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Abstract
In this paper, we define a new method for analyzing object-scene contextual relationships using computational linguistics:
Linguistic Analysis of Scene Semantics, or LASS. LASS uses linguistic semantic similarity relationships between scene object
and context labels embedded in a vector-space language model: Facebook Research's fastText. Importantly, the use of fastText
permits semantic similarity score calculation between any set of strings and thus elements of any set of image data for which
labels are available. Scene semantic similarity scores are then embedded in object segmentation mask locations in the image,
creating a semantic similarity map. LASS can also be fully automated by generating context and object labels, as well as object
segmentation masks, using deep learning. We compare semantic similarity maps between human- and neural network-generated
annotations on a corpus of images taken from the LabelMe database. Semantic similarity maps produced by the fully automated
LASS have a number of desirable properties, while maintaining a high degree of spatial and semantic similarity to them. Finally,
we use LASS to evaluate the distribution of semantically consistent scene elements in space. Both show relatively uniform
distributions of semantic relatedness to scene context, suggesting that contextually appropriate objects are likely to be found in all
image regions. Taken together, these results suggest that LASS is accurate, automatic, flexible, and useful in a number of research
contexts such as scene grammar and novelty detection.
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Introduction

Stimuli for vision research are often simple, well-parameterized
geometric objects such as lines, gratings, and polygons (Rust &
Movshon, 2005). While these are easy to render and control
experimentally, significant interest exists in examining visual
function in more natural, lifelike contexts (Hayhoe & Ballard,
2005; Olshausen & Field, 2005). This, along with growing com-
puting power and ease of file sharing and distribution, has led to
significantly increased use of images of the natural and man-
made worlds as experimental stimuli. An important problem
associated with the use of natural scene content is the difficulty
in parameterizing its content beyond analysis of image features
(e.g. edges, contrast, color). This limitation is important, because
visual interaction with a scene involves more than just such pic-
torial information: memory, language, and specific object and
contextual knowledge all play a role in the behavior of the visual

system under these constraints (Brockmole & Le-Hoa Vo, 2010;
Hayhoe, Shrivastava, Mruczek, & Pelz, 2003; Henderson &
Ferreira, 2004). The ability to measure such “top-down” content
is therefore crucial for isolating experimentally relevant effects.

Biederman, Mezzanotte, and Rabinowitz (1982) first pro-
posed a grammar of scene content, including scene syntactic
and scene semantic components. Scene syntax refers to the
appropriateness of an object’s spatial properties in a scene,
such as whether it was or needed to be supported by or inter-
posed with other objects. Scene semantics refers to the need to
retrieve the meaning of an object. For example, one under-
stands that a mailbox does not belong in a kitchen based on
e.g. knowledge that the probability of seeing such objects in
that context is low or zero based on a history of interaction
with such an object and context.

This conceptual system was modified by Võ and Wolfe
(2013), whose definitions are now more commonly in use
than those proposed originally by Biederman and colleagues.
They define scene semantics as properties of objects identify-
ing their “global meaning” of a scene. For example, these
authors suggest that if one found a bed of grass in place of a
carpet in an office, this would constitute a violation of the
semantics of “office” scenes, as “office”means in part a place
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where carpet is expected and grass is not. Scene syntax refers
to an object’s placement aligning or failing to align with view-
er expectations about its “typical location” in a scene, such as
a bed of grass growing vertically on an outdoor wall instead of
on the ground (Võ &Wolfe, 2013). See Fig. 1 for examples of
scene syntactic and semantic violations taken from a data set
of related images described in Öhlschläger and Võ (2017).

Initial efforts to study syntactic and semantic properties of
scenes typically required direct manipulation of their content.
To make subsequent analysis tractable, the authors used stim-
uli rendered as line drawings or 3D computer graphics
(Hollingworth, 1998; Loftus & Mackworth, 1978; Võ &
Henderson, 2011). A number of studies have also attempted
to induce semantic or syntactic changes to image content in
full color images of natural scenes (e.g. Coco, Araujo, &
Petersson, 2017; Coco & Keller, 2014; Underwood &
Foulsham, 2006). Though these latter are an improvement

relative to synthesized scene images in terms of realism, both
may still change global image statistics of a particular scene
context in ways that confound scene grammatical pictorial
information (Becker, Pashler, & Lubin, 2007).

Two recent projects that theoretically avoid these issues
provide stimulus sets of full color images of natural scenes
for use in studying scene grammar. The first, the Berlin
Object in Scene database (BOiS, Mohr et al., 2016), includes
130 color photographs of natural scenes. For each, a target
object was selected, and versions of the same scene were
photographed at an “expected” location, an “unexpected” lo-
cation, and absent from the scene altogether. Expected vs.
unexpected locations for each object were assessed by asking
human observers to segment scenes into regions where an
object was or was not likely to occur given a scene context
label. The second is the SCEne GRAMmar database
(SCEGRAM, Öhlschläger & Võ, 2017). This database was
constructed for a set of 62 full color images of natural scenes
in one of six scene grammatical conditions, fully crossing both
scene syntax and scene semantic manipulations for each ob-
ject and scene.

SCEGRAM and BOiS are unique, valuable tools for
studying scene grammatical effects for a variety of re-
search purposes. However, both are limited by their
small size, degree of experimenter effort required for
their creation, and the measurement techniques used to
quantify the degree of scene grammatical manipulation
actually induced in their images. First, the total number
of images available between both sets across all the
described conditions is only 1134. Though these data-
bases no doubt took tremendous effort to create, they
are small compared with other potentially relevant ones,
such as LabelMe (Russell, Torralba, Murphy, &
Freeman, 2008) or Microsoft’s Common Objects in
Context (COCO, Lin et al., 2014). A fraction of these
images are also composed according to experimental
conditions that may be irrelevant for a given experimen-
tal objective, further limiting their total size.

Second, though BOiS provides object position likeli-
hood maps that could in principle be used to extend the
set to other images and scene contexts for the same
object set, SCEGRAM relied on direct physical manip-
ulation of objects and thus could not be extended with-
out using the authors’ reported image composition
methods. Third, BOiS focuses on scene syntax, and
the authors did not attempt to isolate scene semantic
effects from scene context effects. Finally, while both
groups took obvious care in selecting objects and con-
texts that would ostensibly induce scene semantic or
syntactic effects, they still relied entirely on subjective
experimenter or participant judgments of whether a par-
ticular object in a particular image did or did not in-
volve a violation of scene semantics or syntax.

Fig. 1 Images taken from the SCEGRAM database with scene semantic
(a) and syntactical (b) violations. In (a), the toilet paper appears in the
dishwasher rack, not where it would be expected (in a bathroom instead
of a kitchen). In (b), the same toilet paper roll appears in the correct
context but in a syntactically impossible location (hovering next to the
toilet, suspended by fishing wire)
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Scene semantics through linguistic semantics

One possibility for addressing this last issue – effectively, how to
produce an objectivemeasurement of scene semantics – involves
exploiting the strong link between visual perception and lan-
guage. It has been shown that the linguistic properties of a stim-
ulus can exert a strong influence on visual perception, particular-
ly on eye movement behavior (e.g., Richardson, Dale, & Spivey,
2007; Anderson, Chiu, Huette, & Spivey, 2011; Draschkow,
Wolfe, & Vo, 2014; Henderson & Ferreira, 2004). Scene syntac-
tical and semantic violations have also been found to produce a
similar electrophysiological response to those produced by the
same violations in language (Võ & Wolfe, 2013).

Given these relationships, if one wishes to measure scene
semantic relationships between objects in a particular context,
it may be possible to do so by evaluating visual semantic
relationships indirectly using linguistic relationships as a
proxy. For example, if an experimenter says “An octopus
doesn’t belong in a farmyard”, their judgment may depend
as much on the linguistic use cases of “octopus” and “farm-
yard” as on perceptual interaction with octopuses and the typ-
ical occupants of barns. Linguistic semantic relationships be-
tween these terms could therefore potentially be used as a
model for such relationships in the perceptual space of the
natural world. Such a proxy or substitution is useful, as there
exist a number of efficient computational linguistics tools for
measuring semantic relationships between words. The most
widely used of these are vector-space models (VSMs).
Among them, latent semantic analysis (LSA, Dumais,
Furnas, Landauer, Deerwester, & Harshman, 1988) is argu-
ably the most straightforward, and will therefore serve as a
useful introduction to the field.

Using VSMs depends on acceptance of the distributional
hypothesis: words that mean similar things will appear in the
same or similar contexts in written or spoken language
(Sahlgren, 2008). LSA defines “appearing in the same or similar
contexts” in terms of word frequency co-occurrence within a
document. It does so by first constructing a table of terms by
document frequency for each term in a corpus of text, across
documents within the corpus. Because the resulting matrices
are generally large and sparse, the table is transformed into a
lower-rank feature space using singular value decomposition
for the sake of computational efficiency. The semantic similarity
between any two terms in the corpus can in these terms be
expressed via an angular distance measure (typically the cosine)
between vectors associated with a set of words in the resulting
low-rank matrix. These values range in practice between zero
and one, with zero indicating no semantic relationship between
terms and one indicating word identity. Negative values are pos-
sible but rarely encountered in practice, and do not have a nec-
essarily straightforward interpretation (i.e., they are not
necessarily antonyms, see Landauer, McNamara, Dennis, &
Kintsch, 2013; Thalenberg, 2008).

At least one study has already leveraged this perception/
language connection using LSA to study top-down effects on
eye movement behavior. In it, Hwang, Wang, and Pomplun
(2011) began with a set of images taken from LabelMe. Each
contained labels and segmentation masks for objects visible in
the scene. The authors embedded these labels into a pre-
trained LSA model and were thus able to calculate object-to-
object semantic similarity scores for scene objects. These
values were then embedded at scene locations defined by the
object masks, creating a “semantic similarity map” for a par-
ticular object. A group of observers were shown the images
and asked to perform either a free viewing or visual search
task. The authors computed a semantic similarity map for each
object observers fixated relative to all other non-fixated scene
objects. Gaze transitions between points in these maps dem-
onstrated the existence of a modest preference for sequentially
fixating semantically similar items during free viewing, as
well as a progressive degree of semantic guidance toward
target objects across fixations during visual search (Hwang
et al., 2011).

Though innovative, Hwang and colleagues’ approach
still has several technical limitations that restrict its use-
fulness for studying scene semantics “in the wild”. The
first and most obvious is that it does not consider rela-
tionships between the semantics in terms of scene objects
and scene context, but only among scene objects them-
selves. This decision was appropriate given the stated
goal of their research, and it may indeed be the case that
object-to-object semantics create a form of scene context.
However, outside of experimentally constructed arrays
used for testing visual search, objects in the natural world
do not appear without a surrounding visual environment,
a known history of use or properties, and a sense of the
contextual appropriateness of an object given these for-
mer. Any suitable technique must therefore be able to
incorporate explicit contextual information to be useful
in analyzing scene semantics, regardless of whether it is
also able to capture potential “object-to-object” effects.

Second, LSA cannot produce cosine similarity scores
for terms that are not elements in the corpus on which
it has been trained (Landauer et al., 2013). It is well
documented that object labels generated by human ob-
servers using LabelMe often contain spelling errors, or
unusual or compound constructions, or are otherwise
simply irrelevant to the image content (see Fig. 2 for
examples). Applying LSA to these data would be chal-
lenging without careful image curation and significant
manual preprocessing. LabelMe and COCO continue to
grow, and many other excellent resources are available
for crowd-sourcing such tasks. Nevertheless, acquiring
object position and label data is and will likely remain
an expensive and time-consuming barrier to a wider
implementation scope for this technique.
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The Linguistic Analysis of Scene Semantics
(LASS)

Hwang and colleagues’ fundamental approach is sound, but to
be useful for the purposes of scene grammatical research, the
issues raised must be addressed. Any proposed extension or
adaptation of their method should therefore:

1. incorporate scene context information in the form of text
or other linguistic descriptors;

2. evaluate semantic relationships between arbitrary object
and scene context label data strings;

3. fully automate the process of creating object and context
labels, as well as object segmentation masks.

Here we present a new, objective, completely automatic
technique for measuring scene semantic information directly
from arbitrary image content. Like Hwang and colleagues’
technique, it has a computational linguistics algorithm at its
heart. We therefore call it “Linguistic Analysis of Scene
Semantics”, or LASS, to distinguish it from this earlier work.
We believe LASS has the potential to significantly expand the
scope of study of scene semantics. LASS runs with the fol-
lowing three steps:

Generate scene context labels

The first set of information required for LASS is a set of scene
context labels, such as “alley” or “restaurant”. The specific

method used to produce or obtain labels is unconstrained, though
in order for the method to be fully automatic, an automatic ap-
proach for doing so is naturally preferred in this step. In the
present study, we used a scene classification deep neural net-
work, a Keras implementation of the VGG-16 convolutional
neural network architecture (Krizhevsky, Sutskever, & Hinton,
2012) trained on MIT’s Places365 data set (Zhou, Khosla,
Lapedriza, Torralba, & Oliva, 2016).

This network assigns scene category labels to an image from a
predefined set of 434 candidates. It does so by learning patterns
of hierarchically organized image features associated with spe-
cific image classes. Once these relationships have been extracted
from a training data set, new images can be passed into the
network, and their activation of learned feature patterns returns
a set of class membership probabilities for each of the learned
scene classes. In order to avoid dependence on arbitrary experi-
menter or observer decisions as to what labels are correct, we
took the top five most likely scene context labels the network
produced instead of just the most likely.

Such a label or set of labels is certainly only a partial de-
scriptor of what we might consider “scene context”. However,
if we consider a simple example of a set of statements such as
“There is a carrot on the floor of a nuclear submarine” and
“There is a carrot on the floor of the barn”, we can see that it is
at least a contextually useful window into it. We understand a
priori that carrots rarely occur in nuclear submarines and fre-
quently occur in barns, even if we have never spent much time
inside either. We should further be able to make a consistent
set of graded contextual appropriateness judgments if we

Fig. 2 Example of object segmentation and labeling taken from the
LabelMe image database. This image contains numerous examples of
labeling noise issues that would prevent the application of LSA to the
data, including spelling errors (“sealing design”, “emtest”), unusual and

compound constructions (“person walking”, “person dark”, “a child”),
and tags/masks irrelevant to the content of the scene (“dead body”,
“blood”, “zero-point gravity”)
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changed the context of our example from “barn” to “shed”,
from “shed” to “military storage facility”, and from “military
storage facility” to “nuclear submarine”.

Generate scene object labels and masks

LASS’s second step is to identify scene objects, segment their
boundaries within the image, and provide them with a label.
Again, as with scene context labels, either automatically or
human observer-generated label and segmentation mask data
can be used here. For this study, we used a deep-learning
algorithm called Mask RCNN (He, Gkioxari, Dollár, &
Girshick, 2017), implemented in Keras, to generate these data.
Mask RCNN can be understood as first computing a set of
object-level masks for one of 84 object categories within a
number of network-identified rectangular ROIs. These are
then refined to object-class-specific mask shapes, to which
object labels are then applied. The algorithm has demonstrated
excellent object segmentation and classification performance
in Microsoft’s COCO (see He et al., 2017, for a full descrip-
tion of the model’s structure and behavior, and evaluations of
its performance). An example of its output is presented in Fig.
3.

Calculate semantic similarity scores between objects
and scene contexts and embed scores in object masks

Once a set of context labels, object labels, and object segmen-
tation masks have been computed for an image, LASS’s third

step is to generate object-scene semantic similarity scores for
each object. Although human-generated, crowd-sourced se-
mantic similarity scores could be used by LASS, several com-
putational linguistics models support the automation of this
step. If a set of candidate scene context labels is being consid-
ered, the average of these scores between an object and each
label is used. It is here that the technique’s strongest constraint
applies. Given that human observer- and even most automat-
ically generated scene or object labels are unlikely to be exact
matches for terms contained in a training corpus, a semantic
similarity evaluation method that can accept arbitrary strings
as input must be used for this computation. Otherwise, a sig-
nificant portion of the label data will need manual preprocess-
ing or be altogether unusable.

At the time of writing, only a single computational linguistics
method, Facebook Research’s fastText (Bojanowski, Grave,
Joulin, & Mikolov, 2017), has this feature. fastText is a direct
extension of a vector-space language model derived from LSA,
word2vec (Mikolov, Sutskever, Chen, Corrado, & Dean, 2013),
and is thus algorithmically and conceptually related to it
(Altszyler, Sigman, Ribeiro, & Slezak, 2016). Both word2vec
and fastText create vector-space representations of text corpora
similar to that of LSA, but model term “co-occurrence” as prob-
abilities over fixed local window sizes, not as frequencies of co-
occurrence across corpus documents.

FastText extends the behavior of word2vec by representing
each model word vector as the sum of the latent dimension
vector values for both a particular word and a set of sub-word
n-grams. The most important advantage this confers over both

Fig. 3 Example Mask RCNN Output. Object labels and class
probabilities are visible in white. The visible rectangular bounding
boxes surrounding object masks are a by-product of the Mask RCNN

algorithm and do not contribute to the final semantic similarity map.
Colors for objects shown are randomly selected, and are presented only
to enhance contrast between object masks and the image background
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LSA and word2vec for our purposes is that it permits the
calculation of similarity scores for terms that not only do not
occur in the same document within the training corpus, but
that were not included in the training set at all (Bojanowski
et al., 2017). Similarity scores between objects and a context
label are finally embedded into regions defined by each object
mask, creating an object-contextual semantic similarity map
for a given context label. An example of the output of this
process for a randomly chosen image and three scene context
labels generated in step 2 of LASS is provided in Fig. 4.

The final versions of the maps used in this study contain
averaged values for each object across the set of five scene
context labels used. This is done in part to avoid including
steps dependent on experimenter fiat, to down-weight the pos-
sible contribution of unusual or unlikely context labels to the
final map, and to potentially capture multiple distinct but se-
mantically highly similar labels to be applied (e.g. “ca-
fe” and “bar”). An example of this conversion and its
effect on semantic similarity scores in the final similar-
ity map is presented in Fig. 5.

Fig. 4 Example semantic similarity maps for an image and three context
labels for both neural network- and LabelMe-generated sources. Color in
these images is scaled according to the semantic similarity values
contained within a particular object mask, with yellow/red colors

indicating high semantic similarity, and blues/purples indicating low se-
mantic similarity. Regions where no object label is generated are assigned
a similarity score of zero
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Objectives

Object labels and masks: property distribution
comparisons

Our first objective in trying to validate LASS is to determine
whether the behavior of its fully automated form differed sig-
nificantly from the behavior when human observer data was
used instead. If the object detection and segmentation network
used produced object sets and masks that differed substantial-
ly from those derived from human observer data, then the
former is unlikely to capture scene semantic effects meaning-
ful to human observers (note that it is assumed that human
observer data is meaningful to human observers). The most
important parameters for ensuring consistency between hu-
man observer and automated maps are the shape, quantity,
and positional properties of the object masks, and the semantic
similarity of their object and context labels. While human
observer data has obvious deficits in terms of mask and label
accuracy (Fig. 2), it is still driven in part by human scene
semantic perception and decision-making and thus effectively
remains a form of scene semantic information ground truth.

Of these two feature types, the semantic similarity of the
object label sets is the more important for our purposes. While
object mask placement and properties are crucial to construct-
ing an accurate semantic similarity map, human observers
frequently make overly general, inaccurate, or inconsistent
segmentation masks for otherwise perceptually identical ob-
jects. Mask property noise in terms of inconsistencies between
human- and automatically generated masks is relatively toler-
able, provided the objects so identified are closely semantical-
ly related.

Semantic similarity map comparisons

If can be shown that human- and machine vision-identified
scene objects and their properties are consistent, then our sec-
ond objective is to demonstrate that the semantic similarity
maps produced from these object sets are also consistent.
This comparison addresses a more complex set of relation-
ships between maps from different data sources, such as their
sparsity and relative spatial distributions of semantic content.
These features are crucial for some potential uses cases of
semantic similarity maps, such as gaze prediction or anomaly

Fig. 5 Context-specific to final semantic similarity map conversion.
Scores in the final maps described in this paper are averages of each
object’s semantic similarity score for all of the context labels evaluated.
Semantic similarity is color-coded, with yellow/red colors indicating high

semantic similarity, and blues/purples indicating low semantic similarity.
Note that this calculation takes place at the level of the text strings, not by
averaging the maps themselves, though the results are similar
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detection. Even if a machine vision system is capable of cor-
rectly identifying an object and defining its spatial boundaries
in an image, if that object is not likely to be identified by a
human observer, then this information is unlikely to be infor-
mative for predicting gaze position.

Scene semantic statistics distributions

Our third and final objective, closely related to the second, is
to provide a set of descriptive statistics on scene semantic
properties of images for both human- and automatically gen-
erated semantic similarity maps. If identified object properties
and the semantic similarity maps derived from these are con-
sistent across data sources, these distributions should also be
similar. Any observed differences, however, may help identify
specific biases inherent to either source in terms, for example,
of their estimation of the scene semantic “center” of specific
image contexts.

Of particular interest are the positional distributions of
scene semantic information relative to the image center. This
information may provide a preliminary window into under-
standing joint scene semantic-syntactic structure, as it could
potentially be used to identify scene object content that is
semantically consistent with the context but otherwise at an
unusual location relative to a distribution of previousmeasure-
ments of such relationships. It is also of broader theoretical
value to consider differences in these distributions between
specific image contexts, such as whether the placement of
“knives” differs between the otherwise closely semantically
related contexts of “kitchens” and “shops”.

Methods

Image corpus

The initial data set for this study comprised randomly selected
images from the LabelMe image database. The only selection
criterion was a minimum of two segmented objects per image.
The labels generated by human observers in this database
were not corrected or modified in any way. Seven images in
the selected set were corrupt and excluded from further anal-
ysis. A further 841 images did not yield object labels or a
scene context label using either Mask RCNN or one of the
scene context label-generating networks. These images were
thus also excluded from further analysis, bringing the size of
the image set to 9159.

Scene context label generation

Scene context labels for each image were generated using a
VGG16 model convolutional neural network trained on the
Places365 image database (Zhou et al., 2016). Places365

contains more than ten million images tagged as belonging
to one of 434 scene category labels. For this study, we used
a model pre-trained on this set, implemented in the Python
deep learning library Keras (Chollet, 2015). The model and
implementation were taken from a public repository1. This
code provides a mechanism for retraining or “fine-tuning”
the model, but for the sake of simplicity and reproducibility,
we used the default model configuration and weights provid-
ed. We applied the network to each of the images in the final
data set and extracted the top five most likely scene context
classes from the output. The same set of labels for each image
was later used to calculate scene semantic similarity for both
the LabelMe- and network-generated object sets. In order to
control for the possibility that our results might differ based on
the scene labeling network used, we also generated five scene
labels for each image using a PyTorch implementation of
ResNet-50 taken from a public repository2.

Object label and mask generation

Object labels and masks were either taken from segmentation
and label information provided by LabelMe, or generated di-
rectly from image content using Mask RCNN (He et al.,
2017). We used a version of this network trained on
Microsoft’s COCOdatabase. COCO contains high-quality ob-
ject segmentation masks and labels for objects in one of 91
object categories “easily recognizable by a four year old child”
on proximately 328,000 images (Lin et al., 2014, p. 1). The
specific implementation of Mask RCNN we used was also
written and trained using Keras3. Note that it classifies objects
into a reduced subset of only 81 categories relative to the 91
provided to COCO annotators. Note also that this implemen-
tation exposes a large number of model parameters for user
“tweaking”. Except for specific manipulations of the object
classification confidence threshold as described in the Results
section, however, default values for these parameters as de-
fined in the original Mask RCNN paper were used here.

Semantic similarity score and map generation

Semantic similarity scores were computed using a Python
implementation of the fastText algorithm (Bojanowski et al.,
2017) provided in theGensim vector-space modeling package
(Rehurek & Sojka, 2011). We used a pre-trained vector-space
model provided by the authors of the original fastText paper.
The training corpus contained approximately one million
words taken from English Wikipedia articles4. Model training

1 https://github.com/GKalliatakis/Keras-VGG16-places365
2 https://github.com/CSAILVision/places365
3 https://github.com/matterport/Mask_RCNN
4 https://github.com/facebookresearch/fastText/blob/master/pretrained-
vectors.md
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parameters were the “defaults” used in Bojanowski et al.
(2017) (i.e. a range of n-gram sizes from three to six characters
are used to compose a particular word vector). After loading
the pre-trained word-vector set, semantic similarity scores
were generated using the vector object’s bound “n_similarity”
method. This function averages cosine similarity scores for
each pair of words between two provided word lists. Each
object label in the available list for a particular image and data
source was used as the first of these two sets.

Semantic similarity maps were created from semantic sim-
ilarity scores for an image by first initializing an equal-sized
zero matrix. Semantic similarity scores for a specific object
were then embedded in the coordinates defined by the object
mask within it, and the embedding was repeated for each
object in sequence. The result was a binary matrix the size
of the original image with scene semantic similarity scores
for each object in regions defined by their masks. Data in
image regions containing overlapping or occluded objects
were overwritten by that of the foremost object.

Object label and mask property comparisons
between data sources

We evaluated the semantic relatedness of the object label sets
in three related ways. First, we generated semantic similarity
scores between the label sets using the samemethod described
for computing scene semantic similarity scores. Because these
values only have a meaningfully interpretable range between
zero and one, we consider it contextually appropriate to treat
them as an interval measure. Statistics computed on a distri-
bution of paired label sets may therefore be interpreted as
percentage values above the “no similarity” point at zero.
Second, we performed a permutation test on the labels using
randomly selected pairs of images between the human
observer- and automatically generated label data sources.
Finally, for both sets of labels available for a specific image,
we compared each set to an equal-sized list of words selected
at random from a free dictionary English dictionary file pro-
vided by the Spell Checker Oriented Word Lists (SCOWL)
database5. Figure 6 provides examples of each of these com-
parison types. Distributions of these scores for each image
were compared using a Kruskal–Wallis nonparametric analy-
sis of variance (ANOVA). Pairwise post hoc comparisons
were made between the different sets using Bonferroni-
corrected Wilcoxon rank-sum tests.

Three features of the object masks are of particular interest
given their important roles in creating consistent semantic
similarity maps between human observer- and machine
vision-identified objects. First, we compared counts of objects
found across images between the mask sets. We then exam-
ined two additional mask properties: size and “specificity”.

These data were generated using the Python package
SymPy’s “Geometry” module. For each object mask in each
source set we created a “Polygon” object using the list of
object mask vertex coordinate pairs. We then calculated the
size of the mask in terms of the internal area of the polygon
using the bound “area” method. This function may return
either positive or negative values depending on the orientation
of its vertex points. Polygons which have sides that cross, for
example, may produce negative values. For this reason, we
report this feature of the object masks in absolute pixel units.

The meaning of an object mask’s area is straightforward. In
order to capture the less straightforward but equally important
property of mask “specificity” with respect to an object’s ac-
tual boundaries, we report the number of vertex pairs associ-
ated with it. This inferred relationship is reasonable given the
necessary relationship between numbers of sides and numbers
of vertices. Natural and even man-made objects are rarely, if
ever, perfect simple geometric shapes such as triangles or
rectangles. A more “specific” mask for a particular object
should therefore be composed of fewer straight lines and more
curves, and thus should have fewer sets of vertices.

Semantic similarity map comparisons

We compared semantic similarity maps for each image using a
pixel-wise Pearson correlation between maps produced from
each object data source. This was done using a custom Python
function written for this purpose6. The code in this repository
provides Python versions of MATLAB code associated with
the MIT Saliency Benchmark website for developing and eval-
uating saliency maps, and has been demonstrated to produce
output identical to that produced by its MATLAB counterparts.

Semantic similarity map value spatial distributions

We provide a set of descriptive results documenting the spatial
and angular distributions of semantic similarity with respect to
the photographic center of the images. To do this, we computed
the average radial profile of semantic similarity maps across
images for both the LabelMe- and network-generated label sets.
Average radial profiles are commonly used in image processing
to describe changes in binary intensity maps as a function of
distance or rotation relative to their centers (see the papers cited
in Mamassian, Knill, & Kersten, 1998). Intensity values within
each of the rings either across the range of distances or angles
relative to the image center can then be averaged, and intensity
over distance or angular rotation functions computed over the
resulting values.

As input to this method we created aggregated semantic sim-
ilarity maps across images using the horizontally and vertically

5 http://wordlist.aspell.net/ , ‘english-words.95’ 6 https://github.com/tarunsharma1/saliency_metrics
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normalized centroid locations for each object mask in bothmaps,
along with the semantic similarity score at that location. These
valuesweremapped to a 10 × 10 spatial grid using theMATLAB
“meshgrid” function. The resulting maps were then averaged
across images within each of the map data source sets. Radial
average profile data were extracted from these gridded data using
a heavily modified version of a publicly available MATLAB
script7. Each grid was divided into a set of eight distance bands
in each of eight angle sets. The slope of functions fitted to the

resulting data can be understood as measuring the “steepness” of
semantic similarity “falloff” as one moves away from the center
of the semantic similarity maps.

Mask RCNN detection confidence threshold effect

An important consideration for deploying LASS in a fully
automated fashion is the confidence threshold for object de-
tection in Mask RCNN. This parameter sets the level of cer-
tainty that the network is required to have that it has correctly
identified an object before returning a label and mask. Too
high a threshold may cause the algorithm to fail to detect

7 https://www.mathworks.com/matlabcentral/answers/uploaded_files/48809/
average_radial_profile_2.m

Fig. 6 Examples of object label comparisonmethods. In (a), object labels
between sets are compared for the same image (green lines) and across
images (red lines). In (b), each label set provided by both LabelMe and

the network for all images is compared with an equal-sized but randomly
selected word list from a free dictionary
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any objects, making it impossible to use for a given image.
Setting too low a threshold will lead to false positives.We here
present data on the behavior of LASS for a randomly selected
subset of 100 images from our primary corpus across a set of
ten threshold values (5% to 95% confidence in 10% incre-
ments) under the following testing conditions:

Proportion of sample images with no detected objects
as a function of threshold

High confidence threshold values can cause Mask RCNN to
fail to detect any objects in an image, making it impossible to
use with LASS if other label data sources are not available. It
is therefore crucial to strike a balance between the accuracy of
the label and mask data and its data dependence. This rela-
tionship can be clarified by examining the proportion of im-
ages in the sample that return no object classifications as a
function of threshold. We also fit a beta regression with a
double-log-link function to this data using the R package
“betareg” (Cribari-Neto & Zeileis, 2010). Beta regression is
commonly used for modeling data with proportional response
variables, and the use of the double-log-link function helps
mitigate the effects of the obvious nonlinearity in the data on
the model fit.

Semantic similarity between LabelMe- and Mask
RCNN-generated labels as a function of threshold

Lower threshold values may allow Mask RCNN to detect
more scene objects, but this increase could result from an
increase in the number of spurious or unlikely scene objects.
Such a reduction in label quality could be seen in a reduction
of object label similarity to the labels available through
LabelMe as a function of decreased confidence thresholds.
To evaluate the significance of this effect, we again fit a
double-log-link function beta regression to the raw object-
object semantic similarity score data across threshold values
between the two object data sources.

Semantic similarity between LabelMe- and Mask
RCNN-generated labels as a function of threshold

Finally, it is possible that the observed nonlinearities in the
relationship between confidence threshold and semantic sim-
ilarity scores may impact the spatial arrangement of these
scores as well. This can be tested by examining the correlation
between semantic similarity maps from the network and
LabelMe data sources across threshold values. To test for the
existence of such an effect, we fit a simple generalized linear
model with an identity link function (using the R package
“glm”) with correlation coefficients between LASSmaps gen-
erated using different object label sources (LabelMe or Mask
RCNN), context label sources (VGG-16 or ResNet-50),

different numbers of context labels (first label or all labels),
and different confidence threshold values for object detection
using Mask RCNN.

Results

Object label and mask property comparisons
between data sources

Object label distributions

The LabelMe label set for the 9159 images contained a total of
227,838 labels across 10,666 unique object label classes. The
label set generated by the network contained 93,783 labels
with 80 unique object labels. Of the unique labels contained
in the LabelMe set, 2146 or 20% were contained in our dic-
tionary. Of those labels in the set generated by the network, 63
or 79% were contained in the same dictionary. Bar charts of
the top ten most commonly occurring labels in both sets are
presented in Fig. 7. For these data, label frequencies from both
sources appear to follow a classic “Zipf-like” exponential dis-
tribution (Piantadosi, 2014), though the slope of the distribu-
tion appears to be significantly steeper for the LabelMe set
than the network-generated set. The specific labels in each
set differ, with only “car” occurring in the top ten for both.

We used two different networks to generate scene context
labels: one based on VGG-16, and another based on the
ResNet-50 architecture. Both were trained on the Places365
image data set, which includes 365 possible scene context
labels. The VGG-16 network produced 359 unique scene con-
text labels, or 98% of the possible label set. The ResNet-50-
based network produced 362 unique scene context labels,
99% of the possible label set.

Distributions of the top ten most frequent labels generated
by each network are shown in Fig. 8. Like the object labels,
both networks appear to generate “Zipf-like” distributions of
scene context labels. There was significant overlap in the top
ten labels for both sources, with the only major differences
being the inclusion of hospital, apartment building/outdoor,
and promenade in the top ten generated by the VGG-16 net-
work, but not in the top ten generated by the ResNet-50
network.

Comparisons between object mask count, shape,
and specificity property distributions between object
label data sources

Distributions of the average number of masks, object mask area,
and number of sides for the object masks produced by LabelMe
observers and the network are shown in Fig. 9. Across images,
the network generated significantly fewer masks on average than
LabelMe observers (W = 7.0231196 × 107, p < 0.001). Those it

2359Behav Res (2020) 52:2349–2371



did were also significantly smaller (W = 2.0958008 × 1010,
p < 0.001) and had significantly fewer sides (W = 1.5033984 ×
1010, p< 0.001) than those produced by human observers. We
interpret these results to mean that the network-generated masks
are more likely than human observer-generated masks to
conform to a smaller (and thus presumably more accu-
rate) set of scene objects, and that the masks produced
for them adhere more tightly to the boundaries of the
object they identify.

Finally, given the “Zipf-like” distribution of object classes
for each object data source, it is likely that the relevant sum-
mary statistics are biased toward the mask properties of the
two or three most common classes for each data source. As
none of these overlap between the two sources, differences
between their mask properties are therefore likely to be de-
rived not from differences in the average mask shape and form
for the same object, but from differences in the frequency of
occurrence for those classes.

Fig. 8 Frequency histograms of the top ten most commonly occurring scene context labels across images. In (a), all five labels for each image are
considered; in (b), only the first (most likely label) is considered

Fig. 7 Frequency histograms of the top ten most commonly occurring labels from LabelMe and Mask RCNN
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Semantic similarity between object labels
from different sources

Distributions of semantic similarity scores between correctly and
randomly paired label sets across data sources for a particular
image, as well as for those labels compared with randomly se-
lected word sets, are shown in Fig. 10. The Kruskal–Wallis test
of differences between the different distributions of comparison
scores was highly significant (χ2(2) = 1759.14,p < 0.001).
Follow-up pairwise Bonferroni-corrected Wilcoxon rank-sum
tests for each pair of comparison types (random images to paired
images, random words to paired images, random images to ran-
dom words) were all statistically significant (p < 0.001). Despite
the significance of the tests, the differences between the distribu-
tions are perhaps smaller than would be desirable. This could
potentially be addressed in future work by increasing the n-gram
size of the language model, forcing comparisons between a
smaller number of longer sub-word elements which are less like-
ly to overlap.

Semantic similarity map correlations

Distributions of image-wise correlation coefficients by the num-
ber (one or five) and source (VGG-16 vs. ResNet-50) of the
scene context labels used to generate the semantic similarity
map for each image between the object label sources are shown
in Fig. 11. Means and medians of each distribution are also

shown in each plot. Across context label sources and the number
of labels, distribution of correlation coefficients between maps
generated using LabelMe data and Mask RCNN data is highly
positively skewed, withmost values greater than or equal to zero.
Negative correlations likely indicate differences in object mask

Fig. 9 Distributional results for mask properties between human observer and neural network-generated object masks

Fig. 10 Distributions of semantic similarity scores between object label
data sources for the same image, a randomly paired image, and a
randomly selected list of words. The paired and randomly selected
image-to-image comparisons used only the image object label data pro-
vided through LabelMe or by the Mask RCNN network. Comparisons
made against randomly selected words were made for both label data
sources for each image, meaning this distribution contains twice as many
points as the other two
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placement in areas that are empty in one map but contain an
identified object in another.

Means and 95% confidence intervals for distributions of
correlation coefficients for each combination of context label
source and number of labels are shown in Fig. 12. Results
from a set of one-sample t tests comparing each distribution
with the expected value μ = 0 are shown in Table 1. In each
test, the mean of the distribution was significantly greater than
zero, though the differences were small. The low value of
these correlation coefficients is likely attributable to differ-
ences in object placement between the LabelMe- and the
network-derived object masks and not to differences in the
semantic similarity scores of those objects per se.

A Kruskal–Wallis test indicated that the differences be-
tween these groups were also significant (χ2(3) =
40.84,p < 0.0001). Follow-up pairwise Bonferroni-corrected
Wilcoxon rank-sum tests for each pair of context label source
and label number groups found that distributions of

correlation coefficients between maps using all of the VGG-
16- and all of the ResNet-50-generated labels, as well as be-
tween the first VGG-16 and the first ResNet-50 label, were not
significant. All other pairwise comparisons were statistically
significant (p < 0.0001). Together, these results suggest that
there are small but nontrivial differences in agreement be-
tween the semantic similarity maps as a result of using differ-
ent numbers of context labels from different sources. The
highest level of agreement was between maps generated using
only the first label generated by ResNet-50; the lowest was
between those generated using all of the context labels pro-
duced by VGG-16.

Gridded semantic saliency score data and their radial dis-
tribution functions for maps generated using object labels tak-
en from LabelMe are shown in Fig. 13; the same set of results
for the Mask RCNN-generated object label data are shown in
Fig. 14. The vertical axis of the grids in both sets of plots is
flipped, meaning that values in the lower-left-hand corner of

Fig. 11 Distribution of image-wise correlation coefficients for LabelMe- and Network-generated semantic similarity maps. Correlation coefficients are
calculated pixel-wise between pixels for a given image between map data sources
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each matrix represent semantic similarity scores in the region
near the screen origin. Qualitative inspection of the plots sug-
gests a slight concentration of semantic similarity in the center
of images, but the pattern is diffuse. Of note are the values
running from the upper left to lower left, and from lower left to
lower right, in the grid data for the Mask RCNN object data
source. No scores were generated in these regions across all
maps, and the values shown were therefore imputed using the
mean grid cell value. This suggests that the network has a
strong bias toward the identification of objects away from
the edges of images and toward their center.

In order to test the radial average profile of the aggregated
maps quantitatively, we fit a simple linear regression model
with the average score as the dependent variable, and distance,
object label source (LabelMe or Mask RCNN), context label
source (VGG-16 or ResNet-50), and the number of context
labels (first label only or all five labels) included as indepen-
dent variables. The fitted model parameters and the results of

tests of significance applied to them are shown in Table 2.
Both map data object source (estimate: −0.04, standard error
(s.e.): 0.004, t = −9.98, p < 0.0001) and the number of context
labels used (estimate: −0.09, s.e.: 0.004, t = −20.18,
p < 0.0001) had statistically significant effects on radial aver-
age grid values. Both distance from the center (estimate:
−0.001 s.e.: 0.001, t = −0.93, p = 0.35) and the source of the
scene context labels (estimate: 0.005, s.e.: 0.004, t = 1.07, p =
0.289) had small but non-statistically significant effects on
radial average values.

Taken together, these results suggest that the most
significant effects on the radial average distribution of
semantic similarity in a map are whether the object
positions and labels have been generated using a neural
network, and whether a single or all five context labels
were used. By examining the estimates of the effects,
we found that the sharpest “drop-off” in semantic sim-
ilarity scores moving out from the center occurs for
maps created using object labels and masks generated
by Mask RCNN compared with only the first context
label produced by either network. These effects make
sense, first because Mask RCNN never detected any
objects in a set of rectangular regions at the top and
left edges of the images, which would naturally cause
scores for these maps to be lower in those regions. The
observed reduction in semantic similarity scores when
using only a single context label also makes sense, be-
cause having any single object match a single context
label well is less likely than having a number of partial
matches across a set of labels.

Fig. 12 Means and 95% confidence intervals for correlation coefficient distributions by scene context label number and source. The dashed line
represents the value of the null distribution means for a set of one-sample t tests

Table 1 One-sample t test results comparing distributions of correlation
coefficients to a zero-mean null distribution by number of context labels
and context label source

Source/No. of Labels Df t p<

All Places 9158 25.687 0.0001

All PyTorch 9158 26.435 0.0001

First Places 9158 30.816 0.0001

First PyTorch 9158 31.741 0.0001
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Proportion of sample images with no
detected objects as a function of threshold

Figure 15 shows that increased detection thresholds lead to
significant increases in the proportion of images in the sample

that yield no detections. However, this relationship is clearly
nonlinear, with a sharp spike in the proportion without detec-
tions evident after the 55% threshold. Note also that the pro-
portion never reaches zero. This is significant, as it suggests
that some human observer data may be required even if label

Fig. 13 Semantic similarity score grid data and radial average profile
functions for both data sources across images with object labels taken
from LabelMe. Left column: gridded semantic similarity score data.
Values in each grid element represent averaged semantic similarity
scores for objects whose centroids fell into that grid location. Right

column: radial average profile data. These data are extracted from the
grid by dividing it into a set of concentric rings, with arcs created by
dividing all of the rings into quadrants. Data presented here are
averaged across quadrants equidistant from the center of the grid but
across angles.
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and mask data are generated primarily by Mask RCNN.
Nevertheless, the fraction of images in a data set where
this additional step will be necessary is likely to be
fairly small.

Table 3 shows the results for the fitted model between the
proportion of images without objects detected in the sample as

the independent variable and the confidence threshold as the
dependent variable. There was a significant effect of log-
threshold on the log-proportion of images without detected
objects (estimate: 1.09, s.e.: 0.12, p < 0.01), corresponding to
an approximate 2.98% increase in detection failures for every
5% increase in confidence threshold.

Fig. 14 Semantic similarity score grid data and radial average profile
functions for both data sources across images with object labels taken
from Mask RCNN. Left column: gridded semantic similarity score data.
Values in each grid element represent averaged semantic similarity scores
for objects whose centroids fell into that grid location. Right column:

radial average profile data. These data are extracted from the grid by
dividing it into a set of concentric rings, with arcs created by dividing
all of the rings into quadrants. Data presented here are averaged across
quadrants equidistant from the center of the grid but across angles
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Semantic similarity between LabelMe-
and Mask RCNN-generated object labels
as a function of threshold

Figure 16 presents means and 95% confidence intervals for
semantic similarity scores computed between Mask RCNN-
generated object labels and those taken from LabelMe for the
same image as a function of Mask RCNN object detection
confidence thresholds. Increasing the object detection

confidence threshold leads to a small reduction in the similar-
ity between network- and LabelMe-generated labels. Again,
there is evident nonlinearity in this effect, with similarity
scores relatively consistent across low threshold values until
an inflection point near the 55% confidence threshold, after
which the semantic similarity of labels from the different
sources falls off somewhat more sharply.

Table 4 presents the model fitting results for a double-log-
link beta-regression model where the semantic similarity be-
tween Mask RCNN- and LabelMe-derived object labels was
the dependent variable and the Mask RCNN object detection
confidence threshold was the dependent variable. The effect
of threshold confidence level in this model was not statistical-
ly significant (estimate: −0.05, s.e.: 0.06, z = −1.0, p = 0.316).
This suggests a desirable degree of consistency between the

Fig. 15 Proportion of images in the sample with no object detections across threshold values. Black dots represent the proportion of images without any
object detections at a given threshold value

Table 2 Fitted radial average plot data model. *p < 0.1; **p < 0.05;
***p < 0.01

Dependent variable:
Average similarity value

Object label source −0.04*** (0.004)

Context label source 0.005 (0.004)

Number of contexts −0.09*** (0.004)

Distance −0.001 (0.001)

Observations 64

R2 0.90

Adjusted R2 0.89

Residual std. error 0.02 (Df = 59)

F Statistic 127.20***(Df = 4; 59)

Table 3 Fitted double-
log-link function beta-
regression model for the
proportion of images
with no identified objects
as a function of Mask
RCNN object detection
confidence threshold.
*p < 0.1; **p < 0.05;
***p < 0.01

Dependent variable:
Proportion images
w/o detection

Threshold 1.09** (0.13)

Observations 10

R2 0.85

Log likelihood 27.48

2366 Behav Res (2020) 52:2349–2371



network and LabelMe object label data sources across thresh-
old values, freeing experimenters to select threshold values on
the basis of other map properties, such as confidence threshold
effects on the correlation between Mask RCNN- and LabelMe-
derived LASS maps, as considered in the next section.

Correlation of LabelMe-
and network-generated maps as a function
of threshold

Figure 17 shows means and 95% confidence intervals for
correlation coefficients computed between LabelMe and

Mask RCNN object data-derived LASS maps between con-
text label data sources, the number of context labels used, and
across threshold values. There is a slight increase in map-to-
map correlations between the data sources as the threshold
increases. This is likely attributable to a reduction in the num-
ber of false-positive object detections or incorrect object class
identifications evident at higher confidence threshold values.
However, there is also an apparent nonlinearity in this trend
above the 75% confidence threshold level, with correlation
coefficients rising sharply above that threshold.

Table 5 shows parameters from a simple linear model fit to
this same data. The correlation coefficient between maps for
the same image generated using LabelMe- and Mask RCNN-
sourced object data was the dependent variable; threshold
values, the source of the context labels, and the number of
context labels used were the independent variables. Of the
three independent variables, only the value of the detection
confidence threshold had a statistically significant effect on
map correlations. Taken together, the data in Fig. 17 and the
model fitting results suggest that while the number and source
of the scene context labels have only a modest effect on the
agreement between Mask RCNN and LabelMe data-derived
LASSmaps, increasing theMask RCNN detection confidence
threshold slightly above the default level (70%) significantly
improves this agreement.

Fig. 16 Means and 95% confidence intervals for Mask RCNN to LabelMe object label similarities across Mask RCNN object detection confidence
thresholds

Table 4 Fitted beta-regression model for Mask RCNN/LabelMe object
label similarity as a function of Mask RCNN object detection confidence
threshold. *p < 0.1; **p < 0.05; ***p < 0.01

Dependent variable:
Mask RCNN to LabelMe object similarity

Threshold −0.06 (0.06)
Observations 936

R2 0.001

Log likelihood 431.79
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Discussion

In this paper, we documented the steps necessary to use a new
method – the “Linguistic Analysis of Scene Semantics” or
LASS – and provided descriptive results as a form of prelim-
inary use case for it. LASS was created to reduce the time and
cost investment necessary to collect human observer data re-
quired for the study of scene semantic effects in natural
scenes. It extends an existing technique (Hwang et al., 2011)
for studying object-to-object semantic relationships in

unmodified natural images to the object-to-context case, while
simultaneously gaining several desirable properties.

First, both LASS and Hwang, Wang, and Pomplun’s meth-
od depend on an assumption of a first-order relationship be-
tween linguistic and visual semantics. While language plays
an active role in visual semantic processing, it is likely to be
only a partial role. However, by accepting as a simplifying
assumption that it is the only analytically relevant infor-
mation, visual semantics become amenable to study indi-
rectly using powerful computational linguistic semantic
tools. LASS’s semantic measurement approach given this
constraint is significantly more powerful and flexible than
that used by Hwang et al. Specifically, LASS uses a re-
lated but much newer algorithm, Facebook Research’s
fastText (Bojanowski et al., 2017), instead of LSA
(Landauer et al., 2013). fastText measures semantic simi-
larity between words in terms of nested sets of n-gram
size sub-word units instead of between entire words.

This permits fastText to evaluate term-to-term relationships
between terms that may not have been included in the original
training corpus of the model through comparisons between
term parts. In the context of a noisy and error-filled object
annotation corpus such as the one used in this experiment
(LabelMe, Russell et al., 2008), this property allows LASS
to be applied to arbitrary images without first requiring

Fig. 17 Means and 95% confidence intervals for network- to LabelMe-derived semantic similarity map correlations across threshold values

Table 5 Fitted generalized linear model for correlation between Mask
RCNN- and LabelMe-derived LASS maps across Mask RCNN object
detection confidence threshold values, source of scene context label, and
the number of context labels used. *p < 0.1; **p < 0.05; ***p < 0.01

Dependent variable:
Correlation

Threshold 0.04** (0.01)

Context label source (ResNet-50) −0.002 (0.01)
No. context labels (First only) 0.01 (0.01)

Observations 3,744

Log likelihood −123.57
Akaike inf. criterion 255.13
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subsequent laborious label correction or substitution by the
experimenter. Indeed, for the 10,000 images considered in this
study, only 20% of the object label classes generated by hu-
man observers were contained in the English language dictio-
nary we selected for this experiment8. In contrast, 79% of
those created by the network were in the same dictionary.

Second, unlike previous works that rely on careful photo-
graphic construction and crowd-sourced human labor for gen-
erating object segmentation masks and labels (e.g.
SCEGRAM, Öhlschläger & Võ, 2017; BOiS, Mohr et al.,
2016), LASS can be completely automatic. This automation
was achieved through the use of two deep networks: one to
segment and label scene objects, and another to generate a set
of candidate scene context labels. We also considered the ef-
fects of the number of scene context labels used, as well as
different scene context label-generating neural network archi-
tectures, on the resulting LASS maps. We found that the two
scene context label-generating networks – one a VGG-16-
based implementation of VGG-16 and the other a ResNet-50
architecture trained on the same data set – generated relatively
similar scene context label distributions, despite differences in
their most commonly identified context classes. We also
found that the effects of these manipulations on the relation-
ships between LabelMe- and Mask RCNN-derived LASS
maps were relatively small.

Next, we demonstrated that while its vocabulary of objects
is limited, the label sets Mask RCNN generates are signifi-
cantly more semantically related to human observer-generated
labels for the same image than for randomly paired machine/
human label sets or random words. Note that the ability of
LASS to operate with different sources of object labels
allowed for this comparison between human and automated
labels. Despite a degree of noise, human and machine ob-
servers therefore identify relatively consistent sets of objects,
and LASS is sensitive to this consistency. Such a finding con-
forms to the design of the training corpus of the network
(Microsoft’s Common Objects in Context, COCO; Lin et al.,
2014), which focused its own crowd-sourced label data on
ordinary, easily identified objects such as cars and people.
This convergence supports the validity of substituting ma-
chine for human observer label data in LASS.

LASS depends not only on object and context labels but
also on object segmentation masks for mapping semantic re-
latedness values into the space of the image. Machine vision-
based object detection and segmentation also appear to have
significantly improved the quality of these data relative to
those provided by human observers. Automatically generated
object masks for a given image are typically fewer in number,
have a smaller interior area, and take shapes that conform
more tightly to the boundaries of the identified objects than

human-generated masks for the same image. We argue that all
three of these properties reflect significantly reduced segmen-
tation noise relative to human observer-generated data, in-
creasing the accuracy in spatial representations of scene se-
mantically relevant information.

One exception to this is the tendency of the network to
identify and segment objects toward the center and right side
of the display (Fig. 14), with almost no objects identified in
the upper left. Human data-derived semantic similarity maps
did not show a similar arcuate or boundary effect (Fig. 13).
This trend is evident across radial average plots built using
different combinations of scene context source labels and
numbers of context labels. Despite this difference, object-
contextual semantic similarity maps generated by the machine
vision and human observers for the same image are signifi-
cantly correlated, though the magnitude of these correlations
is small and their distribution across the corpus highly skewed.
Taken together, these results suggest reasonable agreement
between human and machine vision observers’ judgments of
the size, shape, and content of semantically important scene
objects. Given the reduction in noise evident in both mask and
object label data provided by the network, automatically gen-
erated label and mask information should be preferred to
equivalent human observer data when possible.

As a simple initial use case for LASS, we evaluated the
semantic similarity of map content as a function of distance
from the center of the image using a radial average profile.
Both the human observer- and the network-generated data
show relatively flat, uniform semantic similarity score distri-
butions as a function of distance from the center of the image,
with small but statistically significant effects of the source of
the object labels (LabelMe vs. Mask RCNN) and the number
of scene context labels used (first label only vs. all five avail-
able). The first effect is likely an artifact of the Mask RCNN
network’s failure to detect objects at the left and upper bound-
aries of the image when compared with human observers. The
second results from the sharp reductions in the object-
contextual semantic similarity scores observed when objects
are compared only to a single scene context label. A small,
statistically nonsignificant but importantly negative effect of
distance from map center on semantic similarity scores was
also found, suggesting that objects may become slightly less
semantically related to their scene contexts away from the
photographic center of images. This result conforms at least
partially to the known tendency of photographic objects of
interest to be centered in images, though the magnitude is
perhaps smaller than expected. Nevertheless, it raises interest-
ing questions regarding the relationships between photograph-
ic composition, objects, and scene contextual understanding.

For example, if we take it to mean that less contextually
appropriate or unusual objects are found more frequently at
the edges of images, does this imply that many images contain
transitions or boundaries between different scene contexts

8 http://wordlist.aspell.net/ , identified as ‘final/english-words.95’ in the
download
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where those objects normally occur? Or does it suggest the
existence of a second and perhaps less well understood pho-
tographic compositional bias toward centering images over
regions that best capture the current scene context? We have
also only evaluated radial average profiles for semantic simi-
larity maps averaged across different scene contexts. This is
reasonable given the primarily descriptive and exploratory
nature of this manuscript, but it leaves an interesting question
unaddressed: is the distribution of contextually appropriate
objects different across contexts? These questions are interest-
ing targets for further research using LASS.

Though powerful, LASS has several potential limitations
that experimenters should consider carefully. First, the auto-
mation present in its analytical pipeline can introduce new and
different sources of noise compared with Hwang and col-
leagues’ method. While the object detection and labeling
threshold was set to be relatively conservative in the Mask
RCNN implementation used in this manuscript, we have not
estimated a ground-truth false-positive rate for its classifica-
tions, though its object classification and segmentation perfor-
mance on COCO is state of the art (He et al., 2017). It is
therefore highly likely that a number of objects are incorrectly
identified in our image corpus.

However, we have also provided data on LASS’s behavior
across a range of object detection confidence threshold values.
We showed that increasing the object detection confidence
threshold past Mask RCNN’s default value – even slightly –
can significantly improve the correlation between human
observer-generated (LabelMe) object label LASS maps and
those created using objects identified and segmented using
Mask RCNN. Increasing the confidence threshold in this way
unfortunately led to a significant increase in the number of im-
ages where Mask RCNN failed to identify any objects, and also
reduced the semantic similarity of the object labels generated by
Mask RCNN to the labels taken from LabelMe for the same
image. Given the relative magnitude of the performance gains
versus losses resulting from increasing the confidence threshold
in this way, we recommend using a slightly elevated confidence
threshold, though researchers should evaluate this trade-off rela-
tive to their own needs and modify their code base accordingly.

The use of fastText instead of LSA also gives LASS a signif-
icantly increased scope of application relative to Hwang and
colleagues’ approach. However, it is clear that permitting partial
matches between terms at several scales may also inflate the
estimates of semantic similarity between them (Fig. 10).
Distributions of semantic similarity scores between the random
words, randomly paired images, and correctly paired images
should ideally exhibit greater separation than that shown in these
data, despite the fact that the distributional separation tests were
statistically significant. This issue can be addressed by using only
one or a small number of larger n-gram sub-word vectors in the
fastText model, though this would require researchers to train a
fastText model themselves.

Researchers should also consider whether the default train-
ing corpus used for our implementation of fastText – a large
dump of Wikipedia data, see Bojanowski et al. (2017) – is
suitable to their needs. In the case of narrow, specific, or high-
ly unusual object or context vocabularies of interest, an appro-
priate existing or custom corpus should be assembled instead.
LASS will work regardless of training corpus, but for special-
ized or rare words that may only co-occur frequently in spe-
cific corpora, the Wikipedia corpus is likely to underestimate
their semantic similarity.

A final issue arises in the range of values that LASS gen-
erates by default. Specifically, LASS confounds the zero of
the semantic similarity space with the zero value assigned to
regions of the image that contain no object labels. This is only
a potential issue, as the likelihood of semantic similarity
scores being exactly zero as they are for unlabeled regions is
small. Nevertheless, it remains possible to incorrectly interpret
true zero scores in semantic similarity maps as regions con-
taining objects that are entirely semantically unrelated to the
scene context. Simple qualitative examination of maps gener-
ated using LASS against their source images demonstrates
that this is untrue: there are clearly recognizable objects in
image regions identified in this way. This and the related is-
sues of object mask discreteness and the often modest object-
level pixel coverage produced by Mask RCNN make careful
object detection model parameter selection crucial for
deploying LASS, and without modification, make it less suit-
able for use cases such as gaze prediction.

Nevertheless, both our findings and these identified limita-
tions underscore LASS’s greatest asset: its flexibility. With the
exception of the use of fastText and the need to map semantic
information to image space, no component of the described
analytical pipeline is strictly necessary to guarantee perfor-
mance consistent with that reported here. Experimenters are
free to substitute machine vision-generated label and segmen-
tation mask data for equivalents produced by human ob-
servers, adjust the n-gram size and size range used in the
fastText model, or combine information across context-
specific maps as they wish.

Perhaps the best example of this flexibility is that
LASS’s behavior acts as a superset of Hwang and col-
leagues’: simply substitute object-contextual for object-
object label comparisons. Because the analytical pipeline
described here is fully automatic and uses only relative-
ly lightweight computer vision tools, this flexibility can
be quickly and easily leveraged to develop new and
highly context-specific variants suited to a wide range
of interesting research questions and areas, while also
retaining interpretive consistency across results. This
combination of speed, flexibility, and power is unique
among existing approaches for studying scene and ob-
ject semantic effects, and can help open new avenues of
research in these and many other domains.
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