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Abstract
Piecewise latent growth models (LGMs) for linear-linear processes have been well-documented and studied in recent
years. However, in the latent growth modeling literature, advancements to other functional forms as well as to multiple
changepoints or knots have been nearly non-existent. This manuscript deals with three extensions. The first is to a piecewise
latent growth model incorporating higher-order polynomials. The second is to extend the basic framework to three phases.
The last extension is to inherently nonlinear functions. In these extensions, the changepoint(s) is a parameter to be estimated
and may be fixed or allowed to vary across subjects as an application warrants. The approaches are developed and two
illustrative empirical examples from psychology are used to highlight the methodological nuances. Annotated statistical
software is provided to make these elaborations accessible to practitioners and methodologists.
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Change that occurs in distinct phases or regimes can
be modeled using piecewise (spline) functions (see, e.g.,
Gallant & Fuller, 1973; Seber & Wild, 1989, Chapter 9)
where the overall piecewise regression model is a complex
amalgamation of submodels, each of which is associated
with a distinct interval of time (see, e.g., Cudeck & Klebe,
2002). Because the functional form in each segment can
be tailored to fit the localized data (Cudeck & Harring,
2010), the piecewise growth model is quite flexible and can
accommodate a variety of modeling scenarios that are not
adequately captured by mathematical functions for single-
stage change processes (Grimm et al., 2011; Ram&Grimm,
2009; Sterba, 2014) and/or often yield parameters with more
meaningful and substantive interpretations.

For example, consider the two-phase linear-linear piece-
wise model depicted in Fig. 1. The changepoint distin-
guishes between two phases comprising the overall change
process. On the left-hand side of the changepoint are the
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localized data corresponding to phase 1 in which a linear
function is superimposed. The data in this phase also sug-
gests that some curvilinear function in t , such as a quadratic
function, may also be appropriate. The localized data to the
right of the changepoint represent the change process across
the second phase. It is clear from the graph that change
appears constant across larger values of t and might be best
characterized by a linear function where the rate of change
is assumed to be zero.

Specification and estimation of piecewise growth models
within a mixed-effects modeling framework has been
thoroughly discussed in several articles (see, e.g., Cudeck
& Klebe, 2002; Naumova et al., 2001) and book chapters
(see, e.g., Fitzmaurice et al., 2011; Hoffman, 2015; Verbeke
& Molenberghs, 2000). Cudeck and Klebe (2002), for
example, fit a quadratic-linear mixed-effects model with
zero- and first-order continuity constraints (Seber & Wild,
1989) to nonverbal performance data obtained from a life
span study. Even though a polynomial was fit to each
of the two segments comprising the growth model, the
changepoint marking the shift from the first phase to the
second phase was an unknown, subject-specific coefficient
to be estimated from the data, thereby making the overall
function intrinsically nonlinear.1 These authors, and others

1In the context of nonlinear regression models, a parameter enters a
function in a nonlinear manner if the first-order partial derivative of
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Fig. 1 A generic piecewise model with two phases and a single
changepoint

(see, e.g., Grimm et al., 2017), demonstrated how this
piecewise mixed-effects model could be fitted using SAS
PROC NLMIXED—a module that allows user-defined
conditional or Boolean logic programming statements (e.g.,
if-then statements) and integration of SAS PROC IML
functions—allowing the estimation algorithm to parse an
individuals’ data to fit one segment or another in a
straightforward manner. If the changepoint denoting the
transition from one phase to another does not vary from
person to person or has a known value, then conventional
multilevel modeling software, like SAS PROC MIXED
(see, e.g., Hoffman, 2015; Verbeke & Molenberghs, 2000)
or the lmer function in the lme4 package in R can be used.

Although the implementation of piecewise growth mod-
els as mixed-effects models is relatively straightforward,
fitting these same models as latent growth models using
structural equation modeling (SEM) software programs has
proven to be more challenging because SEM software gen-
erally does not allow user-defined programming statements.
However, the majority of SEM programs do have the facil-
ity to implement nonlinear constraints on model parameters,
which permits, for example, the elements of the factor load-
ing matrix to be expressed as nonlinear functions of growth
model parameters and constants (see, e.g., Blozis et al.,
2008; Grimm & Ram, 2009; Preacher & Hancock, 2012;
Preacher & Hancock, 2015). It is precisely this nonlin-
ear constraint functionality that allows one to fit piecewise
latent growth models with SEM software. Harring et al.

the mathematical function taken with regard to that parameter results
in a function that is nonlinear with regard to that parameter (Bates &
Watts, 1988). In addition, this issue has been thoroughly discussed in
the context of growth models by Blozis and Harring (2016).

(2006) discuss how a conditionally-linear form of a bilin-
ear (linear-linear) piecewise LGM could be implemented
in SEM software by reparameterizing the model to a form
that can take advantage of the nonlinear constraints of the
program. This is accomplished using a variant of the min-
imum/maximum function for monotonic (i.e., always non-
decreasing or non-increasing) functional relations between
the response and time (see, Harring et al., 2006, for a com-
plete description). This reparameterization permitted newly
derived parameters to be recast from regression param-
eters of the original linear-linear growth function. One
drawback of this approach at that time was that the repa-
rameterized coefficients—simple functions of the original
parameters—no longer related directly to the underlying
developmental process and therefore lacked meaningful
substantive interpretation, thus requiring back transforma-
tion of the model parameters. Modules in contemporary
SEM software (e.g., the NEW command in Mplus) that allow
new parameters to be derived from those estimated as part
of the model now make this latter point moot.

Numerous examples exist in the methodological litera-
ture demonstrating how various nonlinear growth functions
can be formulated in a latent growth modeling framework
and implemented utilizing nonlinear constraints (see, e.g.,
Blozis et al., 2008; Choi et al., 2009; Grimm and Ram,
2009; Grimm et al., 2017; Preacher & Hancock, 2015;
Sterba, 2014). The bilinear piecewise latent growth model
introduced by Harring et al. (2006), for instance, has been
extended to second-order factor structures (Kohli & Har-
ring, 2013), growth mixture models (Kohli et al., 2013;
Kohli et al., 2015; Kohli et al., 2016), and random change-
points (Feng et al., 2019; Grimm et al., 2017; Preacher
& Hancock, 2015). Other methodological advances include
extending piecewise LGMs to repeated measures data with
measurement occasions that may vary across individuals in
placement and/or number (Sterba, 2014) and to empirically
determine the number and locations of changepoints in a
dataset using an automated search algorithm (Marcoulides,
2018). These latter two methods impose the rather strict
assumptions that changepoints are known (Sterba, 2014)
and the same for all subjects (Marcoulides, 2018; Sterba,
2014). These methodological elaborations notwithstand-
ing, applications of piecewise LGMs beyond two-phase
monotonic, polynomial processes with known and/or fixed
changepoints are scarce and may reflect the apparent diffi-
culty in implementing such models in standard SEM soft-
ware. To address this methodological gap, we demonstrate
through three empirical examples how Mplus (version 8.1;
Muthén & Muthén, 1998) and lavaan in R (version 0.6-5;
Rosseel, 2012)—popular mainstream SEM software—can
be utilized to fit a broader class of piecewise LGMs to
describe non-polynomial growth within a given phase, non-
monotonic growth over the entire measurement period,
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growth that encompasses more than two phases, and that
allows the changepoints to be unknown (freely estimated
from the data) and/or to vary across individuals.

As was pointed out previously (see, e.g., Blozis, 2007;
Blozis et al., 2008; Grimm et al., 2017; Harring et al.,
2006; Harring et al., 2012), SEM programs such as
Mplus, LISREL, and laavan in R, remain the tools
of choice of many researchers for analyzing a wide
range of models. This is especially pertinent given recent
advancements of SEM software to fit multilevel models
to nested data structures, finite mixture models to account
for population heterogeneity, and longitudinal models for
intensive data collection designs. Yet, it is the most basic
functionality of SEM programs—specification of latent
repeated outcomes (i.e., second-order latent growth models;
Hancock et al., 2001), incorporation of measured and latent
variable covariates (Blozis & Cudeck, 1999), extensions
to multiple group structures (McArdle & Nesselroade,
2014), accommodation of multivariate repeated measures
(Blozis, 2004), and use of well-understood indices of model
fit that make keeping analyses within the same software
environment attractive.

In the remainder of this manuscript, we first review how
piecewise growth models can be formulated in the latent
growth modeling framework. Then, building off of the oft-
utilized bilinear piecewise LGM, we extend the piecewise
LGM framework to segmented polynomials and inherently
nonlinear functions in subsequent sections. Finally, we shift
to modeling a three-phase longitudinal process. As the
elaborations are introduced, analytic decision points will
be discussed such as whether (a) the segments join at the
changepoint and how to incorporate this information into
model specification; (b) the growth factors, including the
changepoints, are random or fixed and how this decision
impacts the model specification in the software; and (c)
the inclusion of latent variable covariates as time-invariant
predictors of piecewise growth.

Piecewise growthmodels

Specifying piecewise functions in a latent growth modeling
framework follows, at least initially, the notation exploited
by Cudeck and Klebe (2002). Let yij denote the response of
the ith individual on the j th occasion with j = 1, 2, . . . , ni .
The occasion of the measurement or the elapsed time from
the beginning of the study to the j th assessment is tj .
The collection of responses for individual i is denoted by
yi = (y1, . . . , yni

)′, which is to be evaluated according to
a given set of time points ti = (t1, . . . , tni

)′, where ni is
the total number of measures for the individual. In contrast
to the specification typical of mixed effect models, latent
growth models are frequently, but not always, applied to

a time-structured design in which measurement occasions
are fixed across all individuals (McNeish & Matta, 2018).
The i subscript on n is included to allow for the possibility
that the length of and elements that comprise ti may vary
across individuals (see, e.g., Blozis & Harring, 2015; Sterba,
2014). For the individual, the piecewise growth model can
be written as

yi = f (ti , θ i ) + ei , (1)

where f defines the functional form of the growth model
as a function of time (ti) and individual growth coefficients,
θ i , and ei = (ei1, . . . , eini

)′ is the set of time-specific
residuals induced by imperfectly capturing the trajectory
of yi through f . In their simplest form, the individual
coefficients are decomposed into the sum of fixed effects
(θ ) and random effects (ui), respectively

θ i = θ + ui .

The fixed effects (θ ) are growth parameters for the
typical individual. The random effects (ui) and time-
specific residuals (ei) are assumed to be independent [i.e.,
cov(ui , e′

i ) = 0] and each vector is multivariate normal such
that

ui ∼ MV N(0, �) and ei ∼ MV N(0, �i ).

Here, � is a symmetric covariance matrix of the random
effects and is often assumed to be unstructured so as to
not impose restrictions on (a) the extent to which growth
factors vary across individuals, nor on (b) the direction
and degree to which individual growth factors covary. The
time-specific residual variances and their covariances across
time are summarized in the ni × ni covariance matrix �i .
When coupled with the random effects covariance structure
(�), this residual covariance matrix (�i) often takes on a
simple structure, such as �i = Ini

σ 2 or �i = Ini
σ 2

j ,
where j = 1, . . . , ni , and where Ini

is an identity matrix of
dimension ni . Other structures are certainly possible (see,
e.g., Fitzmaurice et al., 2011; Grimm & Widaman, 2010;
Jennrich & Schluchter, 1986), and the choice of a particular
structure should be theoretically defensible or empirically
driven by a thorough exploration of the data.

The oft-cited linear-linear growth model is one possible
form of f (ti , θ i ) and is defined in Eq. 2:

f (ti , θ i ) =
{

α1i + α2i tij tij ≤ γi

α3i + α4i tij tij > γi

, (2)

where α1i and α2i are the intercept and slope of the
first phase and α3i and α4i are the intercept and slope
of the second phase, respectively. Because there are only
two phases, there is only one changepoint (γi). For this
function, the set of model coefficients for the ith individual
is θ i = (α1i , α2i , α3i , α4i , γi)

′. The inclusion of the
subscript i on each growth factor in Eq. 2 implies that each
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growth factor—including the changepoint—is allowed to
vary across individuals. In other words, individuals may
transition from phase 1 to phase 2 at different times,
and individual trajectories within a phase might look
quite different from the bilinear trajectory for the typical
individual.

Behavior at the changepoint

Most applications using the bilinear piecewise growth
model assume that the two linear segments join at the
changepoint,2 although exceptions have been noted (see,
e.g., Cudeck & Codd, 2012; Cudeck & Harring, 2010;
Cudeck & Klebe, 2002; Hoffman, 2015). To ensure
continuity between adjoining segments, the two functions
must be continuous and fulfill the condition

α1i + α2iγi = α3i + α4iγi . (3)

The equality constraint in Eq. 3 requiring the values
of the phase 1 and phase 2 functions to be equal at the
changepoint (i.e., when tij = γi) has been termed zero-
order continuity (Seber & Wild, 1989) and guarantees that
the two linear functions will meet resulting in an abrupt
elbow-like transition from one phase to the next. With
this constraint, one of the parameters is redundant and the
bilinear piecewise function in Eq. 2 can be re-expressed, for
example, by parameterizing the second phase intercept, α3i ,
in terms of the other model parameters as

f (ti , θ i ) =
{

α1i + α2i tij tij ≤ γi

α1i + α2iγi + α4i (tij − γi) tij > γi

. (4)

The resulting function now has three growth parameters,
α1i , α2i , α4i , and single changepoint, γi . If a more gradual
and smooth transition between phases better captures
the underlying behavior of the phenomenon around the
changepoint, then higher-order continuity conditions can
be implemented (see, e.g., Cudeck & Klebe, 2002, for
a thorough description and discussion). This requires,
however, that the functions for the segments be of sufficient
complexity with a greater number of parameters. We
demonstrate how this is accomplished in the empirical
examples forthcoming.

Fitting the piecewise growth model in Eq. 4 as a mixed-
effects model requires writing an if-then statement such
as

if t ≤ γ then f = α1 + α2 · t

else if t > γ then f = α1 + α2γ + α4i (t − γ ),

2Without loss of generality, throughout the remainder of the article we
assume that the segments will meet at the changepoint(s).

using software, such as SAS or R, that allows conditional
programming statements. The challenge of fitting this same
model in SEM software is to re-express f (ti , θ i ) as a linear
combination of a factor loading matrix and latent growth
factors, �iηi , the cornerstone of the latent growth modeling
framework (Bollen & Curran, 2006; Meredith & Tisak,
1990).

Specifying piecewise models in an LGM
framework

Two-phase growth models can be specified in a number
of ways. In some cases, the functions that define the
different segments include only linear parameters, such as a
model based on a linear-linear or quadratic-linear function,
and the only nonlinear parameter is the changepoint. If
the changepoint is known a priori and is fixed across
individuals—such as may be the case when an intervention
is delivered at a specific time—the discontinuity in the
overall pattern can be easily treated through adding a second
linear growth factor and setting elements of the factor
loading matrix to pre-specified values. For a linear-linear
function, the second latent growth factor can either be
interpreted as the linear slope of the second phase (see the
left panel of Fig. 2) or as the difference between the linear
slopes of phase two and phase one (see the right panel
of Fig. 2) depending on how the factor loading matrix is
specified (see, e.g., Hancock et al., 2013).

In other cases, one or both of the functions that
define the segments include a nonlinear parameter, such
as a model based on a combination of a linear and an
exponential function. Typically, one or more of the growth
parameters that enter the model in a linear way are random.
Nonlinear growth parameters may be random or fixed.
If fixed, then the model falls within the framework of
a conditionally linear model. For instance, in a linear-
exponential growth model, the nonlinear parameter of
the exponential function would be fixed and the rate
of change therefore held constant across individuals. In
a very different formulation of a piecewise model, a
nonlinear growth function is defined by a first-order Taylor
polynomial, and as such, the weights of the polynomial are
random and the nonlinear growth parameter is fixed. This
latter type of model is known as a structured latent curve
model (SLCM; Browne, 1993; Browne & du Toit, 1991). A
third formulation of the model is one in which the nonlinear
growth function is random, such as in a fully nonlinear
mixed-effects model (see, e.g., Cudeck, 1996; Davidian &
Giltinan, 1995; Davidian & Giltinan, 2003). Of these three
formulations, only the first two may be fit within an SEM
framework.
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Fig. 2 The left panel shows a bilinear piecewise LGM with an explicit second phase slope. The right panel shows a bilinear piecewise LGM
parameterized with a difference in linear slopes between phase 2 and phase 1

Structured latent curvemodel approach

Before delving into the specifics of the modeling extensions
and empirical examples, we provide a very brief overview
of the SLCM (readers familiar with the SLCM can skip
this section without loss of continuity). Formulation of
a structured latent curve model begins with the mean
response that is assumed to follow a particular target
function, f (ti , θ). To be clear, a target function is simply
a mathematical function of time describing a trajectory of
the mean response. For now, this target function is arbitrary,
but represents any nonlinear growth function in which at
least one parameter enters f in a nonlinear manner. For
individual i, a generic four-parameter target function can be
re-expressed as a first-order Taylor series expansion of the
target function (see, e.g., Blozis & Harring, 2016; Browne,
1993; Preacher & Hancock, 2015)

yi = f(ti , θ) + z1if′1(ti , θ) + z2if′2(ti , θ) + z3if′3(ti , θ)

+z4if′4(ti , θ) + ei (5)

where f′k(ti , θ) is a vector of first partial derivatives (known
as a basis function, Browne, 1993; Meredith & Tisak, 1990)
with respect to the kth growth parameter and is evaluated
at the ni time points in ti and parameters in θ . The basis
functions are weighted by random effects, zki , individual-
level deviations from the growth parameters in θ with
means equal to zero. With the additional assumption that
the residuals in ei have means of zero as well implies that
E[yi] = μ = f(ti , θ).

The basis functions comprise the columns of the factor
loading matrix, �i (ti , θ),

�i (ti , θ) =

⎡
⎢⎢⎢⎢⎣

∂f (t1,θ)
∂θ1

· · · ∂f (t1,θ)
∂θ4

∂f (t2,θ)
∂θ1

· · · ∂f (t2,θ)
∂θ4

...
. . .

...
∂f (tni

,θ)

∂θ1
· · · ∂f (tni

,θ)

∂θ4

⎤
⎥⎥⎥⎥⎦ . (6)

Under an SLCM, the mean function is assumed to
be invariant to a constant scaling factor (see, Shapiro &
Browne, 1987, Condition 2). As a consequence, the target
function f(ti , θ) can be rewritten as �i (ti , θ)α, where some
of the elements of α may need to be set to zero (see, Blozis
&Harring, 2016, for a discussion of how this is determined).
Then in the individual-level model, �i (ti , θ)α replaces the
target function and the model in Eq. 5 can be rewritten as

yi = �i (ti , θ)α + �i (ti , θ)zi + ei . (7)

Letting ηi = α + zi , the model in Eq. 7 can be written as

yi = �i (ti , θ)ηi + ei . (8)

The random effects and residuals are assumed to follow
multivariate normal distributions, zi ∼ N(0, �) and ei ∼
N(0, �i ), respectively. The SLCM model in Eq. 8 can
include time-invariant observed or latent covariates by
augmenting the expression of individual growth factors,
ηi = α + �1xi + �2ξ i + zi , where coefficients in �1

correspond to the measured covariates in xi , and coefficients
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in �2 correspond to the latent covariates in ξ i which are
related to a set indicator variables, wi , through a common
factor model. The model-implied mean and covariance
structures of the repeated measures for this conditional
SLCM would be

E[yi] = μi = �i (ti , θ)(α + �1μx + �2κ),

and

V ar[yi] = �i = �i (ti , θ)(�1�x�
T
1 + �2�ξ�

T
2 + �)

�i (ti , θ)T + �i ,

where μx and κ are the mean vectors of the observed and
latent covariates and �x and �ξ are the covariance matrices
of the observed and latent covariates, respectively.

Readers who want a more thorough discussion of the
distinctions between the SLCM and nonlinear mixed-effects
model are encouraged to read Blozis and Harring (2016) and
Grimm et al. (2017), while Preacher and Hancock (2012)
and Preacher and Hancock (2015) provide a full description
of how the bilinear piecewise growth model fits within the
SLCM framework.

Conditionally linear model

An SLCM is formulated by taking a first-order Taylor-
series polynomial of a nonlinear growth function where
polynomial terms are weighted by individual random
effects. The nonlinear growth parameter(s) are fixed.
An alternative to an SLCM for fitting nonlinear latent
growth models is a slightly more restrictive version of
the fully nonlinear mixed-effects model, a conditionally-
linear LGM (see, e.g., Blozis & Cudeck, 1999; Harring
et al., 2006; Harring et al., 2012). Individual-specific growth
parameters that enter the function in a nonlinear fashion
are fixed across individuals, whereas parameters that enter
the function in a linear fashion are permitted to vary
across individuals. Initial or potential (i.e., asymptotic)
performance in developmental learning processes, for
example, are often modeled as linear parameters in many
nonlinear functions (Bates & Watts, 1988) and display
considerable heterogeneity in the sample; conversely, a
parameter relating to the rate of change, often a nonlinear
parameter, varies markedly less.

The linear-linear function in Eq. 4 can be cast as a
conditionally-linear model by eliminating the i subscript on
the changepoint—the sole nonlinear parameter—as

f (ti , θ i ) =
{

α1i + α2i tij tij ≤ γ

α1i + α2iγi + α4i (tij − γ ) tij > γ
.

Note, that growth parameters α1i , α2i , and α4i that enter
the piecewise function in a linear manner retain the i

subscript and are allowed to vary across individuals. This
conditionally-linear piecewise function fits into the LGM
framework by writing f as

f (ti , θ i ) = �i (ti , θ)ηi

where �i (ti , θ) contains possibly nonlinear functions of
θ = γ , incorporates covariates that explain the growth
characteristics of η′

i = (α1i , α2i , α4i ), and includes
measurements of time. For each of the empirical examples
that follow, computer code for both the SLCM and
conditionally-linear model will be provided.3

Segmented polynomials as LGMs

We begin this section by revisiting the bilinear model
defined in Eq. 4, which is reproduced here as the target
function defined in Eq. 5 for clarity,

f (ti , θ) =
{

α1 + α2tij tij ≤ γ

α1 + α2γ + α4(tij − γ ) tij > γ
. (9)

where θ = (α1, α2, α4, γ )′. To fit this function as an
SLCM, Preacher and Hancock (2015) followed the tact
introduced by Harring et al. (2006), namely rewriting the
bilinear piecewise function using the minimum/maximum
function applied to the two line segments, but allowing the
changepoint to vary randomly across individuals. A related,
but alternative approach can be used instead—providing
greater flexibility to fit higher-order polynomials, inherently
nonlinear functions (i.e., exponential), as well as to more
than two phases with the caveat that the functions of
adjacent segments need not be monotonic.

Instead of using the minimum/maximum function
applied to the segments themselves, the bilinear piecewise
function of Eq. 9 can be formulated as an SLCM by coding
the j th row of �i (ti , θ) using the minimum/maximum
function, but applied directly to values of time, tij and
the mean of the changepoint, which is expressed here
as γ . Following Seber and Wild (1989, Section 9.4.2),
the minimum and maximum functions are defined as:
min(u, v) = 1

2 [u + v − √
(u − v)2] and min(u, v) =

−max(−u, −v) implying max(u, v) = 1
2 [u + v +√

(v − u)2], where u, v ∈ IR. These expressions are
equivalent to the min() and max() functions found
in many statistical software packages. The min(u,v)

3Annotated Mplus input files and R scripts using lavaan for all
models can be accessed through the Open Science Framework at:
https://osf.io/9kn8u/

598 Behav Res (2021) 53:593–608

https://osf.io/9kn8u/


function in SAS PROC IML, for instance, evaluates
arguments u and v and returns the minimum of the two. So
does min(u, v) = 1

2 [u+v−√
(u − v)2]. Thus, the elements

for the j th row of �i (ti , θ) can be expressed as

[�i (ti , θ)]j · =
[
1 min(tij , γ ) max(tij − γ, 0) (α2 − α4)

(
max(tij − γ, 0)

tij − γ

)]
,

(10)

It may not be readily apparent that the column-wise
elements represented in Eq. 10 are the partial derivatives of
the target function in Eq. 9 with respect to each parameter
evaluated at the j th time point. To make this connection,
the partial derivatives of piecewise functions comprising
f are evaluated before and after the changepoint and then
combined to create each column across the values, tij .
To make this concrete, suppose that six time points for
individual i be ti = (0, 1, 2, 5, 6, 10)′ and the single
changepoint occurs at γ = 3. The partial derivative of f

with respect to α1, the first entry in Eq. 10, at each time
point before the changepoint (i.e., at 0, 1, and 2) is 1. For
times after the changepoint (i.e., at 5, 6, and 10), the partial
derivative is also 1. That is,

∂

∂α1

[
α1 + α2tij

] = 1 when tij ≤ γ

and
∂

∂α1

[
α1 + α2γ + α4(tij − γ )

] = 1 when tij > γ .

The partial derivative of f with respect to α2, the second
entry in Eq. 10, can be computed in a similar manner. For the
first linear function—when tij ≤ γ—the partial derivative
is tij . When tij > γ , then the partial derivative is γ . This is
exactly what the operator, min(tij , γ ), does. Consequently,
the second column of the hypothetical example evaluated at
times ti would be

∂f (ti , θ)

∂α2
= min(tij , γ ) = (0, 1, 2, 3, 3, 3)′.

In the event that a particular parameter in θ does not
appear in one of the piecewise segments in f , then it will
take on the value of 0. The last two entries (i.e., for α4 and
γ ) in Eq. 10 have this characteristic. Take max(tij − γ, 0),
the partial derivative of f with respect to α4. When the
value of tij − γ > 0, then the max() function returns the
evaluated number, otherwise the entry is 0. For the running
hypothetical example, the elements corresponding to the six
time points would be (0, 0, 0, 2, 3, 7). Similarly, the first
three elements of the partial derivative of f with respect to

γ would be (0, 0, 0) while the second three elements take
on the same value, α2 − α4. In our hypothetical example,
the value of the changepoint is known—and thus it is
apparent when the transition from 0 to α2 − α4 occurs.
In most practical situations, the changepoint will be an
unknown parameter to be estimated. As a consequence,
a practical challenge to implementing this method in
contemporary SEM software is to automate this type of
on/off switch behavior. We accomplish this by including the
term [max(tij − γ )] /(tij − γ ). This acts as an indicator
function taking on the value of 0 when tij − γ ≤ 0 and
taking on the value of 1 when tij − γ > 0. We now show
how this alternative approach can be implemented for other
piecewise functions.

Quadratic-linear piecewise growth

A quadratic-linear piecewise function can be written as

f (ti , θ i ) =
{

α1i + α2i tij + α3i t
2
ij tij ≤ γi

α4i + α5i tij tij > γi

. (11)

For the polynomial segments to meet at the changepoint
with a smooth transition requires both zero- and first-order
continuity constraints. This means

α1i + α2i tij + α3i t
2
ij tij

∣∣∣
tij =γi

= α4i + α5i tij

∣∣∣
tij =γi

,

and

∂

∂tij
(α1i +α2i tij +α3i t

2
ij )

∣∣∣
tij =γi

= ∂

∂tij
(α4i +α5i tij )

∣∣∣
tij =γi

.

With these two restrictions, two of the parameters in
Eq. 11 are redundant and can be re-expressed in terms of
other model parameters. By eliminating α1i and α2i , for
example, the quadratic-linear function can be rewritten as

f (ti , θ i ) =
{

α4i + α5i tij + α3i (γi − tij )
2 tij ≤ γi

α4i + α5i tij tij > γi

.(12)

Using the same approach when specifying the bilinear
piecewise growth model, the quadratic-linear piecewise
function in Eq. 12 used as the target function (by eliminating
the i subscript on θ i) would be fit as an SLCM by coding
the factor loading matrix as

[�i (ti , θ)]j · = [
1 tij max(γ − tij , 0)2 2α3 max(γ − tij , 0)

]
.

(13)

We now show how these methods can be implemented
not only for the quadratic-linear piecewise LGM in Eq. 12,
but also for other piecewise functions as well.
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Empirical examples

Three different piecewise LGMs will be fitted to two
empirical datasets. Data from a psychological experiment
constitutes the second empirical example, in which the
response is the number of words that were recalled across
10 trials. Interestingly, performance exhibits three phases
where a distinct linear function is hypothesized in each
phase. Transition from one phase to the next is abrupt but
connected implying that two changepoints will be needed
to glue the three segments together. A more complete
description of the data is given next followed by reporting
the results of each analysis.4 The second dataset comes
from a learning study in which verbal skill acquisition was
assessed. Response times across 12 trial blocks showed
a fairly steep, curvilinear decline (learning taking place)
during earlier trials. Learning continued across later trials
but slowed, and eventually decreased at a constant rate
through the last trial. We fit two piecewise growth models
to these data: (1) a quadratic-linear function as described
earlier and (2) an exponential-linear model that uses an
intrinsically nonlinear function—as opposed to a higher-
order polynomial—to model the steep decline in the first
phase.

Word recall data

The repeated measures data plotted in Fig. 3 are the number
of words out of 15 possible that were recalled by a sample
of college students over ten 30-sec trials of a single-session
experiment (Smith & Klebe, 1997, June). The trials are
recorded as tij = tj = (0, . . . , 9)′. A random subset
of 20 of the full sample (N = 103) are included in
the spaghetti plot. As always, individual differences are
appreciable. The number of words recalled on the initial trial
varied between 3 and 10, whereas at the final trial the range
was from 11 to 15. Most participants showed rapid and
linear improvement up to Trial 3, after which there was a
second phase in which more gradual improvement occurred
until approximately trial 6, then little, if any, individual
change in the number of words recalled for the final 2 to
3 trials. Here, we fit this data using a linear-linear-linear
piecewise LGM across trials. The changepoints marking the
shift from one phase to another are unknown parameters to
be estimated. It appears that the changepoints are roughly
similar for every participant, and thus, these parameters
may need to be constrained to be identical for all subjects.

4It is not our intention to provide a complete analysis of each
dataset, but rather to show how each can be fitted using piecewise
LGMs previously outlined. Nuances of the analyses related to the
implementation of the LGMs in the software are highlighted.

Fig. 3 A spaghetti plot with a 20% random sample (N = 103) of the
number of words recalled across 10 trials

This type of hypothesis can be adjudicated by performing
a χ2 difference test under maximum likelihood estimation
using an appropriate 50:50 mixture χ2 distribution (Stoel
et al., 2006). The mixture distribution is recommended as
the reference distribution to adjudicate the hypothesis test
of the variance component of ψγ1 = var(zγ1i ) whose value
under the null distribution is on the edge of parameter space.

The segmented polynomial extends in a straightforward
manner to more than two phases. Through some preliminary
analyses, it was observed that the two changepoints did
not vary across individuals and thus, a conditionally-linear
LGM specification in which γki = γk for k = 1, 2, was
used for the analyses with imposed zero-order continuity
(i.e., segments meet at the changepoints, but the transition
is abrupt).

f (ti , θ i ) =

⎧⎪⎨
⎪⎩

α1i + α2i tij tij ≤ γ1

α3i + α4i tij γ1 < tij ≤ γ2

α5i + α6i tij γ2 < tij

. (14)

With the imposed zero-order continuity restriction, the
three-phase linear LGM in Eq. 14 can be rewritten as

f (ti , θ i )

=
⎧⎨
⎩

α1i + α2i tij tij ≤ γ1

α1i + α2iγ1 + α4i (tij − γ1) γ1 ≤ tij ≤ γ2

α1i + α2iγ1 + α4i (γ2 − γ1) + α6i (tij − γ2) tij > γ2

.

(15)

The factor loading matrix for an LGM for the linear-
linear-linear piecewise function would be parameterized
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with four columns corresponding to the four linear
individual-specific parameters using Eq. 15.

[�i (ti , θ)]j · = [
1 min(tij , γ1) min(max(0, tij − γ1), γ2 − γ1)

max(0, tij − γ2)
]
.

Results Table 1 shows the results from fitting the piecewise
linear-linear-linear latent growth model using maximum
likelihood estimation and appeared to have satisfactory
model-data fit [χ2(48) = 67.06, p = 0.036, RMSEA 90%
CI (0.017, 0.095), and SRMR = 0.083].

The estimated intercept of the linear function in phase 1,
α̂1 = 5.45, is interpreted as the average number of words
recalled at the beginning of the experiment—approximately
5.5 words. The estimated slope of the linear function in
phase 1, α̂2 = 2.82 is the expected increase in words
recalled for each additional trial. The estimated slope of
the second phase is α̂4 = 1.23 and represents the expected
increased in the number of words recalled in phase 2.
Compared to the constant rate of change in phase 1, the

Table 1 Maximum likelihood estimates and standard errors for the
conditionally-linear, three-phase linear piecewise LGM

Parameter Estimate SE

α1 5.45 0.19

α2 2.82 0.17

α4 1.23 0.13

α6 0.22 0.02

γ1 1.42 0.11

γ2 3.49 0.15

ψα1 2.68 0.50

ψα2 1.32 0.39

ψα4 0.39 0.13

ψα6 0.01 0.01

ψα1,α2 -0.01 0.31

ψα1,α4 -0.42 0.17

ψα1,α6 -0.08 0.04

ψα2,α4 -0.38 0.17

ψα2,α6 -0.05 0.04

ψα4,α6 0.03 0.02

σ 2 0.95 0.05
aα3 7.70 0.42
aα5 11.23 0.24

aThe fixed effects for the intercepts for the second and third linear
segments, α3 and α5, were computed using the NEW command in
Mplus

α1 is the first phase intercept, α2 is the first phase linear slope, α4 is
the second phase linear slope, α6 is the third phase linear slope, γ1 and
γ2 are the two changepoints. Parameters denoted with ψ are variance
and covariance components of the random effects and σ 2 denotes the
common time-specific residual variance

Fig. 4 Fitted mean trajectory for the linear-linear-linear piecewise
LGM superimposed on a random sample of N = 10 individuals. The
estimated changepoints are highlighted with arrows

rate of word recall for the average individual in the second
phase is slowing. The last estimated growth parameter,
α̂6 = 0.22, is the average linear growth rate of phase 3.
The changepoints occur between the second and third trial
(γ̂1 = 1.42) while the second shift occurs between the fourth
and fifth trials (γ̂2 = 3.49). To see this more clearly, the
fitted mean trajectory with fitted changepoints highlighted
and superimposed is displayed in Fig. 4.

Central to any analysis of latent growth models is char-
acterizing individual behavior of the phenomena underlying
the repeated measures data. Examining individual fitted
functions can provide valuable insight into understanding
the myriad ways the phenomena changes according to the
time-response relation. Figure 5 illustrates how the model
performs for three specific individuals. Note that while each
individual transitions at the same junctures from one phase
to the next, their linear functions—one in each phase—is
specific to the individual (i.e., linear parameters have corre-
sponding random effects).

Procedural learning task

The next two examples involve data that were obtained
from a learning study5 in which researchers were interested
in assessing performance on two procedural tasks. The
repeated outcome variable used here is response time
corrected for accuracy, taken to assess verbal skill

5The data were provided by Scott Chaiken of the Armstrong
Laboratory, Brooks Air Force Base.
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Fig. 5 Three individuals’ fitted linear-linear-linear trajectories. Esti-
mates of common changepoints are represented by vertical solid
lines

acquisition. Quantitative and spatial skill acquisition were
also evaluated. For each task, study participants were
required to learn a set of declarative rules for assessing
attributes of visual stimuli presented in series. Tasks were
given together in blocks, with the administration order
varied within blocks to avoid order effects. Both response
times and accuracy scores were recorded. Data for a sample
of N = 228 individuals whose average accuracy score
across trial blocks was 80% or better on the task is
considered here. The sample was restricted in this manner
to lessen the impact of a speed – accuracy trade-off on
response time. Response times for the procedural task were
aggregated separately into 12 blocks of 32 trials each, where
the median time to respond within blocks was used as the
aggregate. For the interested reader, a more comprehensive
description of data can be found in Blozis (2004).

As is apparent in Fig. 6, response times decreased
rapidly across earlier trials where at approximately trial
4 or 5, response times continued to decline but at a
constant rate. Among several alternative functions fitted
to this data, two piecewise functions were finally chosen
based on model-data fit, parameter interpretability and the
belief that the underlying process occurs in two distinct
phases. The first piecewise function is a quadratic-linear
piecewise LGM. The two segments join and a smooth
transition between quadratic and linear phase is expected.
The quadratic-linear LGM explicated in Eq. 12 were fit to
these data as a structured latent curve model. In a subsequent
section, an exponential-linear piecewise LGM is fitted to the
same repeated measures data. The first-phase exponential

Fig. 6 A spaghetti plot with a 10% random sample (N = 228) of
response times across 12 trial blocks

function is aligned with analyses performed in other studies
(see, e.g., Blozis, 2004; Harring et al., 2012).

Results Table 2 presents maximum likelihood estimates
and corresponding standard errors obtained from fitting the
quadratic-linear LGM inMplus (Muthén &Muthén, 1998).
For the growth parameters, examination of the fixed effects
estimates shows that the average individual has a convex
pattern of quadratic change (α̂3 = 0.35) across trial blocks
until trial block 5 (γ̂ = 5.22), the estimated changepoint
for the average individual where decline shifts to a constant
rate of change that is more gradual. The linear slope of the
second phase is α̂5 = −0.17, and represents the expected
decrease in reaction time in tenths of a second for each
trial block increase while the intercept is α̂4 = 8.20. The
intercept is the average reaction time in tenths of a second
at the initial trial block (i.e., tj = t1 = 0). Centering
time to another trial block in the second phase such as
tj = t12 = 11 or at the changepoint tj = γ̂ would make
its value more interpretable (see, Hoffman, 2015, Chapter
6). The estimated fixed effects of the growth parameters
were all large relative to their estimated standard errors and
thus hypothesis tests using a Wald-like ratio of the estimate
to its standard error could be used to establish statistical
significance.

Individual differences in all aspects of learning can be
ascertained by examining the variances and covariances
of the random coefficients. From Table 2, the variance
estimates of the random coefficients are all large relative to
their standard errors. The correlation between individuals’
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Table 2 Maximum likelihood estimates and standard errors for the
quadratic-linear piecewise LGM

Description Parameter Estimate SE

Growth Factor Means

Phase 1 quadratic growth factor α3 0.35 0.03

Phase 2 intercept growth factor α4 8.20 0.16

Phase 2 linear growth factor α5 -0.17 0.01

Changepoint γ 5.22 0.12

Growth Factor Variances

Quadratic growth factor ψα3 0.07 0.02

Intercept growth factor ψα4 4.61 0.52

Linear growth factor ψα5 0.02 0.003

Changepoint ψγ 0.46 0.23

Growth Factor Covariances

Quadratic and intercept ψα3,α4 0.17 0.06

Quadratic and linear ψα3,α5 -0.01 0.01

Quadratic and changepoint ψα3,γ -0.03 0.05

Intercept and linear ψα4,α5 -0.29 0.04

Intercept and changepoint ψα4,γ 0.64 0.24

Linear and changepoint ψα5,γ -0.04 0.02

Time-Specific Residual Variances

Time = 0 σ 2
t=0 50.47 6.13

Time = 1 σ 2
t=1 5.88 1.19

Time = 2 σ 2
t=2 4.44 0.56

Time = 3 σ 2
t=3 1.79 0.24

Time = 4 σ 2
t=4 0.63 0.10

Time = 5 σ 2
t=5 0.51 0.06

Time = 6 σ 2
t=6 0.23 0.03

Time = 7 σ 2
t=7 0.25 0.03

Time = 8 σ 2
t=8 0.31 0.03

Time = 9 σ 2
t=9 0.20 0.02

Time = 10 σ 2
t=10 0.20 0.03

Time = 11 σ 2
t=11 0.09 0.02

α3 is the first phase quadratic slope, α4 is the second phase intercept,
α5 is the second phase linear slope, and γ is the changepoint.
Parameters denoted with ψ are variance and covariance components
of the random effects and σ 2 parameters denote time-specific residual
variances

second phase intercepts, α4i and their changepoints, γi , for
example, is

corr(zα4i , zγi
) = −0.64√

4.61 · 0.46
= −0.44,

indicating a moderate negative linear trend. Thus, individu-
als who start the second phase at higher initial reaction times
(slower reaction) will transition to the second phase at ear-
lier trial blocks compared to those individuals whose initial
reaction times are faster. To give some indication of how

well the mean curve fits the data, a graph of the mean tra-
jectory is displayed in Fig. 7 superimposed on line plots of
a random sample of individuals’ data.

Procedural learning task revisited

The last empirical example again utilizes the procedural
learning task dataset (see Fig. 3 for longitudinal profiles of
a random sample of individuals). As is the case with curvi-
linear repeated measures data, many mathematical functions
with parameterizations tailored to the scientifically-relevant
features of underlying process may fit the data equally well.
In past studies, for example, these data have been fitted
with an exponential function in a structured latent curve
modeling context (see, e.g., Blozis, 2004), a linear-linear
piecewise LGM (Harring et al., 2012; Kohli & Harring,
2013) in a growth mixture modeling context as well as to
a quadratic-linear piecewise function, also fitted as a struc-
tured latent curve model discussed previously. As a final
extension, a two-phase model that assumes an exponential
decaying response from the initial trial block to approxi-
mately the fifth trial block or so after which the form of
change conforms to a linear function with slow, constant
decremented change across the later trials.

The approach using the min() and max() functions
with time and changepoint arguments can be utilized
to fit segments that have at least one parameter of the
piecewise growth function that enters in a nonlinear manner
(e.g., exponential function) beyond the changepoint. If the
functions meet at the changepoint and if a smooth transition

Fig. 7 Fitted mean curve for the quadratic-linear piecewise LGM
superimposed on a random sample of N = 10 individuals. The
estimated changepoint occurs a little after the trial block 5: γ̂ = 5.11
and is denoted by the vertical dashed line
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is required when moving from one phase to the next, then
zero-, first-, and even second-order continuity constraints
may be applied given that the functions are of sufficient
complexity. For example, the exponential-linear function
used in the forthcoming analysis imposes both zero- and
first-order continuity conditions. The two-phase piecewise
function is defined as

f (ti , θ i ) =
{

α1i + α2i exp(α3i tij ) tij ≤ γi

α4i + α5i tij tij > γi

. (16)

In Eq. 16, α1i is the limiting asymptotic performance
(i.e., as tij → ∞), α2i is a scaling factor and represents the
distance from the asymptote to the initial value [i.e., tij = 0,
f (ti , θ i ) = α1i + α2i]. The rate of decay is governed by
α3i , an intrinsically nonlinear parameter of the exponential
function, whose values are less than zero, α3i < 0. Note
that if instead, exponential growth in the first phase was
posited, then α3i > 0. Assuming zero-order continuity at
the changepoint (i.e., assuming the two segments join at
tij = γi), results in one redundant parameter. Here, we
chose to write the intercept of phase 2, α4i , in terms of other
model parameters

α1i + α2i exp(α3iγi) = α4i + α5iγi

α1i + α2i exp(α3iγi) − α5iγi = α4i . (17)

Further assuming first-order continuity at the change-
point (i.e., assuming the transition from phase 1 (exponen-
tial decay) to phase 2 (linear decay) is smooth rather than
abrupt), the first-order partial derivatives of each function
with respect to time are set equal to one another allowing
to eliminate another growth parameter, in this case, linear
slope of phase 2

α2iα3i exp{α3iγi} = α5i . (18)

Together, zero- and first-order continuity defined in
Eqs. 17 and 18 imply

α4i = α1i + α2i exp{α3iγi} − α2iα3i exp{α3iγi}γi

= α1i + (1 − α3iγi)α2i exp{α3iγi}. (19)

The result of plugging Eqs. 18 and 19 into Eq. 16, is

f (ti , θ i ) =
{
α1i + α2i exp(α3i tij ) tij ≤ γi

α1i + (1 − α3iγi + α3i tij )α2i exp{α3iγi} tij > γi
,

(20)

with four unknown parameters, θ i = (α1i , α2i , α3i , γi)
′,

each of which may vary across individuals. Note that both
the asymptote (α1i) and scale parameter (α2i) in phase 1
enter the function linearly while the rate of exponential
decay (α3i) in phase 1 and the changepoint (γi) enter the
model in a nonlinear manner. If a conditionally-linear LGM
is sought, then only two columns in the factor loading

matrix would need to be specified. The nonlinear parameters
would be fixed across subjects and would be specified
using the nonlinear constraints feature in the software
program. If on the other hand, a structured latent curve
model is to be fitted in which all parameters—those that
enter the function linearly as well as those that enter in a
nonlinear fashion—are allowed to vary across individuals,
then the factor loading matrix would be comprised of four
columns. In the latter case, the columns are made up of
first-partial derivatives of the target function with respect to
each parameter. The mean vector would set those elements
corresponding to nonlinear parameters to zero, although
other possibilities exist (see, e.g., Preacher & Hancock,
2015).

The factor loading matrix for the conditionally-linear
LGM is

[�i (ti , θ)]j · = [1, exp(α3 ·min(tij , γ )) ·(1+α3 ·max(tij −γ, 0))],

where θ ′ = (α3, γ ). The factor loading matrix for the
structured latent curve model is

[�i (ti , θ)]j · = [1,
exp[α3 · min(tij , γ )] · {1 + α3 · max(tij − γ, 0)},
α2 exp{α3 · min(tij , γ )}(α3γ · max(tij , γ ) − α3γ

2 + tij ),

α2
3 · max(tij − γ, 0)α2 exp{α3γ }].

Results We fit the exponential-linear piecewise LGM using
both the conditionally-linear LGM as well as treating
the model as a structured latent curve model. For each
model, the residual covariance structure was specified to
a homogeneous, mutually-independent structure, �i =
Inσ 2 as there were no missing data. Maximum likelihood
estimates for the conditionally-linear LGM were

θ̂ = (α̂1, α̂2, α̂3, γ̂ )

= (6.83, 14.65, −0.64, 6.32),

�̂ =
(
1.87
5.16 84.95

)
σ̂ 2 = 2.43.

The estimated changepoint occurred between a bit after
the seventh trial block, γ̂1 = 6.32. One reason the
changepoint was estimated at this juncture was due to
the requirement of equality of the segment functions first-
order derivatives. If only the zero-order constraint was
implemented, the changepoint would have occurred at
an earlier trial block. This disparity in placement of the
changepoint is well-known (see, Cudeck & Harring, 2010)
and can be directly attributed to what is assumed about the
behavior (i.e., abrupt or smooth) of the process near the
changepoint. In general, adopting higher-order continuity
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conditions provides greater degrees of smoothness of the
transition between phases at the changepoints, which often
has the effect of delaying when the transition occurs.

Maximum likelihood estimates for the structured latent
curve model were

θ̂ = (α̂1, α̂2, α̂3, γ̂ )

= (7.28, 13.25, −0.89, 4.48),

�̂ =

⎛
⎜⎜⎝
1.80
5.40 101.52
0 37.08 99.01
0 14.12 26.12 7.19

⎞
⎟⎟⎠ σ̂ 2 = 1.01.

Using the New( ) function in the Model Constraint
module in Mplus permits estimating the intercept and slope
of the second phase for the average individual based on
estimates of model parameters.6 These were estimated to
be α̂4 = 8.51 and α̂5 = −0.22, respectively. Time was
not centered in any way. Therefore, the interpretation of
the intercept is the expected reaction time in tenths of
seconds at tij = 0. The slope has a standard regression
interpretation that for each additional trial block after the
fifth trial, average reaction time would decrease nearly
a quarter of a tenth of a second. From initial fitting
of the model, it was determined that the covariances
between asymptote and exponential decay rate and between
asymptote and changepoint were approximately zero, and
were then set to zero, producing the final estimates. Each
of the four parameters showed statistically significant
between-individual variation (i.e., the diagonal elements
of �̂). Unsurprisingly, the correlation between exponential
decay rate and changepoint random effects was strong and
positive, ρ̂43 = 26.12/

√
99.01 · 7.19 ≈ 0.98.

A plot of the fitted mean exponential-linear piecewise
functions using the two approaches is shown in Fig. 8. The
fitted conditionally-linear piecewise LGM seemed to adhere
to the empirical means at each time point quite closely.
In contrast, the fitted SLCM in which the exponential rate
of decay and the changepoint were allowed to vary across
individuals, demonstrated slightly different fit. The mean
changepoint occurred at a much earlier trial than did the
changepoint from the conditionally-linear piecewise model.
To be clear, our intention here, rather than attempting
to reach substantive conclusions regarding the underlying
procedural learning task response process, is to illustrate
how an intrinsically nonlinear piecewise LGM may be
used to articulate many interesting aspects and types of
longitudinal change that exhibit distinct phases.

6It should be noted that the NEW command can also be used to
transform variance and covariance parameters and provide standard
errors for them as model-implied parameters.

Fig. 8 Fitted functions for the average exponential-linear change
process for the conditionally-linear LGM (solid line) and the structured
latent curve model (dotted line)

Discussion

Many alternatives exist to describe curvilinear patterns of
repeated measures data. An appealing option, a piecewise
growth model, is flexible, can effectively summarize behav-
iors that display distinct phases, and permits for estimation
of the changepoint from one phase to the next. Estimating
piecewise growth models as mixed effects models is fairly
straightforward using software modules that allow the user
to explicitly define the function in each phase using pro-
gramming statements. For LGMs, estimating even the most
basic piecewise growth model, the two-phase linear-linear
model, is challenging; and perhaps as a consequence, pub-
lished studies using other functional forms for the segments
or allowing for multiple changepoints, are rare. As one
reviewer rhetorically asked, why specify piecewise growth
models in an SEM framework when a mixed effects mod-
eling version already exists? There are many reasons to
justify approaching this type of growth modeling from an
SEM perspective. As was previously argued, SEM software
like Mplus and lavaan can not only handle basic and
advanced nonlinear growth models (Preacher & Hancock,
2015; Ram & Grimm, 2009), but with a few extra lines of
code can extend these models to accommodate nested data
structures and complex sampling designs, to account for
population heterogeneity, and to incorporate intensive data
collection design facets among other modeling elaborations.
More importantly, using latent variables as longitudinal
responses, time-varying covariates, determinants of change,
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and even distal outcomes—basic tenets of longitudinal SEM
methods (Grimm&Marcoulides, 2016; McArdle & Nessel-
roade, 2014)—can be handled rather easily in SEM software
ensuring that executing a piecewise growth modeling analy-
sis within this environment will be worth the extra effort.

A central goal of this article was to show how a
broader class of piecewise latent growth models could be
fitted utilizing the nonlinear constraint module found in
most modern SEM software. To this end, we extended
the oft-used linear-linear piecewise latent growth model
in three ways. The first elaboration was to a three-
phase linear process. Two changepoints were needed to
specify the model and were fixed across subjects in the
real data example involving word recall. This type of
conditionally-linear specification means that while some
aspects of the change process operationalized with a
piecewise function (i.e., the intercept and slope of the
first phase) are specific to the individual, the points
of transition of adjacent phases are not. This is not a
limitation of the general piecewise LGM system, but
arguably one of its most attractive features—tailoring its
specification to adapt to characteristics of the particular
study behavior. This is best accomplished based on
theoretical considerations of the longitudinal design and
data attributes as well as a deep understanding of the
evolution of the underlying process. Of course, decisions
made throughout the modeling process are also informed
through the empirical investigation. The second elaboration
was to higher-order polynomial functions for data that
exhibit two distinct phases. Continuity constraints were
incorporated and we demonstrated how the min() and
max() functions could be used on time points and
changepoints instead of the line segments used in past
studies. Columns of the factor loading matrix of the
piecewise LGM could then be specified using the nonlinear
constraint module in popular SEM software.

The last modeling embellishment was to intrinsically
nonlinear functions as was demonstrated in the analysis of
the procedural learning task dataset. An exponential-linear
piecewise LGM was specified in which the rate of the
first phase and the changepoint—individual-specific param-
eters—enter the function in a nonlinear manner. Analyses
using both conditionally-linear and structured latent curve
modeling frameworks were performed. Allowing the non-
linear parameters to vary among individuals had the effect
of moving the transition from the first to the second phase
at an earlier trial. These models are complex with many
analytic decision points to be made throughout: (1) should
nonlinear parameters be fixed across subjects or should they
be allowed to vary? and (2) what type of piecewise function
is suggested by the theory of the underlying change process
or through an empirical investigation? And, although our
analyses did not include investigation of residual covariance

structures or augmentation of the model with time-invariant
covariates, these nuances as well as the many others natu-
rally encountered when fitting latent growth models are just
as applicable when piecewise functions are used.

The piecewise LGMs fitted in this article utilized
the min()/max() functions on the time points and
changepoints instead of applying these functions on the line
segments themselves as Harring et al. (2006) and Preacher
and Hancock (2015) have previously demonstrated. This
methodological nuance permits the specification of adjacent
growth trajectories to be non-monotonic and extends
to higher-order polynomials and intrinsically nonlinear
functions using the same basic tools (i.e., structured latent
curve and conditionally-linear models) when fitting the
popular linear-linear piecewise function. The functionality
that makes fitting these extended piecewise LGMs in SEM
software possible is the nonlinear constraint module found
in most mainstream programs, like Mplus. As others have
pointed out (see, e.g., Choi et al., 2009; Feng et al.,
2019; Preacher & Hancock, 2012; Ram & Grimm, 2009),
fitting nonlinear latent growth models in software designed
to estimate linear relations among measured and latent
variables can be challenging. This may be due in part
by working with nonlinear functions themselves, which
seem a bit more intimidating algebraically. However, as
many researchers have pointed out (see, e.g., Cudeck &
du Toit, 2002; Davidian & Giltinan, 2003; Pinheiro &
Bates, 2000), nonlinear functions can often be tailored so
that parameters have a natural, physical interpretation that
corresponds directly to substantive characteristics of the
research situation without sacrificing model-data fit. This
should be sufficient incentive to belay concerns regarding
the extra effort required to fit such models especially
when continuous repeated measures data exhibit multiple
phases.
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