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Abstract
Analysis of rodents’ behavior/activity is of fundamental importance in many research fields. However, many behavioral exper-
iments still rely on manual scoring, with obvious problems in reproducibility. Despite important advances in video-analysis
systems and computational ethology, automated behavior quantification is still a challenge. The need for large training datasets,
background stability requirements, and reduction to two-dimensional analysis (impairing full posture characterization), limit their
use. Here we present a novel integrated solution for behavioral analysis of individual rats, combining video segmentation,
tracking of body parts, and automated classification of behaviors, using machine learning and computer vision methods. Low-
cost depth cameras (RGB-D) are used to enable three-dimensional tracking and classification in dark conditions and absence of
color contrast. Our solution automatically tracks five anatomical landmarks in dynamic environments and recognizes seven
distinct behaviors, within the accuracy range of human annotations. The developed free software was validated in experiments
where behavioral differences between Wistar Kyoto and Wistar rats were automatically quantified. The results reveal the
capability for effective automated phenotyping. An extended annotated RGB-D dataset is also made publicly available. The
proposed solution is an easy-to-use tool, with low-cost setup and powerful 3D segmentation methods (in static/dynamic envi-
ronments). The ability to work in dark conditions means that natural animal behavior is not affected by recording lights.
Furthermore, automated classification is possible with only ~30minutes of annotated videos. By creating conditions for high-
throughput analysis and reproducible quantitative measurements of animal behavior experiments, we believe this contribution
can greatly improve behavioral analysis research.

Keywords Animal tracking in 3D . Automated behavior classification . Automated phenotyping . Depth sensors . Dynamic
background segmentation . Free and user-friendly software . Public RGB-DDataset .Wistar Kyoto model

Introduction

Analysis of how animals interact with, respond to, and
control their environment is a fundamental methodological

approach in many research fields (Anderson & Perona,
2014; Berman, 2018). This is particularly relevant in be-
havioral neuroscience and in the challenge to understand
brain function (Dickinson et al., 2000; Hong et al., 2015;
Krakauer, Ghazanfar, Gomez-Marin, MacIver, & Poeppel,
2017). Besides being a pillar in the health sciences,
supporting research translation to human clinical trials
(Richardson, 2015; Unger et al., 2017), animal behavior
analysis is an increasingly important tool in industry,
namely in essential animal welfare monitoring in food pro-
duction (Ahrendt, Gregersen, & Karstoft, 2011; Hong
et al., 2015; Stavrakakis et al., 2015).

A full characterization of phenotypic domains in be-
havioral analysis requires screening test batteries, with
different degrees of coverage and validation, implemented
in a non-subjective and standardized way. Computerized
video-analysis systems have thus emerged as potential
tools for automatically assessing behavior, combining
two-dimensional (2D) video recordings with image
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processing (Robie, Seagraves, Egnor, & Branson, 2017;
Valletta, Torney, Kings, Thornton, & Madden, 2017) and
machine learning (ML) methods (Aguiar, Mendonca, &
Galhardo, 2007; de Chaumont et al., 2012; Jhuang et al.,
2010; Preisig et al., 2016). Most published solutions rely on
standard background subtraction methods (Aguiar et al.,
2007; Jhuang et al., 2010; Twining, Taylor, & Courtney,
2001) for animal segmentation, with dynamic background
conditions still under active development. Body-part classifi-
cation can be addressed using algorithms for learning/
computing the individual's pose (Mathis et al., 2018; Pereira
et al., 2019). In turn, trajectory-based features (Burgos-
Artizzu, Dollár, Lin, Anderson, & Perona, 2012; Kabra,
Robie, Rivera-Alba, Branson, & Branson, 2013) can be ex-
tracted from video sequences (Dollár, Rabaud, Cottrell, &
Belongie, 2005; Jhuang et al., 2010) to describe low-level
representations of behavior. These features can then be used
for automated behavior classification by applying rule-based
classifiers (de Chaumont et al., 2012), or supervised (Burgos-
Artizzu et al., 2012; Kabra et al., 2013) and unsupervised
(Berman, Choi, Bialek, & Shaevitz, 2014; Schwarz,
Branicky, Grundy, Schafer, & Brown, 2015) ML methods to
train classifiers. Alternatively, semi-supervised and weakly
supervised learning may be introduced in this context, al-
though only modest progress has been made here (Egnor &
Branson, 2016; Lorbach, Poppe, & Veltkamp, 2019; Robie
et al., 2017).

Nevertheless, as expected, the estimation of an animal’s pose
in 2D is unsatisfactory in most cases. Therefore, some studies
have begun to address the problem in three dimensions (3D),
usingmultiple conventional cameras, or cameras capable of com-
bining color and depth sensing (RGB-D cameras) (Hong et al.,
2015;Matsumoto et al., 2013;Wang,Mirbozorgi, &Ghovanloo,
2018).

The present study describes a novel computational so-
lution for automated, markerless 3D segmentation and
tracking (in static and dynamic environments) of both
whole-body and body parts in experiments with a single
freely behaving rodent. This tool uses low-cost RGB-D
sensors and machine learning/computer vision techniques
to precisely quantify behavioral features in 3D space.
Given its focus on automated classification and tracking
in depth (z-axis), our computational tool is called CaT-z.
The tool is tested and validated in controlled experiments
to assess its performance and precision. It is made freely
available to the research community in order to foster
reproducible and reliable quantitative behavioral analysis
in labs with limited resources.

The CaT-z software is publicly available for download at
GitHub: https://github.com/CaT-zTools/CaT-z_Software. The
open-access dataset (41 GB) is also publicly available for
download at Zenodo: https://doi.org/10.5281/zenodo.
3636136.

Materials and methods

Behavioral protocol

Behavioral experiments for dataset construction and system
validation were conducted during three consecutive weeks
for each animal (n = 2). Inside the experimental environment
(an opaque acrylic open-field cage, 1 × 1 × 0.5m, made in-
house), three types of light conditions were alternatively used:
dim red light, dim white light, and total darkness (Fig. 1a).
Animals were recorded while moving freely for 15minutes,
using CaT-z software. For behavioral phenotyping studies,
Wistar Kyoto rats (WKY; n = 10) and wild-type rats (n = 10)
were subjected to the elevated plus maze (EPM) test (standard
apparatus). Animals were allowed to freely explore the maze
for 5 minutes. The following measurements were taken: per-
centage of time spent in the open arms, percentage of time
spent in center arena, and total distance, as well as automated
classification of seven behaviors (see below).

Video acquisition

RGB-D videos were recorded using a Microsoft Kinect v2
camera, with 1920 × 1080 color and 512 × 424 depth pixel
resolution. It records at a maximum of 30 frames per second
(fps), but in low light conditions, this value drops to 15 fps

Fig. 1 RGB-D behavioral dataset. (a) RGB and depth frames under three
different lighting conditions: dim red light, dim white light, and total
darkness. (b) Depth frames for the seven types of rodent behaviors
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(typically). The operating range is from 0.5 to 4.5 m, with a
spatial resolution of ≈2 mm. The camera was placed centrally
above the open field (OF) and the EPM (at a height of 1.20 m,
to fully include setup dimensions) and connected to a comput-
er. A pre-heating time of 30 minutes for the camera was
adopted for stabilization of the depth sensor (Lachat,
Macher, Landes, & Grussenmeyer, 2015).

Manual annotation of rodents’ behaviors

The RGB-D dataset containing frames for supervised classi-
fication (ground truth) was fully annotated by researchers with
experience in ethology, with one of seven mutually exclusive
behavioral labels: standstill, local exploration, moving explo-
ration, walking, supported and unsupported rearing, and
grooming (Table 1 in Appendix 2; see Fig. 1b for examples).
An extended list of classes is sometimes not necessary, or
advisable (increased subjectivity), and consequently a simpli-
fied list was also considered: Standstill+ (standstill and local
exploration), Walking+ (walking and moving exploration),
Rearing (unsupported and supported rearing), and
Grooming. The CaT-z software also includes an interface for
manual annotation, which was used for the manually annotat-
ed dataset for the supervised classification algorithms
(“ground truth”). Regarding the observation method, the an-
notation interface enables the construction of the animal’s
ethogram based on focal-animal annotations, and all actions
of one animal are annotated for a specified time period (all
video frames are annotated).

The level of agreement between observers for the an-
notated dataset was calculated using two different metrics.
In the frame-based approach, a one-frame tolerance was
allowed in the transitions. In the quality-based approach,
the number of matching (overlapping) behavior periods
between observers was used.

For the WKY/Wistar EPM experiments, seven mutual-
ly exclusive behaviors were also defined: standstill+ (lo-
cal exploration and standstill), walking+ (walking and
moving exploration), rearing (supported and unsupported
rearing), head dipping (snout sloping down from the EPM
and body standing in the same place with the four legs in
the open arms ), protective head dipping (snout sloping
down from the EPM and body standing in the same place
with at least one limb in the closed arms ), stretch-attend
posture (SAP; hind legs remaining stationary and body
extending forward with head raised), and grooming (see
Table 1, Appendix 2, for definitions).

Tracking and classification algorithms

Four computational components are addressed in our method
(Fig. 1, Appendix 2): animal segmentation, tracking, feature
detection, and classification. All algorithms were

implemented in C++ language, for computational perfor-
mance, and using the Qt Creator (The Qt Company, Finland)
environment to integrate the algorithms in the user-friendly
CaT-z software. Three graphical user interfaces (GUIs) were
developed to support video acquisition, annotation, and pro-
cessing (segmentation, tracking, and classification of behav-
ioral data).

Animal detection and trackingAnimal segmentation was per-
formed using three different background modeling methods.
The static median difference method sets a static background
model using the median of the pixels over a set of initial
frames. A 2D median filter (5 × 5 size) was also applied.
Along the frames, the foreground detection was performed
by computing the difference between the current frame and
the background model.

In order to cope with dynamically changing environments
(e.g. bedding material, small objects moving/(dis)appearing),
two other algorithms were developed. Both methods are ini-
tialized with a background model similar to the static method.

The landscape change detection (LCD) method uses
the background subtraction technique but updates the
background model continuously. The updating algorithm
uses the assumption that local environment modifications
are smaller than the animal’s area. The background model
is updated using information from the current frame to
incorporate possible objects that (dis)appeared/moved in
the frame. Finally, the probabilistic Gaussian mixture
model (GMM) was adapted from (Stauffer & Grimson,
1999) to incorporate 16-bit depth images in the processing
algorithm and improve background estimation.

The validation of these methods under dynamic environ-
ments was performed using a controlled synthetic dataset.
This dataset consisted of 1000 depth frames whose intensity
values followed a normal distribution of mean 1000 mm and
standard deviation 5 mm (experimental precision value of this
depth sensor). A dynamic environment was simulated by syn-
thetically creating well-defined dips or rises in the depth map.
The validation was performed by comparing background
models and ground truth.

Body part detection and tracking From the 3D segmented
animal, five anatomical points were tracked: nose, head, body
center (centroid), tail base, and tail end. Importantly, these
landmarks were estimated using scale-free geometric con-
straints/properties. For example, after determining the rodent
body contours, the tail end is defined as the furthest contour
point from the centroid (independent of animal size). Simple
heuristics were implemented to check the validity of the de-
tected body part locations (for example, discrepancy between
the positions in consecutive frames). Frames with uncertain
body part detection are flagged, and this information is later
used for the frame classification (see Table 2 in Appendix):
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not only is this flag important for signaling tracking anoma-
lies, but also, interestingly, the absence of particular body parts
(e.g. by occlusion) itself can help in detecting certain behav-
iors (for example, during grooming events, the nose is fre-
quently not detected).

The performance of the body part detection algorithm
(which relies on scale-free geometric rules) was evaluated by
comparing the automated tracking results with manually an-
notated locations of body parts in a set of 600+ frames.

Feature extraction For the automatic classifiers, low-level
representations of behavior were organized into “features”
describing trajectory-based aspects and shape-based infor-
mation (Table 2, Appendix 2). In order to add information
from previous frames (temporal memory) and to help dis-
tinguish between behaviors with different temporal dy-
namics, the feature sets for each frame were combined
with the features from ~1 second in the past, obtaining a
final set of 22 features for each time point. The features
were normalized using Z-score transformation.

Automated behavior classification The support vector ma-
chine (SVM) classifier was selected for supervised and
multiclass behavior recognition (Boser, Guyon, & Vapnik,
1992). A nonlinear classifier with a radial basis function ker-
nel was used. The best combination of SVM parameters was
selected by grid search, and the parameters with higher cross-
validation accuracy were selected, using a k-fold cross-
validation approach (k = 5) on the training set.

Performance was estimated using the leave-one-video-
out technique, where all but one video of a pool of n
videos were used to train the model, and the performance
was evaluated on the remaining video. This procedure
was repeated n times for all videos. Learning curves were
constructed to show the classification performance as a
function of the training dataset size, and to determine
the minimum n size to construct this pool of videos.

Model predictions for all the testing frames were filtered
(with a 5 × 5 median filter) to reduce erroneous classification
of isolated frames, and then concatenated to compute the over-
all accuracy (ratio of correct frames) and performance per
class using confusion matrices and the F1-score. The F1-
score is the harmonic average of the precision and recall,
ranging from 0, with no correct predictions, to 1 for perfect
precision and recall, calculated as follows:

F1 score ¼ 2� precision� recall
precisionþ recall

where precision ¼ true positive
true positiveþfalse positiveð Þ and recall ¼ true positive

true positiveþfalse negative

This metric is better suited for datasets with behaviors
that occur with different frequencies ( Lorbach et al.,
2018). This leave-one-video-out approach provides the

best estimate of the future performance of a classifier,
and was also applied to avoid testing bias due to the
consecutive frames effect and “double-dipping”
(Kriegeskorte, Simmons, Bellgowan, & Baker, 2009).

When studying the activity of WKY rats inside the EPM,
only RGB-D data from Wistar rats was used to train the clas-
sifier, but bothWistar and WKY data was used as testing sets.

Behavioral phenotyping

The ability to detect behavioral differences (phenotyping)
between different strains was assessed using a k-nearest
neighbor algorithm (k-NN). This choice served the pur-
pose of demonstrating that even a simple classifier can
be used for this step. The model’s accuracy and posterior
probabilities of belonging to the control class were calcu-
lated for both the Wistar and WKY strains in order to
select a reduced set of metrics and to construct a behav-
ioral profile for phenotyping of the strains.

The extended methodology is presented in Appendix 1.

Results

An RGB-D behavioral dataset to promote advances
in computational ethology

As in other fields, important contributions to computational
ethology can arise from ML researchers not directly engaged
in behavioral experiments. The availability of large, public,
annotated datasets is therefore of fundamental importance to
empower these contributions. With this in mind, instead of
producing a specific dataset for developing CaT-z, we have
compiled a general-purpose dataset, which is made public to
catalyze new developments in computational ethology and
automated classification of rat behavior activity.

The produced RGB-D dataset was compiled from
videos and respective behavior annotations that capture
freely walking Wistar rats in an OF arena. The OF was
chosen since it is a standard setup commonly used in
ethology studies to measure behavioral and locomotor ac-
tivity in animal models (Belzung, 1999; Cryan & Holmes,
2005; Overstreet, 2012). The dataset is composed of sev-
eral ~10/15-minute RGB-D video sequences of individual
rat behavior, where the animal is allowed to move freely
inside the OF cage (Fig. 1). Three different lighting con-
ditions were used (Fig. 1a) to recreate the typical light
setups used in behavioral recordings. Total darkness is
the ideal lighting condition for the animals’ active phase,
but it is usually replaced by dim red light or dim white
light due to limitations of the standard recording systems.
The full dataset consists of 24 videos, with a total of 6
hours: 4 hours of fully annotated sequences (for
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supervised ML methods; ~180,000 annotated frames) and
2 additional hours of raw behavioral sequences (adding
data for unsupervised ML methods).

Every RGB-D video frame in the annotated dataset was
manually labeled with one of the seven mutually exclusive
rat behavioral labels (Fig. 1b), by researchers with experience
in ethology. These specific behaviors were selected as they are
commonly used in manual scorings in neurobehavioral re-
search. Information regarding the frequency of each behavior-
al event within the annotated dataset, which ranges from 2.5%
for walking events to 37.9% for local exploration events, is
described in Table 1 in Appendix 2.

In the manual annotation of animal behavior, reliability
between human observers is typically limited to 70–80%
(Anderson & Perona, 2014; Spruijt & DeVisser, 2006). This
limitation was, in fact, a core motivation for this work. In the
annotated dataset, the average level of agreement between the
observers was 83.3% ± 5.7 in a frame-based approach (n =
21,988 frames), and 81% ± 0.8 in a quality-based approach
(agreement on behavioral type; please see Materials and
Methods). Taken together, these results reveal that both agree-
ment scores for the annotation of this dataset are consistent
with the reported range. The full open-access dataset is freely
available for download at Zenodo: https://doi.org/10.5281/
zenodo.3636135.

Depth information improves whole-body
segmentation in both static and dynamic background
conditions

Animal segmentation, a challenging problem in RGB video
sequences, is significantly improved and facilitated using
depth information combined with the implemented static/
dynamic background algorithms (Fig. 2). In the segmented
images, it is possible to visually distinguish specific body
parts such as tail, snout, and upper and lower limbs (Fig.
2a). For different lighting conditions, there were no differ-
ences in detection performance, which means that animal de-
tection is independent of ambient lighting.

The performance of the three background segmentation
algorithms (standard static, modified GMM, and the new
LCD algorithm) was quantified in controlled dynamic back-
ground landscapes (Fig. 2, Appendix 2). The results showed
that the LCD method is more effective at dealing with back-
ground changes, incorporating them quickly into its depth
profile: as the background changes, the pixel depth values
change instantaneously, allowing a more accurate estimate
of the background. In turn, the modified GMM method also
incorporates pixel modifications in the estimated background,
but much more slowly than the LCD method, which is con-
sistent with the defined learning rate. As expected, the widely
used static median difference method has very limited perfor-
mance in dynamic environments.

Tracking multiple anatomical landmarks in 3D

Geometric methods for the detection of body parts greatly
benefit from depth information, enabling the detection of
the 3D trajectories of each anatomical landmark. Using
these representations, it is possible to identify subtle fluc-
tuations in depth which would not be discernible by visual
inspection (Fig. 2b).

Overall tracking performance was assessed by comparing
automatically predicted coordinates with the manually labeled
ones (Fig. 3). In particular, automatically detected positions of
the animal’s body center are in very high agreement with the
carefully manually traced trajectories (Fig. 3a). The trajecto-
ries overlap along the frames, with a 5% error in the estimation
of the distance traveled by the animal. The errors in estimating
the traveled distance can be driven by differences between the
visual estimate of the animal's body center and the centroid
mathematical estimate, which is affected by other segmented
body parts (e.g., tail). For each labeled frame, the x- and y-
coordinate differences between predicted and manually de-
fined body center coordinates were computed for error quan-
tification (Fig. 3b). The differences in most cases (median)
were less than 2 pixels (Fig. 3b). In fact, a difference of 2
pixels between the predicted and manually labeled body cen-
ter coordinates is barely noticeable and is within the variability
of human annotation (Fig. 3c).

The system is also able to automatically locate the position
of landmarks for a variety of animal postures (Fig. 3d, e).
Nevertheless, when the animal is in ambiguous poses, the
performance is reduced (Fig. 3f). Globally, the performance
of the system is very high, with the majority (median) of the
landmark detection errors being below 2 pixels for the nose
and tail-base anatomical points, 4 pixels for the head estimate,
and 1 pixel for the tail-end point detection (Fig. 3g–j). The
geometric algorithms defined to determine the anatomical
points are scale-free, making the tracking system robust to
changes in animal size.

Automated behavior classification using depth
information

The proposed automated classification system, based on
multiclass SVMs, shows the capability to attain high perfor-
mance levels even if trained with only 30minutes of annotated
video recording (Fig. 4). As the number of training examples
increases, the mean gap between the validation and training
scores narrows, and from a training set size of 30,000 examples
(≈30-min video), both scores stabilize. This level of perfor-
mance is observed using either simplified or extended annota-
tions, corresponding to either four or seven different types of
behaviors (Fig. 4a and b, respectively). The performance levels
were assessed using a 5-fold cross-validation approach and
avoiding testing bias problems (see Methods). The 30-minute
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figure is important, as compared with the very large training
datasets required by other approaches, particularly deep learn-
ing. It means that the manual annotation effort may be mark-
edly reduced in supervised training approaches. For consisten-
cy, the results presented from here on were all obtained with
training datasets with roughly 30minutes of video.

Standard methods for automated behavior analysis
(EthoVision XT, Noldus, Netherlands; SMART, Panlab, Spain;
Kabra et al., 2013) are not fully functional under total dark con-
ditions, which is an important limiting factor for recording natural
rodent behavior. Our methods are independent of ambient light
conditions (dim red, dim white, and total darkness) as shown by
automated classification accuracy and F1-scores (Table 3,
Appendix 2). Moreover, the system generalizes among different
lighting conditions; for example, dim red light videos can be used
for training and total darkness for testing (Table 3, Appendix 2).

For a detailed analysis of the classification errors for each
type of behavior, we constructed confusion matrices, showing
the combinations of predicted and real/annotated values
(examples in Fig. 4c, d). For the simplified annotations (four

classes), the average accuracy was 84.9%, with high F1-score
values for all behaviors (Fig. 4c), whereas in the extended
annotations (seven classes) the average accuracy was 76.9%.
In both conditions, the presently defined features for the SVM
classifier enable the system to correctly recognize most behav-
iors (Movie 1, Appendix 2). In the extended annotations, the
current system shows some limitations. Walking periods be-
long to the most misclassified behaviors, occasionally classi-
fied as moving exploration, leading to low F1-scores. Also,
F1-scores for standstill are very low, or not possible to calcu-
late due to lack of representativeness in the training set.

The automated classification methods presented here allow
the direct generation of ethograms to describe the behavioral
data, and the time spent on each behavior (Fig. 4e).

CaT-z: a user-friendly computational solution
for quantifying animal behavior

Acknowledging the paramount importance of encapsulating
all algorithms in a user-friendly application suited for

Fig. 2 Depth information improves whole-body segmentation.
Segmented depth frames, using the static median difference method for
background removal, capturing (a) three different behaviors: unsupported
rearing (left), local exploration (middle), and supported rearing (right).
Background pixels in black. Maximum depth values (240 mm) in white.

Depth colormap in mm. (b) Body part tracking (centroid and nose) and
their depth profile. Top: Two sequences of segmented depth frames with
identification of some body parts: centroid (in orange) and head (in yel-
low). Bottom: Corresponding depth profile (in mm) for the centroid and
head points in the depth frames sequences
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laboratory environments, an effort was made to create an in-
tegrated, easy-to-use, and freely available software that works
off the shelf—CaT-z. This computational tool contains three
different modules to support annotation and recording of
RGB-D frames, and automated tracking and classification of
rodent behavior (Fig. 5). The graphical user interface (GUI)
for RGB-D data visualization and annotation (Fig. 5a) allows
the manual scoring of color and depth frame, simultaneously
into user-defined behaviors. Depth frames can be displayed in
three different visualizations, and RGB-D videos can be
played using media controls (in different velocities). During
annotation, a behavioral ethogram is automatically updated to

give color feedback on the behaviors previously identified. It
is possible to resume an unfinished annotation, and finally, the
data is saved in .csv format for later use in automated behavior
analysis. To the best of our knowledge, such RGB-D data
annotation tools are not presently available.

New RGB-D data can be acquired using the data ac-
quisition GUI (Fig. 5b), and later annotated or analyzed
by the tracking/behavior classification GUI (Fig. 5c).
Segmentation and tracking are performed using different
available methods, and a particular region of interest can
be selected. Body-part tracking information (x-, y-, and
z-coordinates) can be exported to a user-defined

Fig. 3 Multiple anatomical landmarks can be accurately tracked in 3D.
(a–c) Comparison between manually defined body center and
automatically predicted coordinates for a 40-second frame sequence. (a)
Manually traced (gray) and predicted (orange) trajectories inside the
open-field cage. (b) x- and y-coordinate differences, in pixels, between
manually defined and predicted centroid coordinates. Colorbar indicates
x- and y-coordinate difference occurrences. The circle in magenta (2-pixel
radius) represents 50% of the results. (c) Example images with manually
defined body center (gray) and predicted (orange) coordinates, where the

distance is equal to the median value (2 pixels). (d–f) Examples of body
part detection in several frames of a single video. (f) An example of
incorrect detection of tail-base and nose body parts. (g–j) Histograms of
coordinate differences, in pixels, between manually defined and predicted
body part coordinates, for a 46-second frame sequence. Colorbar indi-
cates x- and y-coordinate difference occurrences. The circle, in magenta,
represents 50% of the results, whose distance radius is 1.0, 2.1, 2.2, and
4.0 pixels for (g–j) histograms, respectively. Scale factor calculated using
open-field setup dimensions (scale factor = 3.2 mm/pixel)
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directory. Finally, using previous tracking information
and annotated data, the classifier can be trained, tested,
or applied for the recognition of new behavioral data.
The GUI also allows the classifier to be trained with
multiple videos simultaneously, without the need for
multiple launches. Importantly, CaT-z is made available
to the community with a detailed user manual and
tutorial/walkthrough videos (https://github.com/CaT-
zTools/CaT-z_Software).

Ability to distinguish between strains: automated
behavioral phenotyping

The behavioral profile of WKY rats was quantitatively com-
pared with that of Wistar rats using CaT-z. The system was
capable of automatically detecting behavioral differences be-
tween strains (behavioral phenotyping) (Fig. 6). Specific
ethology metrics were calculated from the tracking data to
assess the degree of activity within EPM: percentage of time
in open arms, total distance traveled, and percentage of time in
the EPM center. In most cases, no significant differences were
found between genders within the same strain (Fig. 3,
Appendix 2), and therefore the gender variable was dropped.

As expected, WKYs generally spend less time in the open
arms of the EPM (p < 0.05), since they are a strain character-
ized by high levels of anxiety and depression, as well as less
time in the center of the EPM (p < 0.05) (Fig. 6a). There also
appears to be a decrease in the traveled distance inWKYwhen
compared to Wistar rats (but not reaching statistical signifi-
cance). These results are consistent with the fact that WKY
animal behavior is generally less exploratory (D'Souza &
Sadananda, 2017; Langen & Dost, 2011).

The specific set of types of behaviors for the EPM were
quantified and compared between strains, and, as before, no
differences were found between genders within the same
strain (Fig. 3, Appendix 2). When comparing the two strains
(Fig. 6b),WKYanimals spent less time in rearing periods than
the Wistar rats (p < 0.01), whereas there were no statistically
significant differences between groups in the other behaviors.

The combination of the metrics %time walking, %time
rearing, and %time in the open arms enable a high discrimi-
nation power when comparing strains using a k-NN classifier
(Fig. 6c): accuracy of 79% and average posterior probabilities
of 96% ± 12.6 and 25% ± 15.4 for a control or WKY sample,
respectively, belonging to the control class. In addition, and
according to the confusion matrix using these metrics, two in
every ten WKY rats were misclassified as belonging to the
control class (20% false-positives rate), while 22% of the con-
trols were misclassified as not belonging to the Wistar class
(false-negative rate).

Fig. 4 Automated behavioral recognition performance. (a), (b) Learning
curves of trained model for the recognition of four (simplified
annotations) or seven (extended annotations) behaviors, respectively.
Results represented as mean (filled line) and SD (colored shadow) for
training (blue) and cross-validation (orange) scores. (c), (d) Examples of
normalized confusion matrix of automated behavioral recognition and
corresponding F1-scores, for four or seven classes, respectively. (e)
Example of ethogram for manual annotations (gray) and automated be-
havioral recognition labels (orange), over 300 seconds of testing video
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Fig. 5 CaT-z: a free computational solution for quantifying animal
behavioral features in depth (z). Graphical user interface (GUI) of the
applications developed for (a1) RGB-D frames visualization and

annotation (main window); (a2) dock window for the annotation; (b)
RGB-D data acquisition (dark mode for animal facility environments);
(c) 3D segmentation, tracking and behavior classification
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Thus, the results show that, although statistically signifi-
cant differences are not found in isolated metrics, when they
are combined, it is possible to distinguish the two strains with
a 79% degree of accuracy. Furthermore, it is possible to con-
struct behavioral profiles characteristic of each strain, with
20% false positives.

Discussion

The core goal of this work was to develop a free and fully
integrated system for 3D segmentation, tracking, and classifi-
cation to automatically detect and quantify behaviors in ro-
dents. With the developed algorithms, the CaT-z tool is capa-
ble of performing segmentation of a single animal’s whole
body in complex backgrounds, tracking multiple body parts,
and detecting different behaviors. These methods are embed-
ded in a user-friendly software package, supported by a pub-
licly available manual. The outputs of this tool include 3D
coordinates of body parts, automatically predicted behaviors,
and, if applicable, corresponding performance metrics. From
the 3D coordinates, one can construct trajectories and extract
other motor parameters, such as distance traveled, average
velocities, and periods of active movement.

Importantly, this work also introduces the first publicly
available RGB-D rat behavioral dataset that is suitable for
training automated behavior recognition in rodents, catalyzing
new ML developments.

From the results, it was shown that 30minutes of annotated
video of freely walkingmovement is already sufficient to train
our multiclass SVM classifier and attain accuracy levels com-
parable to the level of agreement in human observers (70–
80%). The 30-minute figure is worth emphasizing, since other
methods, namely deep learning, typically require many hours
of annotated videos to reach high accuracy levels (but see
Mathis et al., 2018; Pereira et al., 2019). The ability to gener-
alize is also fundamental in ML systems and, as demonstrated
with the phenotyping experiments, CaT-z is able to cope not
only with different setups but also with new types of behavior
(without the need to redefine the features).

The use of depth sensors in analyzing animal behavior
includes advantages that go well beyond simply adding a
third dimension. Several research groups have considered
its potential application for segmentation and tracking of
rodents (Ou-Yang, Tsai, Yen, & Lin, 2011; Paulino
Fernandez, van Dam, Noldus, & Veltkamp, 2014), as well
as to estimate their pose, and social and nonsocial inter-
actions (Hong et al., 2015; Matsumoto et al., 2013; Wang
et al., 2018). However, limitations such as marker impo-
sition, basic pose/behavior recognition, manual interven-
tion, integration in a user-friendly public software, or in-
sufficient classifier performance have limited their use. In
addition to presenting important advantages over other

Fig. 6 Distinction between Wistar Kyoto strains (behavioral
phenotyping) made easy using RGB-D information. (a) Motor activity
measurements inside the elevated plus maze, for Wistar control (blue
circles) and Wistar Kyoto (orange squares) rats. Data represented as me-
dian ± 95% confidence interval. *p < 0.05. (b) Radar plot of automated
classification of behaviors for Wistar control (blue) and Wistar Kyoto
(orange) rats. Solid lines (both blue and orange) represent median values.
Shaded areas (both blue and orange) represent ± 95% confidence interval.
*p < 0.05. (c) Three-dimensional representation of clustering results, for
Wistar control (blue area) and Wistar Kyoto (orange area) rats, regarding
three features: % of time moving, rearing, and in open arms. Blue circles
and orange squares represent well-classified points, forWistar control and
Wistar Kyoto, respectively. Blue circles with orange margin represent
misclassified points, regarding the decision region of the clustering algo-
rithm: both points should belong to the Wistar control area but were
misclassified as Wistar Kyoto points. Standstill (S); Walking (W);
Rearing (R); Head dipping (HD); Protective head dipping (PHD);
Grooming (G)
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approaches, CaT-z can be used to compare behavioral pro-
files (“behavioral fingerprints”) of different strains. Previous
studies have shown that WKY rats exhibit a combination of
anxiety- and depressive-like behaviors, as well as hypoactivity
and decreased locomotion and social interaction levels (Burke
et al., 2016; D'Souza & Sadananda, 2017; Langen & Dost,
2011). With our system, we were able to automatically quan-
tify several behavioral differences that confirm these findings.
More importantly, it was possible to automatically predict the
strain of individual animals (with low false-positive and false-
negative rates). While automated behavioral phenotyping can
be achieved in some conditions using home-cage 2D video
data (EthoVision XT, Noldus, Netherlands; Jhuang et al.,
2010), this process can be greatly facilitated and improved
when 3D information is available. Currently available solu-
tions for automated behavioral phenotyping are often very
expensive and are limited to constrained/controlled environ-
ments (HomeCageScan, CleverSys Inc, USA; LABORAS,
Metris, Netherlands; PhenoCube, PsychoGenics, USA) or re-
quire the use of radio-frequency identification (RFID) im-
plants which may affect animal behavior itself (IntelliCage,
TSE, Germany; Weissbrod et al., 2013). For all of these rea-
sons, we are convinced that CaT-z has an important role to
play in the computational ethology landscape.

The CaT-z software is freely available for download at
GitHub (https://github.com/CaT-zTools/CaT-z_Software).
The open-access dataset (41 GB) is also available at Zenodo
(https://doi.org/10.5281/zenodo.3636136).
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