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Abstract

The magnitude of variation in the gaze position signals recorded by an eye tracker, also known as its precision, is an
important aspect of an eye tracker’s data quality. However, data quality of eye-tracking signals is still poorly understood.
In this paper, we therefore investigate the following: (1) How do the various available measures characterizing eye-tracking
data during fixation relate to each other? (2) How are they influenced by signal type? (3) What type of noise should be
used to augment eye-tracking data when evaluating eye-movement analysis methods? To support our analysis, this paper
presents new measures to characterize signal type and signal magnitude based on RMS-S2S and STD, two established
measures of precision. Simulations are performed to investigate how each of these measures depends on the number of gaze
position samples over which they are calculated, and to reveal how RMS-S2S and STD relate to each other and to measures
characterizing the temporal spectrum composition of the recorded gaze position signal. Further empirical investigations were
performed using gaze position data recorded with five eye trackers from human and artificial eyes. We found that although
the examined eye trackers produce gaze position signals with different characteristics, the relations between precision
measures derived from simulations are borne out by the data. We furthermore conclude that data with a range of signal
type values should be used to assess the robustness of eye-movement analysis methods. We present a method for generating
artificial eye-tracker noise of any signal type and magnitude.

Keywords Eye tracking - Precision - Data quality - Fixational eye movements - Power spectrum - Signal color

Introduction stimuli, eye-tracker data are often classified into two types

of episodes, fixations (periods during which the participant

Eye-tracking recordings are used in many fields of science,
often to study where participants look or how their eyes
move. For screen-based experiments using only static
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continuously looks at a specific location on the screen)
and saccades (periods during which gaze rapidly shifts to
another position on the screen). See Hessels et al. (2018) for
an in-depth discussion of fixation and saccade definitions.
In this paper, we examine data quality during fixations to
positions on a screen.

Figure 1 plots example eye-tracking data showing two
fixations interleaved by a saccade. As can be seen, even
during a fixation when the participant’s gaze remains
fixed on a certain location, the recorded gaze position is
not constant but appears to vary. In eye-movement data,
these variations are thought to arise from at least two
sources, 1) noise inherent in the measurement device, and
2) the rotations of the eyeball itself, such as tremor, drift,
and microsaccades (Ratliff & Riggs, 1950; Collewijn &
Kowler, 2008; Martinez-Conde et al., 2004; Rolfs, 2009).
In this paper, we will refer to these two signal components
as measurement noise and fixational eye movements,
respectively. Researchers interested in small fixational eye
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Fig. 1 Gaze position data example. Example data segment showing two fixations interleaved by a saccade at about 900 ms, recorded with an SR

EyeLink 1000Plus

movements such as microsaccades and drift should have a
keen interest in ensuring that the magnitude of measurement
noise in their eye trackers’ output is low enough that it does
not obscure these small eye movements (Ko et al., 2016). As
measurement noise gets larger, it will make small saccades
undetectable, thereby altering the distributions of saccade,
fixation, and other event measures calculated from the data
(Holmgvist et al., 2012).

To quantify the magnitude of variability in eye-tracking
data during fixations (we will refer to this as signal mag-
nitude throughout the paper), researchers have developed
several measures that are often referred to as “precision
measures”. The most well-known of the precision mea-
sures are the root mean square of the displacement between
successive gaze position samples (RMS-S2S) and the stan-
dard deviation of the gaze position samples (STD). These
two measures however do not provide consistent assess-
ments of signal magnitude. This becomes clear when exam-
ining a ranking of eye trackers by their precision (Table 1,

Table 1 Eye tracker ranking by precision. Ranking of five eye trackers
by increasing median precision, given as both RMS-S2S and STD.
Note how the SMI RED250 and the Tobii TX300 switch places in the
ranking when precision is assessed using STD instead of RMS-S2S

RMS-S2S (°) STD (°)

SR Eyelink 1000Plus 0.0187 SR Eyelink 1000Plus 0.0690
SMI RED250 0.0734  Tobii TX300 0.2311
SMI RED-m 0.2906 SMI RED-m 0.3362
Tobii TX300 0.2994 SMI RED250 0.3429
Tobii X2-60 0.5483 Tobii X2-60 0.4269
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computed from the data recorded for this study). In this
table, it is seen that ranking eye trackers by precision as
assessed by RMS-S2S yields a different ordering than when
ranking by STD. It should also be noted that while some
systems show an RMS-S2S value that is much smaller than
the STD value (e.g., the EyeLink 1000Plus and the SMI
RED250), other systems show an RMS-S2S value that is
larger than the STD value (the Tobii TX300 and the Tobii
X2-60). The finding that RMS-S2S and STD lead to dif-
ferent orderings when ranking eye trackers by precision
indicates that each measure provides only a limited view of
the precision of an eye tracker, and that neither is the gold
standard measure of signal magnitude.

In this paper, we posit that the RMS-S2S and STD
measures do not simply reflect the magnitude of variability
in the eye-movement signal, despite being used on the
specification sheets of eye trackers to indicate their noise
level.! Instead, we propose that RMS-S2S and STD values
are also dependent on the signal type in eye-tracking data,
and that signal type affects these two measures differently.
Different signal types are readily seen when examining
the horizontal gaze position time series recorded from
humans (Fig. 2a) or from artificial eyes (Fig. 2b). While the
data from the Tobii TX 300 (middle panels) contain large
sample-to-sample steps and appear randomly distributed
around a central point, the data from the SR Eyelink 1000
Plus and SMI RED250 appear much smoother and more

I'See https://www.tobiipro.com/siteassets/tobii-pro/product-descriptio
ns/tobii-pro-tx300-product-description.pdf/?v=1.0 and https://www.
sr-research.com/wp-content/uploads/2017/11/eyelink-1000-plus-speci
fications.pdf, both accessed 2020-02-13.
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(a) Human data

Fig. 2 Gaze position data examples. For three trackers, example 200
ms segments from a fixation recorded from humans (left panel) and
example 200 ms segments of data recorded with an artificial eye (right
panel). The 1000Hz EyeLink and 250 Hz SMI data in the top and

similar to a random walk. Sample-to-sample displacement
is lower in the smoother signals than in the more random-
appearing signals of the Tobii TX300, which corresponds
to lower RMS-S2S values for the smoother signals than for
randomly distributed signals of the same spatial extent.
Understanding the nature of the signal provided by eye
trackers is not only of esoteric theoretical interest; it also
has further use beyond comparing eye-tracker data quality.
Besides being of great relevance for studies of fixational
eye movements (e.g., Bolger et al. 1999; Collewijn &
Kowler 2008; Ko et al. 2016; see Niehorster et al. 2020b,
for a discussion) and of the dynamics of gaze behavior
(Aks et al., 2002; Coey et al., 2012; Wallot et al., 2015),
being able to characterize the types of signals provided
by contemporary video-oculography (VOG) eye trackers
also has a bearing on how event classification algorithms
are developed and evaluated. To assess whether the events
(such as fixations and saccades) labeled by a classification
algorithm remain stable under different noise magnitudes, it
is starting to become common practice (e.g., Hessels et al.
2016; Zemblys et al. 2017) to add artificial noise at different
magnitudes to the gaze position signals used for algorithm
evaluation. To ensure that such evaluations reveal expected
algorithm performance when classifying actual noisy gaze
position signals, it is important to know what types of
signals are found in eye-tracking data, and thus what types
of noise should be added during these evaluations. There
has been a debate about whether the appropriate method is
to take recorded measurement variability and amplify it as
Hessels et al. (2016) did, or instead, as Zemblys et al. (2017)
did, by adding white noise of various magnitudes on the

Artificial eye data
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(b) Artificial eye data

bottom rows have lower RMS-S2S than STD values and look smooth.
For the 300 Hz Tobii data in the middle row, the RMS-S2S values are
larger than the STD values and the data looks less smooth and more
randomly distributed than for the other two eye trackers

basis of the hypothesis that the measurement noise in all eye
trackers is white (as reported by Wang et al. 2016, but see
Blignaut and Beelders 2012 and Niehorster et al., 2020b, for
diverging findings).

Aims of this paper

Three over-arching issues arise from the inconsistencies
in the literature reviewed above. First, the review above
highlights that the concept of precision, as well as the
measures thereof, are not yet fully understood. Second, it
appears that the RMS-S2S and STD measures of precision
may be differently affected by the signal type. Finally,
it is unclear what type of noise should be added when
developing and testing event classification algorithms.

To resolve these issues and develop an understanding
of how signal type interacts with the RMS-S2S and STD
precision measures, in this paper we analyze how these
precision measures are related to each other and to the
temporal spectrum content of the signal. To do so, we
develop two new complementary measures characterizing
the gaze position signal provided by the eye tracker that
unambiguously indicate the magnitude of signal variability
independent of the signal’s type, and orthogonally the type
of the signal independent of its magnitude. We hypothesize
that the new signal type measure is systematically related to
the temporal spectrum content of the signal, and that both
these measures can thus be used to assess the spectral color
of the eye-tracker data.

In the Results section, we then first investigate the
behavior of the various precision measures and the
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relationship between these measures using simulated signals
that are generated with a new noise synthesis method that
is also presented in the paper. We then furthermore apply
the various precision measures to analyze recordings of
human and artificial eyes made with five VOG eye trackers.
Specifically, we perform correlational analyses revealing
the first order relations between the measures examined in
this study, and also perform an in-depth investigation of
the relation between the new signal type measure and the
temporal spectrum content of the signal.

Some of this material has previously been presented in
Holmgqvist and Andersson (2017, pp. 179-182). Further-
more, the data used in the empirical analysis sections of
this paper are also used for parallel analyses in Niehorster
et al. (2020b), which develops an understanding of the sig-
nal characteristics of various eye trackers. Specifically, the
investigation in Niehorster et al. (2020b) provides insight
into whether the apparent fixational drift that is often
observed in the gaze position signals recorded with con-
temporary video-oculography eye trackers indeed reflects
fixational eye movements or is instead largely due to the
effect of filters in the eye tracker.

Existing precision measures

In this paper, precision measure is used to refer to a measure
that quantifies a certain aspect of the fluctuations in a gaze
position signal observed during a fixation. There are at least
three aspects of signals that are investigated in the literature
that will be discussed in this paper. A first category of
measures used by eye-movement researchers is intended to
quantify the overall signal magnitude in gaze position data,
such as by means of the RMS-S2S and STD measures. A
second aspect of a signal is the statistical distribution that its
values follow (e.g., Gaussian). Third, there exist measures
of the type of the signal, such as its spectral color (e.g., white
or pink).

In this section, we review precision measures from each
of these three categories. The measures of signal magnitude
and signal type are used for most of the analyses in this
article, while signal distribution is discussed because of its
role in the synthesis of artificial noise. Indeed, in the “Noise
synthesis” section below we show that these aspects of a
signal form independent, orthogonal categories.

Signal magnitude
Following the International Vocabulary of Metrology

(BIPM et al., 2012), an important aspect of data quality is
the precision of a signal. In the case of eye-tracking data,
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precision is defined as the closeness of a set of repeated gaze
position measurements obtained under identical conditions
(i.e., obtained from an eye that has not rotated) (BIPM et al.
(2012), p. 22, see also Niehorster et al. (2020a)). Precision
complements accuracy, another important measure of data
quality that refers to the closeness of the gaze position
indicated by the eye tracker to the actual gaze position
of the participant. This section discusses measures that
operationalize the concept of signal magnitude. There are
many measures in the literature that are used to characterize
signal magnitude. Here we will discuss the three commonly
used measures, RMS-S2S, STD and BCEA. For an
overview of other measures of the precision of gaze position
signals, the reader is referred to Holmqvist and Andersson
(2017, Chapter 6 and pp. 503-515).

RMS-S2S

A common measure of signal magnitude is the root
mean square of the displacement between successive gaze
positions. This measure is often referred to as simply RMS,
but is more correctly called RMS-S2S. For a sequence of n
gaze position samples, the RMS-S2S is defined as

1 n—1
n—1 Zeiz

RMS-S2S =
\ i=1
1 n—1
= NE 1 Z ((xig1 —x)2 + i1 — ¥i)?)
i=1

ey

where x and y refer to the horizontal and vertical
components of recorded gaze position, respectively, and 6 is
the distance between successive gaze positions. Assuming
a constant sampling frequency, the RMS-S2S of a segment
of gaze position data is closely proportional to its average
velocity if sample-to-sample variation is low compared
to the average velocity of the segment. As such, RMS-
S2S may serve as an indication of the velocity of the
signal during fixations. This makes it a good candidate
measure for assessing what the slowest eye movement is
(e.g., a small saccade) that would be differentiable from
the background noise in a gaze position signal (see, e.g.,
Holmgqvist and Blignaut 2020). Possibly for this reason,
RMS-S2S has become the de-facto measure of the precision
of eye-tracking systems. Manufacturers report RMS-S2S in
their eye-tracker specifications; it is used in comparisons
of eye trackers (e.g., Nystrom et al. 2013), and research
has examined how fixation and saccade classification are
affected by increasing signal magnitudes as reflected by
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increasing RMS-S2S values (e.g., Holmqvist et al. 2012;
Hessels et al. 2016; Zemblys et al. 2017).

There are however problems with RMS as a measure of
precision. The upper row and especially the lower row of
Fig. 2 show a few example fixations for which the signal
magnitude as measured by RMS-S2S is small, but the gaze
position signals spread over a large area. Finding this kind
of data led Blignaut and Beelders (2012) to suggest that
RMS-S2S is unsuitable as a precision measure because
large spatial dispersion and extensive systematic trends can
be present in the data even though RMS-S2S indicates a
low signal magnitude. In other words, RMS-S2S captures
only one aspect of variability in eye-movement recordings,
the magnitude of displacement between subsequent gaze
samples, but it does not reflect aspects of the data over larger
time scales, such as its spatial spread.

Insensitivity to spatial spread is not the only potential
problem with RMS-S2S. RMS-S2S is also largely insen-
sitive to infrequent large and brief excursions of the gaze
position signal (spikes) in otherwise low-noise data (Blig-
naut & Beelders, 2012). While RMS-S2S would indicate
a low signal magnitude for such data, the occasional spike
could cause many fixation and saccade classification algo-
rithms to return unwanted results. RMS-S2S has also been
reported by Blignaut and Beelders (2012) to vary for the
same data at different sampling frequencies, which led these
authors to conclude that RMS-S2S cannot be used to com-
pare the signal magnitudes of eye trackers that record at
different sampling frequencies. Part of this problem could
possibly be alleviated by computing the RMS of sample-
to-sample steps after first scaling the steps by the sampling
frequency of the signal to recover signal velocity. Further
evaluation of this scheme is however required.

Standard deviation
Another common measure of signal magnitude is the

standard deviation (STD). For a sequence of n gaze position
samples, STD is defined as

n

1
=2 (i =2+ (i = 9?)

i=1

= |/STD; + STD; )

where x and y refer to the horizontal and vertical
components of the recorded gaze position, respectively, and
X denotes the mean of sequence x. STD defined thusly is
a measure of dispersion around the centroid of a sequence
of gaze positions, i.e., a 1D measure characterizing the
radial extent of the signal. Thus, in contrast to RMS-
S2S, STD indicates the spatial spread of a sequence of
gaze positions. Furthermore, STD is relatively insensitive,

STD =

compared to RMS-S2S, to displacement between successive
gaze positions (Blignaut & Beelders, 2012) and thus does
not capture the velocity aspect of variability in eye-tracking
data.

Note also that since RMS? = STD? + x2, RMS-S2S
is equal to the STD of distances between successive gaze
positions if the sequence of distances has a mean of zero.

Bivariate contour ellipse area

The bivariate contour ellipse area (Crossland & Rubin,
2002) is a measure of the area covered by a sequence of gaze
position samples. It is defined as

BCEA = 2kmoy,oyy/1 — p? (3)

where o, and o, denote the standard deviations of the gaze
position sequence in the x and y directions, respectively,
and p is the Pearson correlation coefficient between the
sequences of recorded x and y gaze position samples. The
constant k depends on the parameter P and determines
the size of the BCEA ellipse in terms of the fraction P
of measured positions that are within its contours. k is
given by k = —log(l — P). k was set to 1 for this study
(P = 1—e"! = .632). Following Blignaut and Beelders
(2012), we used the square root of the BCEA value in this
study (+~/BCEA) to obtain a one-dimensional quantity that
is directly comparable to STD, the other measure of spatial
extent considered here.

It may be of interest to recover the ellipse underlying
the BCEA measure, for instance to test whether spread
in the signal is isotropic and if not, how it is oriented.
These measures are furthermore of interest in this paper
because the noise synthesis method presented below allows
for the generation of such anisotropic signal segments. As
per Niehorster et al. (2017), recovery of the BCEA ellipse
can be achieved through factorization of the 2x2 covariance
matrix of the measured x- and y-coordinates,

2
Vx y — |: %% pgngy'i| (4’)

poxoy Oy

through eigenvalue decomposition using
Viy=QAQ™" (5)

This yields the diagonal matrix A = diag(iq, A2), where
A1 and A are the eigenvalues of V,, which correspond
to the squared lengths of the principle axes of the ellipse
underlying the BCEA measure when k¥ = 1 in Eq. 3.
Anisotropy of the signal can then be assessed by computing
the aspect ratio of the ellipse,

AR = |=— (6)
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Equation 5 also yields the 2 x 2 matrix Q = (q“ chz)
q21 922

of eigenvectors of V, from which the orientation ¢ of the
major axis of the ellipse is recovered by
142

q11

6 = tan @)
Note that the above procedure is equivalent to preforming
a principal component analysis (PCA) of the gaze position
segment. As such, it may be of interest to generalize
the analysis through the use of independent component
analysis (ICA), which allows for investigations focusing on
higher-order moments in the gaze position segment. These
techniques are not further explored in this paper.

Signal distribution

Signals can take on various probability density distributions
depending on the generating process, such as Gaussian,
Rayleigh, or Poisson (Scherzer et al., 2009). We think it
is a reasonable hypothesis that the signal recorded by an
eye tracker (in absence of physical eye rotations) follows
a Gaussian distribution. The logic is that we deem it
likely that the measurement noise in VOG eye-tracking data
results to a significant extent from the cumulative effect of
independent noise in each of the many pixels of the eye
image, which by the central limit theorem could be expected
to generate Gaussian variation in the derived output signal.
An understanding of the statistical distribution that best
describes noise in eye-movement data is an important aspect

SMI RED250
K]
=
o
o
— 1.00 (0]
3
Tobii TX300 o
©
o
£
()
>

Fig. 3 High-frequency oscillation examples. Left panel: example
200 ms segments from three fixations recorded from humans show-
ing high-frequency oscillation (HFO) signals. The right panel shows
the vertical component of the leftmost data segment in the left
panel over time. HFO signals are characterized by having distances
between successive gaze positions that can be almost as large as
the range of the whole data segment. In a video-based eye tracker,
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for being able to generate realistic noise for the assessment
of event classification algorithms.

However, eye-tracking data is not always well described
by a Gaussian distribution. Specifically, a further special
type of signal is known to occur. When multiple corneal
reflections are available or feature localization in the eye
image is otherwise unstable, the tracker may alternate
between tracked locations rapidly, causing spiky gaze
position signals such as seen in Fig. 3. We will call such
signals high-frequency oscillation (HFO) in this paper.

Signal type

As seen in Figs. 2 and 3, gaze position signals can range
from smooth to very spiky. We refer to this aspect of the
signal as its type. These smooth and spiky gaze position
signal types in fact lie along a continuum that can be
described by a single parameter, the spectral color of the
signal. Spectral color is assessed through Fourier analyses
of the recorded signal.

All signals that occur in practice can be decomposed into
the sum of a series of periodic (sinusoidal) signals by means
of a Fourier transformation (Bergland, 1969). Such analyses
can reveal characteristics of the system under study, such
as its input-output dynamics (Thomas, 1969), and whether
the system’s outputs exhibit serial dependence. There is a
long history of applying such analyses to eye-tracking data
(e.g., Stark et al., 1958, 1961, 1962; Campbell et al. 1959;
Bahill et al., 1981, 1982). Fourier analyses of fixational eye
movements have previously been done by studies such as

SMI RED250

50 100 150 200

Tobii TX300

1 1 1 1

50 100 150 200

such data may for instance result when one or more other bright
spots in the eye image compete with the corneal reflection of the
infrared illuminator (Holmqvist & Andersson, 2017, p. 138). Note
that the scale at which data is visualized differs for each eye tracker.
Data in the left panel were scaled per row for illustration purposes.
The scale of the signals is therefore indicated for each eye-tracker’s
data
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Findlay (1971), Eizenman et al. (1985), Coey et al. (2012)
and Bowers et al. (2019). General advice on how to perform
such analyses has been provided by Pugh et al. (1987) and
Eadie et al. (1995), therefore here we will focus on one
specific application of Fourier analysis of eye-movement
data: analyses of spectral color using periodograms.

Periodogram analysis yields the power spectral density
(PSD) of a signal, revealing the amount of power in
the signal in each frequency bin. Assuming the sampling
frequency at which a signal is acquired is sufficient (cf.
Pugh et al. 1987; Nyquist 1928; Shannon 1949), PSD
analysis provides information about the dynamics of the
system under study. It is commonly found that dynamical
systems follow power-law scaling behavior of the signal’s
power with frequency, as described by the formula

S(f) o % ®)
where S(f) is the PSD as a function of signal frequency f,
and « a scaling exponent.

o is used to assess the spectral color of a signal, and
carries information about temporal dependencies in the
signal.”> @ = 0 signifies a PSD that is flat and has equal
power at all frequencies in the signal. Such signals are called
white, and do not contain temporal dependencies, meaning
that each sample is uncorrelated to all the samples before
and after it. Examples of gaze position signals with values
of « just above zero are given in the middle row of Fig. 2.

An « above 0 indicates inverse power-law scaling (also
known as 1/f signals), which means that the signal shows
persistent behavior, as evidenced by a positive correlation
between samples (e.g., gaze positions) nearby in time. Such
a signal has more power at its lower frequency components
and thus fluctuates more smoothly (see top and bottom rows
of Fig. 2) than a white signal because nearby samples are,
intuitively speaking, attracted to each other. Pink noise is an
example of such a signal, referring to « = 1. Note however
that the term pink noise is sometimes used more loosely as
referring to 0 < « < 2.

An o below 0 indicates anti-persistence in the signal as
indicated by negative correlations between samples nearby
in time. Such a signal has more power at its higher frequency
components and thus fluctuates more violently than a white

2This follows from the Wiener—Khintchine relationship which states
that the PSD of a signal is given by the Fourier transform of its
autocorrelation function. From this, it follows that a flat PSD with
a = 0 has an impulse autocorrelation function at lag 0, and zero
correlation at any other time-lag separation, which means that all
samples in the signal are independent from each other. Signals that
exhibit a 1/f PSD will however also have non-zero autocorrelations
at other time-lag separations, and such signals can thus be understood
to contain temporal dependencies, i.e., correlations between nearby
samples. See Schaworonkow et al. (2015, supplementary material).

signal as nearby samples, intuitively speaking, repel each
other. An example of such a signal is HFO (see Fig. 3).

New measures of signal magnitude
and signal type in eye-tracking data

Next, we introduce two new measures assessing the
magnitude of variability in a signal and the signal’s type.
Through simulations later in the paper, we will show that
the new signal magnitude measure is relatively stable over
different signal types, compared to RMS-S2S and STD.
We will furthermore show that the signal type measure
we introduce provides a value that typifies a gaze position
signal on a continuum ranging from smooth and colored to
HFO spikes.

Both measures are constructed from a new representation
of variability in eye-movement data, the RMS-S2S — STD
space (Fig. 4). In this space, the signal magnitude of a gaze
position segment is given by the distance from the origin,

signal magnitude =v RMS-S2S? + STD? 9)

This measure can be interpreted as an index of noise level,
weighing both the sample-to-sample step size of the signal
and its spatial extent equally. Given that both RMS-S2S and
STD are angular extents, signal magnitude is also an angular
extent.

The signal type is indicated by the tangent of the direction
of a data point in this space,

RMS-S2S

ignal type = ———— 10
signal type STD (10)

In this paper, we will refer to this measure as signal type.
The signal type measure can intuitively be likened to the
ratio of the displacement between successive gaze positions
to the spatial extent of that same segment. The signal type
value would be large when the distance between successive
gaze position samples spans a large part of the extent
covered by a segment of gaze data, such as is the case in
HFO signals. On the other hand, a small signal type value
would be indicative of a smoothly changing segment of gaze
position data. Signal type is a dimensionless quantity, as it
is the ratio of two angular extent measures with the same
units. We have determined through simulations that signal
type values range from O to 2, and that white signals always
have a signal type value of V2.

Figure 5 shows synthetically generated examples of
signals with various type and magnitude values (the
synthesis method is presented in the “Noise synthesis”
section below). From these figures, it can be intuited
that signal type and signal magnitude are measures of
independent aspects of a signal. A data segment with a
given signal type value can be magnified or shrunk but will
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Fig.4 The RMS-S2S — STD space. Signal type (Eq. 10) is represented along the polar axis as the tangent of the direction from the origin to a
data point. Signal magnitude (Eq. 9) is the distance from the origin to a data point. This plot is generated by calculating the RMS-S2S and the
STD value for each gaze position segment, and then summarizing the data in the space in the form of a contour plot and a histogram. The contour
map shows how data are distributed in the RMS-S2S — STD space, while the circular histogram on the polar axis visualizes the corresponding

distribution along the signal type dimension

retain its signal type value. From Fig. 5, it can clearly be
seen that for each signal type value, the type of the signal
(from smoothly varying to spiky) is the same for all signal
magnitudes. It can also be seen that the spatial extent of
the signal remains reasonably constant for a given signal
magnitude across all signal type values.

Closer inspection of Figs. 2 and 5 reveals that the signal
type value indeed appears to reflect a property of the signal.

signal magnitude (°)

Low signal type values correspond to smooth gaze position
sequences (see the top and bottom rows of Fig. 2 and the left
columns of Fig. 5). The right columns of Fig. 5 show that for
signal type values close to 2 the signals become spikey, with
large sample-to-sample movements back and forth between
points at the perimeter of the spatial extent of the signal.
Examples of such signals from real data are also shown
in Fig. 3. In between these extremes, we find intermediate

0.95

signal type

Fig.5 Examples data for combinations of signal type and magnitude. Synthetic data showing what signals (100 data points) of various signal type

values look like for various signal magnitudes
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signal types for the middle signal type values, suggesting
that the signal type value is a continuous measure of the
signal type in eye-tracker data, from smooth, colored signals
to HFO. Indeed, when the signal type value is calculated for
a white signal, it results in the value V2 (e.g., the middle row
of Fig. 2 shows segments of eye tracking data with signal
type values just below +/2, and the third column from the
right in Fig. 5 shows segments with values just above +/2).

Method

In this paper, the same data set as analyzed in Niehorster
et al. (2020b) is used. The detailed methods for data
collection and analysis were presented in Niehorster et al.
(2020b), here we provide a brief summary.

Data acquisition

Human data were acquired from four participants complet-
ing a fixation task consisting of a sequence of 213 fixation
targets, each presented for 1500 ms. Data were recorded
separately with five eye trackers, the SR Research Eyelink
1000Plus in desktop mount and head stabilized mode at
1000 Hz, the SMI RED250 at 250 Hz, the SMI RED-m at
120 Hz, the Tobii TX300 at 300 Hz and the Tobii X2-60 at
60 Hz. Using these five eye trackers, data were furthermore
recorded from a set of artificial eyes.

Analysis

For each fixation, for the data from each eye independently,
a 200ms window of gaze position data was selected
for which the precision measures were calculated. This
window was selected without relying on the above precision
measures and such that it was unlikely that it contained
microsaccades.

For these windows, a total of six measures, RMS-S2S,
STD, +~BCEA, the signal type value (Eq. 10), signal
magnitude (Eq. 9) and the scaling exponent («) indicating
the slope of the PSD, were calculated. Calculation of all
these measures except « was performed straightforwardly
according to the equations presented above. The slope of
the PSD « was calculated through a line fit to the log-
transformed result of a periodogram analysis.

As described in Niehorster et al. (2020b), unfiltered
data was acquired for the EyeLink by performing separate
recordings for two participants with its heuristic filter
switched off, and for the SMI eye trackers by analyzing
the gaze vector data provided by these eye trackers in
SMI’s headbox coordinate system. For Tobii systems, only
unfiltered data was available.

To visualize the distribution of the data in the RMS-S2S—
STD space as well as along the signal type continuum (as
shown in Fig. 4), the computed RMS-S2S and STD values
were collected per eye tracker for all windows of all eyes
and submitted to a 2D kernel density estimation procedure
(Botev et al., 2010). The output was then discretized into a
16-level contour plot of which the lowest level was removed
for clarity.

Noise synthesis
Method

For our investigations in this paper, it is necessary to be able
to generate artificial noise of different signal magnitudes
and signal types. Such a noise synthesizer is also important
for testing the robustness of event classification algorithms
to noise. Here we present such a synthesizer.

Given the relationship between the signal type value and
the scaling exponent « of the PSD that will be established
below in the “Relationship between signal type and scaling
exponent «” section of this article, data with a specific
signal type value can be generated by reading off the
corresponding o value from a graph such as presented
in Fig. 9a. Data with this o value can then be created
by spectrally shaping white noise using standard methods,
thereby also achieving the desired signal type value. Using
this insight, realistic noise for eye-tracking data with
desired signal type and signal magnitude values can be
generated with the procedure outlined below. MATLAB
code implementing this procedure is available here: https://
github.com/dcnieho/FixationalNoise_generator.

1. Generate two N-sample white noise signals with a ran-
dom number generator from a given distribution such
as uniform (e.g., using the MATLAB function rand),
Gaussian (the MATLAB function randn), or from a
given empirically observed distribution through inverse
transform sampling (Devroye, 1986) of that distribu-
tion’s CDF. All three methods are demonstrated in the
code we provide. One signal will form the horizontal
gaze position signal, the other the vertical signal.

2. Fourier transform the generated white noise signals.

3. Spectrally shape the resulting sequences of Fourier
coefficients by multiplying them with the amplitude
spectrum of 1/f% noise, where the desired scaling
exponent « is looked up from a pregenerated table
indicating the mapping from « to the signal type value
for a signal of N samples.

4. Inverse Fourier transform the shaped sequences to yield
a noise signal with the desired 1/f“ characteristics.
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5. Center the resulting signal by subtracting the sequence’s
centroid from all samples.

6. If anisotropic noise is desired, scale the horizontal
signal by desired ratio of the noise’s horizontal and
vertical ranges. If the anisotropic noise should have its
major axis oriented in another direction, rotate it.

7. Compute the signal magnitude values of the resulting
2D noise signal, and scale each sample by the ratio
of the desired signal magnitude value to the signal’s
current signal magnitude value. Scaling with equivalent
logic can be performed to achieve a specific RMS-S2S
or STD value.

It should be noted that because Fourier transforms are
used in this method, the resulting synthetic noise sequences
are cyclical in the sense that the last sample of each
sequence smoothly connects to the first.

Example generated signals

Example noise epochs generated with this procedure are
displayed in Fig. 5. Generating noise using this procedure

Gaussian distribution

*
»

signal magnitude (°)

signal type

Empirical distribution Tobii TX300

ek * +
N Tt
LR S S I
o4l e T— * # —+
02r = ¥ -+ + +

signal type

Fig.6 Synthetic data with various properties. Synthetic data (200 sam-
ples for each realization) showing what noise following a Gaussian
distribution, uniform distribution, or the empirically observed dis-
tribution of the Tobii TX300 look like for various combinations of
signal type and signal magnitude values. The bottom-right panel shows
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enables independent control over four orthogonal aspects of
the output signal: its signal type value, its magnitude (signal
magnitude, RMS-S2S or STD), its distribution (Gaussian,
uniform, or otherwise) and isotropy (its aspect ratio and
orientation in the X-Y space). In this paper (e.g., Fig. 5),
we have used this method to generate isotropic signals
following a Gaussian distribution. In this section, we show
further examples of generated signals where the four signal
aspects were varied.

Figure 6 shows examples of generated isotropic noise
following a Gaussian distribution, a uniform distribution
and the empirically observed distribution derived from data
recorded with the Tobii TX300 (chosen as an example). The
bottom-right panel of Fig. 6 furthermore shows anisotropic
noise drawn from a Gaussian distribution and generated
with various orientations and aspect ratios. Like in Fig. 5,
each panel shows example output for different combinations
of signal type values and signal magnitudes.

Together, these panels demonstrate the four aspects of
generated noise that can be varied independently using the
noise synthesis code presented in this paper, i.e., signal
type, signal magnitude (RMS-S2S, STD or the new signal

Uniform distribution

& = x
*

(0]

°

ERRINE .-

j=}

£

©

go6r l}ff » = £ 4

2]

& » = *
L 4 » L] *
| | | |
.8 1.18 1.54 1.90
signal type

Anisotropic noise

351

3.1

{

}

-
<
£

aspect ratio

241

201

Vo
/ot
¥ 7
W #
o -

s = =

0.10 0.46 0.82 1.18 1.54 1.90
signal type

Gaussian-distributed anisotropic noise generated at several aspect
ratios and orientations. For illustration purposes, data in all panels
were scaled arbitrarily. Scaling was done with a single common factor
across the three isotropic noise panels, so that data in the three panels
remain directly comparable
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magnitude measure), signal distribution and anisotropy.
Note that identical relationships between scaling exponent o
and the signal type value were observed for the three signal
distributions, confirming that signal distribution is a signal
property independent of signal type.

Results
Stability of measures across window lengths

To understand the behavior of the various precision mea-
sures, we first investigate how they depend on the length of
the data segment from which they are calculated. To perform
this analysis, we used sequences of synthesized noise that
were generated at five signal type values and a fixed 0.5°
signal magnitude value using the method introduced in the
“Noise synthesis” section. The six precision measures were
calculated for window lengths ranging from 6 to 499 sam-
ples by the following procedure. For each window length,
a thousand 500-sample long isotropic noise sequences were
generated for each signal type value. For each sequence, a
between 6- and 499-samples long window was then ran-
domly positioned within the generated sequence and the six
precision measures were calculated for this window. This
yielded a thousand values for each precision measure for
each window length for each of the five signal type val-
ues. Each of the resulting sets of thousand values were then
averaged and formed a data point in Fig. 7.

This analysis reveals that while RMS-S2S is mostly
stable beyond window lengths of about 30 samples, STD
grows asymptotically to the value determined by the
simulation parameters for signals with type values <+/2
(a>0). That the STD values for these signal types depends
on window length explains the reduced range of signal
type values observed for small window lengths in the
top-left panel of Fig. 7. It furthermore means that the
calculated signal magnitude depends on window length
for signals with signal type values <+/2 (bottom-middle
panel of Fig. 7). Further interesting observations are that
+~/BCEA behaves nearly identically to STD (as would be
expected for the isotropic signals used in this simulation)
and that o, like RMS-S2S, is stable for window lengths of
more than about 30 samples. Note however that the gene-
rated signals closely follow ideal 1/f power-law scaling, so
it is not certain that the same stability of « across window
lengths will be observed for actual eye-tracking data whose
spectral content does not follow perfect power law scaling
(see the investigations reported in Niehorster et al. 2020b).

The above analyses show that colored signals with
a>0, which visually look smooth, increasingly grow
in spatial extent with the number of samples up to a
certain asymptote. This implies that STD, as well as all
other precision measures incorporating a spatial divergence
measure, provide different views of the data depending on
the window length that is used. What then is the appropriate
window length to use for signal evaluations? We do not
believe that there is one “correct” window length, but simply
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Fig. 7 RMS-S2S, STD, +/BCEA, signal magnitude, signal type, and
scaling exponent « values as a function of window length. Generated
signals at five asymptotic signal type levels were used to examine how
these six precision measures depend on window length. Dotted lines

window length (number of samples)

window length (number of samples)

indicate the number of samples contained in the 200 ms windows used
in this study, for each of the five eye trackers. The number of samples
in the analysis window differed across eye trackers due to the different
sampling frequencies at which they recorded data
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that it is required to have an appreciation for the effect that
the chosen window length may have on the derived results.
For the current paper, our choice of window length (200
ms) is appropriate for our analyses in which we only aim
to discover systematic relationships between the measures
within each eye tracker.

It is furthermore worth noting that the interaction
between window length and signal type when calculating
STD (and +BCEA) can lead to an ordering of signal
magnitudes that differs depending on window length. This
is clearly seen when contrasting STD calculated from the
signal with the strongest color (signaltype = 0.25, cyan
line) to STD calculated from the white signal (signal type =
V/2, orange line): for small window lengths the STD of the
colored signal is lower than for the white signal, while for
large window lengths it is higher. This implies that one has
to be careful when using STD to compare signal magnitudes
across eye trackers with different signal characteristics,
because the results may be specific only to the chosen
window length. While signal magnitude is seen to preserve

SR EyeLink 1000Plus

RMS-52S RMS-528

STD Hoehy - STD

vBCEA vBCEA

magnitude 1.00 | 0.87 magnitude

signal type JolePll 0.34 [ 0.25 0.31 signal type

&} 0.00 0.07 0.04 0.06 0.08

Tobii TX300

vBCEA 0.94
magnitude MoKy INoKeFE
BEskiRageld 0.00  0.13 0.12 0.04

e} 0.00 0.05

< &:ﬁo =3
Fig.8 R? for linear correlation between measures. Variance explained

by a linear relation between the measures RMS-S2S, STD, vBCEA,
signal magnitude, signal type, and scaling exponent «. Each cell shows
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the ordering between the signals across window lengths, at
small window lengths it also suffers from underestimation
of signal magnitude for (strongly) colored signals.

Lastly, as noted, the « measure was found to be stable
across window lengths whereas the signal type measure was
not, due to its dependence on STD. This complicates the
relationship between « and signal type, making the exact
signal type value hard to interpret. Signal type is however a
useful measure to quickly ascertain whether a noise signal is
white (¢=0), «>0 or <0 using only the easily calculated
(or manufacturer-provided) RMS-S2S and STD values of a
signal.

Relationship between measures: Correlational
analyses

The understanding that the different precision measures
describe different properties of the gaze position signals and
the inconsistent rankings between eye trackers shown in
Table 1 highlight the need to develop a better understanding

SMI RED250 SMI REDm
RMS-52S
STD
VBCEA
magnitude 0.97 0.94

signal type 0.02 0.03 0.07

0.03 0.04 0.08 RG]

PO L E
SR L

Tobii X2-60
RMS-S82S -

STD
vBCEA
magnitude

signal type

the multilevel variance partitioning R? value derived using a multilevel
regression model fit to the data of all eight human eyes and all 213
fixations
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of how the six precision measures used in this paper relate
to each other. We therefore quantified the extent to which
the different measures tap into the same signal properties
by means of a regression analysis. Specifically, we assessed
the amount of shared variance between each combination
of two measures, as measured by a regression model’s
coefficient of determination (R2). Due to the nested nature
of the dataset, regression analyses were performed with a
multilevel model with the eye from which a data segment
was recorded as a random factor. The model contained an
intercept and a linear (first order) term for all analyses. R?
for these multilevel models was assessed by the multilevel
variance partitioning method (LaHuis et al., 2014). Where
available, human data with the eye tracker’s default filters
applied was used for this analysis. For the Tobii TX300
and X2-60 we used the default unfiltered data. The top
1% of precision measure values were removed per eye
tracker for each measure before submitting the data to
the regression analysis since these last few points exerted
large leverage on the fit. For fits involving the RMS-S2S
measure calculated from data from the SMI RED250, the
top 5% were removed due to a larger number of extreme
data points that strongly affected the R? measure. Analyses
using higher order polynomial terms in the regression model
did not reveal any quadratic or higher order relationships
between the measures and are thus not reported here.
Figure 8 shows the R? values between all measures for
each of the eye trackers. For all eye trackers, the three

a simulation b

Number of samples

signal type
o

SR EyeLink 1000Plus (o]

measures that reflect the spatial extent of the signal, STD,
+/BCEA, and signal magnitude, correlate very highly with
each other. This indicates that the new signal magnitude
measure does not describe a new aspect of the signal beyond
that already described by STD and ~/BCEA. For the SMI
RED-m and both Tobiis, RMS-S2S also correlates strongly
with STD, +/BCEA, and signal magnitude. For the EyeLink,
correlation between these measures was only small, while
for the SMI RED250 it was moderate. Both signal type
and the scaling exponent o« generally show almost no
relationship to any of the other measures except that for
three of the eye trackers (SMI RED-m and the two Tobiis),
moderate to large correlations are found between the signal
type and the scaling exponent & measures themselves.

Relationship between signal type and scaling
exponent o

Findlay (1971), Coey et al. (2012) and Wang et al. (2016)
have previously used PSD analyses to assess the color
of gaze position signals. Above we have suggested that
the signal type measure also likely reflects the color of
the signal, given that it distinguishes between smooth
and random signals. Specifically, we expect there to be
a systematic relationship between these two measures as
both reflect the temporal dependency in the signal. Here
we therefore investigate what the relationship between these
two measures is. Elucidating this relationship would not
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Fig. 9 Relationship between scaling exponent o of PSD analysis and
signal type value. Panel A shows the relationship between the mea-
sures derived from simulations employing perfect 1/f signals, for
different numbers of data points. The other five plots show filtered
and unfiltered data from each of five eye trackers collected from

scaling exponent (o)

scaling exponent («)

artificial eyes (AE) and human eyes (human), along with the relation-
ship between « and signal type expected for that eye tracker from the
simulation. Note that filtered data were not available for the two Tobii
eye trackers
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only provide an easy shortcut to analyzing the signal color
of eye trackers, but would also give end users a simple
method to determine the signal nature of an eye tracker from
the specification sheet provided by the manufacturer.

We first examined the relationship between signal type
and scaling exponent « through simulations. Specifically,
we generated perfect realizations of 1/f (colored) signal
sequences with a desired scaling exponent « using the
synthesizer presented in the “Noise synthesis” section and
then computed the signal type value of this sequence. The
average of the signal type and o measures over 800 such
signal sequences was used when examining the relationship
for 12- and 24-sample long windows, and 500 sequences
for the other window lengths. The lengths of these windows
corresponded to 200 ms of data for each of the five eye
trackers in this study.

Figure 9a shows the function mapping a given « to a
signal type value as derived for perfect 1/f signals for
windows spanning a given number of samples. As can be
seen, especially for >0, the exact relationship between
o and signal type depends on the number of samples (as
shown in the “Stability of measures across window lengths”
section above, this is because the STD measure on which
the signal type value depends is reduced for small numbers
of samples when «>0). The simulation confirms that for
white signals («=0) the signal type is always approximately
V2.

Next, we examine whether this relationship between o
and signal type is borne out by the gaze data recorded from
humans and artificial eyes. The scatter plots in Fig. 9b—f
show for each of the eye trackers the calculated signal type
and o values of each of the analyzed sample windows in
the human and artificial eye data. Where available, both
data with the eye tracker’s default filters applied, and data
without these filters applied, are shown. It is clear that
measures calculated from both filtered and unfiltered data
recorded from both humans and artificial eyes align closely
with the relationship between signal type and the scaling
exponent («) that is expected for each eye tracker from our
simulations. This indicates that the mapping between these
two precision measures derived through simulation appears
to be correct. It should be noted that the relationship derived
from the simulation assumed perfect 1/f signals, but that
the data recorded in practice often deviated from perfect
power law scaling (see the investigations of the same data
reported in Niehorster et al. 2020b). This may explain part
of the variation in the observed data.

Note furthermore that from Fig. 9 it is readily understood
why in Fig. 8 a correlation is reported between signal
type and o for the SMI RED-m, Tobii TX300 and Tobii
X2-60, but not for the SR EyeLink 1000Plus and SMI
RED250. For the latter two eye trackers, all the filtered
human data that were used for the analyses reported in Fig. 8
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fall in the tail-end of the signal type—« space where the
function describing their expected relationship asymptotes
and flattens out. As such, no linear correlation would be
expected to be found, but the data for the EyeLink and the
RED250, like the data for the other three eye trackers, are
still close to the values expected from our simulations.

Example use of the RMS-S25-STD space plots

In this section, we will briefly illustrate the use of RMS-
S2S-STD space plots to assess signal characteristics of eye
tracking data. Plots of this space allow to assess signal type
and signal magnitude at the same time. Figure 10 shows
example RMS-S2S-STD contour plots derived from the
filtered and unfiltered gaze position data recorded from both
human and artificial eyes with the SR Research EyeLink
1000Plus. For these plots, only the filtered human data were
used from the two subjects for who unfiltered data were also
available.

Examining the top row of Fig. 10 shows that the human
data were noisier than the artificial eye data (larger distance
from the plot origin), but not qualitatively different—the sig-
nals recorded from both human eyes and artificial eyes were
colored as indicated by signal type values well below /2.
Detailed inspection however reveals that the data recorded
from human eyes were colored more strongly (lower sig-
nal type value) than data recorded from the artificial
eyes.

Examining the bottom row of Fig. 10 clearly shows
that unfiltered EyeLink data recorded with an artificial eye
exhibited white signal dynamics (data overlap the green line
indicating a signal type value of +/2), in contrast to the
colored signal observed when recording from artificial eyes
with the filter switched on. Switching off the EyeLink’s
heuristic filter however also led to an increase of the
signal magnitude (larger distance from the plot origin).
Furthermore, the unfiltered human data were also much
whiter (higher signal type value) than when recording from
human eyes with the filter switched on, and also had a larger
signal magnitude.

This pattern of results has a bearing on the question
whether colored signal dynamics in gaze position data are
due to fixational eye movements or due to filters in the eye
tracker. This question is explored using the current data set
in Niehorster et al. (2020b). For our current purpose how-
ever, we have shown that RMS-S2S5-STD plots provide a
quick and simple diagnostic of both the signal type and
the signal magnitude of a piece of data. The signal type
and signal magnitude values themselves, which are straight-
forwardly calculated from the RMS-S2S and STD values
of a data segment or from an eye tracker’s specification

sheet as RNgF'SZS and \/ RMS-S2S2 + STD? respectively,
also provide this opportunity.
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Fig. 10 RMS-S2S-STD contour plots for SR EyeLink 1000PIus. RMS-S2S—STD contours plots for filtered (fop row) and unfiltered (bottom row)
data recorded from human eyes (left column) and artificial eyes (right column)

Signal distribution

We assessed whether the signals recorded from human
eyes during fixation follow a Gaussian distribution through
observational means. Specifically, we first centered each of
the 200 ms windows of data so that the centroid of the gaze
position data in the window equaled (0, 0). We then pooled
all the individual gaze positions across all windows and
eyes for each eye tracker, derived the empirical cumulative
density function (CDF) of these gaze positions and plotted
this CDF on a z-scaled ordinate axis. On such an axis, data
following a Gaussian distribution will lie along a straight
line whose slope is directly related to the standard deviation
of the generating Gaussian distribution. The results for the
five eye trackers are plotted in Fig. 11.

As can be seen in Fig. 11, the central part of each of
these plots describes a straight line, indicating the gaze

position data are mostly well described as coming from
a Gaussian distribution. The flattening off at the tails of
the CDFs however indicates that the data come from a
distribution with heavier tails than a standard Gaussian
distribution. To assess what portion of the data is well
described by a Gaussian distribution, we fitted straight
lines to the 80% most central data points of the CDF
in each plot (see the black lines in Fig. 11). As can be
seen, deviations from a standard Gaussian distribution are
minimal to nonexistent for all eye trackers when examining
the central 80% of the empirically observed signal values.
As such, using a Gaussian distribution when synthesizing
noise for eye-tracking data may be sufficient for most
use cases. Where it is desirable to use a full empirically
observed signal distribution, this can be easily achieved
through the inverse transform sampling technique (Devroye,
1986) using empirical CDFs such as those plotted in
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Fig. 11. Both methods were described above in the “Noise
synthesis” section.

Discussion

In this paper, we have reported analyses of the gaze position
signals recorded with video-based eye trackers during
human fixation episodes and in data from artificial eyes.
Using these data and several existing precision measures
as well as two new measures that we introduced in this
paper, we performed investigations with three aims. First,
we used simulations to investigate how the various precision
measures depend on the number of samples over which
they are calculated. Second, we used simulations and the
recorded data to investigate how the various precision
measures relate to each other and how the traditional
measures of signal magnitude, viz. RMS-S2S and STD,
interact with signal type. Third, using the insights gained
from these analyses, we presented a new noise synthesis
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method that allows generating realistic gaze position
signals with independent control of the type, magnitude,
distribution, and isotropy of the signals. Below we discuss
the findings of these investigations, and their implications
for data quality research and the testing of event detection
algorithms for noise resilience.

Assessing eye-tracker precision

For some kinds of eye-movement research, such as research
in fixational eye movements, it is important that the eye
tracker used for recording the gaze position data has the
highest possible precision (lowest possible noise level),
because noise is likely an important factor in the practical
spatial resolution of the eye tracker (Holmqvist & Blignaut,
2020). Noise may hide some small oculomotor events or
distort the movement profile of these events. As such, it is
important to ask the question of what precision measure to
use when determining which eye tracker features the lowest
noise level.
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Assessing the signal magnitude of eye trackers with
the aim of determining which is most suitable to record
data with for a given project is not a trivial manner. As
the work presented here and previous work (Blignaut &
Beelders, 2012) has shown, none of the considered precision
measures, RMS-S2S, STD, ~/BCEA and the new signal
magnitude measure we propose in this paper (Eq. 9),
provide a complete picture. Furthermore, the decision of
which precision measure to use for judging an eye tracker’s
performance must take into account the context of the
research to be performed. For instance, whereas the RMS-
S2S measure is most closely related to variability in the
eye-movement velocity signal and may thus be appropriate
to use when velocity-based event classification algorithms
are employed to analyze the data, STD instead reflects
spread in the position signal and may thus be most useful
when assessing the quality of data that is to be analyzed by
a dispersion-based algorithm.

A strong point of RMS-S2S revealed by our analyses is
that it does not depend on how many gaze position samples
are used in its calculation, making it easier to compare gaze
data from eye trackers that record at different sampling
frequencies. RMS-S2S is however also strongly affected
by filters applied to the signal, which color the signal
and smooth it out. Comparing RMS-S2S for gaze position
signals recorded with eye trackers that apply no filters, with
gaze data from eye trackers that apply different filters or
different amounts of filtering is therefore like comparing
apples and oranges. The incentives to perform filtering are
that it may help in signal interpretation during analysis, and
also that it is an easy way for the manufacturer to make their
system appear on the specification sheet as having a low
noise level. However, we think it is important to recognize
that filters never introduce new information into a signal,
but only remove (hopefully unwanted) parts. That is, gaze
position data can always be filtered further, but cannot be
unfiltered. As such, whether to filter the recorded data or not
should be a choice that is left up to the user. Among the eye
trackers sampled in this study, only the SMIs apply filters
that cannot be switched off by the user.

STD, and the very closely related measure +/BCEA, are
also affected by filters, but less strongly so than RMS-
S2S, as indicated by the signal type value decreasing
when filters are applied to the eye-tracker signal (see, e.g.,
Fig. 10). As Fig. 7 shows, filters mostly affect STD for
small numbers of gaze position samples. Our results show
that the new signal magnitude measure may provide a
reasonable composite of RMS-S2S and STD, offering better
robustness to changes in signal magnitude due to filtering
of the data than RMS-S2S and STD alone. However, Fig. 7
shows that also this measure is affected by filters when it
is calculated for a low number of gaze position samples.
Nonetheless, this measure potentially offers a better way of

comparing eye trackers which produce signals of different
types.

How to determine what type of signal is recorded by
an eye tracker? Given a piece of data, signal type can be
ascertained using «, the slope of the gaze position signal’s
power spectral density function. When given only the RMS-
S2S and STD values of data recorded with the eye tracker,
signal type can be assessed with the signal type measure
(calculated simply as RNéST'SZS). To allow quick assessment
of the conditions under which the values on manufacturer
specification sheets were derived, as well as identification
of the type of signal that is provided by an eye tracker, we
therefore urge all manufacturers to report both RMS-S2S
and STD values on their specification sheet. Together, these
two measures provide a much more complete picture of the
eye tracker’s signal quality than either RMS-S2S or STD
can provide in isolation.

Can the RMS-S2S measure be used to compare the
precision of eye trackers that record at different sampling
frequencies? It has previously been argued that the system
with a higher sampling frequency has an unfair advantage
in this situation (Blignaut & Beelders, 2012; Wang et al.,
2016). This argument was developed as follows. Blignaut
and Beelders (2012) have reported that when a colored gaze
position signal is downsampled, the computed RMS-S2S of
this downsampled signal will be higher than when RMS-
S28S is calculated for the original signal. The authors showed
this effect when downsampling the smooth (colored) signal
recorded with an SMI RED250, whereas they found that the
computed RMS-S2S remained stable when downsampling
the white signal recorded from a Tobii TX300. This has
caused them to critique the RMS-S2S measure “because it is
applied on sample-to-sample distances - a characteristic that
varies with frame rate (if the sampling interval is shorter,
the amount of possible movement within the interval is
less). (Blignaut & Beelders, 2012, p. 290) Later, Wang et al.
(2016) further developed this critique:

With the same movement over time, high-sample-
rate system [sic] would have better-precision data
than low-sample-rate systems, as a result of the
temporal proximity (and, given the nature of the
behaviors recorded, therefore also spatial proximity)
of successive samples. (Wang et al. (2016), p. 951)

It should be noted however that this logic critically
depends on the assumption that variability in the gaze
position data recorded by an eye tracker during fixation
reflects physical eye rotations. In that case, measurement
of the same physical eye rotation at a lower sampling rate
would logically yield larger sample-to-sample distances. We
however deem it unlikely that the eye trackers investigated
by Blignaut and Beelders (2012) and most of the eye
trackers investigated by Wang et al. (2016) yield gaze
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position data with a recoverable trace of fixational eye
movements, since their noise level is above that required to
reliably recover such small eye movements (Holmqvist &
Blignaut, 2020). As such, the variability in a gaze position
signal of these VOG eye trackers during a fixation is
unlikely to reflect the measured motion of a biological
structure that undergoes movement constrained by the laws
of physics. Instead, it is likely due to measurement noise
produced by the eye tracker. As Niehorster et al. (2020b)
discuss, the color in the gaze position signals of these
systems (and the apparent fixational eye movements in
them) that is seen in such noise signals can be due to the
effect of filters in these eye trackers.

Although downsampling a colored signal will indeed
increase the RMS-S2S computed from this signal while
having little effect on its STD, for the above reasons
we think this is not because the variability in the gaze
position reflects a hypothetical physical eye movement that
is the same across eye trackers (cf. the above quotes).
Given that the variability for most systems likely solely
reflects (possibly filtered) measurement noise, the sample-
to-sample distances in the eye-tracker’s output signal are
not necessarily larger when recording at lower sampling
rates. Instead, assuming a similar source of noise at different
sampling rates generated at a stage before signal filters
are applied, similar RMS-S2S values would be expected
across sampling frequencies. It is therefore not unfair to
compare the RMS-S2S precision of data recorded from eye
trackers at different sampling frequencies, if this practice
is done judiciously using only eye trackers that have high
enough signal magnitudes to exclude the possibility that
fixational eye movements make up a significant part of
the signal. However, downsampling the already filtered
signals provided by the eye tracker as done by Blignaut and
Beelders (2012) for their RED250 data does not accurately
simulate the effect of differing sampling frequencies on
precision calculated with RMS-S2S if the signal has color.

Noise for testing event detection algorithms

In this paper, we have shown that eye tracker signals
can be described by at least four orthogonal properties:
type, magnitude, distribution and isotropy. Above, we have
presented MATLAB code for producing noise sequences
that provides control over all four properties. One important
reason for generating realistic eye-movement noise, is to
add it to recorded eye-movement data with the purpose
of examining how well analysis methods for eye-tracking
data perform at different signal magnitudes. Several such
analyses are presented in the literature, including Hessels
et al. (2016), Zemblys et al. (2017) and Mack et al. (2017).
Whereas Zemblys et al. (2017) and Mack et al. (2017) added
Gaussian white noise to their data on the assumption that
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measurement noise is white, Hessels et al. (2016) instead
determined the power spectral density of their gaze position
signals during fixation and scaled it to produce additive
noise at varying magnitudes. One may ask, which of these is
the appropriate method to add noise to gaze position data for
the testing of analysis methods? As the analyses in our paper
reveal, both white signals and the colored signal measured
from a specific system are only points on a continuum of
signal types. As such, both of the previously used types of
noise can be appropriate to add, but neither are sufficient
for performing an analysis that generalizes to the signal
characteristics of a large selection of VOG eye trackers.
Therefore, a test of an analysis algorithm that is intended
to represent the algorithm’s performance on data of many
different eye trackers may do well to test the algorithm on
the whole range of possible eye-tracker signal types. Is it
expected that different types of signal (as measured by the
signal type measure or «) affect analysis algorithms dif-
ferently? This remains as an important question for future
studies since it goes to the heart of the replicability of results
in the eye movement field across different eye trackers and
recording conditions. Tests of the behavior of analysis algo-
rithms, such as for instance the resilience of different event
classification algorithms to many different signal types, are
critical in understanding both the replicability and the gen-
eralizability of results derived using these analysis methods.
The tools presented in this article, optionally combined
with a recently developed method to synthetically produce
realistic-looking eye movement data (Zemblys et al., 2018),
now make it possible to generate the large amounts of
synthetic eye movements signals with any desired signal
characteristic that such a test would likely require.
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