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Abstract
While both methodological and applied work on Bayesian meta-analysis have flourished, Bayesian modeling of differences
between groups of studies remains scarce in meta-analyses in psychology, education, and the social sciences. On rare occasions
when Bayesian approaches have been used, non-informative prior distributions have been chosen. However, more informative
prior distributions have recently garnered popularity. We propose a group-specific weakly informative prior distribution for the
between-studies standard-deviation parameter in meta-analysis. The proposed prior distribution incorporates a frequentist esti-
mate of the between-studies standard deviation as the noncentrality parameter in a folded noncentral t distribution. This prior
distribution is then separately modeled for each subgroup of studies, as determined by a categorical factor. Use of the new prior
distribution is shown in two extensive examples based on a published meta-analysis on psychological interventions aimed at
increasing optimism. We compare the folded noncentral t prior distribution to several non-informative prior distributions. We
conclude with discussion, limitations, and avenues for further development of Bayesian meta-analysis in psychology and the
social sciences.
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Meta-analysis is a statistical tool for combining results from
sets of related studies (Glass, 1976). Beyond presenting over-
all features of the effect sizes (e.g., central tendency, variabil-
ity), a critical component of meta-analysis is the exploration of
effect-size heterogeneity. All collections of effects exhibit
sampling error because effects are based on sample data.
However, sampling error alone rarely accounts for all effect-
size heterogeneity. Other sources of variation are often pres-
ent, including random error (which is not directly explain-
able), systematic error due to moderator(s), or both.

Several approaches are available for the exploration of sys-
tematic error in meta-analysis. The most popular are “meta-
regression”methods (see Thompson & Higgins, 2002). Meta-
regressions specify effect sizes as outcomes and can incorpo-
rate both continuous and categorical moderators (see Berkey,

Hoaglin, Mosteller, & Colditz, 1995; Greenland, 1987).
Another class of heterogeneity-investigation methods relies
on weighted analogues to ANOVA (Hedges, 1982). Such
ANOVA-like methods again use effect sizes as outcomes
and attempt to explain possible systematic error using categor-
ical moderators. ANOVA-like models can either incorporate
group-specific between-studies heterogeneity components for
subgroups of effects or use a single heterogeneity estimate that
is common to all subgroups of studies. For a comparison of
these frequentist pooled- versus separate-variance approaches,
see Rubio-Aparicio, Sánchez-Meca, López-López, Botella,
and Marín-Martínez (2017).

The advantages of Bayesian methods for meta-analysis are
well known (e.g., Lewis & Nair, 2015; Sutton & Abrams,
2001). Bayesian modeling allows for a more flexible and
transparent means to incorporate and estimate uncertainty.
Furthermore, Bayesian-analysis results are typically presented
and described in terms of (marginal) posterior distributions.
Such distributions allow for direct statements of probability
about results, something that frequentists may desire but are
restricted in making.

One disadvantage of Bayesian techniques is their possible
sensitivity to the choice of prior distributions. In certain circum-
stances, the choice of prior distribution can have a large effect on
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the respective posterior distribution, and thus on inferences about
parameters. Furthermore, computations and model creation in
Bayesian analyses often use specialized software, and require
some knowledge of computer code and programming on the part
of the meta-analyst. However, with the development of software
such as Stan (Carpenter et al., 2017), and Bayesian packages in
existing software such as Stata (StataCorp, 2017), this disadvan-
tage is becoming less of a worry.

In this paper, we explore a Bayesian method for ANOVA-
likemodeling inmeta-analysis which uses weakly informative
prior distributions for heterogeneity parameters. The choice of
heterogeneity parameter is the standard deviation. Each
group-specific between-studies standard deviation will have
its own data-driven prior distribution. Each prior is a folded
noncentral t distribution with a frequentist estimate of the re-
sidual between-studies standard deviation as its noncentrality
parameter.

The paper proceeds as follows. First, we provide back-
ground on group-specific modeling and informative prior dis-
tributions for meta-analysis. Next, we present a Bayesian
model for the analogue to ANOVA, and an overview of the
folded noncentral t distribution. We then propose the new
prior distribution for Bayesian meta-analytic ANOVA. This
is followed by two in-depth examples of use of the new prior
distribution, based on data from a meta-analysis on psycho-
logical interventions for increasing optimism (Malouff &
Schutte, 2017). Our examples are chosen with the applied
psychological or social-science researcher in mind. Two dif-
ferent categorical factors are examined: participant payment
(yes or no) and timing of post-intervention assessment (imme-
diate or delayed). Both examples include comparisons of re-
sults based on our priors to results based on four non-
informative prior distributions. We conclude with discussion,
limitations, and avenues for further development of Bayesian
meta-analysis.

Group-specific modeling in meta-analysis

Though to date it has been somewhat rare in practice, the use
of group-specific modeling in meta-analysis has several ad-
vantages. Prior experience or expectations about a research
domain might suggest a priori that subgroups of studies
should differ in terms of their within-group variability. For
example, studies of low and high quality have been found to
exhibit different degrees of variability (e.g., Schulz, Chalmers,
Hayes, & Altman, 1995). Furthermore, allowing for between-
groups differences in variation may provide better model fit,
regardless of whether it was anticipated or not. That is,
partitioning studies and allowing for different variances for
each group may reveal true differential heterogeneity. Last,
descriptive statistics for the study results or possibly explor-
atory graphics (e.g., a forest plot) may suggest the

appropriateness of group-specific modeling. This latter sce-
nario involves a preliminary assessment of the effect sizes
before making a modeling decision, which is inherently dif-
ferent from choosing a model based on theoretical reasons.
However, this approach suffers from being subject to a re-
searcher’s choice of descriptive statistics and may lend itself
to “data shopping” (i.e., seeking specific patterns or values).

In both frequentist and Bayesian meta-analysis, group-
specific modeling of within-group variance has received little
attention. This may have resulted from the widespread use of
meta-regression, which does not easily allow for group-
specific variances. The typical frequentist approach uses the
same point estimate of heterogeneity for all individual sub-
groups (e.g., Borenstein, Hedges, Higgins, & Rothstein,
2009).

Group-specific modeling in Bayesian meta-analysis is
more complex than a frequentist approach because prior dis-
tributions are required for all group-specific parameters, such
as means and standard deviations, or means and variances.
Larose and Dey (1997) and Prevost, Abrams, and Jones
(2000) have used Bayesian group-specific models in medical
settings. In the earlier of two works, Larose and Dey (1997)
used “grouped random-effects models” to synthesize 15 stud-
ies on the anti-epileptic drug, Progabide. Studies were
partitioned into two groups: studies that were double blinded
and those that were single blinded. Using both fully Bayesian
estimation and data-driven prior distributions, each group re-
ceived separate prior distributions for means and between-
studies variances.

Prevost, Abrams, and Jones applied a similar approach,
which they termed “group-specific heterogeneity,” to a set of
studies on breast-cancer screening. Studies were again
partitioned into two groups: randomized controlled trials and
observational studies. Prevost et al. (2000) argued for this
partition by stating that observational studies are likely to be
more biased than randomized control trials, leading to in-
creased variability among studies. Furthermore, for another
Bayesian approach, see Röver, Wandel, and Friede (2019)
which focuses on the use of mixture priors. Our approach to
group-specific Bayesian modeling uses weakly informative
prior distributions, rooted in the work of Gelman (2006).

Informative prior distributions
for meta-analysis

For any Bayesian analysis, the choice of prior distribution(s) is
a key decision. Non-informative prior distributions, such as
the half normal with a large variance or the uniform, are com-
mon for heterogeneity parameters in meta-analysis. Such prior
distributions “…aim at attenuating the impact of the prior on
the resulting inference” (Marin & Robert, 2014, p. 35). One
example of comparing non-informative priors to frequentist
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estimators of the between-studies standard deviation can be
found in Bodnar, Link, Arendacká, Possolo, and Elster
(2017). However, current practice is shifting towards the use
of more informative prior distributions for scale parameters
(e.g., Pullenayegum, 2011; Rhodes, Turner, & Higgins,
2015; Rhodes et al., 2016; Steel, Kammeyer-Mueller, &
Paterson, 2015; Turner, Davey, Clarke, Thompson, &
Higgins, 2012; Turner, Jackson, Wei, Thompson, & Higgins,
2015); see Williams, Rast, and Bürkner (2018) for an over-
view. Some authors argue for data-driven prior distributions
created from observed between-studies variability found in
previously published meta-analyses or meta-analytic data-
bases (e.g., the Cochrane Database of Systematic Reviews).
For instance, Turner et al. (2012) extracted 14,886 meta-
analyses from the Cochrane Database of Systematic
Reviews and created what they call “off-the-shelf” prior dis-
tributions for several common medical settings. As another
approach for creating an informative prior distribution,
Rhodes et al. (2016) implemented data augmentation
(Tanner &Wong, 1987) to create a conjugate prior distribution
characterized by “pseudo data” (in contrast to, and then com-
bined with, observed data).

Previous approaches are not without limitations. The sets
of studies used to develop such priors may have little to do
with the target collection of studies. Even if similar studies
exist, the number of studies available to create suitable prior
distributions may be small. This constraint can hinder meta-
analysts who want to combine studies in fields with only a
limited amount of related research to create an informative
prior distribution.

Notation, model, and folded noncentral t
distribution

We begin with a collection of K independent effect sizes.
These K effect sizes are partitioned into J ≥ 2 disjoint groups
based on some categorical factor, X (e.g., short and long in-
terventions). As both examples in our study (described later)
analyze treatment effects by comparing two groups, methods
shown here used the standardized-mean-difference effect size.
The kth effect-size estimate in the jth group is represented as
djk, where k = 1, …, Kj and j = 2, …, J. The total number of
effect sizes is K =∑jKj. Under a random-effects model, each
djk estimates its respective, though not necessarily unique,
effect-size parameter, θjk, with mean μj. Last, each effect size
has a within-study variance, vjk.

To obtain posterior distributions for the between-studies
standard deviations for J groups, we use a conditional
group-specific random-effects (CGRE) model. The CGRE
model includes a categorical factor, X, as well as allows group
means (μj) to vary. This is also applied to different between-
studies standard deviations across groups, which we denote as

τj for group j. Distributional assumptions at the sample effect-
size level are djk ∣ θjk, vjk~πA(θjk, vjk ). At the effect-size pa-
rameter level, θjk ∣ μj, τj~πB(μj, τj). Here, π(•) represents a
choice of distributional form. Subscripts for π(•) (e.g., πA(•))
denote that, if there are more than one prior distribution, they
need not be the same parametric form. The specific required
parameters (e.g., shape and scale for a Normal distribution or
location for a uniform) vary by choice of distributional form.
In practice and this paper we model the between-studies var-
iability as a standard deviation (τθ) rather than as a variance
(τ2θ ) at the recommendation of previous work (e.g., Gelman,
2006) and for interpretation purposes.

Effect sizes and variances for the CGRE model are repre-
sented as D1k = (djk, vjk), with the complete observed dataset
D*¼ D11;…;D1K1 ;D21;…;D2K2 ;…;D J1;…;D JK Jð Þ a n d
the study-level effect-size parameter vector

θ* ¼ θ11;…; θ1K1 ; θ21;…; θ2K2 ;…; θ J1;…; θ JK Jð Þ. T h e
CGRE model has multiple means and between-studies stan-
dard deviations, both specific to each group of effects. The
vector of mean parameters is μ = (μ1,…, μJ), and we define
the vector of between-studies standard deviations as τ = (τ1,
…, τJ). The vector of all unknown parameters in the CGRE
model is γ∗ = (θ∗,μ, τ). Assuming conditional independence
among all unknown parameters, the joint posterior distribution
of γ∗ is

p γ*jD*� �
∝p D*jγ*� �

p γ*� �

¼ ∏
J

j¼1
∏
K j

k¼1
p d jk jθ jk ; v jk
� �

p θ jk jμ j; τ j

� �h i
∏
J

j¼1
p μ j

� �
p τ j
� �h i

:

ð1Þ

For Eq. (1), 2J hyper prior distributions must be specified.

Folded noncentral distribution

The noncentral t distribution (Johnson, Kotz, & Balakrishnan,
1995) has several common uses in statistics (e.g., power anal-
ysis, distributions of standardized mean differences), includ-
ing in meta-analysis (Becker, 1988; Camilli, de la Torre, &
Chiu, 2010; Hedges, 1981). The noncentral t distribution is
defined as a function of other distributions. If Z~N(0, 1) and
W~χ2(ψ), then a random variable, G, follows a noncentral t
distribution with a noncentrality parameter φ and ψ degrees of
freedom, where

G ¼ Z þ φffiffiffiffiffiffiffiffiffiffi
W=ψ

p : ð2Þ

The possibly less familiar folded noncentral t distribution
(FNT) is related to the noncentral t distribution. Using Eq. (2),
the FNT is expressed as H = |G|. When φ = 0, H is a centered
half t distribution. When φ > 0 the FNT “folds over”
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negatively valued mass on the horizontal axis to the positive
side of the distribution. This is inherently different from the
similar truncated noncentral t distribution, which discards any
negatively valued mass. Gelman (2006) proposes to use the
FNT rather than non-informative prior distributions on scale
parameters (e.g., the inverse-gamma distribution with equiva-
lent scale and shape parameters) due to its better performance
(e.g., convergence). In the next section, we argue for a group-
specific prior distribution for the between-studies standard
deviation using the FNT distribution.

Folded noncentral t distribution for meta-analysis

We propose using the FNT as a weakly informative prior
distribution for the between-studies standard deviation, τj, in
group-specific Bayesian meta-analysis. Specifically, the prior
distribution for each τj is a FNT distribution with a
noncentrality parameter equal to bτθjX and degrees of freedom
ψ, denoted as FNT(bτθjX ;ψ ). Here, τθ ∣ X represents the re-
maining unexplained effect-size heterogeneity after account-
ing for sampling error and any heterogeneity explained by the
moderator, denoted as X. Put another way, given a categorical
moderator, X, the residual between-studies standard deviation
that is considered common across K studies is τθ ∣ X. The
method presented in this paper uses τθ ∣ X to inform our prior
assumptions about the distribution for each group-specific τj.
Common choices for the prior distribution for τj would be the
inverse gamma or uniform distributions. By using a FNT dis-
tribution for each prior distribution on τjwe are expressing the
belief that a more suitable assumption for τj places the most
weight in the neighborhood of bτθjX instead of, for example,
close to zero (e.g., with the inverse-gamma distribution), or
equally across the parameter space of τj (e.g., with the uniform
distribution). Such a priori arguments for placing the most
weight of the prior density at zero without foundation are
unrealistic. By placing the greatest mass of the prior distribu-
tions in the neighborhood of bτθjX , this method uses informa-
tion from the complete set ofK effect sizes to provide possibly
more realistic specifications of individual τj prior distribu-
tions. Applying this prior requires a two-step process. First,
an estimate of τθ ∣ X must be computed. The second step uses
bτθjX as the noncentrality parameter in the FNT distribution
with degrees of freedom that are flexible.

A comprehensive simulation of the FNT approach to
group-specific modeling was completed by Thompson
(2016). Conditions in Thompson (2016) included prior distri-
butions (half-Cauchy, half-normal, inverse gamma, and uni-
form – the same that are used here), number of groups within
the categorical variable (2 or 3), number of effects within a
group (6 or 36), within-study sample size (50 or 500), degree
of within-group heterogeneity (varied by number of groups),
and degrees of freedom for the FNT (2, 3, 4, or 30). General

findings included that the choice of degrees of freedom for the
FNTwas not critical. Results for conditions with three groups
were essentially extensions of results with two groups. As one
might expect, more statistical noise was present in estimated
densities when the within-study sample size was 50 compared
to 500. That being said, the number of studies was more crit-
ical to the shape and smoothness than was the within-study
sample size.

Model specification

We compare the performance of the FNT prior for τj to those
of four non-informative prior distributions used in meta-anal-
ysis. In addition to the FNT, other choices of priors for τjwere
a) the half-Cauchy as demonstrated in Gelman (2006), b) the
half-normal with large variance, c) the inverse-gamma with
small and identical shape and scale parameters, and d) the
uniform with a wide range. Distributions at the sample
effect-size level (djk) and effect-size parameter level (θjk) were
treated as normal, and the hyper prior distribution on μj was a
non-informative normal distribution with large variance.
Writing the model in hierarchical form,

d jk jθ jk ; v jk∼N θ jk ; v jk
� �

;

θ jk jμ j; τ j∼N μ j; τ j

� �
;

μ j∼N 0; 100ð Þ; and
τ j∼π •ð Þ:

ð3Þ

We now need only to specify the hyper priors on τj in Eq.
(3). In both examples, the grouping moderator comprises two
groups, thus priors for τ1 and τ2 need to be specified. The five
priors used for π(•) are

1. τ j∼FNT bτθjX ; 4
� �

(Folded Noncentral t),
2. τj~HC(25) (Half-Cauchy),
3. τj~HN(10) (Half-Normal),
4. τj~IG(.001, .001) (Inverse-Gamma), and
5. τj~U(0, 10) (Uniform).

As previously shown via simulation (Thompson, 2016),
the choice of degrees of freedom ψ for FNT(bτθjX ;ψ ) is not
critical. As such, the degrees of freedom for the FNT prior
distribution here are arbitrarily set to ψ = 4.

Model assessment and software

For Malouff and Schutte’s (2017) meta-analysis examples
shown below, several numerical quantities and graphics were
examined. First, MCMC convergence is assessed using auto-
correlations, the Gelman-Rubin diagnostic (Gelman & Rubin,
1992), running mean plots, and trace plots. Although results
for τj are of main interest here, convergence should be
assessed for all model parameters. All of our models were
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run with three chains, each with 500,000 iterations and a
100,000 burn-in period.

Model assessment can be completed in two ways: using
individual model fit and model-to-model comparisons across
several competing models (i.e., different prior distributions for
τj). For each model several descriptive statistics from the mar-
ginal posterior distributions for τj should be inspected, includ-
ing the median, mean, standard deviation, 2.5th percentile,
and 97.5th percentile. Furthermore, the 95% highest posterior
density (HPD) intervals for τjmay be particularly informative.
The HPD interval can be considered as the smallest credible
interval of a posterior distribution which covers a pre-
specified 100(1 −α)% range. Because we used three chains
when estimating the posterior density, for each τj we obtained
three HPD upper bounds and three HPD lower bounds, with
one pair for each chain. In all conditions, these bounds were
virtually identical across chains, thus we only report results for
the first chain in each case.

When comparing fit across models we used the posterior
predictive check (PPC). The PPC (denoted p*) is a quantity
that compares the fit (similarity) of data simulated from a
candidate model to the observed data. The PPC ranges from
0 to 1, with an optimal value being p* = .50.

Examples

We demonstrate the use of this new prior distribution with two
examples. Both examples draw on Malouff and Schutte’s
(2017) meta-analysis on psychological interventions for in-
creasing optimism. The effect size is the standardized mean
difference, with positive values favoring the intervention
group. We examine two grouping variables. The first is time
of post-intervention assessment (within 1-day post interven-
tion or more than 1-day post intervention) and the second is
whether participants were paid for their participation or not.
These examples were chosen based on their differing group-
specific between-studies standard deviations. The original
Malouff and Schutte (2017) article did not report between-
studies standard deviations, but we were able to compute these
estimates using their reported effect sizes. For the post-
intervention-assessment-time example, the first group of ef-
fects (within 1 day post intervention) has an estimated
between-studies standard deviation of bτG1 ¼ 0:17 and the
second group of effects (more than 1 day post intervention)
has an estimated between-studies standard deviation of
bτG2 ¼ 0:14. Thus, both groups have similar and small
between-studies standard-deviation estimates. For the
participant-pay example, the first group of effects (for unpaid
participants) has a small estimated between-studies standard
deviation of bτG1 < :001, and the second group of effects
(from paid participants) has an estimated between-studies
standard deviation of bτG2 ¼ 0:34. These group-specific

between-studies standard-deviation estimates differ more in
magnitude, with bτG1 small and bτG2 being moderately large.

All analyses were completed using a combination of R
(Microsoft R Open, 2017) and JAGS (Plummer, 2003) via
the rjags package (Plummer, 2016). Non-Bayesian estimates
of bτθjX were obtained using restricted maximum likelihood
estimation in the metafor package (Viechtbauer, 2010).
Forest plots were created using the meta package
(Schwarzer, 2007).

Example 1: Time-of-assessment moderator

Of the 29 effect sizes inMalouff and Schutte (2017), 23 effects
came from studies where the final assessment was adminis-
tered within 1 day of the conclusion of training (Group 1); the
other 6 effects were from studies that administered later final
assessments (Group 2). Patterns of effects by group are shown
in Fig. 1. The original meta-analysis reported a statistically
significant test of group differences in mean effects (Q(1) =
27.2, p = .025). The random-effects mean for Group 1 was dG1
¼ 0:46 and for Group 2 it was dG2 ¼ 0:22, both being statis-
tically significant. As stated before, each group showed some
evidence of within-group heterogeneity. The between-studies
standard-deviation estimates, bτG1 ¼ 0:17 and bτG2 ¼ 0:14;
suggest that the groups have similar amounts of within-
group heterogeneity.

Next, we compare descriptive statistics for τG1 and τG2
across the five choices of prior distributions. The median,
mean, SD, 2.5th and 97.5th percentiles (Table 1) and HPD
intervals (Table 2) were computed from marginal posterior
distributions (when convergence was reached). The model
that used the inverse-gamma prior distribution was unable to
converge, despite several additional steps to achieve conver-
gence (e.g., increased number of iterations, larger burn-in pe-
riod), thus we have four models to compare (folded noncentral
t, half-Cauchy, half normal, and uniform).

Many descriptive statistics were either identical (up to two
decimal places) or very similar across choices of prior distri-
butions (for both τG1 and τG2). Given that both groups had
similar between-studies standard-deviation estimates (recall
bτG1 ¼ 0:17 and bτG2 ¼ 0:14, also in Table 1), it is not surpris-
ing that both the marginal posterior medians and means are
similar as well. In contrast, the SDs and 2.5th and 97.5th
percentiles show differences in the overall variability of the
marginal posterior distributions, and particularity the length of
the right tail (i.e., the 97.5 percentile). These were
noticeability larger for the later assessment group (G2) than
for the immediate assessment group (G1). This difference in
variability and the width of the marginal posterior may stem
from the difference in sample sizes, KG1 = 23 and KG2 = 6, as
the former provides more information (and precision) than the
latter. The HPD intervals (Table 2) showed similarity across
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choice of prior distribution and differences between the two
groups, and Group 2 always had a wider HPD interval than
Group 1. The marginal posteriors for bτG1 and bτG2 using the
FNT prior condition are shown in Fig. 2. The overall shape of

the marginal densities similar between groups (e.g., peak be-
tween τ = 0.1 and τ = 0.2 with a long right-side tail). However,
more noise is visible in the lower values of τ (close to zero) for
bτG1 compared to bτG2.

Model fit was similar among the four prior-distribution
choices that did converge. All PPC results were p* = .49 (with
values close to p* = .50 being preferable), indicating good
predictive capability.

Example 2: Participant-payment moderator

Again using the 29 effect sizes inMalouff and Schutte (2017),
18 effects came from studies where participants were not paid
(Group 1) and the remaining 11 effects were from studies that
did pay their participants (Group 2). Confidence intervals for
effects by group are shown in Fig. 3. Malouff and Schutte
(2017) reported a non-significant between-groups test
(Q(1) = 1.4, p = .23), indicating that participant payment status
did not significantly explain the overall effect-size variability.
The random-effects mean effect for the unpaid group was

dG1 ¼ 0:36, and for those who were paid was dG2 ¼ 0:53,
both being statistically significant. Studies that paid partici-
pants showed slightly (but not significantly) larger interven-
tion effects.

We are interested in the within-group variation, regardless
of the group means. Between-studies standard-deviation esti-
mates appear quite distinct, with bτG1 < 0:001 for studies of
unpaid participants, and bτG2 ¼ 0:34 for studies with paid par-
ticipants. This pattern is in contrast to the variances of the
timing-of-assessment groups previously discussed. Studies
with unpaid participants were very homogeneous compared

Table 1 Descriptive statistics for τj marginal posteriors – time-of-assessment moderator

Prior distribution Kj Median Mean SD 2.5th percentile 97.5th percentile bτ j

Folded Noncentral t

Assessment ≤ 1 Day of End of Training 23 0.17 0.17 0.09 0.01 0.35 0.17

Later Assessment 6 0.18 0.20 0.15 0.02 0.57 0.14

Half-Cauchy

Assessment ≤ 1 Day After End of Training 23 0.17 0.17 0.09 0.01 0.35 0.17

Later Assessment 6 0.18 0.21 0.16 0.02 0.62 0.14

Half-Normal

Assessment ≤ 1 Day After End of Training 23 0.17 0.17 0.09 0.01 0.35 0.17

Later Assessment 6 0.18 0.21 0.16 0.02 0.61 0.14

Inverse Gamma

Assessment ≤ 1 Day After End of Training 23 ─ ─ ─ ─ ─ 0.17

Later Assessment 6 ─ ─ ─ ─ ─ 0.14

Uniform

Assessment ≤ 1 Day After End of Training 23 0.17 0.17 0.09 0.01 0.35 0.17

Later Assessment 6 0.18 0.22 0.17 0.02 0.63 0.14

Fig. 1 Forest plot of effects ordered by timing of the assessment and
effect size. Studies 1–23 applied an assessment within 1 day after the
end of training and studies 24–29 applied an assessment at some point
more than 1 day after the end of training
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to studies that did pay participants. This scenario, with two
groups of effects that clearly have differing degrees of within-
group effect-size variability, is a prime example for which
group-specific modeling may be informative and beneficial.

As with the first example, we compare the descriptive
statistics for τG1 and τG2 across the prior distributions.

The inverse-gamma prior distribution again did not con-
verge, hence we again have four comparison priors
(folded noncentral t, half-Cauchy, half normal, and uni-
form). Medians, means, SDs, 2.5th and 97.5th percen-
tiles are in Table 3 and HPD intervals are given in
Table 4.

Fig. 2 Marginal posterior distributions of between-studies standard devi-
ations for the time-of-assessment moderator. The top cell (τ1) is the plot
for the “assessment ≤ 1 day after end of training” group. The bottom cell

(τ2) is the plot for the “later assessment” group. Different color densities
represent MCMC-generated chains

Table 2 HPD Intervals for τj – time-of-assessment moderator

Prior distribution Kj Lower bound Upper bound

Folded Noncentral t

Assessment ≤ 1 Day After End of Training 23 0.00 0.32

Later Assessment 6 0.00 0.47

Half-Cauchy

Assessment ≤ 1 Day After End of Training 23 0.00 0.32

Later Assessment 6 0.00 0.51

Half-Normal

Assessment ≤ 1 Day After End of Training 23 0.00 0.32

Later Assessment 6 0.00 0.50

Inverse Gamma

Assessment ≤ 1 Day After End of Training 23 ─ ─
Later Assessment 6 ─ ─

Uniform

Assessment ≤ 1 Day After End of Training 23 0.00 0.32

Later Assessment 6 0.00 0.50
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Descriptive statistics (Table 3) again were similar across
the four prior distributions for both τG1 and τG2. The medians,
means, SDs, and 2.5th and 97.5th percentiles were compara-
ble among prior distributions. This was also the case for the
HPD intervals (Table 4) – all HPD intervals were of similar

length across prior-distribution choices. Furthermore, the
HPD intervals showed almost no overlap between the two
groups (unpaid participants and paid participants) for all prior
distribution choices, supporting a likely difference in within-
group effect-size heterogeneity.

The marginal posteriors for bτG1 and bτG2 using the FNT
prior condition are shown in Fig. 4. In contrast to the timing-
of-assessment moderator, overall shape of the marginal densi-
ties differed between Group 1 (no payment participant) and
Group 2 (participants received payment). For Group 1, the
marginal posterior of bτG1 has a peak slightly above zero,
followed by a step downward slope and elongated tail.

Table 3 Descriptive statistics for τj marginal posteriors – participant-payment moderator

Prior Distribution Kj Median Mean SD 2.5th percentile 97.5th percentile bτ j

Folded Noncentral t

Participants Paid: No 18 0.06 0.07 0.06 0.00 0.21 < 0.001

Participants Paid: Yes 11 0.37 0.39 0.13 0.20 0.71 0.34

Half-Cauchy

Participants Paid: No 18 0.06 0.07 0.06 0.00 0.21 < 0.001

Participants Paid: Yes 11 0.38 0.40 0.14 0.20 0.74 0.34

Half-Normal

Participants Paid: No 18 0.06 0.07 0.06 0.00 0.21 < 0.001

Participants Paid: Yes 11 0.38 0.40 0.14 0.20 0.74 0.34

Inverse Gamma

Participants Paid: No 18 ─ ─ ─ ─ ─ < 0.001

Participants Paid: Yes 11 ─ ─ ─ ─ ─ 0.34

Uniform

Participants Paid: No 18 0.06 0.07 0.06 0.00 0.21 < 0.001

Participants Paid: Yes 11 0.38 0.40 0.14 0.20 0.74 0.34

Fig. 3 Forest plot of effects ordered by whether participants were paid
and effect size. Participants in studies 1–18 were paid for their participa-
tion but others in studies 19–29 were not

Table 4 HPD intervals for τj – participant-payment moderator

Prior distribution Kj Lower bound Upper bound

Folded Noncentral t

Participants Paid: No 18 0.00 0.17

Participants Paid: Yes 11 0.18 0.66

Half-Cauchy

Participants Paid: No 18 0.00 0.18

Participants Paid: Yes 11 0.18 0.68

Half-Normal

Participants Paid: No 18 0.00 0.18

Participants Paid: Yes 11 0.17 0.68

Inverse Gamma

Participants Paid: No 18 ─ ─
Participants Paid: Yes 11 ─ ─

Uniform

Participants Paid: No 18 0.00 0.18

Participants Paid: Yes 11 0.18 0.68
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Looking at the marginal posterior of bτG2, we see a more nor-
mal density with a slight right skew. The peak of the posterior
is between τ = 0.3 and τ = 0.4 The stark contrast between these
two densities does align with the descriptive statistics de-
scribed above.

All PPC results were p* = .16 (again, values close to p* =
.50 being preferable), indicating fairly poor capability. This
may be at least a partial result of the challenge of finding a
suitable prior for a subgroupwith a small variance or standard-
deviation parameter (as was very likely the case with τG1 <
0.001).

Discussion

One of the most contentious parts of Bayesian data analysis,
including Bayesian meta-analysis, is choosing the prior distri-
butions. The main purpose of this paper was to present a new
prior distribution, the folded noncentral t, for modeling
between-studies heterogeneity in Bayesian meta-analysis.
After a review of existing weakly-informative prior distribu-
tions for Bayesian meta-analysis (including those that are
group-specific based on some categorical factor), the new pri-
or distribution was presented and its implementation thor-
oughly explained. Our example used data from a recent

meta-analysis on interventions aimed at increasing a person’s
optimism, and showed that all but one prior distribution con-
verged and produced reasonably similar estimates.

Though current Bayesian meta-analysis practice mostly
uses fully Bayesian (i.e., data independent) prior distributions,
the prior distribution presented here is data driven, similar to
the log-Cauchy and log-logistic distributions which are partial
functions of the harmonic mean of the individual study effect-
size variances (see DuMouchel, 1994; Larose & Dey, 1997).
The noncentrality parameter in the folded noncentral t distri-
bution is specified using data from the set of studies, specifi-
cally bτθjX which reflects the impact of a specific moderator.
This is not the case when using a function of harmonic means
of individual study effect-size variances, as for the log-logistic
and log-Cauchy priors.

As has been previously stated, the folded noncentral t, with
bτθjX as its noncentrality parameter for the distributions of the
τj in Eq. (3), produced similar results compared to three fully
Bayesian prior distributions, the half-Cauchy, half-Normal,
and uniform. The inverse gamma prior distribution case failed
to converge as previously discussed. The results we examined
included central-tendency measures (means and medians),
standard deviations, upper and lower tail regions, HPD inter-
vals, and two model-fit indices. The differences were minor
and would have little-to-no practical impact on inferences and

Fig. 4 Marginal posterior distributions of between-studies standard devi-
ation for the participant-payment moderator. The top cell (τ1) is the plot
for the “no participant payment” group. The bottom cell (τ2) is the plot for

the “participants received payment” group. Different color densities rep-
resent MCMC-generated chains
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interpretations. With that being said, in line with Lambert,
Sutton, Burton, Abrams, and Jones (2005) we recommend
using several competing prior distributions, and see the FNT
as one good competitor distribution. In most instances, meta-
analysts seek to achieve robustness by assessing several prior
distributions. Showing that the choice of prior distribution
does not influence posterior-distribution descriptive statistics
and model fit provides substantive evidence that the posterior
distribution is not entirely subject to the choice of prior
distribution.

Limitations

We do acknowledge limitations of our work. First, the exam-
ples presented here were chosen for their clear link to the field
of behavioral research. Although the chosen examples provide
several realistic features such as unbalanced within-group
numbers of studies and within-group between-studies vari-
ability, we do not attempt to generalize all results in this paper
to all other fields of research or meta-analytic situations. This
includes, but is not limited to, within-study and between-
studies sample sizes and group-specific weighted means. For
the latter point, one similar avenue of further research would
be to formulate and assess group-specific weakly-informative
prior distributions for within-group means (instead of within-
group between-studies standard deviations, as demonstrated
here). Last, the FNT is a trivariate distribution (noncentrality
parameter, degrees of freedom, and scale parameter), as de-
scribed in Gelman (2006). In our work, we chose to set the
scale parameter to unity and manipulate the noncentrality pa-
rameter. This decision was based on the goal of developing an
empirically driven prior distribution (i.e., bτθjX ). Another area
of future research would be assessing different combinations
of conditions of the FNT bymanipulation of other parameters.

Implications

The use of Bayesian meta-analysis in behavioral research and
the social sciences in general is limited, but has recently
gained traction (e.g., Kim, Belland, & Walker, 2018; Perret
& Bonin, 2019). The advantages of Bayesian meta-analysis
compared to a frequentist approach are well understood (e.g.,
Sutton & Abrams, 2001) and in our examples are seen most
clearly in the comparisons of HPD intervals. With recent com-
putational advances, the obstacle of complex Bayesian-model
computation is less and less a problem. A call for social-
science fields, particularly in behavioral research and educa-
tion, to adopt Bayesian meta-analysis methods is warranted.
Our work here supports that.

Through the examples in this paper we demonstrate how a
more nuanced story can be told with Bayesian methodology.
Particularly for between-studies heterogeneity, applying the
group-specific Bayesian model provided some evidence that
1) Using a single point estimate to represent the between-
studies standard-deviation parameter is strongly inadvisable
for the participant-payment moderator, and 2) Once the
between-studies standard deviation was modeled as a random
variable, its posterior distribution was seen to be quite wide,
particularly for the smaller of the two groups.

One particularly strong advantage of Bayesian meta-
analysis methods is in the interpretation of results.
Quantitative behavioral research is traditionally filled with
null-hypothesis statistical testing, including p values, confi-
dence intervals, and similar quantities. Results are often
misinterpreted using direct probability statements
(Goodman, 2008). We do not claim that Bayesian meta-
analysis methods are “better” than non-Bayesian meta-analy-
sis methods, rather the two approaches provide two different
sets of tools. When used correctly, Bayesian meta-analysis
provides more flexibility, allows for direct probabilistic state-
ments, and increases transparency about the uncertainty in our
estimates.
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