
https://doi.org/10.3758/s13428-020-01358-8

Titta: A toolbox for creating PsychToolbox and Psychopy
experiments with Tobii eye trackers

Diederick C. Niehorster1 · Richard Andersson2 ·Marcus Nyström3

© The Author(s) 2020

Abstract
We present Titta, an open-source toolbox for controlling eye trackers manufactured by Tobii AB from MATLAB and
Python. The toolbox provides a wrapper around the Tobii Pro SDK, providing a convenient graphical participant setup,
calibration and validation interface implemented using the PsychToolbox and PsychoPy toolboxes. The toolbox furthermore
enables MATLAB and Python experiments to communicate with Tobii Pro Lab through the TalkToProLab tool. This enables
experiments to be created and run using the freedom of MATLAB and Python, while the recording can be visualized and
analyzed in Tobii Pro Lab. All screen-mounted Tobii eye trackers that are supported by the Tobii Pro SDK are also supported
by Titta. At the time of writing, these are the Spectrum, Nano, TX300, T60XL, X3-120, X2-60, X2-30, X60, X120, T60 and
T120 from Tobii Pro, and the 4C from Tobii Tech.

Keywords Eye tracking · Eye movements · Stimulus creation · Equipment interface

Introduction

Eye trackers are used to record where people look and how
their eyes move in one of multiple reference frames (see
Hessels et al., 2018). These devices are used by an ever-
increasing number of researchers in a wide array of aca-
demic fields as well as industry (Holmqvist et al., 2011). To
record eye movements using eye trackers, either complete
graphical software packages provided by the eye tracker’s
manufacturer or third parties are used, or tools developed by
academics that interface the eye-tracker software develop-
ment kit (SDK) with high-level programming languages of
their choice (e.g. Cornelissen 12 et al., 2002; and Niehorster

Electronic supplementary material The online version of
this article (https://doi.org/10.3758/s13428-020-01358-8) contains
supplementary material, which is available to authorized users.

� Diederick C. Niehorster
diederick c.niehorster@humlab.lu.se

1 Lund University Humanities Lab and Department
of Psychology, Lund University, Box 201, SE-221 00
Lund, Sweden

2 Tobii Pro AB, Tobii Pro AB, Box 743, 182 17
Danderyd, Sweden

3 Lund University Humanities Lab, Lund University,
Box 201, SE-221 00 Lund, Sweden

and Nyström 2019). The manufacturer software provides an
easy to use graphical interface that is however often also
limited in functionality, such as offering support for only
picture and video stimuli and limited trial randomization. As
such, the latter programming tools are often the only option
for advanced researchers with specific needs not supported
by the manufacturer’s software packages. However, such
a flexible system-specific package is not available for eye
trackers from Tobii, one of the large manufacturers of eye
trackers for researchers. While Tobii eye trackers are sup-
ported by tools that offer a generic programming interface
to a wide variety of eye trackers, such as PyGaze (Dalmaijer
et al., 2014) or the ioHub library that is part of PsychoPy,
the drawback of such generic interfaces is that they only pro-
vided limited access to advanced system-specific capabili-
ties of some eye trackers. Examples of these system-specific
capabilities are provided in the “Implementation” section.

In this article, we therefore present Titta,1 a Tobii-
specific software package that allows for easy integration
of Tobii eye trackers with experiments written in MATLAB
with PsychToolbox (Pelli, 1997; Brainard, 1997; Kleiner
et al., 2007) and in Python with PsychoPy (Peirce 2007,
2009), while providing full access to all features of each
of the supported eye trackers. Titta is built upon the
C and Python versions of the low-level Tobii Pro SDK

1“Titta” is Swedish for “look!”, and was inspired by the Ikea-style of
product naming.

Published online: 3 March 2020

Behavior Research Methods (2020) 52:1970–1979

http://crossmark.crossref.org/dialog/?doi=10.3758/s13428-020-01358-8&domain=pdf
http://orcid.org/0000-0002-4672-8756
https://doi.org/10.3758/s13428-020-01358-8
mailto: diederick_c.niehorster@humlab.lu.se

and, amongst other features, provides an easy to use
participant setup, calibration and validation interface that
is implemented directly in PsychToolbox or PsychoPy
drawing commands. Titta can be integrated into existing
experiments by adding only a handful of lines of code,
but at the same time also enables access to all setup and
operational features of the supported Tobii eye trackers. The
PsychoPy version of Titta furthermore supports PsychoPy
builder (Peirce et al., 2019), allowing easy integration
of Tobii eye trackers in experiments built with this
graphical experiment builder. Titta is available from https://
github.com/dcnieho/Titta (MATLAB) and https://github.
com/marcus-nystrom/Titta (Python).

Once eye movements are recorded, researchers may
want to look through their recordings by means of replays
or other visualizations, and perform analysis of their
eye movement data. Such functionality is not provided
by Titta, which only provides an interface for operating
the eye tracker. The Tobii Pro Lab software package
provides such replay and analysis functionality. At the
time of writing, Tobii Pro Lab however provides only
basic stimulus creation options, making it not suitable
for many experimental paradigms. Such software packages
are furthermore unlikely to ever cater to the custom
needs of all researchers. For instance, niche needs such
as the non-aging foreperiods recommended in antisaccade
protocols (Antoniades et al., 2013) are unlikely to be
provided. As such, researchers often have to choose between
tools with a graphical user interface that also provide
data vizualization and analysis functionality but support a
limited set of research paradigms, and programming
environments that allow full flexibility but require the
user to write their own tools for data visualization and
analysis. To remedy this situation, Tobii Pro Lab provides
an “External presenter’’ project type that enables external
programs to control Tobii Pro Lab through a remote control
interface. Using this mode, researchers can use any means
of creating and running their experiment, while at the same
time instructing Pro Lab to record eye movements and
informing it of what stimuli were shown on the screen.
This provides researchers with full flexibility in developing
experimental paradigms, while also enabling them to use
Pro Lab’s visualization and analysis capabilities. The Titta
toolbox provides the TalkToProLab tool which implements
a convenient wrapper for Tobii Pro Lab’s External Presenter
interface for MATLAB and Python. TalkToProLab, which
operates independently of the Titta tool, is also presented in
this article.

Tobii eye trackers

In its almost 20-year long existence, Tobii has produced
a range of eye trackers. Most of these eye trackers have

been so-called remote eye trackers, i.e., systems that are
usually used attached to a computer screen and allow some
freedom of movement of the observer in front of the screen
(but see Hessels et al., 2015; and Niehorster et al., 2018).
Titta supports all the remote eye trackers that are supported
by the Tobii Pro SDK. At the time of writing, these are
the Spectrum, Nano, TX300, T60XL, X3-120, X2-60, X2-
30, X60, X120, T60 and T120 from Tobii Pro, and the
4C from Tobii Tech. Titta does not support the Tobii eye
trackers integrated in VR headsets. Furthermore, Tobii’s
head-worn eye trackers such as the Tobii Pro Glasses 2 are
not supported. For the latter device, users are referred to
other tools (e.g. De Tommaso and Wykowska 2019; and
Niehorster et al., 2020).

The supported Tobii eye trackers span a wide range of
sampling rates and data quality. The supported eye trackers
range from low sampling rate entry models such as the Tobii
Pro Nano (60 Hz) and X2-60 (60 Hz), to systems such as
the TX300 and Spectrum that compete with the state-of-the-
art eye trackers from other manufacturers in terms of data
quality (Nyström et al., 2018) and that provide gaze position
data sampled at up to 1200 Hz.

Implementation

Two parallel versions of Titta and TalkToProLab have
been developed. One is implemented in MATLAB and
uses a MATLAB extension (MEX) file for parts of its
implementation, and relies on PsychToolbox (Pelli, 1997;
Brainard, 1997; Kleiner et al., 2007) for its graphical setup
interface. The other is implemented as a native Python class
that is compatible with Python 3.6 and uses PsychoPy to
draw its graphical setup interface. Titta has been tested
with Tobii Pro SDK version 1.7.0.2. Both the MATLAB
and the Python versions of Titta support 32-bit and 64-bit
environments. Main testing and development was done on
Windows, but use on Linux is also supported.

Full documentation and a complete listing for the
programming interface (API) for Titta is provided in
the readme.md file in the Titta distributions at https://
github.com/dcnieho/Titta (MATLAB) and https://github.
com/marcus-nystrom/Titta (Python). The toolboxes are
furthermore highly configurable, a full overview of their
settings is also provided in these readme.md files. In
the below sections, we describe how key functionality
of Titta was implemented and is expected to be used.
Function calls in the text are provided in the camelCase
naming convention used in the MATLAB version of
the toolbox. The Python version has the same functions
with the same names, though they are spelled using
snake case (e.g., Titta.sendMessage() and Titta.
send message()). Calls to methods or properties of the
Titta class are denoted as Titta.methodOrProperty,
and likewise for the TalkToProLab class: TalkToPro

1971Behav Res (2020) 52:1970–1979

https://github.com/dcnieho/Titta
https://github.com/dcnieho/Titta
https://github.com/marcus-nystrom/Titta
https://github.com/marcus-nystrom/Titta
https://github.com/dcnieho/Titta
https://github.com/dcnieho/Titta
https://github.com/marcus-nystrom/Titta
https://github.com/marcus-nystrom/Titta

Fig. 1 The head display in the participant setup interface. The
blue circle indicates the reference position, and the yellow filled circle
the participant’s head, along with two eyes and their pupils. The four
panels show different situations. Left-top: Participant is too far back

and the right eye is not tracked. Right-top: participant’s head is
rolled with respect to the eye tracker. Left-bottom: participant’s head is
rotated side-ways such that one eye is further away from the eye tracker than
the other. Right-bottom: participant is correctly positioned and oriented

Lab.methodOrProperty. Note that all methods of
the Titta and TalkToProLab classes except Titta.
calibrate() are implemented in pure MATLAB and
Python, and as such can be used without PsychToolbox or
PsychoPy.

Participant setup

When Titta.calibrate() is called, by default first
a display is shown that is designed to properly position
the participant. This display consists of a blue circle
representing a reference position, and a stylized head
indicating the current position and orientation of the
participant (see Fig. 1). The stylized head display functions
like a mirror in that it, for instance, gets smaller when the
participant is further back, and a closed eye is drawn when
track of an eye is lost. It furthermore by default provides
real-time pupil-size data to allow ascertaining whether pupil
size of the participant is not extreme and stably tracked. The
head display is implemented by the ETHead class, which
can be used separately from Titta.

Using this display, participant setup consists of asking
the participant to move such that the head exactly coincides
with the blue circle. This is a simple and intuitive task

for participants that in our experience often requires little
assistance from the experimenter. For experiments requiring
precise positioning of the participant, the reference position
can be set to a specific position in the eye tracker’s user
coordinate system.2 If no reference position is provided
by the user, depending on the eye tracker it can either be
automatically set to the center of the eye tracker’s headbox,
or will be drawn based on the eye tracker’s positioning guide
stream. If the eye tracker supports providing eye images,
these can be viewed on this screen as well by pressing the
eye image toggle button (see Fig. 2). Once the participant
is correctly positioned, we recommend asking them to look
at the four fixation targets in the corners of the screen,
to ensure that track is stable across the entire span of the
screen.

Calibration and validation

Once the participant is correctly set up, a calibration
can be started. We describe the calibration and validation
process and the accompanying interface below, and have

2See http://developer.tobiipro.com/commonconcepts/coordinatesystems.
html.

1972 Behav Res (2020) 52:1970–1979

http://developer.tobiipro.com/commonconcepts/coordinatesystems.html
http://developer.tobiipro.com/commonconcepts/coordinatesystems.html

Fig. 2 The participant setup interface. The blue circle indicates
the reference position, and the stylized head represents to position
of the participant. Furthermore drawn are a setup instruction to the

participant, four fixation targets in the screen corners and eye images
(acquired with a Tobii Pro Spectrum)

made a demo video of the process available online in the
Supplemental Material. By default, the calibration screen
consists of a fixation target from Thaler et al. (2013, ABC in
the lower panel of their Fig. 1), chosen because it was found
to minimize drift and yield the lowest microsaccade rate
during fixation. This fixation target jumps across the screen
to go through a series of calibration points (by default five
points laid out in an X-pattern) either in the specified order
or randomized (default). Directly after calibration, a further
series of validation points is shown to the participant. By
default, four validation points laid out in a diamond-shaped
pattern are shown in randomized order. The diamond pattern
is used to maximize the distance between the validation and
calibration points, thereby allowing to judge the worst-case
data quality provided by the evaluated calibration.

The look of the calibration and validation screens can
be customized by the programmer by providing their
own calibration screen drawing function. This allows
replacing the default statically displayed fixation points
with anything most suitable for the participant group, such
as videos of swirling patterns accompanied by sounds
to help attract attention. The provided calibration screen
drawing function is called for every frame and provided
with a command such as ‘draw’ or ‘new’ to indicate
state of the calibration, the ID of the current point to be
displayed, its location, a monotonously increasing tick value
counting the number of times the drawing function has been
invoked and a string indicating whether the participant is
currently undergoing calibration or validation. An example

implementation of such a drawing function is provided
in the AnimatedCalibrationDisplay class that is
provided with the Titta toolbox, and is used in the all the
demo scripts provided with Titta.

Once the calibration screen is entered, by default
the spacebar has to be pressed to start the calibration
sequence, after which it runs to completion unattended.
Two other modes are also available (controlled by the
cal.autoPace setting), one in which the full calibration
procedure completes unattendedly, and one in which each
calibration point needs manual confirmation by means of a
spacebar press. Letting the participant manually start data
collection for each calibration point has been found to
improve calibration accuracy (Nyström et al., 2013), but this
mode can also be used when calibrating participants who
cannot be instructed to fixate, such as babies and monkeys.
During calibration, the “backspace“ key can be pressed to
restart the current calibration point, the “r” key to restart
the calibration, and the “escape” key to return to the setup
screen.

Once calibration and validation have been completed
successfully, a validation result screen is shown (Fig. 3).
This display shows a graphical representation of the gaze
position data collected during validation (by default 500 ms
for each validation point). This graphical representation is
drawn at full scale so that the experimenter has a direct
representation of what accuracy (deviation in recorded gaze
position) was achieved for each validation point in terms of
distance on the screen. To further visually judge data quality,

1973Behav Res (2020) 52:1970–1979

Fig. 3 The validation result screen. Shown is a graphical represen-
tation of the data collected for each of the four validation points. Each
sample is drawn as a line from the respective validation point to the
recorded gaze position, and is displayed at full scale to make achieved
data quality directly intuitable. The recalibrate button starts a new
calibration and validation sequence, the revalidate button performs a
new validation for the currently selected calibration and the setup but-
ton brings the setup screen back up. The show gaze button toggles a

real-time display of the gaze position reported by the eye tracker (not
shown), and the select other cal button brings up a menu from which
another calibration can be made active if multiple calibrations have
been performed for the current session. This menu is shown in the
center of the screen. Finally, the continue button selects the current
calibration as the one to use for the recording session, and closes the
participant setup screen, causing Titta.calibrate() to return

experimenters can switch on a visualization of the real-time
gaze position reported by the eye tracker.

The validation result display furthermore provides
numerical representations of the data quality achieved
overall, and for specific validation points when hovering
over them with the mouse. For data quality measures
(see, e.g., McConkie 1981; and Niehorster et al., 2020
for operationalizations and discussions of data quality
measures) for operationalizations and discussions of data
quality measures), mean deviation of recorded gaze from
the calibration point is shown to denote the achieved
accuracy of the calibration. Furthermore, to gauge the
precision of the recording, the root mean square of sample-
to-sample distances in reported gaze position (RMS-S2S)
and the standard deviation of the collected gaze positions
(STD) is calculated. Lastly, the amount of data loss is
calculated as the percentage of recorded samples for which
no valid gaze position was available. These figures are
displayed prominently in the interface because we think
it is important that researchers are aware of the various
aspects of data quality and can directly judge whether
data quality is sufficient for their experiment, so that
subsequent analysis would yield valid results. The displayed
data quality values are also stored in a session’s messages
(see “Synchronization”) for permanent storage. It is highly

recommended that these messages are saved alongside the
eye tracking data (e.g., using Titta.saveData()), so
that information about data quality can be retrieved during
analysis and reported in scientific publications derived
from the recording. Information about all calibrations that
were performed during a session can be retrieved from
the Titta.calibrateHistory property, and gaze
data is recorded throughout the calibration-and-validation
process so that the interested researcher can examine these
themselves.

From the validation result screen, it is possible to redo
the validation of a calibration (e.g., if it is suspected
that the participant did not accurately fixate one of the
fixation points and the validation results are thus not
representative of calibration quality) or to do another
calibration and validation sequence. As we have noted
previously (Niehorster & Nyström, 2019), we recommend
calibrating a participant multiple times and then selecting
the best calibration given that in our experience, especially
for inexperienced participants, the first calibration often is
not the best that a participant can achieve. The validation
result screen allows selecting which of the multiple
calibrations to use for the recording.

Some Tobii Pro eye trackers (at the time of writing only
the Spectrum) support performing monocular calibrations.

1974 Behav Res (2020) 52:1970–1979

Titta implements support for doing calibrations of only
a single eye, as well as bi-monocular calibrations where
the two eyes are calibrated separately in turn as may
be useful for research into binocular coordination (see,
e.g., Nuthmann and Kliegl 2009; Liversedge et al. 2006;
and Švede et al. 2015). Such bi-monocular calibration
functionality is implemented as an option in the readme
demo experiment.

Real-time data streams

Tobii eye trackers provide multiple data streams that can
be listened to during an experiment. All Tobii eye trackers
provide a gaze data stream providing information about
the gaze direction of the participant, their pupil diameter,
and the location of their eyes in the space in front of the
eye tracker. All Tobii eye trackers furthermore provide a
stream with information about the process that synchronizes
the eye tracker’s clock to the experiment computer’s clock.
Depending on supported capabilities, Tobii eye trackers
may furthermore provide an eye image stream and an
external signal stream that logs activity on the eye tracker’s
TTL ports. Each of these streams can be recorded using
Titta, with Titta.buffer.start(‘streamname’)
when using MATLAB and Titta.start recording
(gaze data=True) when using Python. Note that
recorded data is not automatically saved to file, as the reader
may be used to from SMI and SR Research eye trackers. See
“File saving” for information about how to save data.

When instructing Titta to record data from the gaze
stream, or any of the other streams, the data from this stream
also automatically becomes available to the experiment in
real-time. While for the Python implementation of Titta
this data is directly available as a list that the user can
manipulate themselves, this was not possible in MATLAB
due to restrictions in the MATLAB language. As such,
in MATLAB the Titta.buffer interface has to be
used. Full documentation of this interface is provided in
the readme.md file in the Titta repository under the
TobiiMex header, here we will discuss key functionality.
In MATLAB, data from any of the streams can be accessed
in two ways: consuming and peeking. A consuming access
returns the requested data and removes it from the buffer.
A peek access on the other hand returns the same data
but does not remove it from the buffer. If real-time
data access is required but all data should also be stored
for later offline analysis, it is recommended that the peek
functionality is used so that the buffer contains all data
recorded during the session. Both the consume and the peek
functionality is accessible through two different interfaces,
i.e., either a specific number of samples can be requested using
Titta.buffer.consumeN() and Titta.buffer.
peekN(), or all the data between two timestamps

using Titta.buffer.consumeTimeRange() and
Titta.buffer.peekTimeRange().

Synchronization

To allow analysis of the recorded gaze position signals, it is
of critical importance that the times at which events happen
during the experiment program (such as stimuli being shown
on the screen or key presses being registered) can be related
to specific episodes in the recorded eye-tracking data.
This is typically done by keeping a timestamped log file
consisting of messages denoting when an event of interest
occurred on the experiment computer. It is then still required
to acquire data from the eye tracker that is timestamped in
the same time base as the experiment computer’s log file.
The Tobii Pro SDK takes care of providing data from the eye
tracker with timestamps that are synchronized to one of the
experiment computer’s clocks.3 Titta provides the message
log functionality through the Titta.sendMessage()
function. This function will create its own timestamp for the
message reflecting the time the Titta.sendMessage()
function was called. When used with PsychToolbox,
Titta.sendMessage() can also be provided with the
timestamp of an event signaled by PsychToolbox (e.g.,
a window Flip or keypress). The participant and setup
interface invoked by Titta.calibrate() produces a
series of log messages that amongst other things indicate
when each calibration or validation point is shown, the
final calibration chosen by the researcher to be used for
the recording session, and the data quality calculated from
each validation. Note that the logged messages are not saved
to file automatically, as the reader may be used to from
SMI and SR Research eye trackers. See “File saving” for
information about how to save data.

File saving

In contrast to the SMI and SR Research eye trackers that
save gaze data directly to a file, Tobii eye trackers only
provide data streams through the Tobii Pro SDK. Tobii
trackers also do not handle user-provided log messages.
Users of the Tobii Pro SDK, and by extension Titta, are
responsible themselves for storing the data collected during
a session.

Titta provides the programmer with multiple options.
First, Titta.saveData() can be used to save all
data from a recording session directly to file. The data
stored includes the content of all stream buffers, all

3For PsychToolbox, on Windows the Tobii SDK and PsychToolbox
timestamps correspond and thus require no further processing. On
Linux, PsychToolbox uses a different system clock than the Tobii
Pro SDK. Titta therefore transparently performs further remapping of
PsychToolbox timestamps to the clock used by the Tobii Pro SDK.

1975Behav Res (2020) 52:1970–1979

the logged messages, information about all the cali-
brations that were performed, as well as information
about the eye tracker and its setup and the Titta set-
tings used for the recording session. Secondly, the func-
tion Titta.collectSessionData() can be used to
obtain all the above data, that the user can then store
to file themselves, perhaps alongside other output from
their experiment. Finally, programmers can directly con-
sume individual data streams and save these to file for more
flexible applications.

Separate operator screen

In some situations, experiments using an eye tracker
require a separate operator screen. Examples of this is
when working with difficult participant groups, such as
monkeys and infants, where a manual calibration procedure
controlled by the operator has to be performed, or paradigms

where participants should not be aware that they are being
eye tracked, such a mental imagery research (Johansson
et al. 2006, 2012). Titta supports using a second screen
that is connected to the experiment computer as an operator
screen. When using a separate screen for the operator, the
participant is presented with a minimal interface during
setup (Fig. 4, upper panel), and the validation result screen
is shown on the operator screen. The participant is shown
the message “Please wait...” while the experimenter can
examine the calibration quality on the validation result
screen. On the validation result screen, the operator has
the option to view real-time gaze information. When this
functionality is activated, four fixation targets appear in
the corners of the participant screen so that data quality
can easily be checked across the entire screen, but the
real-time gaze data is only shown on the operator screen.
To enable performing a manual calibration procedure with
participants that cannot be instructed to fixate, the operator

Fig. 4 Setup and calibration interface when using a separate
operator screen. Top panel: simplified setup screen shown to the
participant when a separate operator screen is available (cf. Fig. 2).
Bottom panel: operator view during calibration and validation. The
fixation target that is currently shown to the participant is highlighted

with a red circle, gaze data from the last 500 ms is shown for the two
eyes (groups of blue and orange dots) and the eye images provided by
the eye tracker are also shown if available (the images in this figure
were acquired with a Tobii Pro Spectrum)

1976 Behav Res (2020) 52:1970–1979

screen contains an real-time gaze display as well as eye
images if the eye tracker provides them (Fig. 4, lower panel)
during calibration and validation.

TalkToProLab: integration with Tobii Pro Lab

The Titta distribution also provides TalkToProLab, a
wrapper around the External Presenter interface of Tobii
Pro Lab (tested with Pro Lab version 1.118, may work
with version 1.111 and newer). Using this interface,
programmers can create their experiment in MATLAB or
Python but still use Tobii Pro Lab for visualization and
analysis of recordings. This enables programmers to use
the full flexibility of these programming environments to
create any trial and block randomization as well as any
stimulus that they wish, without sacrificing access to the
data visualization and analysis capabilities of Pro Lab.

TalkToProLab acts like a remote control for Tobii Pro
Lab. Specifically, it currently allows to add a new partic-
ipant to the External Presenter project that is opened in
Pro Lab, to add a recording to a participant, to upload still
images or video stimulus material to Pro Lab along with
areas of interest (AOIs), and to start and stop a record-
ing. Importantly, TalkToProLab furthermore implements an
interface for informing Pro Lab when a stimulus was shown
(TalkToProLab.sendStimulusEvent()) and for
informing Pro Lab of other events of interest that happened
(TalkToProLab.sendCustomEvent()). TalkToPro-
Lab fully supports setups where Tobii Pro Lab and the MAT-
LAB or Python experiment software run on the same com-
puter. TalkToProLab’s implementation furthermore is com-
patible with multi-computer setups where the experiment
and Tobii Pro Lab run on different machines, but in this case
the programmer themselves has to perform additional syn-
chronization between the experiment and the Tobii Pro Lab
machines in order to be able to provide correct timestamps
to the TalkToProLab.sendStimulusEvent() and
TalkToProLab.sendCustomEvent() functions. We
have not implemented this ourselves as we consider
it to be a niche use case. The authors can provide
guidance to anyone looking to implement such syn-
chronization for using TalkToProLab in multi-machine
setups.

It should be noted that TalkToProLab can be used in
parallel with Titta’s data stream recording interface and data
saving functionality. It is thus possible to record and store
data to file using both Titta and Pro Lab, for instance if the
researcher wants to use Tobii Pro Lab to view replays of
the recordings, but wants access to the gaze position and
other data from the files saved by Titta’s saveData()
for further analysis, so that Pro Lab’s manual export
functionality does not have to be used. It is also possible to
use gaze data in real-time while recording it with Pro Lab.

Dummymode

To enable development of experiments using Titta and Talk-
ToProLab without access to the eye tracker or the computer
with the Tobii Pro Lab license, Titta and TalkToProLab
implement a dummy mode. Dummy mode is activated
by constructing an object of the TittaDummyMode and
TalkToProLabDummyMode types, or, for Titta only, by
calling Titta.setDummyMode(). In dummy mode, all
the same functionality as for the regular class is available
except that most functions do not do anything. When in
dummy mode, these functions return empty values ([])
in MATLAB and None in Python. An exception to this
are the functions for reading from data streams in the
Titta.buffer interface when data for the gaze stream
is requested. In this case, a faked gaze sample reporting the
current position of the mouse cursor is returned, to aid in
implementation of gaze contingent experiments.

MATLAB and Psychophysics Toolbox specifics

Titta has been tested with 32-bit and 64-bit MATLAB
R2015b, and 64-bit MATLAB R2018b on Windows 7
and 64-bit R2019a on Windows 10 and Windows Server
2019. For the 64-bit version of MATLAB, a very recent
PsychToolbox release is required, specifically at minimum
the SP2 version of the “Burnout” series (the 3.0.16
release series), released on September 27th, 2019 or
newer. Furthermore, for the 64-bit version, the GStreamer
dependency should be correctly installed for text in the
setup interface to be rendered correctly (if PsychToolbox
has already been installed, execute help GStreamer
in the MATLAB command line for instructions). For the
32-bit version of MATLAB, Psychtoolbox 3.0.11 must be
used as it was the last version to support 32-bit MATLAB.
Since this version was released in 2014, it is highly
recommended to use a 64-bit installation of MATLAB to
benefit from continued development of the 64-bit version of
PsychToolbox.

For Linux, Titta has been tested with MATLAB R2019a
on Ubuntu 18.04.3. Note that not all Tobii eye trackers are
supported on Linux due to lack of drivers (e.g., at the time of
writing, Tobii Pro Nano). At the time of writing, Titta does
not support GNU Octave, due to several blocking bugs in the
current Octave 5.1.0 release. The MEX file provided as part
of Titta can be built against Octave, and could thus be used
by advanced users. Octave will be supported in the future,
once the outstanding bugs are resolved in a new release.

Python and PsychoPy specifics

Titta has been tested on Windows 64-bit Windows with
PsychoPy standalone 3.1.2 (Python 3.6), which comes

1977Behav Res (2020) 52:1970–1979

with the required tobii research package preinstalled.
Since PsychoPy includes a graphical user interface for
building experiments (PsychoPy Builder), Titta can be
used to add eye tracking to any Builder experiment (see
‘example’ folder on Github).

Example use and getting started

Titta has been designed to enable adding eye-tracking
functionality to existing experiments with just a few lines of
code. Follow the below steps to get started with Titta. These
steps will have you install Titta, run its demos and get you
set up to develop your own experiments using Titta.

1. Download Titta from https://github.com/dcnieho/Titta
(MATLAB) or https://github.com/marcus-nystrom/
Titta (Python) using the provided instructions and make
sure that it is added to the MATLAB or Python func-
tion path so that its functionality can be accessed from
MATLAB or Python scripts. For the Python version,
Titta can also be installed using the command pip
install git+https://github.com/marcus-nystrom/
Titta.git#egg=Titta.

2. Try out Titta by launching one of the demos in the
demos directory included with the Titta distribution.
Take one of the below scripts, and modify it to interface
with the Tobii eye tracker that you wish to use. An
easy way to do so is to just run the script. If Titta does
not find a Tobii Pro Spectrum (for which the demos
are configured by default), it will inform you which
supported eye tracker(s) it does find. Edit the demo
script to connect to one of these available eye trackers.
The following demos are included with Titta:

(a) Readme scripts. These scripts show all the func-
tionality of Titta in a minimal experiment con-
sisting of two trials in which a fixation point is
shown, followed by an image. Several versions of
the readme script exist. readme shows Titta in
its default set up and functions as a base script.
Three further versions of this readme experiment
have been created to showcase specific aspects
of Titta functionality: readmeChangeColors
demos customization of the Titta color scheme,
readmeTwoScreens demos use of Titta with
separate participant and operator screens, and
readmeProLabIntegration demos use of
the TalkToProLab class to record data for a MAT-
LAB or Python experiment with Tobii Pro Lab.
Example MATLAB code for performing fixation
classification on data recorded with the readme
scripts using the I2MC algorithm (Hessels et al.,
2017) is also provided.

(b) The Break Out! game. The breakOut script
presents a gaze-controlled version of this popular
computer game. Real-time gaze data is used to
control the paddle in this game.

(c) An antisaccade task. The antiSaccade script
offers an implementation of the antisaccade proto-
col recommended by Antoniades et al. (2013). The
antiSaccadeProLabIntegration script
provides a version with Tobii Pro Lab integration.

3. To add eye tracking to your existing experiment code,
copy over the required function calls from the demos.
Alternatively, to get started with implementing an
eye-tracking experiment from scratch, the demos may
provide a good scaffold to build your experiment upon.

4. Peruse the full documentation, which is found in the
readme.md file in the Titta distribution.

Conclusion

In this article, we presented Titta, a toolbox which in
combination with the PsychToolbox or PsychoPy toolboxes
provides a simple and powerful way of conducting
eye-tracking experiments using Tobii eye trackers. We
furthermore presented the TalkToProLab tool that comes
included with Titta and enables experiments implemented in
MATLAB or Python to be recorded, replayed and analyzed
in the Tobii Pro Lab software.

Acknowledgements Open access funding provided by Lund Uni-
versity. We thank Bob the Builder for inspiring a can-do attitude
and Magnus Smedberg, Jonas Högström and Estefania Dominguez
at Tobii for many helpful discussions and feedback. We gratefully
acknowledge the Lund University Humanities Lab. The source code is
available at https://github.com/dcnieho/Titta (MATLAB) and https://
github.com/marcus-nystrom/Titta (Python).

Compliance with Ethical Standards

Potential conflict of interest Author RA is since 2017 an employee of
Tobii Pro.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

1978 Behav Res (2020) 52:1970–1979

https://github.com/dcnieho/Titta
https://github.com/marcus-nystrom/Titta
https://github.com/marcus-nystrom/Titta
https://github.com/marcus-nystrom/Titta.git#egg=Titta
https://github.com/marcus-nystrom/Titta.git#egg=Titta
https://github.com/dcnieho/Titta
https://github.com/marcus-nystrom/Titta
https://github.com/marcus-nystrom/Titta
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

References

Antoniades, C., Ettinger, U., Gaymard, B., Gilchrist, I., Kristjánsson,
A., Kennard, C., & Carpenter, R. (2013). An internationally
standardised antisaccade protocol. Vision Research, 84, 1–5.
https://doi.org/10.1016/j.visres.2013.02.007

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision,
10(4), 433–436. https://doi.org/10.1163/156856897X00357

Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The eyelink
tool492 box: Eye tracking with matlab and the psychophysics
toolbox. Behavior Research Methods, Instruments, & Computers,
34(4), 613–617. https://doi.org/10.3758/BF03195489

Dalmaijer, E. S., Mathôt, S., & Van der Stigchel, S. (2014). Pygaze: An
open-source, cross-platform toolbox for minimal-effort program-
ming of eyetracking experiments. Behavior Research Methods,
46(4), 913–921.

De Tommaso, D., & Wykowska, A. (2019). Tobiiglassespysuite:
An open-source suite for using the tobii pro glasses 2 in eye-
tracking studies. In Proceedings of the 11th acm symposium on
eye tracking research & applications, (pp. 46:1–46:5). New York:
ACM, https://doi.org/10.1145/502 3314111.3319828

Hessels, R. S., Cornelissen, T. H. W., Kemner, C., & Hooge,
I. T. C. (2015). Qualitative tests of remote eyetracker recovery and
performance during head rotation. Behavior Research Methods,
47(3), 848–859.

Hessels, R. S., Niehorster, D. C., Kemner, C., & Hooge,
I. T. C. (2017). Noise-robust fixation detection in eye
movement data: Identification by two-means clustering
(i2mc). Behavior Research Methods, 49(5), 1802–1823.
https://doi.org/10.3758/s13428-016-0822-1

Hessels, R. S., Niehorster, D. C., Nyström, M., Andersson, R., &
Hooge, I. T. C. (2018). Is the eye-movement field confused about
fixations and saccades? a survey among researchers. Royal Society
Open Science, 5(8), 180502. https://doi.org/10.1098/rsos.180502

Holmqvist, K., Nyström, M., Andersson, R., Dewhurst, R., Jarodzka,
H., & Van de Weijer, J. (2011). Eye tracking: A comprehensive
guide to methods and measures. Oxford: Oxford University
Press.

Johansson, R., Holsanova, J., Dewhurst, R., & Holmqvist, K. (2012).
Eyemovements During scene recollection have a functional role,
but they are not reinstatements of those produced during encoding.
Journal of Experimental Psychology: Human Perception and
Performance, 38(5), 1289.

Johansson, R., Holsanova, J., & Holmqvist, K. (2006). Pic-
tures and spoken descriptions elicit similar eye movements
during mental imagery, both in light and in com-
plete darkness. Cognitive Science, 30(6), 1053–1079.
https://doi.org/10.1207/s15516709cog0000n 86

Kleiner, M., Brainard, D., & Pelli, D. (2007). What’s new in
psychtoolbox-3. In (Vol. 36 (ECVP Abstract Supplement), pp. 14.
https://doi.org/10.1177/03010066070360S101

Liversedge, S. P., White, S. J., Findlay, J. M., & Rayner, K. (2006).
Binocular coordination of eye movements during reading. Vision
Research, 46(15), 2363–2374.

McConkie, G. W. (1981). Evaluating and reporting data quality in eye
movement research. Behavior Research Methods & Instrumenta-
tion, 13(2), 97–106. https://doi.org/10.3758/BF03207916

Niehorster, D. C., Cornelissen, T. H. W., Holmqvist, K., Hooge,
I. T. C., & Hessels, R. S. (2018). What to expect from your remote
eye-tracker when participants are unrestrained. Behavior Research
Methods, 50(1), 213–227.

Niehorster, D. C., Hessels, R. S., & Benjamins, J. S. (2020).
Glassesviewer: Open-source software for viewing and analyzing
data from the tobii pro glasses 2 eye tracker. Behavior Research
Methods. https://doi.org/10.3758/s13428-019-01314-1

Niehorster, D. C., & Nyström, M. (2019). SMITE: A tool-
box for creating psychophysics toolbox and psychopy exper-
iments with smi eye trackers. Behavior Research Methods.
https://doi.org/10.3758/s13428-019-01226-0

Niehorster, D. C., Santini, T., Hessels, R. S., Hooge, I. T. C., Kasneci,
E., & Nyström, M. (2020). The impact of slippage on the data
quality of head-worn eye trackers. Behavior Research Methods.
https://doi.org/10.3758/s13428-019-01307-0

Nuthmann, A., & Kliegl, R. (2009). An examination of binocular
reading fixations based on sentence corpus data. Journal of Vision,
9(5), 31–31.

Nyström, M., Andersson, R., Holmqvist, K., & Van De Weijer, J.
(2013). The influence of calibration method and eye physiology
on eyetracking data quality. Behavior research methods, 45(1),
272–288.

Nyström, M., Niehorster, D. C., Andersson, R., & Hooge, I. T. C.
(2018). Is the tobii pro spectrum a useful tool for microsaccade
researchers? In Abstracts of the scandinavian workshop on applied
eye tracking, (Vol. 2018, p. 8), https://doi.org/10.16910/jemr.11.5

Peirce, J. W. (2007). Psychopy–psychophysics software in
python. Journal of Neuroscience Methods, 162(1), 8–13.
https://doi.org/10.1016/j.jneumeth.2006.11.017

Peirce, J. W. (2009). Generating stimuli for neuroscience
using psychopy. Frontiers in Neuroinformatics, 2, 10.
https://doi.org/10.3389/neuro.11.010.2008

Peirce, J. W., Gray, J. R., Simpson, S., MacAskill, M., Höchenberger,
R., Sogo, H., & Lindeløv, J. K. (2019). Psychopy2: Experiments in
behavior made easy. Behavior Research Methods, 51(1), 195–203.
https://doi.org/10.3758/s13428-018-01193-y

Pelli, D. G. (1997). The videotoolbox software for visual psy-
chophysics: Transforming numbers into movies. Spatial Vision,
10(4), 437–442. https://doi.org/10.1163/156856897X00366

Švede, A., Treija, E., Jaschinski, W., & Krūmiņa, G. (2015).
Monocular versus binocular calibrations in evaluating fixation
disparity with a video-based eye-tracker. Perception, 44(8-9),
1110–1128.

Thaler, L., Schütz, A., Goodale, M., & Gegenfurtner, K. (2013).
What is the best fixation target? the effect of target shape on
stability of fixational eye movements. Vision Research, 76, 31–42.
https://doi.org/10.1016/j.visres.2012.10.012

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1979Behav Res (2020) 52:1970–1979

https://doi.org/10.1016/j.visres.2013.02.007
https://doi.org/10.1163/156856897X00357
https://doi.org/10.3758/BF03195489
https://doi.org/10.1145/502 3314111.3319828
https://doi.org/10.3758/s13428-016-0822-1
https://doi.org/10.1098/rsos.180502
https://doi.org/10.1207/s15516709cog0000n_86
https://doi.org/10.1177/03010066070360S101
https://doi.org/10.3758/BF03207916
https://doi.org/10.3758/s13428-019-01314-1
https://doi.org/10.3758/s13428-019-01226-0
https://doi.org/10.3758/s13428-019-01307-0
https://doi.org/10.16910/jemr.11.5
https://doi.org/10.1016/j.jneumeth.2006.11.017
https://doi.org/10.3389/neuro.11.010.2008
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1163/156856897X00366
https://doi.org/10.1016/j.visres.2012.10.012

	Titta: A toolbox for creating PsychToolbox and Psychopy experiments with Tobii eye trackers
	Abstract
	Introduction
	Tobii eye trackers
	Implementation
	Participant setup
	Calibration and validation
	Real-time data streams
	Synchronization
	File saving
	Separate operator screen
	TalkToProLab: integration with Tobii Pro Lab
	Dummy mode
	MATLAB and Psychophysics Toolbox specifics
	Python and PsychoPy specifics

	Example use and getting started
	Conclusion
	References

