture models can be obtained fromMakeHuman or
developed independently, and they can be placed in any face
model.

Similarly, an expression pose model can also be developed
independently and applied to any face model in MakeHuman.
The software itself comes with several pose models, and
others can be obtained from the active online community. In
addition, we have developed our own set of standardized basic
emotional expressions (see below), based on pictures from
one actor in the Karolinska Directed Emotional Faces
(KDEF) database (Lundqvist et al., 1998).

Just as with identity, MakeHuman allows one to easily
develop a pose model for any facial expression through its
expression mixer plugin. The plugin involves a number of
expression parameters that have easily interpretable names,
such as “left eye down”, “right inner brow up”, and so on.
Each parameter has its own slider in MakeHuman’s graphical
interface, which facilitates the creation of new pose models
without any prior training. The MPEG-4 standard (Pandzic
and Forchheimer, 2002) influenced the development of
MakeHuman’s expression mixer in the early years (Ceipidor
et al., 2008), and thus many of MakeHuman’s expression
parameters are equivalent to facial animation parameters
(FAPs) from that widely used standard. In the behavioral sci-
ences, a more common standard used to generate expressions
for face research is the facial action coding system (FACS;
Ekman and Friesen, 1975), which is related to the MPEG-4
system (Pandzic and Forchheimer, 2002). Researchers who
are interested in using the traditional FACS system to generate
expression models can do so in MakeHuman through the
FACSHuman plugin (Gilbert et al., 2018; https://github.com/
montybot/FACSHuman).

Models created with MakeHuman can be exported in for-
mats that are easy to open and use in other 3D modeling and
game development software, such as Blender (https://www.

Fig. 1 Schematic representation of how face identity models are
generated in MakeHuman. Each model is represented as a point in a
multidimensional shape space, where a dimension represents a
nameable shape feature (e.g., eye bag distortion, lower lip volume,

horizontal scaling of nose). Different models differ in one or more
shape dimensions. If a model (e.g., John) is connected to the average
model through a line, models on the other side of that line can be
considered anti-identity models (e.g., anti-John)
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blender.org/). This greatly expands the types of research that
can be performed using the 3D models created with
MakeHuman. Interactive games, virtual reality (VR) videos,
and motion capture are all possibilities that are relatively ac-
cessible to an interested researcher with enough technical
knowledge, facilitated by the fast and easy creation of 3D face
models in MakeHuman.

The functionality provided by MakeHuman can be obtain-
ed from other software, such as FaceGen Modeller expanded
with the FACSGen plugin (Roesch et al., 2011). Stimuli

created using FaceGen have been relatively popular among
face researchers in recent years (e.g., Ho et al., 2018; Lamer
et al., 2017; Oosterhof and Todorov, 2008; Soto, 2019; Soto
and Ashby, 2015, 2019; Thorstenson et al., 2019; Uddenberg
and Scholl, 2018). However, an important advantage of
MakeHuman is that it is open-source software. This means
that it can be downloaded and used absolutely free of charge
by the scientific community. In addition, the base code for
MakeHuman is available for examination and expansion by
interested researchers, so any features that the software lacks

Fig. 2 Renders of the 24 identity models included with FaReT. The top two rows are the male identities and the bottom two rows are the female identities

Fig. 3 Renders of the six expression pose models originally included
with FaReT, applied to two different identity models. Each row
contains one identity; the top row is a male identity and the bottom is a

female identity. Each column contains a separate expression: anger,
disgust, fear, happiness, sadness, and surprise
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can be added by the scientific community. Plugins and other
add-ons like those provided by FaReT are completely avail-
able for anyone not only to use, but also to expand and main-
tain, even if the original developers discontinue maintenance.
Such plugins are written using the Python programming lan-
guage, which has in recent years become the standard in sev-
eral areas of psychology and neuroscience.

In contrast, the use of commercial software like FaceGen
Modeller can stifle scientific development. For example, there
was a period of several years when the incredibly useful
FACSGen was no longer being actively developed. If
FACSGen had been developed on top of open-source software
like MakeHuman, interested researchers could have taken the
project into their own hands for maintenance and updating.
Although FACSGen is now being developed and maintained
again, a license must be purchased both for the plugin and for
the base FACEGen software. Thus, only researchers with fi-
nancial resources can use this setup.

FaReT’s database of three-dimensional face models

To help us establish the usefulness of the toolbox, we created a
database of 24 identities. The identity database consists of 12
male and 12 female models. All 24 models are inspired by
photographs of real people’s faces; however, the models went
through several iterations of modifications to avoid matching
the actual identities, while also ensuring that the faces were
realistic. The final versions were judged by all three authors as
realistic. See Fig. 2 for a frontal view of the final models’
faces.

To add further utility to the database, we also included
standardized facial expressions. Using MakeHuman’s expres-
sion mixer, we established six poses for expressions that con-
vey six basic emotions (Ekman, 1999): happy, sad, anger, fear,
surprise, and disgust. With the exception of the happy expres-
sion, we based our expressions on a single actor in the KDEF
database (Lundqvist et al., 1998). The original expression of
happy was judged (by the authors) to be somewhat off-putting
when applied to some faces, so we manually adjusted it to
make it more generally applicable. By generating expression
pose files, we can systematically apply the same expression to
any identity we created in MakeHuman. See Fig. 3 for a

frontal view of two identities with the same expression poses
applied. This database was the basis for testing the tools we
added to MakeHuman through its Python plugin system.

An advantage of this small database of three-dimensional
models is that it can be easily expanded to a much larger
database using MakeHuman, including models that are
completely different from the originals in some important face
category or dimension. Figure 4 shows an example. Here, we
have taken a single identity model from our database and used
it to easily create seven novel variations. The original model is
a 25-year-old Caucasian male with average face fat. By ma-
nipulating a single slider in MakeHuman, and in some cases

Fig. 4 Example of how one of the models in our database (CM01: male,
25 years old, Caucasian, average face fat) can easily be used to generate
novel models with a different age, level of face fat, race, or sex. Each one

of these models took only seconds to generate in MakeHuman by
manipulating key sliders in the GUI (named Age, Head fat, African,
Asian, Caucasian, and Gender)

a

b

Fig. 5 Standardization plugin. Panel (a) shows a schematic
representation of the functionality of the standardization plugin. An
original unstandardized model is provided together with a target
standard model. The plugin outputs a standardized original model.
Panel (b) shows the inputs and options included in the plugin's
graphical user interface
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selecting a different skin model (MakeHuman includes stan-
dard skin models for different combinations of age, sex, and
race), it is possible to create the following versions of the
model: teenager, elderly, fat, skinny, Asian, African, and fe-
male. Each one of these models took only seconds to generate,
which means that in practice, at least 192 models can be gen-
erated from our database, tailored to the goals of each research
project.

FaReT plugins

Averaging and standardization of three-dimensional face
models Taking advantage of MakeHuman's ability to accept
Python plugins that extend its usefulness, we designed several
such plugins to assist researchers who are interested in fully
controlling their stimuli during face perception experiments.
Conveniently, MakeHuman creates human-shaped models
given a set of simple, named, numerical parameters. Because
researchers often need to average faces (i.e., for studies on
norm-based face encoding; reviewed by Rhodes 2017;
Webster and MacLeod 2011), we created a plugin to help
users average the identities generated in MakeHuman by sim-
ply obtaining the numerical average of each parameter. The
end-user can specify a set of many identity models within a
directory and its sub-directory to produce an average identity.
In addition to the mean, the plugin also collects information
about each parameter’s variability, which allows new faces to
be generated roughly within the space of the models being
averaged.

Fig. 6 Inputs and options included in the graphical user interface of the
interpolation render plugin

Fig. 7 Examples of linear model interpolation using FaReT. Each row
shows a different interpolating morph. Each row shows interpolation of:
the camera position, expression, identity, each of them simultaneously.
The Camera morph is rotating the camera by 90 degrees. The Expression
morph is interpolating a male identity between a neutral expression and
an angry expression. The Identity morph is interpolating from a female

identity to a male identity: note that because skin tone settings contain
Boolean graphical shader settings, the skin tone is not interpolated in the
current version of FaReT. The Complex morph is changing a female
identity expressing sadness to a male identity expressing surprise while
rotating the camera to and from 30 degrees
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Researchers might be interested in creating face stimuli that
differ in a number of chosen features but have standard values
in all other attributes. This allows one to make conclusions
about the effect of the selected features on perceptual process-
ing, while easily controlling for the possible confounding ef-
fect of the nuisance features. To facilitate this process, we
developed a standardization plugin. Figure 5a shows a sche-
matic representation of how the standardization process
works. The plugin requires as input an original unstandardized
model together with a target standard model, and provides as
output the original model standardized in selected features. In
MakeHuman, there are two types of features: shapes and ge-
ometries. The shape parameters only affect the mesh/
wireframe of the human model. Geometries are like accesso-
ries for the wireframe: skin, teeth, eyebrows, hair, etc. (any-
thing added onto the wireframe). Therefore, we developed a
plugin that can standardize one or both types of features across
the identity models. When standardizing the shape features,
any of the named parameters used to produce the body’s
wireframe can be standardized (i.e., age, sex, ovalness, etc.).
Users can specify comma-space-separated parameter names
through Perl-style regular expressions to select the names;
i.e., “head” can select anything that contains the ordered letters
“head” (forehead-bulge, head-size, etc.), but “^head” can only
select parameter names that begin with “head” (i.e., head-size,
but not forehead-bulge). As an example of formatting, the
default shape standardization setting is “^head, neck, ear,
proportions”.

The simpler of the two categories of features is geometries.
The geometries of every identity in the specified directory will
all be set to match the geometries of the specified standard
model, which is selected at the start of the standardization
process: meaning that the teeth, eyes, skin tone, etc., will all
be set to match the specified model. This is important to con-
sider when using separate skin models for men and women
(differences in skin tone and contrast are important cues for
sex classification; see Russell 2003, 2009), and simply means
that stimuli that require distinct geometries (including skin
texture/color models) should be standardized separately.

With our standardization plugin, it is possible to standardize
shapes, geometries, or both at the same time. The standardized
models are outputted to a separate directory, which the user
specifies, to avoid overriding the originals. Figure 5b de-
scribes the options offered through the graphical user interface
of the standardization plugin.

“Morphing” in three-dimensional shape spaceMorphing is an
incredibly important tool in face perception research, but the
process to create morphed faces is slow and painstaking, and
the resulting sequence is difficult to interpret in terms ofmean-
ingful shape parameters. Morphing pixels within images is a
nonlinear operation that requires the creation of templates
through the manual placement of several nodes to outline each
important feature (mouth, eyes, nose, head outline, etc.) for
each view, for each expression, and for each face (whose
placement is also each subject to human error). Obtaining
high-quality morphs usually requires the manual placement
of 150+ nodes in each face image (e.g., using Psychomorph
or its web-based version, WebMorph). Such templates are
view-specific, in that if they are created for a given face view
(typically front view), then morphing the same face from a
different viewpoint will require the creation of a new, inde-
pendent template.

Fig. 8 Examples of linear extrapolation using FaReT. Depending on the two models chosen, the plugin makes possible morphing to anti-identities and
anti-expressions. Creation of caricatures is also available (not shown)

Fig. 9 Graphical user interface of the GIMP plugin used to create high-
quality GIF animations from MakeHuman renders
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Through MakeHuman, however, we have full control of
the models' parameters and can use the line connecting two
identity models in shape space (see black line in Fig. 1) to
interpolate between them (e.g., any point in the line segment
going from John to the average model in Fig. 1) or extrapolate
along the line beyond each of them (e.g., the line segment
extrapolating toward anti-John in Fig. 1). This reduces the
workload required to create image morphs while also increas-
ing the accuracy of the morphs by removing the process of
placing nodes altogether. Because MakeHuman models are
three-dimensional, any linear interpolation from one face
identity or expression to another can be rendered from any
viewpoint and in any illumination condition. Finally, because
the interpolation is performed in the multidimensional shape
space of MakeHuman parameters, the transformation is

interpretable in terms of relative changes in such intuitively
named parameters.

Linear interpolation and extrapolation of models is easily
achieved in FaReT through the interpolation render plugin.
Figure 6 describes the inputs and options included in the
graphical user interface of this plugin. The output of the plugin
is a sequence of rendered models that can be used to create
animated face stimuli, as explained later.

Linear interpolation in 3D shape space The interpolation
plugin achieves something similar to “morphing” in
MakeHuman, by creating a sequence of renders from linear
interpolation between two or more 3D models. In addition to
the face identity parameters, it is possible to interpolate be-
tween expression pose models, orbital camera positions, or
any simultaneous combination of those (see Fig. 7).

There are several advantages of this procedure over tradi-
tional image morphing. First, the transformation is interpret-
able in the space of shape parameters. Second, the procedure
allows precise control of what parameters are changed, so that
“partial morphs” in which only some shape features are
changed can be easily achieved. Third, the template creation
process can be bypassed while maintaining complete control
over the specific, well-defined parameters being changed as
well as the number of frames to render. Fourth, as indicated
above, interpolation can be performed using not only shape
parameters, but also simultaneously expression pose and cam-
era position (see bottom row of Fig. 7).

Linear extrapolation in 3D shape space During interpolation,
the shape parameters of any two identity models, or the pose
parameters of any two expressions, were used to create a di-
rectional vector from one point in parameter space to the other.
The plugin also includes the ability to extrapolate along that
vector, beyond the original two models. Extrapolation can be

Table 2 Unusualness ratings provided by participants in both studies

Unusualness x SD

Study 1

Fear 4.23 0.71

Sadness 2.94 0.75

Anger 4.43 0.71

Happiness 4.58 0.76

Disgust 4.63 0.57

Surprise 3.90 0.70

Study 2

Disgust (Tongue Out) 3.89 0.29

Happiness (Teeth) 2.79 0.48

Each row represents a different expression model shown to the partici-
pants. Unusualness was rated on a Likert scale from 1 to 7, with higher
values representing higher unusualness

Table 1 Emotion ratings provided by participants in Study 1

N Fear Sadness Anger Happiness Disgust Surprise

xxxx̄ SD x SD x SD x SD x SD x SD

Fear 75 5.441 1.299 3.689 1.519 2.183 1.244 1.469 0.660 3.763 1.632 4.847 1.518

Sadness 75 3.779 1.632 5.683 1.308 2.001 1.107 1.375 0.647 2.394 1.409 1.753 1.088

Anger 73 2.025 1.304 2.238 1.372 6.229 0.956 1.258 0.488 3.846 1.808 1.656 0.928

Happiness 76 1.641 0.939 1.691 1.031 1.567 0.792 4.854 1.250 1.723 1.093 1.852 1.172

Disgust 75 2.406 1.557 2.411 1.471 6.178 1.015 1.288 0.660 4.472 1.538 1.768 1.125

Surprise 75 4.417 1.603 2.308 1.350 1.931 1.101 2.028 1.140 2.705 1.557 6.404 0.915

Each row represents a different expression model shown to the participants. Columns represent different expression ratings provided by the participants
for the displayed face stimuli. For each identity that wasmorphed to a specific emotional expression, the participants provided ratings for six emotions on
a scale from 1 to 7. For each expression model, the rating corresponding to the intended expression is underlined, and the highest-rated expression is in
bold. Only the disgust stimulus was not rated most highly in its corresponding emotion, but confusion between anger and disgust is a common finding in
the literature using naturalistic stimuli (see Discussion)
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applied using any two models, but if a directional vector
is defined from an average face to a target identity, then
extrapolation can be used to create caricatured identities
and expressions by applying the vector even after
reaching the target identity’s parameters. Furthermore,
by reversing the direction of the vector, extrapolation
can be used to create anti-identities and anti-expressions
(see Fig. 1). Both caricatures (e.g., Byatt and Rhodes,
1998; Lee et al., 2000) and anti-faces (e.g., Burton
et al., 2015; Cook et al., 2011; Leopold et al., 2001;
Rhodes and Jeffery, 2006; Skinner and Benton, 2010)
have proven to be important stimulus types for examining
face encoding in the human visual system. See Fig. 8 for
linear extrapolation examples.

Obtaining videos of dynamic faces Face perception re-
searchers have recently become increasingly interested in
using dynamic face stimuli in their research, particularly in
the study of emotional expression (for reviews, see
Bernstein and Yovel, 2015; Duchaine and Yovel, 2015;
Lander and Butcher, 2015). A common practice is to create
sequences of morphed images from a neutral expression to
some target expression, and concatenate such images into an
animated video. A similar process is possible using FaReT.
Our plugins automate the linear interpolation/extrapolation
process and output a sequence of images that can be used to
create videos or animated GIFs (see Fig. 7), which can be
presented as experimental stimuli. Because of the high-
quality GIFs that the GNU Image Manipulation Program
(GIMP; https://www.gimp.org/) exports (by surpassing the
standard 256 color limit for GIFs), we have also created a
python plugin for GIMP 2.8 to help in transforming folders
of MakeHuman renders to GIFs. Figure 9 shows the graphical
user interface developed for this plugin. Researchers interested
in creating videos with other formats (e.g., AVI) can also use
the image folders created by FaReT as input to the excellent
open-source software ImageJ (https://imagej.net).

An advantage of creating dynamic face stimuli using
FaReT rather than image morphs is that our toolkit uses linear
interpolation in the shape and pose spaces, producing a more
natural outcome than changes in an arbitrary morphing space,
and takes advantage of MakeHuman’s algorithms aimed at
simulating morphological features of the human face and its
musculature. Recently, some researchers have questioned
whether dynamic stimuli created using image morphs can
capture the true dynamics of natural emotional expressions
(Bernstein and Yovel, 2015; Roesch et al., 2011). The use of
MakeHuman is a step in the right direction, especially if future
applications precisely manipulate the speed of unfolding of
emotional expressions to match those observed in natural face
videos.

Communicating with experiment software (e.g., PsychoPy) to
render faces dynamically online As indicated in the introduc-
tion, an important motivation behind developing FaReT was

Fig. 10 Renders of the two new expression pose models created for
Study 2, applied to two different identity models. Each row contains
one identity; the top row is a male identity and the bottom is a female
identity. Each column contains a separate expression: open-mouth happi-
ness and tongue-out disgust

Table 3. Emotion ratings provided by participants in Study 2

N Fear Sadness Anger Happiness Disgust Surprise

x SD x SD x SD x SD x SD x SD

Happiness 33 1.29 0.90 1.18 0.59 1.09 0.45 4.24 1.87 1.17 0.59 1.44 0.99

Disgust 32 1.79 1.53 1.40 0.93 4.96 1.91 1.07 0.34 4.58 2.05 1.63 1.28

Each row represents a different expression model shown to the participants. Columns represent different expression ratings provided by the participants
for the displayed face stimuli. For each identity that wasmorphed to a specific emotional expression, the participants provided ratings for six emotions on
a scale from 1 to 7. For each expression model, the rating corresponding to the intended expression is underlined, and the highest-rated expression is in
bold
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to be able to freely manipulate and control face stimuli to such
an extent that traditional psychophysical techniques would be
available to face researchers. Among such techniques, some
of the most useful require online generation of stimuli as a
function of the participant’s behavior, including adaptive pro-
cedures to estimate thresholds, psychophysical functions, or
internal representations (Leek, 2001; Lu and Dosher, 2013;
Shen, 2013; Treutwein, 1995; Watson and Pelli, 1983;
Watson, 2017).

By implementing a plugin that uses the Python socket
module, MakeHuman can respond to external requests to
generate and render faces from external experiment control
software like PsychoPy (Peirce, 2007, 2009). By generat-
ing stimuli online, it becomes possible to run adaptive psy-
chophysics experiments. This tool allows researchers for
the first time to easily program adaptive psychophysics
experiments involving complex visual objects. However,
because of the cumulative nature of rendering time, we
recommend generating stimuli that use single images per
trial for online experimental paradigms (especially if ren-
dering with advanced lighting settings). For the time being,
experiments that require stimuli with many frames (i.e.,
dynamic face stimuli) should be constrained to pre-
generated sets of stimuli in most systems. The fast render-
ing required to generate dynamic stimuli online is possible,
but it is likely to require both powerful hardware and ad-
ditional programming (e.g., by parallelizing the task of
rendering a sequence of images).

Instructions and examples on how to manipulate shape
and expression parameters from Python code using the
Socket Render plugin are available in the FaReT GitHub
page: https://github.com/fsotoc/FaReT#communicating-
with-psychopy-to-render-faces-online. The plugin allows
one to load MakeHuman identity and expression models,
modify their parameters, and render the modified model
online. It is also possible to create the models from
scratch within Python, by simply generating dictionaries
of parameter values. To use as a reference, we include
tables with all the relevant parameters for the models of
face shape and expression (see Appendices 1 and 2), to-
gether with the name given to the corresponding feature in
MakeHuman’s GUI, and the range of values that the pa-
rameter accepts. This will allow researchers to use the
MakeHuman GUI to understand how different parameters
change face shape and expression, and then use that
knowledge to directly change the parameters from within
their Python code.

Installing and learning to use FaReT

The latest version of FaReT can be downloaded from the
following link: https://github.com/fsotoc/FaReT. The page
includes instructions on how to install and use the different

components of the toolkit. A folder is included with our
database of MakeHuman models of face identity and
expression.

Study 1: database validation

We performed a validation study to determine whether dy-
namic stimuli created using FaReT are reliably perceived
by human participants. If our synthesized identities and
expressions are indeed perceived correctly, then we would
expect that facial expressions would receive the highest
ratings for the emotion that they actually represent and that
the participants would rate the male identities as more mas-
culine than the female identities. Both of these criteria have
been previously used to validate computer-generated face
stimuli (Roesch et al., 2011). In addition, we wanted to
know to what extent the stimuli generated with FaReT
are considered to be unusual by human participants.
Ideally, computer-generated face stimuli would be compa-
rable to naturalistic photos, but it seems clear that this level
of realism cannot be achieved by currently available soft-
ware (e.g., MakeHuman or FaceGen). However, it would
be useful to quantitatively evaluate the level to which par-
ticipants judge our stimuli to be unusual compared with
naturalistic stimuli. With that goal in mind, our study was
modeled after a previous validation study by Ma et al.
(2015), who collected norming data for photographs of
faces. We used their questions so that we could compare
the responses about our computer-generated face images to
the responses about their naturalistic face images.

Method

Participants One hundred and twenty-three students from
Florida International University (located in Miami, Florida)
were recruited to participate in this study in exchange for
credit. Thirty-eight participants tried to take the survey multi-
ple times after being removed by catch questions (see descrip-
tion below) that assessed whether they were actually reading
the questions. Six additional participants did not finish the
survey and were also removed. The remaining 79 participants
(71 female participants) finished the entire survey.

The participants’ ages ranged from 18 to 45 years (M =
22.28, SD = 4.82). The participants’ reported ethnicity distri-
bution was as follows: 5 participants (6.33%) reported Asian,
15 reported Black or African American (18.99%), 33
(41.77%) reported White, 2 (2.53%) reported Native
Hawaiian or Pacific Islander, 47 (59.49%) reported
“Hispanic or Latino(a)”, and 1 (1.27%) reported “Other”.

Stimuli The face stimuli shown to participants were animated
GIFs, created from renders of one identity model showing one
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of the six expression pose models (i.e., happy, sad, afraid,
surprised, angry, or disgusted). The animation involved a sim-
ple camera rotation, with the camera orbiting the viewpoint
back and forth horizontally between −30 and 30 degrees. The
full camera motion consisted of 120 frames shown at 30
frames per second. The camera started from a frontal view-
point, and the full camera movement loop lasted four seconds.

All 27 identity models were shown to participants: 12 male
models, 12 female models, average male, average female, and
global average. All possible combinations of identity and ex-
pressionmodels were used, for a total of 162 animated stimuli.
However, not every participant saw the same combination of
identity and expression. Rather, each participant rated a subset
of 23 face/expression combinations, which were selected ran-
domly without replacement across participants. This sampling
ensured that all face/expression combinations were shown
once before the sampling process was started again.

Procedure The study was performed online through the
Qualtrics survey program (https://www.qualtrics.com/).
Participants were tasked with rating identities from our
database by answering 13 questions per stimulus, in which
they were asked to rate the extent to which the identities
appeared threatening, attractive, baby-faced, trustworthy,
masculine, fearful, sad, angry, happy, surprised, disgusted,
and unusual on a scale from 1 to 7 (1 being the lowest and 7
being the highest). Participants also rated the identity’s Euro/
Afrocentricity on a scale from 1 to 100. As indicated earlier,
the study included the same questions as a prior validation
study by Ma et al. (2015). Responses to all questions are
available to interested researchers (raw data can be
downloaded from https://osf.io/grp9d/), but here we report
analyses of only some of the questions, aimed at validating
the stimuli generated by FaReT.

Each participant only had to rate 23 of our stimuli, which
were intended to be pseudo-randomly assigned to ensure that
the stimuli were all rated before reshowing one. There were
four catch trials inserted randomly among the other trials, with
the goal of determining whether participants were paying at-
tention to the rating task, rather than responding randomly
without regard for instructions. In catch trials, participants
were simply asked to select a specific numerical rating on
the 1-to-7 scale (even though no dimension was specified).
If participants failed to provide the specified rating, they were
redirected to the end of the survey, and their data was not
included in the results. The same two stimuli were always
presented during catch trials: a surprised female model and a
happy global average model.

Results and discussion

One criterion used in the past to determine whether partici-
pants reliably perceive synthetic identities is that they

unambiguously recognize them as either male or female
(Roesch et al., 2011). Seventy-nine participants provided
masculinity ratings, and they rated the masculinity of
male identities (M = 5.32, SD = 1.09) significantly higher
than that of female identities (M = 3.53, SD = 1.19);
t(78) = 13.01, p < .001, Cohen’s d = 1.46. This implies
that the participants were able to differentiate males
from females in our database despite the lack of
geometry-based cues (i.e., hair).

A second criterion used in prior research to validate
computer-generated face stimuli is checking that partici-
pants rate the displayed expression most highly in its cor-
responding emotional category (e.g., faces expressing fear
are given a relatively high fearful rating, faces expressing
happiness are given a relatively high happiness rating, etc.;
see Roesch et al., 2011). As shown in Table 1, this was true
of our stimuli for the most part. When participants
were shown fearful faces, they rated them higher in fear
expression than in any other expression. This was con-
firmed by a repeated-measures ANOVA, F (5, 438) =
19.74, p<.001, η2p = .1839, and by a planned contrast com-

paring mean fear rating versus mean rating of all other
emotions, F (1, 438) =40.52, p<.001, η2p = .0847. When

participants were shown sad faces, they rated them higher
in sadness expression than in any other expression. This
was confirmed by a repeated-measures ANOVA, F (5, 438)
= 32.68, p<.001, η2p = .2717, and by a planned contrast

comparing mean sadness rating versus mean rating of all
other emotions, F (1, 438) =122.11, p<.001, η2p = .2180.

When participants were shown angry faces, they rated
them higher in anger expression than in any other expres-
sion. This was confirmed by a repeated-measures ANOVA,
F (5, 426) = 39.37, p<.001, η2p = .3160, and by a planned

contrast comparing mean anger rating versus mean rating
of all other emotions, F (1, 426) =152.8, p<.001, η2p =

.2639. When participants were shown happy faces, they
rated them higher in happiness expression than in any other
expression. This was confirmed by a repeated-measures
ANOVA, F (5, 444) = 22.2, p<.001, η2p = .2, and by a

planned contrast comparing mean happiness rating versus
mean rating of all other emotions, F (1, 444) = 110.4,
p<.001, η2p = .1991. When participants were shown dis-

gusted faces, they rated them higher in anger expression
than in any other expression, and second highest in disgust
expression. The difference in ratings was significant ac-
cording to a repeated-measures ANOVA, F (5, 438)
=35.39, p<.001, η2p = .2877. A planned contrast showed

that that disgusted faces were rated significantly higher in
disgust expression than in all other expressions combined
(i.e., on average), F (1,438) =14.98, p<.001, η2p = =.0331.
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Finally, when participants were shown surprised faces,
they rated them higher in surprise expression than in any
other expression. This was confirmed by a repeated-
measures ANOVA, F (5, 438) =35.8, p<.001, η2p = .2901,

and by a planned contrast comparing mean surprise rating
versus mean rating of all other emotions, F (1, 438)
=127.4, p<.001, η2p = .2253.

In sum, for the most part, the participants rated the
displayed expression most highly in its corresponding emo-
tional category. However, participants rated identities express-
ing disgust as showing a higher anger expression than a dis-
gust expression (see Table 1). Given that our expression pose
models were developed based on the photographs from a sin-
gle actor from the KDEF database (Lundqvist et al., 1998),
one possibility to consider is that the poor recognition of dis-
gust in our study could stem from the ambiguity of this ex-
pression in the original photographs of that particular actor.
This is highly unlikely, as norms have been published for the
KDEF database (Goeleven et al., 2008), and people consis-
tently classified the actor’s expression as disgusted (hit rate
above 90%), with the most common misclassification error
being anger. We discuss other explanations for this specific
result later.

The mean unusualness ratings for our identities were right
in the middle of the scale (M =4.09, SD = 1.06), which was
significantly higher than the ratings assigned to the photo-
graphs in the Ma et al. (2015) study (M =2.56); t(78) =
12.82, p < .001, Cohen’s d = 1.44. In that study, participants
rated face photographs in the lower end of unusualness (i.e.,
well below the midpoint of 4 in the scale). Assuming that our
participant population is similar to that used in the Ma et al.
(2015) study (it might not be, as their demographics differ
considerably), this implies that our identities are more unusual
than the naturalistic photos, which could be due to the lack of
hair, lighting/shading effects, etc. We reasoned that if lack of
hair contributed to the relatively high unusualness ratings,
then as men are more prone to balding, their unusualness
ratings should be lower than those of women. We performed
an exploratory test to compare the unusualness ratings of male
(M =4.20, SD=1.12) and female (M =4.07, SD=1.24) identi-
ties, but the difference was nonsignificant; t(78) = 1.06,
p=0.29, Cohen’s d = .12.

Table 2 shows the mean unusualness of the stimuli broken
down by expression pose model. It can be seen that, on aver-
age, some models had higher unusualness than others. The
two highest-rated models were happiness and disgust. As
mentioned before, these models seemed problematic for other
reasons as well. In the case of happiness, the model was man-
ually modified after judging that its application to some iden-
tities could produce off-putting results. We might have been
unable to solve this issue completely. In the case of disgust,
this model producedmuch higher ratings of anger than disgust

from participants (see Table 1). Although confusion between
disgust and anger is commonly found in the literature, even
with naturalistic photographic stimuli, it is problematic that
the mean anger rating for these stimuli is about 1.5 points
higher than the mean disgust rating. To address both issues,
we built two new expression pose models and validated them
in a new study that is presented in the following section.

Study 2: validation of alternative models
of happiness and disgust

As mentioned above, the results of Study 1 prompted us to
develop two new expression pose models of happiness and
disgust. For happiness, research has shown that open-mouth
smiles in three-dimensional models are judged as more au-
thentic than closed-mouth smiles (Korb et al., 2014), and thus
we built a model showing an open-mouth smile. For disgust,
we reasoned that we needed to build a model showing a fea-
ture that is only found in disgust and not in anger. Rozin et al.
(1994) showed that there are a variety of ways to express
disgust depending on the presence or absence of upper lip
retraction, nose wrinkle, and gape and tongue extension.
Each of these disgust expressions carry a different meaning,
with the upper lip retraction carrying information about dis-
gust in social situations (e.g., breaking of moral rules), the
nose wrinkle communicating a bad smell (and to a lesser ex-
tent a bad taste), and the gape and tongue extension commu-
nicating oral irritation and the need to expel contaminated
food from the mouth (Rozin and Fallon, 1987; Rozin et al.,
1994). Upper lip retraction is common in expression of anger
and contempt, which are important in social communication.
Probably due to constraints in the structure of the face
(Rozin et al., 1994), a nose wrinkle tends to be accompa-
nied by a general contraction of face features thought to be
related to sensory rejection (Susskind et al., 2008). Such
contraction can also be found in expression of anger and
contempt. On the other hand, gape and tongue extension is
exclusively found in disgust and not in anger or contempt.
Thus, we chose to include these features in the new disgust
model, while noting that the new model involves a differ-
ent form of disgust (related to contaminated food) than the
model presented earlier (related to social communication
and sensory rejection).

Renders of the two new models for happiness and disgust
are shown in Fig. 10. The study used the exact same proce-
dures as Study 1, but with stimuli generated using the new
expression models.

Method

Participants Thirty-three people participated in this study. The
participants’ ages ranged from 18 to 43 years (M=23.5,
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SD=5.19), and their reported ethnicity distribution was as fol-
lows: 2 participants (6.06%) reported Asian, 4 reported Black
or African American (12.12%), 8 (24.24%) reported White, 0
(0%) reported Native Hawaiian or Pacific Islander, 25
(75.75%) reported “Hispanic or Latino(a)”, and 3 (9.09%)
reported “Other”. Other features of the sample were as de-
scribed for Study 1.

Stimuli Stimuli were generated as described for Study 1, but
using the two newmodels for happiness and disgust displayed
in Fig. 10.

Procedures Procedures were as described for Study 1, with the
exception that here every participant rated every stimulus (i.e.,
combination of identity model and the two new expression
pose models).

Results and discussion

As in Study 1, the 31 participants who provided mascu-
linity ratings rated the masculinity of male identities (M
=4.93, SD=1.66) significantly higher than that of female
identities (M =3.05, SD=1.57); t(30) =7.61, p<.001,
Cohen’s d =2.79. As shown in Table 3, when participants
were shown happy faces with open-mouth smiles, they
rated them higher in happiness expression than in any
other expression. This was confirmed by a repeated-
measures ANOVA, F (5, 186) =7.59, p<.001, η2p =

.1694, and by a planned contrast comparing mean happi-
ness rating versus mean rating of all other emotions, F (1,
186) =36.41, p<.001, η2p = .1637. When participants were

shown disgusted faces with an open mouth and the tongue
sticking out, they rated them highest in anger expression,
just as in the previous study. However, unlike Study 1,
anger ratings were much lower and close to disgust rat-
ings. The repeated-measures ANOVA showed a signifi-
cant difference in ratings of different emotions, F (5,
180) =21.60, p<.001, η2p = .3750, and the planned contrast

comparing mean disgust rating versus mean rating of all
other emotions was also significant, F (1, 180) =39.95,
p<.001, η2p = .1816. Thus, an improvement was observed

in this study regarding ratings of the disgust expression
model. However, we were unable to eliminate confusion
between anger and disgust. As indicated earlier, this is a
common finding in the literature using naturalistic stimuli
(see General Discussion below).

The mean unusualness ratings for our stimuli was on aver-
age lower than that of the previous study (M =3.36, SD =
1.33), but still significantly higher than the ratings assigned
to the photographs in the Ma et al. (2015) study (M =2.56);
t(33) = 3.48, p < .01, Cohen’s d =1.21. As shown in Table 2,
both models showed lower unusualness than their Study 1

counterparts, although the happiness model showed a larger
drop in rating.

Overall, from these results it does seem advisable to
use the open-mouth models depicted in Fig. 10 rather than
the originally developed models for happiness and disgust
depicted in Fig. 3, although further improvements are
likely possible toward a completely unambiguous model
of disgust.

General discussion

Here, we presented FaReT (Face Research Toolkit), a free
and open-source toolkit of 3D models and software to
study face perception. FaReT allows face perception re-
searchers to easily manipulate 3D models of faces in ways
that are common in the literature (morphing, averaging,
standardization, etc.), but with improved speed, control,
and interpretability of such manipulations. FaReT is built
on top of MakeHuman, taking advantage of this soft-
ware’s intuitive shape and pose spaces, where transforma-
tions are natural and interpretable. Our toolkit also easily
produces dynamic stimuli that are more natural and inter-
pretable than those produced through concatenation of
image morphs, but also more controlled and manipulable
than natural videos. The toolkit includes applications to
enable easy control of relevant face features and standard-
ization of irrelevant features, where “relevant” and “irrel-
evant” can be defined by research goals. Finally, the tool-
box allows easy implementation of adaptive psychophys-
ical techniques in the study of face perception, which
traditionally have been available only with very simple,
low-level stimuli.

FaReT also includes a database of 27 face identity
models and six expression pose models. We performed
a validation study in which the models in our database
were used to create dynamic facial stimuli that partici-
pants rated in a number of perceptual features. We found
that raters typically assigned the highest scores to emo-
tions that aligned with the artificial stimuli’s correspond-
ing facial expression. The exception was our pose model
for disgust , which was rated highest in anger.
Throughout the face research literature, anger and disgust
are often rated similarly or confused (Thorstenson et al.,
2019), including in previous studies involving three-
dimensional face models (see Roesch et al., 2011, Fig.
5). Studies using adaptation suggest that they may be
encoded through overlapping channels (Skinner and
Benton, 2010), meaning that the artificial expressions of
these emotions were portrayed well enough to capture
that similarity. In the same vein, the expressions of fear
and surprise also received similar ratings of emotionality.
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Some of the functionality provided by FaReT is also
included in the FACSHuman plugin (Gilbert et al., 2018;
https://github.com/montybot/FACSHuman). For example,
both provide the ability to create image sequences and
videos through linear interpolation in model space.
However, each package has its own strengths. In
FACSHuman, expression modeling is encoded using the
FACS system, which is familiar to many researchers in
face perception. Some existing face image data sets are
already FACS-rated (e.g., Lucey et al., 2010; Mavadati
et al., 2013), which would allow for easy development
of new valid models of emotional expression using
FACSHuman.

On the other hand, FaReT was designed with the broader
goal of helping face perception researchers produce controlled
stimuli in psychophysical experiments, using tasks and de-
signs already common in the current literature, as well as those
that have been previously available only for research in low-
level vision. Given that goal, FaReT allows manipulation of
not only expression parameters, but also identity parameters,
and includes linear extrapolation in addition to interpolation,
allowing researchers to create anti-models and caricature
models. This, plus the ability to easily generate average
models and standardize large sets of models, allows FaReT
to perform all stimulus manipulations that researchers in face
perception currently achieve using morphing software.
Additionally, FaReT includes a plugin that enables interactive
communication with MakeHuman from Python, which opens
the possibility to design adaptive psychophysics experiments
using software such as Psychopy. In combination with flexible
adaptive procedures such as QUEST+ (Watson, 2017; https://
github.com/hoechenberger/questplus/tree/master/questplus),
researchers have access to fast estimation of parameters of any
parametrically defined psychophysical function, such as
psychometric curves, threshold vs. stimulus parameter
functions (i.e., similar to contrast sensitivity functions),
transducer functions, threshold versus external noise
functions (both similar to those estimated using contrast in
low-level vision), and parameters of observer models (see
Lu and Dosher, 2013).

Despite these successes, one limitation of FaReT
highlighted by our results is that the artificial stimuli were
given ratings of unusualness that are higher than those
previously provided for static photographs of human faces
(Ma et al., 2015). At this point, it is not clear what aspects
of our stimuli or procedure might have produced the dif-
ference, as the current study and that of Ma et al. (2015)
differed in several ways besides the synthetic versus nat-
ural faces. However, the assumption that the result is
mostly due to the synthetic nature of our stimuli seems
reasonable, and in that case a clear goal for future releases
of FaReT is enhancing the quality of the assets used to
generate the faces (such as skin textures), deriving

parameters for faces and expressions from infrared
depth-based images, or altering the type of camera used
to create renders (from MakeHuman’s hard-coded ortho-
graphic camera to a perspective camera).

A second limitation of the current version of FaReT is that
its model database has a limited number of identities and ex-
pressions. As a result, the average identities and expressions
are likely to be biased estimates of the true averages (Cook
et al., 2011). Fortunately, this database can be expanded with-
out limit by the scientific community. Indeed, the larger com-
munity of MakeHuman users has already provided an exten-
sive and growing database of identity ( http://www.
makehumancommunity.org/models.html) and expression
(http://www.makehumancommunity.org/expressions.html)
models, as well as other useful assets and plugins (see http://
www.makehumancommunity.org/content/user_contributed_
assets.html). In addition, the fact that models in MakeHuman
are described in a multidimensional space of shape parameters
offers the possibility of taking a muchmore useful approach to
this problem: fully characterizing the distribution of realistic
models of identity and expression in such space, rather than
any individual model, and sampling novel identities and
expressions from that distribution. This would allow not
only a larger database, but actually the generation of an
infinite number of novel realistic models. We expect this to
be the next step of development in FaReT.

We hope that FaReT will help face perception re-
searchers in solving some of the methodological problems
that they currently face, as well as opening new avenues
of research, all while maintaining an open-source status.
We want to allow users to precisely modify 3D facial
features through MakeHuman’s sensibly named parame-
ters, without depriving them of the important morphing
procedures that had originally arisen from image manipu-
lation software. This level of quantitative control is im-
perative to successful psychometric research. Our goal is
to provide vision scientists with malleable high-level vi-
sual stimuli while maintaining the benefits of control that
low-level vision scientists enjoy. We hope that this will
help the scientific community to answer bigger questions
without paying the unnecessary costs (both financial and
scientific) imposed by copyrighted software.
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Appendix 1

Table 4 Parameters of the Face Identity Model

GUI Category GUI Label Parameter Key Range

Head shape Age head/head-age-decr|incr (-1,1)
Head shape Head fat head/head-fat-decr|incr (-1,1)
Head shape Angle head/head-angle-in|out (-1,1)
Head shape Oval head/head-oval (0,1)
Head shape Round head/head-round (0,1)
Head shape Rectangular head/head-rectangular (0,1)
Head shape Square head/head-square (0,1)
Head shape Triangular head/head-triangular (0,1)
Head shape Inverted triangular head/head-invertedtriangular (0,1)
Head shape Diamond head/head-diamond (0,1)
Head shape Scale depth of parietal side head/head-back-scale-depth-decr|incr (-1,1)
Head size Scale depth head/head-scale-depth-decr|incr (-1,1)
Head size Scale horizontally head/head-scale-horiz-decr|incr (-1,1)
Head size Scale vertically head/head-scale-vert-decr|incr (-1,1)
Head size Move horizontally head/head-trans-in|out (-1,1)
Head size Move vertically head/head-trans-down|up (-1,1)
Head size Move depth head/head-trans-backward|forward (-1,1)
Forehead Forehead bulge forehead/forehead-trans-backward|forward (-1,1)
Forehead Scale vertically forehead/forehead-scale-vert-decr|incr (-1,1)
Forehead Cranic shape forehead/forehead-nubian-decr|incr (-1,1)
Forehead Temple bulge forehead/forehead-temple-decr|incr (-1,1)
Eyebrows Eyebrows bulge eyebrows/eyebrows-trans-backward|forward (-1,1)
Eyebrows Eyebrows angle eyebrows/eyebrows-angle-down|up (-1,1)
Eyebrows Move vert eyebrows/eyebrows-trans-down|up (-1,1)
Neck Double neck neck/neck-double-decr|incr (-1,1)
Neck Scale depth neck/neck-scale-depth-decr|incr (-1,1)
Neck Scale horizontally neck/neck-scale-horiz-decr|incr (-1,1)
Neck Scale vertically neck/neck-scale-vert-decr|incr (-1,1)
Neck Move horizontally neck/neck-trans-in|out (-1,1)
Neck Move vertically neck/neck-trans-down|up (-1,1)
Neck Move depth neck/neck-trans-backward|forward (-1,1)
Neck Scale depth of nape neck/neck-back-scale-depth-decr|incr (-1,1)
Right eye Eye bag volume eyes/r-eye-bag-decr|incr (-1,1)
Right eye Eye bag distorsion eyes/r-eye-bag-in|out (-1,1)
Right eye Eye bag height eyes/r-eye-bag-height-decr|incr (-1,1)
Right eye Eyefold angle eyes/r-eye-eyefold-angle-down|up (-1,1)
Right eye Eye epicanthus eyes/r-eye-epicanthus-in|out (-1,1)
Right eye Eyefold volume eyes/r-eye-eyefold-concave|convex (-1,1)
Right eye Eyefold position eyes/r-eye-eyefold-down|up (-1,1)
Right eye Scale height 1 eyes/r-eye-height1-decr|incr (-1,1)
Right eye Scale height 2 eyes/r-eye-height2-decr|incr (-1,1)
Right eye Scale height 3 eyes/r-eye-height3-decr|incr (-1,1)
Right eye Move outer corner horiz. eyes/r-eye-push1-in|out (-1,1)
Right eye Move inner corner horiz. eyes/r-eye-push2-in|out (-1,1)
Right eye Move eye horizontally eyes/r-eye-trans-in|out (-1,1)
Right eye Move eye vertically eyes/r-eye-trans-down|up (-1,1)
Right eye Scale eye eyes/r-eye-scale-decr|incr (-1,1)
Right eye Move outer corner vert. eyes/r-eye-corner1-down|up (-1,1)
Right eye Move inner corner vert. eyes/r-eye-corner2-down|up (-1,1)
Left eye Eye bag volume eyes/l-eye-bag-decr|incr (-1,1)
Left eye Eye bag distorsion eyes/l-eye-bag-in|out (-1,1)
Left eye Eye bag height eyes/l-eye-bag-height-decr|incr (-1,1)
Left eye Eyefold angle eyes/l-eye-eyefold-angle-down|up (-1,1)
Left eye Eye epicanthus eyes/l-eye-epicanthus-in|out (-1,1)
Left eye Eyefold volume eyes/l-eye-eyefold-concave|convex (-1,1)
Left eye Eyefold position eyes/l-eye-eyefold-down|up (-1,1)
Left eye Scale height 1 eyes/l-eye-height1-decr|incr (-1,1)
Left eye Scale height 2 eyes/l-eye-height2-decr|incr (-1,1)
Left eye Scale height 3 eyes/l-eye-height3-decr|incr (-1,1)
Left eye Move outer corner horiz. eyes/l-eye-push1-in|out (-1,1)
Left eye Move inner corner horiz. eyes/l-eye-push2-in|out (-1,1)
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Table 4 (continued)

GUI Category GUI Label Parameter Key Range

Left eye Move eye horizontally eyes/l-eye-trans-in|out (-1,1)
Left eye Move eye vertically eyes/l-eye-trans-down|up (-1,1)
Left eye Scale eye eyes/l-eye-scale-decr|incr (-1,1)
Left eye Move outer corner vert. eyes/l-eye-corner1-down|up (-1,1)
Left eye Move inner corner vert. eyes/l-eye-corner2-down|up (-1,1)
Nose size Move vertically nose/nose-trans-down|up (-1,1)
Nose size Move depth nose/nose-trans-backward|forward (-1,1)
Nose size Move horizontally nose/nose-trans-in|out (-1,1)
Nose size Scale vertically nose/nose-scale-vert-decr|incr (-1,1)
Nose size Scale horizontally nose/nose-scale-horiz-decr|incr (-1,1)
Nose size Scale depth nose/nose-scale-depth-decr|incr (-1,1)
Nose size details Scale nostrils width nose/nose-nostrils-width-decr|incr (-1,1)
Nose size details Scale tip width nose/nose-point-width-decr|incr (-1,1)
Nose size details Move base vert. nose/nose-base-down|up (-1,1)
Nose size details Scale width 1 nose/nose-width1-decr|incr (-1,1)
Nose size details Scale width 2 nose/nose-width2-decr|incr (-1,1)
Nose size details Scale width 3 nose/nose-width3-decr|incr (-1,1)
Nose features Compression nose/nose-compression-compress|uncompress (-1,1)
Nose features Curve nose/nose-curve-concave|convex (-1,1)
Nose features Greek nose/nose-greek-decr|incr (-1,1)
Nose features Hump nose/nose-hump-decr|incr (-1,1)
Nose features Volume nose/nose-volume-decr|incr (-1,1)
Nose features Nostrils nose/nose-nostrils-angle-down|up (-1,1)
Nose features Move tip vertically nose/nose-point-down|up (-1,1)
Nose features Septum Angle nose/nose-septumangle-decr|incr (-1,1)
Nose features Scale nostrils flaring nose/nose-flaring-decr|incr (-1,1)
Mouth size Scale horizontally mouth/mouth-scale-horiz-decr|incr (-1,1)
Mouth size Scale vertically mouth/mouth-scale-vert-decr|incr (-1,1)
Mouth size Scale depth mouth/mouth-scale-depth-decr|incr (-1,1)
Mouth size Move horizontally mouth/mouth-trans-in|out (-1,1)
Mouth size Move vertically mouth/mouth-trans-down|up (-1,1)
Mouth size Move depth mouth/mouth-trans-backward|forward (-1,1)
Mouth size details Scale lowerlip height mouth/mouth-lowerlip-height-decr|incr (-1,1)
Mouth size details Scale lowerlip width mouth/mouth-lowerlip-width-decr|incr (-1,1)
Mouth size details Scale upperlip height mouth/mouth-upperlip-height-decr|incr (-1,1)
Mouth size details Scale upperlip width mouth/mouth-upperlip-width-decr|incr (-1,1)
Mouth size details Cupid’s bow width mouth/mouth-cupidsbow-width-decr|incr (-1,1)
Mouth features Dimples mouth/mouth-dimples-in|out (-1,1)
Mouth features Laugh-lines mouth/mouth-laugh-lines-in|out (-1,1)
Mouth features Lowerlip curved shape mouth/mouth-lowerlip-ext-down|up (-1,1)
Mouth features Move corners vert. mouth/mouth-angles-down|up (-1,1)
Mouth features Scale middle lowerlip mouth/mouth-lowerlip-middle-down|up (-1,1)
Mouth features Scale lowerlip volume mouth/mouth-lowerlip-volume-decr|incr (-1,1)
Mouth features Scale philtrum volume mouth/mouth-philtrum-volume-decr|incr (-1,1)
Mouth features Scale upperlip volume mouth/mouth-upperlip-volume-decr|incr (-1,1)
Mouth features Upperlip curved shape mouth/mouth-upperlip-ext-down|up (-1,1)
Mouth features Scale middle upperlip mouth/mouth-upperlip-middle-down|up (-1,1)
Mouth features Cupid’s bow shape mouth/mouth-cupidsbow-decr|incr (-1,1)
Right ear Move depth ears/r-ear-trans-backward|forward (-1,1)
Right ear Scale ear ears/r-ear-scale-decr|incr (-1,1)
Right ear Move vertically ears/r-ear-trans-down|up (-1,1)
Right ear Scale height ears/r-ear-scale-vert-decr|incr (-1,1)
Right ear Scale lobe ears/r-ear-lobe-decr|incr (-1,1)
Right ear Ear shape (pointed-triangle) ears/r-ear-shape-pointed|triangle (-1,1)
Right ear Ear rotation ears/r-ear-rot-backward|forward (-1,1)
Right ear Ear shape (squared-round) ears/r-ear-shape-square|round (-1,1)
Right ear Scale width ears/r-ear-scale-depth-decr|incr (-1,1)
Right ear Ear wing-shaped ears/r-ear-wing-decr|incr (-1,1)
Right ear Ear flapped ears/r-ear-flap-decr|incr (-1,1)
Left ear Move depth ears/l-ear-trans-backward|forward (-1,1)
Left ear Scale ear ears/l-ear-scale-decr|incr (-1,1)
Left ear Move vertically ears/l-ear-trans-down|up (-1,1)
Left ear Scale height ears/l-ear-scale-vert-decr|incr (-1,1)
Left ear Scale lobe ears/l-ear-lobe-decr|incr (-1,1)
Left ear Ear shape (pointed-triangle) ears/l-ear-shape-pointed|triangle (-1,1)
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Table 4 (continued)

GUI Category GUI Label Parameter Key Range

Left ear Ear rotation ears/l-ear-rot-backward|forward (-1,1)
Left ear Ear shape (squared-round) ears/l-ear-shape-square|round (-1,1)
Left ear Scale width ears/l-ear-scale-depth-decr|incr (-1,1)
Left ear Ear wing-shaped ears/l-ear-wing-decr|incr (-1,1)
Left ear Ear flapped ears/l-ear-flap-decr|incr (-1,1)
Chin/jaw Tone of side chin chin/chin-jaw-drop-decr|incr (-1,1)
Chin/jaw Cleft chin chin/chin-cleft-decr|incr (-1,1)
Chin/jaw Scale chin prominence chin/chin-prominent-decr|incr (-1,1)
Chin/jaw Scale chin width chin/chin-width-decr|incr (-1,1)
Chin/jaw Scale chin height chin/chin-height-decr|incr (-1,1)
Chin/jaw Scale chin angular chin/chin-bones-decr|incr (-1,1)
Chin/jaw Scale chin prognathism chin/chin-prognathism-decr|incr (-1,1)
Left cheek Cheek outer volume cheek/l-cheek-volume-decr|incr (-1,1)
Left cheek Scale cheek prominence cheek/l-cheek-bones-decr|incr (-1,1)
Left cheek Cheek inner volume cheek/l-cheek-inner-decr|incr (-1,1)
Left cheek Move vertically cheek/l-cheek-trans-down|up (-1,1)
Right cheek Cheek outer volume cheek/r-cheek-volume-decr|incr (-1,1)
Right cheek Scale cheek prominence cheek/r-cheek-bones-decr|incr (-1,1)
Right cheek Cheek inner volume cheek/r-cheek-inner-decr|incr (-1,1)
Right cheek Move vertically cheek/r-cheek-trans-down|up (-1,1)
Main/Macro Gender macrodetails/Gender (0,1)
Main/Macro Age macrodetails/Age (0,1)
Main/Macro Muscle macrodetails-universal/Muscle (0,1)
Main/Macro African macrodetails/African (0,1)
Main/Macro Asian macrodetails/Asian (0,1)
Main/Macro Caucasian macrodetails/Caucasian (0,1)

2620 Behav Res  (2020) 52:2604–2622



Appendix 2 References

Aguado, L., Garcia-Gutierrez, A., and Serrano-Pedraza, I. (2009).
Symmetrical interaction of sex and expression in face classification
tasks. Attention, Perception & Psychophysics, 71(1): 9.

Anzellotti, S. and Caramazza, A. (2014). The neural mechanisms for the
recognition of face identity in humans. Frontiers in Psychology, 5:
672.

Bastioni, M., Re, S., and Misra, S. (2008). Ideas and methods for model-
ing 3d human figures: the principal algorithms used byMakeHuman
and their implementation in a new approach to parametric modeling.
In Proceedings of the 1st Bangalore Annual Compute Conference,
pages 10:1–10:6, New York. ACM.

Bayet, L., Pascalis, O., Quinn, P. C., Lee, K., Gentaz, E., and Tanaka, J.
W. (2015). Angry facial expressions bias gender categorization in
children and adults: behavioral and computational evidence.
Frontiers in Psychology, 6:346.

Becker, D. V., Kenrick, D. T., Neuberg, S. L., Blackwell, K. C., and
Smith, D. M. (2007). The confounded nature of angry men and
happy women. Journal of Personality and Social Psychology,
92(2):179–190.

Bernstein, M. and Yovel, G. (2015). Two neural pathways of face pro-
cessing: A critical evaluation of current models. Neuroscience &
Biobehavioral Reviews, 55:536–546.

Burton, N., Jeffery, L., Calder, A. J., and Rhodes, G. (2015). How is facial
expression coded? Journal of Vision, 15(1):1–1.

Byatt, G. and Rhodes, G. (1998). Recognition of own-race and other-race
caricatures: implications for models of face recognition. Vision
Research, 38(15):2455–2468.

Calder, A. J., Burton, A. M., Miller, P., Young, A. W., and Akamatsu, S.
(2001). A principal component analysis of facial expressions. Vision
Research, 41(9):1179–1208.

Ceipidor, U. B., Medaglia, C. M., Passacantilli, E., Fabri, S., Perrone, A.,
and Bastioni, M. (2008). Design of a GUI for the facial expressions
creation in the 3d software “Make Human”-Demo. Interaction
Design and Architecture, (5-6):121–122.

Cook, R., Matei, M., and Johnston, A. (2011). Exploring expression
space: Adaptation to orthogonal and anti-expressions. Journal of
Vision, 11(4):1–9.

Dailey, M., Cottrell, G. W., and Reilly, J. (2001). California facial expres-
sions, CAFE.

Duchaine, B. and Yovel, G. (2015). A revised neural framework for face
processing. Annual Review of Vision Science, 1(1):393–416.

Ebner, N. C., Riediger, M., and Lindenberger, U. (2010). FACES—A
database of facial expressions in young, middle-aged, and older
women and men: Development and validation. Behavior Research
Methods, 42(1):351–362.

Ekman, P. (1999). Basic emotions. In Dalgleish, T. and Power, M. J.,
editors, Handbook of cognition and emotion., pages 45–60. John
Wiley & Sons Ltd, New York, NY, US.

Ekman, P. and Friesen, W. V. (1975). Unmasking the face: A guide to
recognizing emotions from facial clues. Unmasking the face: A
guide to recognizing emotions from facial clues. Prentice-Hall,
Oxford, England.

Gilbert, M., Demarchi, S., and Urdapilleta, I. (2018). FACSHuman a
software to create experimental material by modeling 3d facial ex-
pression. In Proceedings of the 18th International Conference on
Intel ligent Virtual Agents - IVA ’18, pages 333–334, Sydney, NSW,
Australia. ACM Press.

Goeleven, E., De Raedt, R., Leyman, L., and Verschuere, B. (2008). The
Karolinska directed emotional faces: a validation study. Cognition
and Emotion, 22(6):1094–1118.

Gosselin, F. and Schyns, P. G. (2001). Bubbles: a technique to reveal the
use of information in recognition tasks. Vision Research, 41(17):
2261–2271.

Table 5 Parameters of the Expression Pose Model

GUI Label / Parameter Key Range

CheeksPump (0,1)
CheeksSuck (0,1)
ChinDown (0,1)
ChinForward (0,1)
ChinLeft (0,1)
ChinRight (0,1)
JawDrop (0,1)
JawDropStretched (0,1)
LeftBrowDown (0,1)
LeftCheekUp (0,1)
LeftEyeDown (0,1)
LeftEyeUp (0,1)
LeftEyeturnLeft (0,1)
LeftEyeturnRight (0,1)
LeftInnerBrowUp (0,1)
LeftLowerLidUp (0,1)
LeftOuterBrow (0,1)
Up LeftUpperLidClosed (0,1)
LeftUpperLidOpen (0,1)
LipsKiss (0,1)
MouthLeftPlatysma (0,1)
MouthLeftPullDown (0,1)
MouthLeftPullSide (0,1)
MouthLeftPullUp (0,1)
MouthMoveLeft (0,1)
MouthMoveRight (0,1)
MouthRightPlatysma (0,1)
MouthRightPullDown (0,1)
MouthRightPullSide (0,1)
MouthRightPullUp (0,1)
NasolabialDeepener (0,1)
NoseWrinkler (0,1)
Rest (0,1)
RightBrowDown (0,1)
RightCheekUp (0,1)
RightEyeDown (0,1)
RightEyeUp (0,1)
RightEyeturnLeft (0,1)
RightEyeturnRight (0,1)
RightInnerBrowUp (0,1)
RightLowerLidUp (0,1)
RightOuterBrowUp (0,1)
RightUpperLidClosed (0,1)
RightUpperLidOpen (0,1)
TongueDown (0,1)
TongueLeft (0,1)
TongueOut (0,1)
TonguePointDown (0,1)
TonguePointUp (0,1)
TongueRight (0,1)
TongueUp (0,1)
TongueUshape (0,1)
UpperLipBackward (0,1)
UpperLipForward (0,1)
UpperLipStretched (0,1)
UpperLipUp (0,1)
lowerLipBackward (0,1)
lowerLipDown (0,1)
lowerLipForward (0,1)
lowerLipUp (0,1)

2621Behav Res  (2020) 52:2604–2622



Ho, P. K., Woods, A., and Newell, F. N. (2018). Temporal shifts in eye
gaze and facial expressions independently contribute to the per-
ceived attractiveness of unfamiliar faces. Visual Cognition, 26(10):
831–852.

Kingdom, F. A. A. and Prins, N. (2016). Psychophysics: A Practical
Introduction. Academic Press, Amsterdam, 2 edition.

Korb, S., With, S., Niedenthal, P., Kaiser, S., and Grandjean, D. (2014).
The perception and mimicry of facial movements predict judgments
of smile authenticity. PLOS ONE, 9(6):e99194.

Lamer, S. A., Weisbuch, M., and Sweeny, T. D. (2017). Spatial cues
influence the visual perception of gender. Journal of Experimental
Psychology: General, 146(9):1366–1371.

Lander, K. and Butcher, N. (2015). Independence of face identity and
expression processing: exploring the role of motion. Frontiers in
Psychology, 6:255.

Lee, K., Byatt, G., and Rhodes, G. (2000). Caricature effects, distinctive-
ness, and identification: Testing the face-space framework.
Psychological Science, 11(5):379–385.

Leek, M. R. (2001). Adaptive procedures in psychophysical research.
Perception & Psychophysics, 63(8):1279.

Leopold, D. A., O’Toole, A. J., Vetter, T., and Blanz, V. (2001).
Prototype-referenced shape encoding revealed by high-level afteref-
fects. Nat Neurosci, 4(1):89–94.

Lu, Z. L. and Dosher, B. (2013). Visual Psychophysics: From Laboratory
to Theory. MIT Press.

Lucey, P., Cohn, J. F., Kanade, T., Saragih, J., Ambadar, Z., and
Matthews, I. (2010). The Extended Cohn-Kanade Dataset (CK+):
A complete dataset for action unit and emotion-specified expression.
In 2010 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages 94–101.

Lundqvist, D., Flykt, A., and Öhman, A. (1998). The Karolinska directed
emotional faces (KDEF). CD ROM from Department of Clinical
Neuroscience, Psychology section, Karolinska Institutet, pages
ISBN 91–630–7164–9.

Ma, D. S., Correll, J., and Wittenbrink, B. (2015). The Chicago face
database: A free stimulus set of faces and norming data. Behavior
Research Methods, 47(4):1122–1135.

Macke, J. H. andWichmann, F. A. (2010). Estimating predictive stimulus
features from psychophysical data: The decision image technique
applied to human faces. Journal of Vision, 10(5):22.

Mangini, M. C. and Biederman, I. (2004). Making the ineffable explicit:
estimating the information employed for face classifications.
Cognitive Science, 28(2):209–226.

Mavadati, S. M., Mahoor, M. H., Bartlett, K., Trinh, P., and Cohn, J. F.
(2013). DISFA: A spontaneous facial action intensity database.
IEEE Transactions on A ective Computing, 4(2):151–160.

O’Toole, A. J., Abdi, H., Deffenbacher, K. A., and Valentin, D. (1993).
Low-dimensional representation of faces in higher dimensions of the
face space. Journal of the Optical Society of America, 10(3):405–
411.

Oosterhof, N. N. and Todorov, A. (2008). The functional basis of face
evaluation. Proceedings of the National Academy of Sciences,
105(32):11087–11092.

Pandzic, I. S. and Forchheimer, R., editors (2002). MPEG-4 facial ani-
mation: The standard, implementation and applications. Wiley,
Hoboken, NJ, 1 edition.

Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python.
Journal of Neuroscience Methods, 162(1–2):8–13.

Peirce, J.W. (2009). Generating stimuli for neuroscience using PsychoPy.
Frontiers in Neuroinformatics, 2:10.

Rhodes, G. (2017). Adaptive coding and face recognition. Current
Directions in Psychological Science, 26(3):218–224.

Rhodes, G. and Jeffery, L. (2006). Adaptive norm-based coding of facial
identity. Vision Research, 46(18):2977–2987.

Roesch, E. B., Tamarit, L., Reveret, L., Grandjean, D., Sander, D., and
Scherer, K. R. (2011). FACSGen: A tool to synthesize emotional
facial expressions through systematic manipulation of facial action
units. Journal of Nonverbal Behavior, 35(1):1–16.

Rozin, P. and Fallon, A. E. (1987). A perspective on disgust.
Psychological Review, 94(1):23–41.

Rozin, P., Lowery, L., and Ebert, R. (1994). Varieties of disgust faces and
the structure of disgust. Journal of Personality and Social
Psychology, 66(5):870–881.

Russell, R. (2003). Sex, beauty, and the relative luminance of facial fea-
tures. Perception, 32(9):1093–1107.

Russell, R. (2009). A sex difference in facial contrast and its exaggeration
by cosmetics. Perception, 38(8):1211–1219.

Schyns, P. G., Bonnar, L., and Gosselin, F. (2002). Showme the features!
Understanding recognition from the use of visual information.
Psychological Science, 13(5):402–409.

Shen, Y. (2013). Comparing adaptive procedures for estimating the psy-
chometric function for an auditory gap detection task. Attention,
Perception, & Psychophysics, 75(4):771–780.

Skinner, A. L. and Benton, C. P. (2010). Anti-expression aftereffects
reveal prototype-referenced coding of facial expressions.
Psychological Science, 21(9):1248–1253.

Soto, F. A. (2019). Categorization training changes the visual representa-
tion of face identity. Attention, Perception, & Psychophysics, 81(5):
1220–1227.

Soto, F. A. and Ashby, F. G. (2015). Categorization training increases the
perceptual separability of novel dimensions. Cognition, 139:105–
129.

Soto, F. A. and Ashby, F. G. (2019). Novel representations that support
rule-based categorization are acquired on-the-fly during category
learning. Psychological Research, 83(3):544–566.

Steyvers, M. (1999). Morphing techniques for manipulating face images.
Behavior Research Methods, 31(2):359–369.

Strohminger, N., Gray, K., Chituc, V., Heffner, J., Schein, C., and
Heagins, T. B. (2016). The MR2: A multi-racial, mega-resolution
database of facial stimuli. Behavior Research Methods, 48(3):1197–
1204.

Susskind, J. M., Lee, D. H., Cusi, A., Feiman, R., Grabski, W., and
Anderson, A. K. (2008). Expressing fear enhances sensory acquisi-
tion. Nature Neuroscience, 11(7):843–850.

Thorstenson, C. A., Pazda, A. D., Young, S. G., and Elliot, A. J. (2019).
Face color facilitates the disambiguation of confusing emotion ex-
pressions: Toward a social functional account of face color in emo-
tion communication. Emotion, 19(5):799–807.

Treutwein, B. (1995). Adaptive psychophysical procedures. Vision
Research, 35(17):2503–2522.

Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. Journal of
Cognitive Neuroscience, 3(1):71–86.

Uddenberg, S. and Scholl, B. J. (2018). Teleface: Serial reproduction of
faces reveals a whiteward bias in race memory. Journal of
Experimental Psychology: General, 147(10):1466–1487.

Watson, A. and Pelli, D. G. (1983). QUEST: A Bayesian adaptive psy-
chometric method. Perception & Psychophysics, 33(2):113–120.

Watson, A. B. (2017). QUEST+: A general multidimensional Bayesian
adaptive psychometric method. Journal of Vision, 17(3):10–10.

Webster, M. A. and MacLeod, D. I. A. (2011). Visual adaptation and face
perception. Philosophical Transactions of the Royal Society B:
Biological Sciences, 366(1571):1702–1725.

Publisher’s note Springer Nature remains neutral with regard to jurisdic-
tional claims in published maps and institutional affiliations.

2622 Behav Res  (2020) 52:2604–2622


	FaReT: A free and open-source toolkit of three-dimensional models and software to study face perception
	Abstract
	Face research toolkit (FaReT)
	MakeHuman
	FaReT’s database of three-dimensional face models
	FaReT plugins
	Installing and learning to use FaReT

	Study 1: database validation
	Method
	Results and discussion

	Study 2: validation of alternative models of happiness and disgust
	Method
	Results and discussion

	General discussion
	Appendix 1
	Appendix 2
	References


