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Abstract
We describe a novel method of Bayesian inference for hierarchical or non-hierarchical equal variance normal signal detection
theory models with one or more criteria. The method is implemented as an open-source R package that uses the state-of-
the-art Stan platform for sampling from posterior distributions. Our method can accommodate binary responses as well
as additional ratings and an arbitrary number of nested or crossed random grouping factors. The SDT parameters can be
regressed on additional predictors within the same model via intermediate unconstrained parameters, and the model can
be extended by using automatically generated human-readable Stan code as a template. In the paper, we explain how our
method improves on other similar available methods, give an overview of the package, demonstrate its use by providing a
real-study data analysis walk-through, and show that the model successfully recovers known parameter values when fitted to
simulated data. We also demonstrate that ignoring a hierarchical data structure may lead to severely biased estimates when
fitting signal detection theory models.
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Introduction

Many tasks used in psychology studies are essentially
classification tasks. In a memory study, for example,
participants may be required to decide if a given test
item is old or new, or, in a perceptual study, an object
may be either a letter or a digit. If a task requires
classification, it is always possible that conclusions based
on accuracy or percent correct are invalid because the ability
to discriminate between stimulus classes (i.e., sensitivity)
is confounded with bias, which is a tendency to classify
stimuli as belonging to a particular class. In principle, any
effect that manifests itself in differences in classification
accuracy may reflect differences in sensitivity, bias, or both.

Signal detection theory (Peterson et al., 1954; Tanner &
Swets, 1954) provides a simple and popular solution to this
common problem: according to Google Scholar, the seminal
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book by Green and Swets (1966) which introduced SDT to
psychology researchers was cited more than 15,000 times
before the year 2020. Despite the fact that the theory solves
a common and important problem and is even described
in cognitive psychology handbooks, there are reasons to
believe that it may be heavily underutilized (Stanislaw &
Todorov, 1992).

Because the SDT model is non-linear, variability in its
parameters due to factors such as participants or items
has to be accounted for. When they are not accounted
for, e.g., by aggregating data across participants or items,
the estimates of SDT parameters are asymptotically biased
(Rouder & Lu, 2005). As we explain later in this paper,
none of the available methods of inference for hierarchical
SDT models that we are aware of addresses this problem
in its full generality, meaning that none of the available
methods allow for fixed and random effects in both the
sensitivity and the criteria parameters while restricting the
parameters in accordance with SDT assumptions. Later
in the paper; we explain why, in our view, the bhsdtr
package for R (R Core Team, 2017), which we have made
publicly available at https://github.com/boryspaulewicz/
bhsdtr, provides a correct implementation of the general
hierarchical linear regression structure defined on SDT
parameters. This package repository also contains the
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annotated source code that was used to perform all the
analyses and produce all the figures presented in this paper.

In what follows, after introducing the most common
version of the SDT model, we describe its generalization,
which can accommodate data from rating experiments. Note
that our brief introduction to the SDT theory is meant as
a refresher—the reader interested in a more comprehensive
treatment is advised to consult any of the three most popular
contemporary books on this subject, i.e., McNicol (2005),
Wickens (2002), or Macmillan and Creelman (2004), listed
here in order of increasing mathematical sophistication.

After describing the generalized SDT model, we explain
why, if a method of inference for SDT models were to be
of general use in psychology studies, it is important that it
is based on a model equipped with a correct hierarchical
linear regression structure. The bhsdtr package meets
this requirement thanks to a novel parametrization; we
describe this and explain how reliance on relatively standard
parametrizations leads to problems in the three other
available implementations. We end the first part of this
paper with a formal definition of the model as implemented
in bhsdtr. The second part contains an overview of the
package and a tutorial in which we demonstrate how to use
our method in practice, as well as a demonstration of bias
resulting from ignoring the effects of grouping factors.

Equal variance normal signal detection
theorymodel with additional criteria

According to signal detection theory, each stimulus in a
classification task gives rise, by some unspecified cogni-
tive process, to a unidimensional internal evidence value s

sampled from a distribution that depends on the stimulus
class. For historical reasons, the two stimulus classes are
often referred to as “noise” and “signal”, and task perfor-
mance is described in terms of hits (when the participant

responds “signal” to signals), correct rejections (respond-
ing “noise” to noise stimuli), omissions (responding “noise”
to signals), and false alarms (responding “signal” to noise
stimuli), but this terminology is appropriate only when the
model is applied to tasks that require detection, which is
far from always being the case. To emphasize the general
applicability of SDTmodels, we will use the classical termi-
nology only at the beginning of our paper, and later we will
mostly talk about two arbitrary kinds or classes of stimuli,
indexed by the numbers 1 and 2.

In the most widely used version of the model, shown
in Fig. 1, the two evidence distributions are normal with
the same variance, which is usually fixed at unity to
make the model identifiable. The distance d ′ between the
means of the evidence distributions represents sensitivity.
Because normal distributions are unbounded, s is always
ambiguous, and so a criterion c placed on the evidence axis
has to be used to reach a binary decision. A participant
is assumed to decide that a stimulus belongs to the first
class (e.g., an old item or “noise”)) if s < c , or
that it belongs to the second class (e.g., a new item or
“signal”) if s ≥ c. The location of the decision criterion
may be interpreted in terms of classification or response
bias.

Perhaps the simplest way of using this model is to fit
it to observed response counts and use the estimated d ′
values in place of the percent correct (p(c)) scores; if the
model is correct, the resulting performance measure is not
contaminated by bias. The model may not be correct, which
in our view is the most important reason to focus more on
the generalized version shown in Fig. 2 below.

This generalized model is applicable to studies in which
participants are asked to rate their binary classification
decisions on confidence or some other performance- or
stimulus-related dimension. The ratings and the binary
classification decisions can be provided together (e.g., “I am
almost certain that it was a digit”), or in an arbitrary order.

Fig. 1 Equal-variance normal signal detection theory model. The s-axis represents the evidence space; the left-most (right-most) density curve
represents the distribution of internal evidence for the noise (signal) stimuli (stimulus class 1 and 2, respectively); c is the decision criterion, and
the distance d ′ between the distribution means represents sensitivity
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Fig. 2 Equal-variance normal signal detection theory model with additional criteria. This is the same model as in Fig. 1, but there is more than
one criterion. The response y is a single number that combines the binary classification decision and the rating. Larger y values correspond to
increasing certainty that the stimulus is of type “signal” (stimulus class 2)

Ratings are accommodated by introducing additional
criteria and modeling a combined response y, which
represents both the binary classification decision and rating
as a single number. The value of y increases with the
strength of evidence in favor of the second stimulus class.
For example, if confidence is rated on a four-point scale,
then y = 1 when a participant decides that a stimulus
belongs to the first class with certainty 4, and y = 5 when
a participant decides that a stimulus belongs to the second
class with certainty 1. More formally, if K is the number of
possible combined responses, then a participant is assumed
to give response k if s ∈ (ck−1, ck], where c are the decision
criteria, with c0 and cK fixed at −∞ and +∞, respectively.

There is a good reason to collect the ratings and use
the generalized SDT model from Fig. 2, even when neither
the ratings nor the placement of criteria are relevant to the
research problem.WhenK = 2 (no ratings), the SDTmodel
fits perfectly (it is saturated), regardless of whether it is a
reasonably good approximation to reality, because the data
and the model have the same dimensionality. This makes the
generalization to the K > 2 case particularly important, as
the formal assumptions of the model (e.g., equal or unequal
variance) can only be tested when K > 2.1

The model is usually tested by comparing the empirical
and the implied receiver operating characteristic (ROC)
curves, which represent the relationship between the hit rate
(p(H)), the false-alarm rate (p(F)) and d ′. An example
of the empirical ROC curve is shown later in the paper
(see for example Fig. 6). Each curve in the implied ROC
space represents all the possible pairs of p(H) and p(F)

1In contrast to the formal assumptions, a psychological interpretation
of the SDT parameters can be tested even when ratings are not
available, e.g., by means of selective influence (Sternberg, 2001)

values that correspond to some unique d ′ value. If the
observed points corresponding to the pairs of hit and false-
alarm rates for the same d ′ value do not lie on the same
implied isosensitivity curve, the distributional assumptions
may be false. This may be easier to see when using
the zROC plot, which shows the relationships between
z(H) and z(F ), because the z transform turns the original
ROC curves into straight lines. In particular, if the equal
variance normal SDT model is true then all the zROC slopes
equal 1.

A false SDT model cannot be trusted to serve its main
purpose of deconfounding sensitivity from bias and it is in
fact not uncommon that results are obtained that seem to
falsify an SDT model; for example, the survey studies by
Swets (1986) and Swets and Pickett (1982) indicate that
the slopes of empirical zROC curves are often different
from unity. That is why we believe that the additional
complexity introduced by collecting and modeling the
ratings is more than justified, unless—for some reason—it
defies the purpose of the study.

As we later explain, in a typical case there are
also good reasons to complicate the model even further
by supplementing it with a regression structure. When
SDT models are used in psychology studies, researchers
are usually interested not in the values of the SDT
parameters themselves but in the relationships between
SDT parameters and additional measured or manipulated
variables; a good example is the dependence of d ′ on
stimulus strength. Also, in a great majority of psychology
studies in which classification tasks are used, the data have
a hierarchical structure, i.e., there are repeated measures
for each participant or item, and participants or items are
only samples from the target population. A general-purpose
method of inference for SDT models should accommodate
both kinds of situations.
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The importance of a correct hierarchical
regression structure

If data have a hierarchical structure, but variability due
to participants, items, or other grouping factors is not
accounted for, estimates of average (fixed) effects are
not guaranteed to be unbiased and conclusions are not
guaranteed to generalize to the target population.

The not uncommon practice of analyzing data aggregated
over grouping factors represents an extreme case of ignoring
hierarchical data structure. The invalidity of this approach
in the context of SDT was clearly illustrated with the results
of simulational studies by Morey et al. (2008); however,
strictly speaking, such demonstrations are irrelevant to
proving the invalidity in question. Because SDT is a
non-linear model, by definition, when estimates of its
parameters are based on data aggregated over sampled
factors—e.g., d ′ estimated for hits and false alarms averaged
over participants or items—the expected values of these
estimates (e.g., what the calculated d ′ actually estimates)
are not in general true population averages (true d ′ in
some condition). In fact, such estimates are asymptotically
biased, which means that increasing the sample size will
not make the bias disappear and any inference about a
target population based on such estimates is simply not
valid. To give a concrete example, consider two unbiased
participants, one with d ′

1 = 2 and one with d ′
2 = 4.

Their expected average accuracy is given by (�(d ′
1/2) +

�(d ′
2/2))/2 = .91, which corresponds to d ′ = 2.68,

whereas their true average d ′ is 3.
Aggregating data over grouping factors leads to two

kinds of estimate bias. One is a bias in point estimates of
d ′ and c parameters, as illustrated by the last example. The
other is a bias in interval estimates. Ignoring a hierarchical
data structure in an SDT analysis is analogous to using a
fixed effects ANOVA for repeated measures data, which
is a major violation of the modeling assumptions. When
a hierarchical data structure is ignored, the data are no
longer independent given the model because the data points
for the same level of a grouping factor are informative
about each other. For the same reason, it is important to
model the random effects’ correlations when these may be
non-negligible. In the worst case, because of non-linearity
the point estimates will systematically differ from the true
values and, because the variability is underestimated, the
interval estimates will be too narrow, leading to conclusions
that are both invalid and apparently strongly supported by
the data.

Except for toy examples like the one we have described
earlier, we are not able to say much about the estimate bias
magnitude for the d ′ or c parameters in quantitative terms
because predicting estimate bias magnitude is in general
a difficult problem. However, using a real dataset we will

demonstrate later in the paper how overly aggregating the
data may easily lead to invalid conclusions.

As we repeatedly stress in this paper, aggregation
is not the only way of ignoring a hierarchical data
structure. Sometimes non-aggregated data are analyzed by
using separate estimates for every participant × item ×
condition combination, but uncertainty due to distributions
of participant or item effects is not accounted for by
means of a hierarchical model structure. In such cases,
conclusions—at least with respect to the uncertainties
in estimates of population-average (fixed) effects—are
guaranteed to be valid only for the given sample, not the
target population.

Furthermore, when the SDT parameters are estimated
separately for each participant and condition, and only later
regressed on predictors of interest, a number of additional
issues may arise. Firstly, the standard errors or credible
intervals associated with the regression coefficients do not
reflect the uncertainty in the SDT parameter estimates
because the latter are treated as mere data points. The
precision of parameter estimates often varies between
participants, items, or conditions, but when the estimates are
treated as data points, no use is made of this information.
Secondly, regressing parameters on numerical predictors
makes their estimates dependent on the common regression
structure, and so also on each other, which can improve the
quality of the estimates, just as assuming that random effects
are samples from a common distribution may improve their
estimates.

The three most popular contemporary books on SDT
modeling that we have mentioned in the introduction differ
in how much emphasis their authors place on the issue
of point and interval estimate bias. For example, McNicol
(2005) notes that the d ′ estimates based on aggregated
hit and false-alarm rates are biased and recommends
aggregating the z transformed rates: this does solve the
problem of bias in point (but not interval) estimates of
group average d ′ and c in the binary classification case,
but not when the ratings are collected; it also does little
in the way of accounting for the uncertainty associated
with the distribution of (and correlation between) random
effects, since this latter problem can only be solved by
supplementing an SDT model with a hierarchical regression
structure.

Although almost every example of SDT analysis that
Macmillan and Creelman (2004) consider in their book is
based on data aggregated over participants, they do provide
an analysis of estimate bias based on the results obtained by
Macmillan and Kaplan (1985) and Hautus (1997). However,
this analysis is restricted to a simple case of a small
number of participants and no regression structure, which,
as the authors themselves admit, is a limited scenario.
When considering more realistic situations in which the
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effects in d ′ or c are estimated, the authors recommend
using a generalized linear regression modeling framework,
as described by DeCarlo (1998).

Wickens (2002) seems to be the only of these books that
emphasizes both the point estimate bias and the interval
estimate bias resulting both from averaging and from
separating the hierarchical regression analysis from SDT
model fitting. Wickens also shows that that the latter kind of
bias may be severe in certain simple situations.

Hierarchical signal detection theory
in a constrained parameter space

Both d ′ and c have the virtue of being directly interpretable
in terms of sensitivity and bias. However, d ′ is assumed
to be non-negative and when there is more than one
criterion the elements of the c vector are order restricted
(ci+1 > ci).

The non-negativity of d ′ seems to deserve some
explanation, since the authors who write about SDT models
differ in how clear they are on this issue. For example,
Macmillan and Creelman (2004) state this assumption
explicitly, Wickens (2002) describes d ′ as a measure
of distance and, when considering negative d ′ values,
interprets them as arising from sampling error or response
reversal, whereas, to our knowledge, McNicol (2005) does
not discuss the possibility of negative d ′ values at all.

In signal detection theory d ′ is a measure of distance
and as such is a non-negative quantity by definition (Luce,
1963). Usually, the true negative d ′ values are not like
non-negative d ′ values only smaller—they are qualitatively
different. To see why, observe that participants in a typical
study cannot perform the task below chance level unless—
for some reason which is outside the scope of the SDT
model, such as misunderstanding the task instructions—
they reverse their responses. Consequently, it makes no
sense to say that d ′ = −1 represents a sensitivity which
is lower by two standard deviations than the sensitivity
represented by d ′ = 1. A more natural interpretation is
that in both cases the sensitivity is exactly the same, and
there is some other reason, such as response reversal, for the
difference in sign.

Macmillan and Creelman (2004) as well as Wickens
(2002) seem to agree that the most common reason why
negative d ′ values are observed is that some participants
have true near-zero positive d ′ and their observed hit
rates are lower than their observed false-alarm rates purely
because of the sampling error. However, the prior on d ′ as
well as the distribution of d ′ random effects represent the
uncertainty in the true d ′ values, whereas the sampling error
is handled by the distributional assumptions of the SDT
model itself.

If the reason that the negative d ′ values are observed
is either sampling error or response reversal in a small
number of participants, then the normal prior on d ′
does not correctly express this possibility because normal
prior on d ′ represents the assumption that there is a
natural continuity of true d ′ values that extend below
and above zero. A more appropriate way to model rare
cases of response reversal would be to represent random
d ′ effects as an uneven (assuming response reversal is
an exception) mixture of two distributions of participants,
which are essentially the same except that for one of
the distributions the values of the response variable are
reversed. On the other hand, in some situations true negative
d ′ values may even be common; for example, certain
experimental conditions may systematically cause the
participants to reverse their responses, but these are special
cases which require special treatment; in particular, such
situations call for a non-trivial generalization of the SDT
model.

Since, due to the sampling error, p(H) < p(F) is
not impossible for an arbitrary true negative d ′ value,
an unbounded prior on d ′ inevitably forces the posterior
distribution to have a non-zero mass on the negative d ′
values. This makes all the posterior samples of all the model
parameters that correspond to the negative posterior d ′
samples problematic. Whether this is an important problem
in a particular case depends on a number of factors, the main
two being how informative the data are about the true d ′
value and how close the true d ′ is to 0. Regardless of how
large the dataset is as a whole, when there is substantial
variability in d ′ or d ′ effects between the participants, the
participant-specific estimates become the data points since
the fixed effects are estimated as averages of random effects,
and the number of participants is often much more limited
than the number of raw data points that can be collected;
This limits the amount of information available in typical
datasets. Using a truncated normal distribution as a prior
for d ′ does not solve this problem either because it does
not allow for unbounded fixed and random effects; we
are also not aware of any reason why the true d ′ random
effects could be approximated well by a truncated normal
distribution.

All this leads to the conclusion that the constraints
on d ′ (positivity) are as important as the constraints on
c (ordering), but these constraints make it impossible
to supplement an SDT model with a hierarchical linear
regression structure. Such a structure can only be defined
on unconstrained parameters because in hierarchical linear
regression (1) random effects are assumed to be normally
distributed and normal distribution is unbounded, and (2)
effects such as differences between conditions or regression
slopes are allowed to assume arbitrary real values. The only
way to solve this problem is to re-parametrize the model so
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that the parameters are no longer constrained, but the model
is essentially the same.

Limitations of available implementations
of hierarchical SDTmodels with ratings

In the following summary of two hierarchical SDT
implementations, we provide examples of the problems
that may arise when the SDT model is not correctly
reparametrized. One is the Gibbs sampler proposed by
Morey et al. (2008) and the other is the Hierarchical Meta-
d ′ model (HMeta-d ′) proposed by Fleming (2017). After
describing the problems associated with those two software
implementations, we will briefly explain how our method
compares to what the brms package has to offer.

The HMeta-d ′ model is a hierarchical version of the
meta-d ′ model (Maniscalco & Lau, 2012), which in turn is
a generalization of the SDT model that allows for a separate
“meta-sensitivity” to account for possible discrepancies
between a binary stimulus classification (referred to as a
type 1 task) and the associated rating task (referred to as a
type 2 or meta-cognitive task). We consider HMeta-d ′ here
because it reduces to an SDT model with ratings when the
type 1 and type 2 sensitivities are equal.

The Gibbs sampler created by Morey et al. (2008) allows
for at most two grouping factors to have independent
normally distributed random effects on the evidence
distribution means. Unlike d ′, each evidence distribution
mean considered in isolation is an unconstrained parameter,
but the mean of the second evidence distribution is by
definition greater than (d ′ > 0) or equal to (d ′ = 0) the
mean of the first. The model does not enforce the non-
negativity of d ′ because this would introduce non-conjugate
priors, which are problematic in a Gibbs sampler. The
outermost criteria are fixed at 0 and 1, and the ordering
restriction is enforced by assuming that the likelihood is
0 whenever ci+1 ≤ ci . As the authors explain, because
a grouping factor can have independent random effects on
the evidence distribution means, it can have an effect on
all the criteria: shifting both means by the same amount in
the same direction is equivalent to keeping the sensitivity
intact, while shifting the criteria relative to the evidence
distributions. However, the individual criteria cannot be
affected differently by the same grouping factor.

In HMeta-d ′ the hierarchical structure is limited to
normally distributed random intercepts of one grouping
factor. In this model the d ′ parameter is also allowed to
assume negative values, but the most problematic aspect
of this implementation is again the representation of the
criteria. For reasons that are outside the scope of this paper,
in the HMeta-d ′ model the main criterion is interpreted as
qualitatively different from the rest of the criteria. The main

criterion, as a random effect, is assumed to be a sample from
a normal distribution, whereas the criteria above (below) the
main criterion are assumed to be samples from a normal
distribution which is bounded below (above) by the value
of the main criterion. The mean of the distribution of the
upper criteria random effects is the same as the mean of
the lower criteria random effects, only the sign is reversed.
These unordered “proto-criteria” are sorted to obtain the
actual criteria values, but because sorting is not injective the
space of the actual criteria is only loosely related (i.e., not
isomorphic) to the space of the unrestricted criteria vectors
that are associated with the hierarchical structure. In this
way the HMeta-d ′ model enforces some but not all the
necessary order constraints, and it only accounts in a limited
way for the variability in the criteria due to the grouping
factors.

Some extensions of the SDTmodel can be fitted correctly
using the excellent brms package, as described in Bürkner
(2017) or in a tutorial on ordinal models by Bürkner and
Vuorre (2019). The brms package is a flexible tool that
shares some deep design similarities with our method. Both
our package and brms belong to a growing family of
software tools that aim to provide a somewhat simplified
and domain- or application-specific interface for one of the
general purpose Bayesian inference engines, in this case the
Stan modeling language (Carpenter et al., 2016). The brms
is a highly flexible, well-documented package that offers
an elegant interface for fitting a large class of hierarchical
models. Among the models that can be fitted using this
package are the ordinal regression models. The hierarchical
SDT model with ratings is essentially a generalization of
hierarchical ordinal regression since ratings are an ordinal-
scale variable.

However, that does not mean that a general hierarchical
SDT model with ratings can be fitted using the brms
package. There are three categorical distributions available
at present in brms, each with its own set of link functions:
the cumulative model, the adjacent category model and the
sequential model. As the author of the package explains
(Bürkner, 2017), the only model that respects the ordering
of the thresholds is the cumulative model, but in the
cumulative model—just like in the Morey et al. (2008)
model—the predictors can only have constant effects
across categories. Moreover, just like in the other two
implementations, in the cumulative model d ′ is unbounded.

None of the three available methods that we consider
here forces the d ′ parameter to be non-negative. The brms
package is the only one of the three methods that allows
for an arbitrary hierarchical linear regression structure with
possibly correlated random effects in an SDT model with
ratings. The Morey et al. (2008) model allows for at most
two grouping factors, but it cannot account for random
effects’ correlations. The HMeta-d ′ model allows for at
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most one grouping factor, but it can only be associated with
variability in the intercept, which means that the within-
subject (or within-item) effects cannot be modeled at all out
of the box.

If a participant has one criterion shifted to the right, the
criterion above it will usually also be shifted to the right,
and so random effects in criteria are likely to be strongly
correlated. Lastly, none of the three methods are able to
account for the fact that participants or items may differ
not only in by how much and in what direction all of
their criteria are shifted relative to the population mean, but
also in the relative positions of individual criteria; In the
cumulative model as implemented in the brms package and
in the Morey et al. (2008) model, random criteria effects
are constant across categories. In the HMeta-d ′ model the
variability in the criteria due to the grouping factors seems
to be reduced to the average distance of the unordered proto-
criteria from the middle criterion. It follows that when an
SDT model is fitted to the data from a rating experiment, the
data cannot be assumed to be independent given any of the
three models. As pointed out by Wickens (2002), violation
of the assumption of the independence of data given the
model may lead to severely biased interval estimates.

Note that the estimates of the SDT parameters are
interdependent, meaning that point or interval estimate bias
in one parameter may lead to point or interval estimate
bias in all the other parameters. Conversely, if an estimate
of one parameter is improved, the estimates of the other
parameters may improve as well. In the three available
methods of fitting hierarchical SDT models with ratings
discussed so far, there are independent reasons for point or
interval estimate bias in every SDT parameter considered
in isolation. Such biases are difficult to predict theoretically
and difficult to detect because obtaining empirical evidence
of their existence or magnitude is only possible when the
true model is known.

We should clarify that not all forms of bias are absent
when using the SDT model as implemented in the bhsdtr
package. In a Bayesian model the posterior distribution is
influenced by the data and the priors, and the prior-induced
bias is often unavoidable. Since in the bhsdtr package the
default priors are weakly informative, they may have a non-
negligible impact when the number of data points is small
and the variance of the priors is not large. Another concern
is that when the true d ′ values are near-zero, our model will
automatically infer that the true d ′ value is non-negative,
thus discarding part of the error, but only the negative part.
On the other hand, if the true d ′ is zero, given enough
data the Highest Posterior Density (HPD) interval estimates
can be expected to include zero. This is also an efficient
solution, given the positivity assumption, since it only
discards part of the error, and we see no reason why it would
eliminate the asymptotic unbiasedness. This feature also

does not preclude the researcher from choosing a prior that
favors the near-zero values. When the positivity assumption
is acceptable, which usually seems to be the case according
to Wickens (2002) and Macmillan and Creelman (2004),
the alternative leads to the problems that we have already
described. In any case, whenever there is reason to believe
that the chosen priors lead to misleading conclusions, the
researcher can perform a sensitivity analysis.

Hierarchical signal detection theory
in an unconstrained parameter space

The general hierarchical linear regression structure can be
defined on SDT parameters only if the latter are derived
from unconstrained parameters. In the bhsdtr package,
d ′ is derived from δ = ln(d ′), thus random effects
on d ′ can be modeled by assuming that δ is normally
distributed. Modeling the logarithm of d ′ has an additional
advantage: as noted by Macmillan and Creelman (2004),
d ′ has ratio-scaling properties and it makes sense to say
that one d ′ value is twice as large as another. Because
both d ′ and δ have a natural interpretation in terms of the
differences in sensitivity but they are related by a non-
linear transformation, inspecting both the d ′ values and the
δ values may reveal that an interactive effect is illusory.2

The problem of representing the criteria by unconstrained
parameters can be solved by mapping the RK−1 space
of unconstrained criteria vectors to the K dimensional
probability simplex space using the softmax function, and
mapping the simplex space to the space of order-restricted
criteria vectors by means of the inverse normal CDF:

ci = �−1(
i∑

k=1
(eγ k )/

K∑

j=1
(eγ j )) (1)

where � is the CDF of the standard normal distribution and
γ ∈ RK , with γ K fixed at 0 for identifiability. The idea is
illustrated in Fig. 3 below:

Note that the normal distribution centered at the
midpoint is merely a mapping device, not a third
evidence distribution, and that, for reasons that will
soon become clear, it is wider than the two evidence
distributions. The mapping expressed by Eq. 1 is an
isomorphism between the RK−1 space and the space of
order-restricted criteria vectors. Its inverse is given by γi =
ln (

∫ ci

ci−1
f (s) ds/

∫ ∞
cK−1

f (s) ds), where f is the standard
normal probability density function. The elements of the
γ vector correspond to relative distances between pairs

2Whenever a nonzero additive effect is observed on the original
(logarithmic) scale of the dependent variable, it will look like an
interaction on the logarithmic (original) scale. In such cases, the effect
of one variable can be predicted without knowledge of the other
variable, and the observed interaction may be illusory.
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Fig. 3 Mapping between the unconstrained γ vector and the criteria.
The dashed lines represent the SDT model with additional criteria; the
distribution in the middle is the mapping distribution used to translate
between the γ and the c vectors

of adjacent criteria because their exponents represent the
relative magnitudes of areas under the standard normal
curve, delineated by the pairs of adjacent criteria: eγ i /eγ j =
(�(ci ) − �(ci−1))/(�(cj ) − �(cj−1)). When K = 2,
only γ 1 is free to vary, and its value directly represents the
direction and magnitude of bias: γ 1 is 0 when the criterion
is placed at the midpoint between the evidence distributions;
the more negative (positive) γ 1 is, the more the criterion is
shifted to the left (right) of the midpoint.

In our model, it is often a good idea to multiply all
the criteria by a value greater than 1, which is equivalent
to making the mapping distribution wider. This tends to
even out values of γ by preventing the outermost areas
under the mapping distribution curve from becoming very
small relative to areas delineated by adjacent pairs of non-
outermost criteria. This is especially important when the
criteria are widely spread, as can happen for moderate to
large d ′ values. This feature is implemented in the bhsdtr
package by introducing a scaling factor.

Once d ′ and c are derived from the unconstrained δ and
γ parameters, the SDT model can be supplemented with a
hierarchical linear regression structure. To avoid having to
deal with an even more complicated index notation,3 below
we present only the simple case of one grouping factor.

δ = X(δ)β(δ) + Z(δ)θ (δ)

d ′
i = eδi

γ i,· = X
(γ )

i,· β(γ ) + Z
(γ )

i,· θ (γ )

ci,k = s �−1(

k∑

l=1

(eγ i,l )/

K∑

m=1

(eγ i,m ))

p(yi =k|stimi = 1) = �(ci,k + d ′
i/2) − �(ci,k−1 + d ′

i/2)

p(yi = k|stimi = 2) = �(ci,k − d ′
i/2) − �(ci,k−1 − d ′

i/2)

3The reader familiar with hierarchical models may be surprised by our
use of superscript parenthesized Greek letters to express hierarchical
relationships. We chose this convention because it allowed us to
use subscripts to denote elements of vectors and matrices while
minimizing the number of nested sub- or superscripts.

Here i = 1 . . . N is the observation number, X is the
fixed effects model matrix for the respective parameter, Z is
the random effects model matrix, β and θ are the fixed and
random effects, c is an N × K − 1 matrix, s is the criteria
scaling factor, and y is the combined response. Note that d ′

i

is a scalar, but γ i,· is in general a vector, and so β(γ ) and θ (γ )

are matrices. The j -th rows of the β(γ ) and θ (γ ) matrices
represent fixed and random effects on the j -th element of
the γ vector.

Following Sorensen and Vasishth (2015), we make use
of the Cholesky decomposition of the correlation matrices
because it improves efficiency and admits a convenient prior
on random effects correlations:

vectorized(θ (γ )) = diag(τ (γ ))L(γ )z(γ )

θ (δ) = diag(τ (δ))L(δ)z(δ)

z
(δ)
i ∼ Normal(0, 1)

z
(γ )

j ∼ Normal(0, 1)

where each τ is a vector of standard deviations of random
effects and eachL is a Cholesky decomposition of a random
effects correlation matrix, i.e., C = LL′. Thus, θ is
multivariate normal with the covariance matrix diag(τ )L.

Finally, as recommended by Gelman et al. (2006), we
use weakly informative proper priors because they provide
regularization and help stabilize computation. The fixed
effects β(δ) and β(γ ) are given independent normal priors,
the random effects standard deviations τ (δ) and τ (γ ) are
given independent half-Cauchy priors, and each L is given
an independent lkj prior:

β(δ)
i ∼ Normal(μ(δ)

i , σ
(δ)
i )

β(γ )

k,l ∼ Normal(μ(γ )

k,l , σ
(γ )

k,l )

τ
(δ)
i ∼ half-Cauchy(0, ζ (δ)

i )

τ
(γ )

k,l ∼ half-Cauchy(0, ζ (γ )

k,l )

L(δ) ∼ lkj(ν(δ))

L(γ ) ∼ lkj(ν(γ ))

Specifying the prior distributions

A Bayesian model is not complete without providing fixed
values of all the parameters that define prior distributions.
Specifying the priors on sensitivity effects does not pose
any special difficulties. The sensitivity of an unbiased
classifier given percent correct is given by 2�−1(p(c)).
When p(stim = 1) = .5, the greater the bias, the lower
the accuracy, meaning that an unbiased sensitivity is a lower
bound on sensitivity given percent correct. Let us assume
that the majority of participants are expected to achieve
percent correct within the .51 to .99 range, with negligible
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bias. Since ln(2�−1(.51)) = −2.99 and ln(2�−1(.99)) =
1.54, a reasonable weakly informative prior on δ is normal
with mean (1.54 − 2.99)/2 and standard deviation (1.54 +
2.99)/2, which is the default prior on delta effects in the
bhsdtr package.

Specifying the priors on criteria effects can be challeng-
ing because the criteria are order-restricted. On the other
hand, specifying the priors on γ effects is challenging
because of the complexity of the mapping expressed by
Eq. 1. In our view, this is a major limitation of our imple-
mentation and we are currently working on improving it. By
default, in the bhsdtr package each entry in the σ (γ ) and
ζ (γ ) matrices is set to ln(100) and the criteria scaling factor
is fixed at 2. The prior on random effects’ standard devia-
tions are parametrized by ζ , which represents half-width at
half-maximum of the half-Cauchy distribution. In our opin-
ion, a not unreasonable starting point is to set ζ at a value
that is greater than or equal to the most likely value of the
random effects’ standard deviation.

Finally, by default ν(δ) = ν(γ ) = 1, which implies
a uniform prior on random effects’ correlation matrices.
Because the greater the value of ν, the more emphasis is put
on zero off-diagonal correlations, the researcher can force
the correlations to be near-zero by choosing a large ν value.

Overview of the software implementation

The bhsdtr package implements the model described in
the previous section in the Stan modeling language because

it uses a state-of-the-art adaptive Hamiltonian Monte Carlo
sampling algorithm which often handles high-dimensional
correlated posteriors better than a Gibbs sampler.

Our package is essentially a collection of docu-
mented functions: The aggregate responses func-
tion aggregates data as much as possible for efficiency,
but without distorting the hierarchical structure. The
make stan model function creates a model definition
in the Stan language. The Stan code produced by the
make stan model function can be fitted as is or mod-
ified by the user if needed, e.g., to change the prior
distributions or to drop the equal variance assumption.
The make stan data function creates regression model
matrices and other data structures required by the model cre-
ated using the make stan model function. Finally, the
plot sdt fit function can be used to visually assess the
fit of the model by creating publication-ready ROC curve
plots or response distribution plots with posterior predictive
intervals calculated for the chosen α level.

Usage example: installing the package
and testing themodel on real data

To make full use of the bhsdtr package functionality,
three non-standard R packages are required, namely
rstan, plyr, and ggplot2. We recommend using the
devtools package to install the bhsdtr package directly
from the GitHub repository. This will automatically install
any missing required packages:

d e v t o o l s : : i n s t a l l g i t ( ’ g i t : / / g i t h u b . com / b o r y s p a u l ew i c z / bh sd t r ’ )
l i b r a r y ( b h s d t r )

The essential steps of a typical data analysis process will
usually involve preparing the data, creating the model code,
fitting the model, assessing the fit, and possibly converting
the unconstrained δ and γ parameters to d ′ and c.

Preparing the data

The bhsdtr package contains a dataset, gabor, from an
unpublished study in which on each trial the participants
had to classify a briefly presented Gabor patch as tilted to the
left or to the right using the arrow keys. The participants were
also asked to rate the stimuli on a 4-point PerceptualAwareness
Scale (Ramsøy & Overgaard, 2004) presented at the bottom
of the screen. The Gabor patch was immediately followed
by a mask. The PAS ratings ranged from “no experience”
to “absolutely clear image” and were provided either
before (RATING-DECISION order condition) or after

(DECISION-RATING order condition) the arrow keys were
pressed. On each trial the Gabor patch was equally likely
to be presented for 32 ms or 64 ms. Order was a between-
subject variable and duration was a within-subject variable.
There were 47 participants and 48 trials per condition.

In the study in question, the response was originally
encoded using separate variables for accuracy and rating, so
the first step was to create an appropriate response variable
using the combined response function. This function
requires three variables, one encoding the stimulus class,
one encoding the rating (as an integer), and one binary
variable encoding the decision accuracy.

g a bo r $ r e s p = comb ined r e spon se
( gabo r$s t im , g a b o r $ r a t i n g ,
g abo r$a c c )

This step is required only if the ratings are available and
a combined response variable is not already present in the
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data. In the single criterion case, the combined response
variable is simply the binary classification decision. To fit a
single-criterion SDT model to this dataset, the code above
would have to be replaced with the following:

Next, the data has to be aggregated using the
aggregate responses function, but only to an extent
that preserves all the random effects. This function requires
as arguments a data frame containing all the relevant vari-
ables, the name of the stimulus class variable, the name of
the combined response variable, and the vector of the names
of all the variables that are to be preserved in the resulting
aggregated dataset (apart from the stimulus class variable
and the combined response variable), i.e., those encoding
the grouping factors and those representing the independent
variables used in the regression part of the model:

a d a t a = a g g r e g a t e r e s p o n s e s ( gabor ,
’ s t im ’ , ’ r e sp ’ , c ( ’ id ’ ,
’ d u r a t i o n ’ , ’ o r d e r ’ ) )

The main purpose of the aggregation step is to improve
the efficiency of sampling from the posterior distribution.
When data are aggregated in this way, the likelihood
for each condition × participant combination has to be
computed only once rather than as many times as there
are trials per condition per participant. Note that if there
are other grouping factors present in the data (e.g., items,
replications, etc.), and the user decides to model the effects
of these factors, then these factors have to be specified
at this stage to preserve the hierarchical data structure.
The aggregate responses function creates a list with
three components. The data component is a data frame
containing additional preserved variables, the stimulus
component is the stimulus class variable. and the counts
component is an N × K matrix of combined response
counts, where N is the number of data points and K is the
number of possible combined response values.

Creating themodel code

A model is fitted using the stan function from the rstan
package. The stan function returns a stanfit object,
which can be used to obtain the summary statistics or
the posterior samples as described in the rstan package
documentation. This function requires a special list of data
structures used by the model as well as a model specification
expressed in the Stan language.

Every model has some fixed effects structure since, even
when there are no predictors, the model parameters can

be expressed as regressed on a vector of ones (i.e., an
intercept). However, many models also have a hierarchical
structure and, if that is the case, this hierarchical struc-
ture has to be specified when using the make stan model
function. This is done by providing a list of lists of Rmodel for-
mulae. Each list of model formulae is composed of at
least three elements and specifies the correlated random
effects of one grouping factor. The group element spec-
ifies the sampled factor; the delta and gamma elements
specify which effects are assumed to vary between the lev-
els of this sampled factor. When make stan model is
used without any arguments, it specifies a model without
any random effects. Fixed effects model matrices are spec-
ified by providing a list with at least two model formulae,
named delta and gamma, to the make stan data func-
tion that is described later in this paper. Non-default priors
can be specified by adding optional elements to the ran-
dom and fixed effects specification lists, as described in the
make stan data function documentation.

In the study in question, there was only one grouping
factor, i.e., the participants. Because duration was a within-
subject variable, in principle its effect could vary between
the participants for all the SDT parameters. However, a
preliminary data analysis indicated that the 32-ms differ-
ence in duration seemed to affect only the sensitivity. Thus,
it was assumed that δ may depend on duration and order
(delta = ∼ -1 + duration:order), but γ may
only be affected by order (gamma = ∼ order). Because
duration was a within-subjects variable, its effect on δ was
assumed to vary between the participants (group = ∼
id [...] delta = ∼ -1 + duration), but the
only random effect associated with γ was the participant
specific intercept (group = ∼ id [...] gamma =
∼ 1):

The make stan data function creates fixed and
random effect model matrices based on the respective
model formulae using dummy contrast coding. Note that the
implicit intercept was suppressed for the δ model matrix (the
-1 term on the right-hand side of the model formula). In this
way, δ was estimated for every duration × order condition.
The resulting separate intercepts and slopes parametrization
makes it easier to calculate arbitrary contrasts on posterior
samples. A more standard parametrization was used for
the γ parameter because it was initially assumed that the
criteria depend only on order, and so there was only one
contrast of interest for every element of the γ vector. On
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the other hand, in such cases nested parametrization (with
separate intercepts and slopes for every condition) may
be more convenient if a researcher is interested in the
actual criteria, as we will later explain when introducing the
gamma to crit function. This example also illustrates
how the separation of the δ and γ regression structures
makes it possible to test a broad class of linear models
representing the dependence of the SDT parameters on
additional variables.

Fitting themodel

In order to fit the model, a separate data structure
used by the Stan sampler has to be created using the
make stan data function. The obligatory arguments to
this function are an aggregated data object created by the
aggregate responses function and a fixed effects’
specification. Importantly, if random effects are modeled,

Table 1 Model fit summary statistics

Mean SEmean SD 2.5% 97.5% No. eff. samples R̂

delta fixed[1] −0.11 0.00 0.15 −0.42 0.17 4339 1.00

delta fixed[2] 1.12 0.00 0.09 0.94 1.29 4327 1.00

delta fixed[3] −0.39 0.00 0.20 −0.79 −0.03 5615 1.00

delta fixed[4] 1.28 0.00 0.11 1.07 1.49 5417 1.00

gamma fixed[1,1] −0.14 0.00 0.06 −0.27 −0.02 3982 1.00

gamma fixed[1,2] −0.22 0.00 0.11 −0.43 −0.01 7356 1.00

gamma fixed[2,1] −0.70 0.00 0.18 −1.06 −0.36 3438 1.00

gamma fixed[2,2] 0.49 0.00 0.29 −0.08 1.06 3845 1.00

gamma fixed[3,1] −0.54 0.00 0.22 −0.96 −0.11 3385 1.00

gamma fixed[3,2] 0.83 0.01 0.35 0.14 1.51 3381 1.00

gamma fixed[4,1] 0.28 0.00 0.25 −0.20 0.77 3143 1.00

gamma fixed[4,2] 0.41 0.01 0.40 −0.39 1.20 3299 1.00

gamma fixed[5,1] −0.21 0.01 0.30 −0.79 0.38 3521 1.00

gamma fixed[5,2] 0.82 0.01 0.49 −0.14 1.78 3596 1.00

gamma fixed[6,1] −0.78 0.00 0.24 −1.25 −0.30 3521 1.00

gamma fixed[6,2] 0.80 0.01 0.39 0.03 1.57 3461 1.00

gamma fixed[7,1] −0.32 0.00 0.17 −0.65 0.01 3804 1.00

gamma fixed[7,2] 0.43 0.00 0.28 −0.12 0.97 4138 1.00

delta sd 1[1] 0.66 0.00 0.11 0.48 0.91 6078 1.00

delta sd 1[2] 0.44 0.00 0.06 0.34 0.56 5500 1.00

gamma sd 1[1] 0.16 0.00 0.07 0.02 0.32 2723 1.00

gamma sd 1[2] 0.82 0.00 0.11 0.63 1.07 6362 1.00

gamma sd 1[3] 1.08 0.00 0.12 0.86 1.33 4776 1.00

gamma sd 1[4] 1.27 0.00 0.14 1.03 1.57 4430 1.00

gamma sd 1[5] 1.55 0.00 0.17 1.26 1.91 4616 1.00

. . . . . . . . . . . . . . . . . . . . . . . .

This is part of the table that was obtained using the summary function from the rstan package on the stanfit object produced by the stan
function

the same specification of random effects has to be pro-
vided to the make stan model and make stan data
functions.
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Note that since more than one grouping factor is
allowed, the names of all the hierarchical parame-
ters are indexed (e.g., delta sd 1, delta random 1,
Corr delta 1). The name counts new refers to
posterior predictive samples that are required by the
plot sdt fit function. Names starting with Corr refer
to random effects correlation matrices, which are computed
from Cholesky decompositions.

Assessing themodel fit

As can be seen in the previous code fragment, four chains
of 8000 iterations each were run simultaneously; the first
half of the posterior samples, which served as a warm-up
period for tuning the parameters of the sampling algorithm,
was discarded. Part of the resulting Stan output is presented
in Table 1 below.

Given the complexity of the model, the chains exhibited
good mixing and seemed to have converged; there were
enough effective samples for the fixed effect parameters
to estimate 95% credible intervals well and none of
the Gelman-Rubin statistics crossed the conventional 1.01
threshold, suggesting negligible sensitivity to the initial
values.

Figures 4 and 5 below contain normal quantile-quantile
plots of δ and γ random effects. The plots indicate that the
distributions of random δ and γ effects can be approximated
by normal distributions and that—at least in this particular
example—these parameters seem to be good candidates
for representing variability in the sensitivity and criteria
parameters due to the grouping factors.

Once enough good-quality posterior samples are
obtained for the parameters of interest, the inference pro-
cess can be carried out by calculating credible intervals or
HPD intervals for any function of the parameters, or Bayes
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Fig. 4 Normal quantile-quantile plots of δ random effects. If the data points are normally distributed, they should form an approximately straight
line. Here the delta random effects in the 64 ms condition seem to deviate from the straight in a way that indicates that the tails of their distribution
may be different than the tails of the normal distribution
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Fig. 5 Normal quantile-quantile plots of γ random effects. See Fig. 4 for a description

factors for each parameter separately. However, even when
the Stan output summary does not indicate sampler conver-
gence issues, before drawing any further conclusions the
researcher should first check if the model fits the data. The
plot sdt fit function can be used for this purpose:

p l o t s d t f i t ( f i t , a d a t a , c ( ’ o r d e r ’ ,
’ d u r a t i o n ’ ) ) )

This function requires at least three arguments: a
stanfit object, an aggregated data list produced by the
aggregate responses function that was used to
produce the stanfit object, and a vector of names of variables
that will determine how the data will be partitioned before
plotting. We recommend assessing the fit at the individual
level, but we did not include the participant identification

number in the list of conditioning variables because the
resulting plot would take up too much space.

As can be seen in Fig. 6, which shows the ROC curves
produced by the last code fragment, the model seemed to fit
the data well in all but one condition (RATING-DECISION,
64-ms duration, lower right panel), in which three out of
seven relevant4 points were outside the two-dimensional
95% posterior predictive regions.

Another way to assess model fit visually is by inspecting
the conditional response distributions (p(y|stim)), such
as those shown in Fig. 7, which was also created using

4The point in the upper-right corner of a ROC curve is always in the
(1, 1) position
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Fig. 6 ROC curve fit. The dashed lines represent the implied ROC curves, the points represent the observed (p(H), p(F )) points, and the
horizontal and vertical 95% credible intervals represent the posterior uncertainty in the estimates of those points

the plot sdt fit function by adding the type =
’response’ argument.

Both plots can be informative about the reasons why a
model does not fit the data. In this particular case, the plot
seems to suggest that it may be a good idea to inspect the fit
at the individual level and see if there are some participants
with unusual p(y|stim = 1) distributions in the RATING-
DECISION × 64 ms condition. On the other hand, it is also
possible that the lack of fit is mainly a consequence of the
assumption that duration had zero effect on γ , or that more
substantial modifications are necessary, such as dropping
the equal variance assumption.

Converting unconstrained δ and γ
parameters to sensitivities and criteria

Posterior δ and γ samples have to be transformed in order
to work with the d ′ and c parameters. Because δ (γ )

and d ′ (c) are related by an isomorphism, they contain
exactly the same information and the translation between
the two representations is always possible, although certain
inferential tasks are not automatized in the current version
of our package. In particular, translating between the
two representations is straightforward only when fixed
effects represent average parameter values in separate
conditions, not when they represent differences between
conditions, regression slopes, or interactive effects. For
that reason, if there are no numerical predictors in the
model, we recommend always using a separate intercepts
parametrization for the δ and γ parameters. This is obtained
when the effects are represented by the R model formulae
of the form ∼ -1 + f 1:f 2:...:f n, where the -1
term suppresses the common intercept and the f i terms
represent nominal variables (i.e., factors). In this, way all
the SDT parameters will be estimated for each condition
separately, d ′ can be recovered from δ for every condition
using the exponential function, and all the criteria can be
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Fig. 7 Response distribution fit. The solid and dashed lines represent the implied response (y) distributions, the points represent the observed
proportions of responses, the 95% credible intervals represent the posterior uncertainty, and the type of line (dashed or solid) represents the
stimulus class

recovered for every condition using the gamma to crit
function described later in this paper. Since this is a
Bayesian model, arbitrary contrasts, including the contrasts
that correspond to interactive effects, can be calculated
using the posterior samples.

In our example, because nested parametrization was
used for the δ fixed effects model matrix, all four
delta fixed parameters can easily be transformed to
sensitivities by applying the exponential function. It is
important to remember that because the logarithm is a non-
linear transformation, the δ to d ′ conversion step should
be done first before applying any other transformations
to the posterior samples; in general, the logarithm of a
point and interval d ′ estimate is not equal to the point and
interval estimate calculated after transforming the posterior
δ samples to the d ′ samples. The same is true of the γ (c)
parameters.

In this case, the first column of the gamma fixed
matrix (the intercept) corresponds to the values of the
γ vector in the DECISION-RATING condition, but the
second column corresponds to the effect of order on γ . For
this reason the posterior criteria samples can be obtained
using the gamma to crit function only for the first
column of the gamma fixed matrix. This is because
the second column represents the difference in γ between
conditions and translating from γ to c will not give the
correct difference in c. In order to recover the criteria
for the second condition, the γ posterior samples for this
condition would have to be computed first. This could be
achieved by adding the posterior samples of γ effects to
the posterior samples of γ in the first condition, and then
converting the obtained γ posterior samples for the second
condition to the criteria posterior samples using the mapping
in Eq. 1.
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Testing themodel on simulated data

We simulated the data from a hypothetical exact replication
of the previously described experiment using the point
estimates from the previous fit as known realistic parameter
values. The true hierarchical model was fitted to the
simulated data. Mixing performance was similar to the
real data case. All the model parameters were correctly
recovered in a sense that the true values were outside the
95% credible intervals no more than 5% of the time. Note
that unless there is an error in the software, in this case
the credible intervals and point estimates are automatically
correct since they are based on the model fitted to the data
obtained from itself.

As we have emphasized, the models that lack the
necessary hierarchical structure may easily show reliable
effects where none exist, or they may fail to detect true
differences. To illustrate this problem, an SDT model that
differed from the true model only in that it did not have

any hierarchical structure was fitted to the same simulated
dataset. Since the non-hierarchical model was much simpler
and the data consisted of only eight vectors of response
counts, the mixing of the chains was excellent. This simple
simulational example shows how misleading the results of
such analyses can be.

The 95% credible intervals and the point estimates
calculated for the fixed effects based on each model are
compared in Figs. 7 and 8 below. The estimates were
centered on the true values to simplify the presentation, thus
the true values are represented by the horizontal line at 0.

The bias in the estimates based on the simplified model
is even more apparent in Fig. 9 which shows the effects for
the d ′ and c parameters. Note that the δ and γ parameters
do not share a common scale, but the more familiar d ′ and
c parameters do (i.e., the common standard deviation of
the evidence distributions). The c posterior samples for the
second condition were calculated by adding the effect of
order on γ to γ in the first condition and than using Eq. 1.

Non−hierarchical model True hierarchical model
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Fig. 8 Comparison of the point and 95% interval posterior δ and γ estimates based on the true hierarchical and the simplified non-hierarchical
models. The posterior estimates were centered at the true values to allow for easy inspection of the direction and magnitude of estimate bias. The
dashed horizontal line centered at 0 represents the true values of the parameters. The estimates based on the true model are correct
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Fig. 9 Comparison of the point and 95% interval posterior d ′ and c estimates based on the true hierarchical and the simplified non-hierarchical
models. The posterior samples for the effect of order on γ were added to γ in the first condition to obtain the posterior γ samples in the second
condition. Condition specific posterior γ samples were converted to c using Eq. 1. The dashed horizontal line centered at 0 represents the true
values of the parameters

As can be seen, the true model correctly recovered the
known parameter values, but the estimates based on the
simplified, non-hierarchical model were severely biased;
the credible intervals were not only much shorter than the
correct intervals, but also failed to contain most of the true
values. In fact, most of the point d ′ and c estimates based on
the non-hierarchical model differed from the true values by
several standard deviations of their posterior distributions.

One of the main reasons that the ROC curves are
calculated when an SDT model is fitted to the data from
psychology experiments is to determine whether the model
is approximately true. However, as can be seen in Fig. 10
below, in this case the observed ROC curves seemed to fit
the false simplified model’s predictions quite well.

This is a clear example of what we have previously
described as the worst-case scenario of estimate bias: the
point estimates are severely biased, the interval estimates
are much more narrow than they should be, and the ROC

curve plot indicates that the model fits the data well. All
this gives a false impression of validity of conclusions that
systematically differ from the truth.

As striking as this example may be, there is nothing
special about the dataset that was used to produce it; To our
knowledge the observed fixed and random effects are within
the range of values observed in other studies: the average d ′
values ranged from 0.9 to 3.6 and the average criteria ranged
from −2.9 to 2.5.

Limitations of the current implementation
and some future directions

Certain aspects of our implementation are experimental.
This is especially true of the criteria scaling factor and the
default parameter values that specify the prior distributions
for fixed and random effects. Without fitting the model to
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Fig. 10 ROC curve fit for the non-hierarchical model. See the description of Fig. 6

a large number of different datasets it is impossible to say
with any degree of certainty if the default values for the
parameters that define the priors on δ and γ effects are good
starting points in the majority of typical cases. When they
are not, the model may not converge, or the proportion of
effective samples may be low. This is a common problem
when fitting complicated Bayesian models. The only advice
that we can provide at this stage is to always carefully
inspect the posterior samples, test if the model fits the data,
and use informed judgment to see if the obtained results
make theoretical sense.

The correlations between the γ random effects as well as
the correlations between the δ random effects are accounted
for in our model, but the correlations between the δ and
the γ random effects are not. The results of the tests with
real datasets that we have done so far seem to indicate that
implementing this feature is not urgent; this may be due
to the fact that the criteria are midpoint-centered, but more

extensive testing with many different datasets is necessary
to see how serious this limitation is.

Perhaps a more pressing matter is the possibility to fit
the unequal variance SDT model as it seems to be one
of the main alternative models tested against the equal
variance SDT model. The results of the two surveys by
Swets and Pickett (1982) and Swets (1986) seem to indicate
that unequal variance may be common, although these
results are mostly based on aggregated data; as shown
by Morey et al. (2008) ROC curves based on aggregated
data may falsely indicate lack of variance equality. This
is a more difficult task than implementing the correlations
between the two kinds of SDT parameters, because a
new kind of parameter has to be introduced with all the
associated hierarchical linear regression structure and an
appropriate link function. A related problem is that when
the variances of the two evidence distributions are not equal,
there is more than one notion of the midpoint between the
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evidence distribution means. Consequently, the correlations
between the γ and the δ random effects may have to
be introduced simultaneously with the unequal variance
model, resulting in an increase in model complexity
and the associated demand for a large number of data
points and participants to obtain interval estimates that are
narrow enough for effects of typical size to be reliably
detected.

Thanks to Dobromir Rahnev’s initiative, a substantial
collection of datasets that can be modeled using the
bhsdtr package was recently made publicly available, as
described in Rahnev et al. (2019). This presents a great
opportunity for extensive testing and makes it possible to
obtain well-calibrated default priors for all the parameters
in the future.

Conclusions

The importance of SDT to psychology stems from the fact
that given weak assumptions about an underlying decision
process, it promises to deconfound sensitivity from bias in
arbitrary classification tasks—a problem almost as common
in psychology studies as the usage of classification tasks. To
the best of our knowledge, at present the bhsdtr package
provides the only method of Bayesian inference for SDT
models with or without ratings that can be recommended as
a default choice in typical applications. That is because it
is the only method that allows for fixed and random effects
in all the parameters of an SDT model with additional
criteria. Our parametrization forces the sensitivity to be
non-negative and the criteria to be order-restricted, while
the isomorphisms between the d ′ and c parameters and
the unconstrained δ and γ parameters make it possible to
supplement the SDT model with the general hierarchical
linear regression structure. There is no limit to the number
of grouping factors except for the one imposed by available
computational resources; correlations of random effects of
the same grouping factor are accounted for, all the SDT
parameters can be modeled by linear regression within the
same model, and all the effects on all the SDT parameters
estimable within the levels of the grouping factors can have
associated random effects. Finally, if the need arises to
relax a built-in restriction, experienced users can extend the
model in arbitrary ways by using automatically generated
human-readable Stan code as a template.

The GitHub package repository (https://github.com/
boryspaulewicz/bhsdtr) contains the annotated source code
and data that were used to perform all the analyses and
produce all the figures presented in this paper.
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