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Abstract
Indicators of letter frequency and similarity have long been available for Indo-European languages. They have not only been
pivotal in controlling the design of experimental psycholinguistic studies seeking to determine the factors that underlie reading
ability and literacy acquisition, but have also been useful for studies examining the more general aspects of human cognition.
Despite their importance, however, such indicators are still not available for Modern Standard Arabic (MSA), a language that, by
virtue of its orthographic system, presents an invaluable environment for the experimental investigation of visual word process-
ing. This paper presents for the first time the frequencies of Arabic letters and their allographs based on a 40-million-word corpus,
along with their similarity/confusability indicators in three domains: (1) the visual domain, based on human ratings; (2) the
auditory domain, based on an analysis of the phonetic features of letter sounds; and (3) the motoric domain, based on an analysis
of the stroke features used to write letters and their allographs. Taken together, the frequency and similarity of Arabic letters and
their allographs in the visual and motoric domains, as well as the similarities among the letter sounds, will be useful for
researchers interested in the processes underpinning orthographic processing, visual word recognition, reading, and literacy
acquisition.
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The study of letter similarity (or confusability) and letter fre-
quency has a long history over several decades within the
fields of psychology and psychophysics (see Mueller &
Weidemann, 2012, for a review). Continued interest in the
study of this topic is predicated on the widely held belief that
a good understanding of what drives perceived similarity
among letters and the availability of reliable statistics regard-
ing their distributional properties are crucial for a number of
reasons. First, the study of letter properties lays the

groundwork for the study of how letters are represented in
the cognitive system, since letters of individual words are
thought to represent the first “language-specific” stage of the
reading process, following the work done by oculomotor con-
trol mechanisms enabling fixation on the word and the early
visual processing that allows visual feature extraction
(Carreiras, Armstrong, Perea, & Frost, 2014; Dehaene,
Cohen, Sigman, & Vinckier, 2005; Grainger, 2008). Second,
since mastery of alphabetic reading is generally thought to
require, as a first step, the ability to map letters and letter
strings onto the sounds of the language (Bowey, 2005;
Snowling & Hulme, 2011), the study of letter properties can
provide valuable information to educators regarding the com-
plexity of letter forms and guide the choice of the order in
which the learner is exposed to these letters. Finally, the in-
vestigation of letter properties promotes empirical investiga-
tions with a view toward gaining a better understanding of
how the visual system functions.

For many years, researchers have sought to establish letter
frequency databases for different languages such as Russian
(Gusein-Zade, 1988), English (Mayzner & Tresselt, 1965),
and Spanish (Li & Miramontes, 2011) in order to provide
normative frequency data for researchers interested in verbal
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learning and retention, anagram problem solving, word recog-
nition thresholds, and linguistic analyses. Similar interest in
developing letter similarity/confusability matrices is evident
in a long research tradition spanning several decades, with
the early work, mainly on English, seeking to identify type-
faces, fonts, and letters that were more or less legible, with the
aim of improving printing and typesetting (Roethlein, 1912;
Tinker, 1928). More recently, research has come to focus on
understanding the visual system and how it represents and
processes letters as visual objects, without losing interest,
however, in attempting to make written text more comprehen-
sible or helping learners to acquire reading skills more easily
(Boles & Clifford, 1989; Fiset et al., 2009; Liu &Arditi, 2001;
Mueller & Weidemann, 2012). Collectively, these studies
have played a fundamental role in enabling the design and
implementation of many well-controlled empirical studies
seeking to pin down the dynamics of letter processing (e.g.,
Evans, Lambon Ralph, & Woollams, 2017; Grainger, Dufau,
Montant, Ziegler, & Fagot, 2012; Kinoshita & Kaplan, 2008;
Schelonka, Graulty, Canseco-Gonzalez, & Pitts, 2017).

Despite the importance of having reliable letter similarity
matrices and letter frequency counts, this type of information
is available only for a handful of Indo-European languages.
Other languages, such asModern StandardArabic (henceforth
MSA), suffer from a lack of lexical resources in general and
computerized databases about letter similarity and letter fre-
quency in particular. MSA is the language taught at most
schools, colleges, and universities in the Arab world and is
the one used in the media, literature, and formal settings such
as political meetings (e.g., Kamusella, 2017; Versteegh,
2014). This language, despite its importance for the study of
letter processing and letter representation by virtue of its very
special writing system, as we will detail below, has very few
published lexical resources. Notable exceptions are Aralex
(Boudelaa & Marslen-Wilson, 2010) and Arabicorpus
(Parkinson, 2000). Therefore, researchers interested in the
study of Arabic letter processing, Arabic reading, and devel-
oping better Arabic reading tools, and psycholinguists inter-
ested in cross-linguistics investigations of letter and word pro-
cessing are in dire need of reliable information about the dis-
tributional characteristics of letters and their similarities.

The aim of this study is to provide, for the first time, (a)
comprehensive statistical information about Arabic letters and
their allographs and (b) a similarity/confusability matrix of
Arabic letters and allographs in the visual, auditory, and mo-
toric domains. We begin by providing some relevant back-
ground about the orthographic system and its importance for
the study of letter processing. Second, we provide a detailed
statistical count of the frequencies of Arabic letters and their
allographs based on a 40-million-word corpus. Third, we pres-
ent a visual similarity matrix of Arabic letters and their allo-
graphs based on ratings by 125 participants, followed by a
phonetic similarity matrix based on theory-driven phonetic

features and a motoric similarity matrix based on the strokes
required to write each letter and its allographic variants. We
conclude by highlighting the importance of this new set of
information on the distributional and structural properties of
Arabic for future investigation of this language in different
research fields.

The Arabic writing system

MSA is a Semitic language written from right to left in a
cursive manner. The MSA alphabet consists of 28 letters, 22
of which always connect to the following letter using a liga-
ture, while the remaining 6 connect to the preceding but not
the following letter. MSA is the fifth most common language
in the world, with over 300 million speakers. One of the most
important features of the Arabic writing system is
“allography,” whereby the shapes of 15 of the 28 letters differ
considerably depending on their location within the letter se-
quence (initial, middle, final, and isolated). For instance, the
letter ,ع which stands for a voiced pharyngeal fricative repre-
sented by /ʕ/ in IPA notation, takes the shape ــع word-initially,
ــعــ word-medially, عــ word-finally when preceded by a ligat-

ing letter, and word-finallyع when preceded by a non-ligating
letter. The remaining 13 letters (e.g., ر,د,ث,ب ) preserve their
shapes regardless of their position within the word, but have
ligature marks on either side (e.g., ـثـ,ـبـ ) or only on their right-
hand side (e.g., رـ,دـ ). Another important feature of the MSA
orthographic system is the use of a cursive writing system
even in typing, a rare feature among the world’s writing sys-
tems, including typologically related languages such as
Hebrew. A final unique aspect of MSA is that a given letter
can have up to three diacritic symbols superposed on it, thus
creating a highly complex visual percept. This is illustrated by
the second letter خ of the word خٰـــم “brain,” which shows a
single dot diacritic underneath a gemination sign indicating
that the consonant خ is doubled, and the nunation sign, which
denotes the indefinite article -un.

The complexity of this orthographic system has given rise
to many studies across several research areas. For instance, in
the field of reading, Asadi, Khateb, and Shany (2017) showed
that unlike Indo-European languages, where reading process-
es are seen as the product of decoding abilities and listening
comprehension, MSA requires an extended model that in-
cludes the orthographic and the morphological domains in
order to capture the intricacies of reading in Arabic.
Similarly, some researchers have suggested that the complex-
ity of the Arabic orthographic system leads to slower process-
ing than in related languages such as Hebrew (Ibrahim,
Eviatar, & Aharon-Peretz, 2002), while others (Taha &
Saiegh Haddad, 2017) have argued that this feature leads
Arabic orthography learners to rely on morphological
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structure much earlier in the course of learning to read and
spell than their Indo-European counterparts.

In the visual word recognition domain, researchers have
been interested in establishing the role of allography and
whether Arabic cognitive representations contain a level that
corresponds to abstract letter identities (Boudelaa, Norris,
Mahfoudhi, & Kinoshita, 2019; Carreiras, Perea, & Abu
Mallouh, 2012; Friedmann & Haddad-Hanna, 2012; Perea,
AbuMallouh, & Carreiras, 2010). This line of research relates
to a much broader set of issues in cognitive science regarding
the types of representations used in reading and whether letter
recognition is subserved by a hierarchical processing system
that involves both case-specific and case-independent repre-
sentations of alphabetic stimuli (Petit, Midgley, Holcomb, &
Grainger, 2006; Rothlein&Rapp, 2014, 2017). In this respect,
Boudelaa et al. (2019) reported a series of priming experi-
ments looking at whether a target word (e.g., نودعي “be hap-
py”) is facilitated more by a nonword transposed letter (TL)
prime that does not cause allographic changes (e.g., نودعي )
than a TL prime that causes such changes (e.g., نوعدي ). The
results showed that the non-allographic TL primes produced
significantly greater facilitation than allographic TL primes,
indicating that Arabic readers use allographic variation to re-
solve the uncertainty in letter order during the early stages of
orthographic processing. Similar results were reported by
Yakup, Abliz, Sereno, & Perea (2014, 2015) for Uyghur, a
Turkic language spoken in Western China that uses the
Arabic orthographic system, suggesting that visual form
changes that Arabic letters undergo as a function of their po-
sition in the word play a critical role in guiding the reading
process.

Finally, in the field of automatic language processing, there
has been a recent surge in the study of the characteristics of
typed and handwritten Arabic letters to develop algorithms
that can automatically process Arabic written scripts
(Abandah, Younis, & Khedher, 2014; Cowell & Hussain,
2002; Khorsheed, 2002). The development of new lexical
resources related to letter frequency and letter similarity can
only help to further spur interest inMSA and provide the tools
necessary to conduct well-controlled and replicable research.

Letter and allograph frequencies

Here we provide the frequency of Arabic letters and their
allographs based on the 40-million-word corpus previously
used by Boudelaa and Marslen-Wilson (2010) to develop
the Aralex database. These frequency figures were calculated
as percentages over the non-diacritized version of Aralex. In
Table 1, we provide the frequencies of the 28 letters of the
alphabet along with the letter frequencies published online by
Mohsen Madi (2010) for comparison.

There are numerous similarities between the frequency sta-
tistics of the current study andMadi’s (2010), as demonstrated
by a Pearson correlation analysis (r = 0.9), suggesting a close
match between the two sets of frequencies. The small discrep-
ancies in the frequency counts between the two studies are
probably due to the use of different kinds of corpora. The
current study’s 40-million-word corpus comes from contem-
porary written sources, namely newspaper articles, as detailed
in Boudelaa and Marslen-Wilson (2010). In contrast, Madi
(2010) relied on a small corpus of a little more than one mil-
lion words derived mainly from old Arabic books such as

ةياهناوةيادبا The Beginning and The End of Ibn Katheer
(1300–1373) and وتخاقيحا The Sealed Nectar by Al
Mubarkafoori, which is a compilation of the sayings of the
Prophet of Islam produced in classical Arabic 14 centuries
ago, or on books that deal with Islamic jurisprudence and
hence use mostly older Arabic, such as نيوعاةفحت The
Masterpiece of the Brides by Al-Shuri.

It is important to further note that the current letter frequen-
cy values make intuitive sense, because the four letters with
the highest frequencies are on the one hand the letters و and ,ل
which respectively correspond to the function words “and”
and “in order to,” and the letters ت,ي on the other, which are
in fact inflectional affixes. At the same time, the letters with
the lowest frequencies correspond either to marked sounds
that are very rare across the world languages, such as the
pharyngealized alveolar and the pharyngealized interdental
,ظ or indeed to letters that do not correspond to function words
or affixes, such as ذ,ث and .خ

In Table 2 below we present for the first time the frequen-
cies of Arabic letters broken down by allograph.

For each letter of the alphabet, we determined the frequen-
cy of its allographic form in isolation and at the onset, middle,
and offset of the word. Thus, for the majority of letters, such as
ع ain, and غ ghayn, we report the frequencies of four allo-
graphs, whereas for others, such as د daal, ذ thaal, raa, and
zein, we report only two values because they have only two

allographic forms. For the letter أ alif, we report values for
seven allographic forms because this letter has different inter-
changeable variants such as أ,أ , and .ا Finally, for the letter ,ت
taa, we report values for six allographs, four of which are for
the taa maftuuha, “open taa,” and two for taa marbuuta
“closed taa” As can be clearly seen from Table 2, allographs
of the same letter do not occur with the same frequency across
the board. For instance, the allograph ,ب baa, with a frequency
of 2%, is muchmore common than the allograph ب with only
0.22%. The frequencies of other letter allographs (e.g., 0.26,
0.76 ) are much more evenly distributed.

An interesting theoretical question that allograph fre-
quencies can help address is whether the effects of allo-
graphic changes in visual word recognition experiments,
such as those reported by Friedmann and Haddad-Hanna
(2012) and Boudelaa et al. (2019), can be modulated by
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allographic frequency. From a practical point of view,
these data can help educators not only in making in-
formed choices about the development of teaching mate-
rials that reflect the frequency of different letters and their
allographs, but also in modulating their instructional fo-
cus. For instance, when teaching the letter ع the instructor
can, based on allograph frequency data, dedicate more
time to teaching the allograph ع than the allograph ع ,

given that the latter is much more frequent than the for-
mer and may not need as much time to be learned.

Subjective Letter Similarity Experiment

The technique that we employed to construct the similarity
matrix is based on data obtained under normal (untimed)

Table 2 Percentage frequency (% Frq) of 116 Arabic letter allographs (Allog)

%
Frq

%
Frq

%
Frq

%
Frq

%
Frq

%
FrqAllog Allog Allog Allog Allog Allog

أ 0.51 ج 0.05 0.05 ظ 0.00 ك 0.09 ؤ 0.05

أ 0.92 ج 0.48 1.04 ظ 0.03 ك 0.72 ؤ 0.1

آ 0.04 ج 0.05 0.12 0.02 ك 0.26 و 5.32

ا 3.39 ج 0.93 1.53 ظ 0.18 ك 0.92 و 3.04

ا 11.02 ح 0.05 0.01 ع 0.08 ل 0.11 ى 0.04

إ 0.25 ح 0.51 0.32 ع 0.71 ل 5.02 ى 0.2

ب 0.11 ح 0.1 0.04 ع 0.17 0.37 ئ 0.01

ب 2 ح 1.18 0.74 ع 1.54 2.9 ئ 0.47

ب 0.22 خ 0.01 0.01 غ 0.01 م 0.11 ي 0.19

ب 1.84 خ 0.31 0.26 غ 0.17 م 1.45 ي 1.79

ت 0.71 خ 0.02 0.04 غ 0.02 1.02 ي 0.91

ت 1.73 خ 0.54 0.75 غ 0.37 3.19 ي 4.23

ت 0.32 د 0.69 0.03 ف 0.07 ن 0.44 0.14

ت 4.11 د 1.88 0.19 ف 1.4 ن 1.15 ئ 0.08

ة 0.31 ذ 0.11 0.05 ف 0.15 ن 1.3 ئ 0.05

ة 1.35 ذ 0.26 0.43 ف 1.2 ن 2.55

ث 0.02 1.14 0.02 ق 0.08 ه 0.3

ث 0.14 3.47 0.26 ق 0.55 ه 0.74

ث 0.03 0.24 0.06 ق 0.14 ه 1.32

ث 0.24 0.61 0.76 ق 1.37 ه 2.55

Table 1. Percentage frequencies of the 28 Arabic letters in the current study and in Madi 2010

Arabic Letter Current Study Madi 2010 Arabic Letter Current Study Madi 2010

أ 1.43 2.76 0.70 0.51

ب 4.17 3.47 1.10 0.38

ت 6.87 3.18 ظ 0.23 0.26

ث 0.43 0.43 ع 2.50 2.84

ج 1.51 1.00 غ 0.57 0.37

ح 1.84 1.25 ف 2.82 2.64

خ 0.88 0.76 ق 2.14 2.13

د 2.57 1.81 ك 1.99 3.17

ذ 0.37 1.49 ل 8.40 11.55

4.61 3.75 م 5.77 8.08

0.85 0.48 ن 5.44 8.25

2.74 1.82 ه 4.91 4.49

1.11 0.64 و 8.36 8.36

1.06 0.63 ي 7.12 6.64
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reading conditions and is comparable to the approach used in
previous studies examining letter knowledge in children
(Treiman, Kessler, & Polo, 2006; Treiman, Levin, & Kessler
2007, 2012) and letter similarity in adults (Simpson,
Mousikou, Montoya, & Defior, 2013). Participants were
speakers of MSA who were required to rate letter pairs on a
scale from 1 (not similar at all) to 7 (very similar). We antic-
ipate that the matrix presented here will also prove useful to
researchers in any field of investigation in which Arabic letters
are used as stimuli and where a measure of visual similarity
between stimuli is required.

Method

Participants

A total of 125 participants, aged 20 to 24, were recruited to
take part in this experiment. All participants were literate
MSA speakers who were undergraduate students in the female
campus of the faculty of Humanities and Social Sciences at
United Arab Emirates University. All participants spoke
English as a second language but declared Arabic (i.e., MSA
and the Emirate Dialect) their dominant language. This exper-
iment was approved by the ethics committee of United Arab
Emirates University, and all participants gave their written
consent to take part in it in return for 50 AED.

Stimuli

As in the previous study, we selected four allographs for each
letter of the alphabet except for the letters (a) ,, , and ,ظ for
which only two allographs were included; (b) the letter ,ه for
which only three allographs were used; and (c) the letter أ alif,
for which eight different allographs were included. This
choice, which was based on pilot testing, resulted in a total
of 110 allographs. Each allograph was paired with every other
allograph, including itself, resulting in 6105 pairs. These were
used to build 15 experimental lists consisting of 407 experi-
mental pairs each. Each participant was randomly assigned to
one list. To ensure that subjects were assessing the visual, and
not phonetic, similarity between the different allograph pairs,
a further 32 foil pairs were built consisting of the 28 Arabic
letters paired with Latin letters to create four conditions. The
first consisted of cross-alphabet letter pairs that were both
phonetically and visually similar. These were pairs like –ل L,
which share the straight downward-directed stroke. The sec-
ond condition consisted of Arabic-Latin pairs which were
phonetically similar but visually dissimilar, such as ,N-ن which
share phonetic features [+coronal, +nasal, +continuant,
+sonorant] but look very different visually. The third condi-
tion consisted of cross-alphabet pairs that were phonetically
dissimilar but visually similar, like ,G-خ which share the

downward-directed semicircular stroke. The final condition
comprised pairs that were neither phonetically nor visually
similar, such as -ذ I. The ordering of the letters within each
pair was counterbalanced across lists, such that each letter
appeared almost half of the time in the first position and half
in the second.

Design and procedure

The presentation of the stimuli and recording of responses
were controlled by desktop computers running SuperLab 5.
On each trial, two stimulus allographs appeared at the center
of the screen in Traditional Arabic 72-point font size in black
against a white background. Participants were instructed to
ignore the sounds of the letters and to rate the letter pairs on
the computer keyboard based purely on visual similarity on a
scale from 1 (not at all similar) to 7 (very similar). No time
limits were imposed, and participants responded at their own
pace. Participants could advance to the following trial only
after providing a response to the current trial. To emphasize
the importance of paying attention to the shape of the allo-
graph, participants were also asked to rate a number of geo-
metrical shapes (e.g., squares, rectangles, circles) on their sim-
ilarity in shape. The experiment lasted about 15 minutes.

Results and discussion

An initial screening was performed on the data in order to
detect cases in which the participants may have misunder-
stood or not correctly followed the instructions. This resulted
in the exclusion of no data points at all. A second screening
process tested whether participants’ knowledge of the letter
sounds exerted a strong influence on their responses, by ex-
amining the ratings assigned to the Arabic-Latin letter pairs.
We have linearly rescaled the similarity ratings on the 1–7-
point scale into distances on a 0–1 scale. In order to take into
account the fact that human-generated similarity judgments
are likely to be logarithmic on actual distance, we used the
following formula: Distance = [exp(7) − exp (Distance1)]/
[exp(7) − exp(1)], where Distance1 is the distance between a
given pair of letter allographs. This formula simply rescales
the similarity score provided by the participants into a distance
metric that can be fed to the hierarchical clustering technique.

Table 3 Mean (and standard deviation) of the visual distance between
cross-alphabet Roman–Arabic letter pairs

+P+V +P−V −P +V −P−V

0.77
(0.07)

0.87
(0.03)

0.81
(0.07)

0.91
(0.05)

Note: +P+V = phonetically and visually similar; +P−V = phonetically
similar but visually dissimilar; −P+V = phonetically dissimilar but visu-
ally similar; −P−V = phonetically and visually dissimilar
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Table 3 suggests that although the overall perceived visual
distance among cross-alphabet letters is large, the +P+V pairs
(e.g., (L-ل and –P+V (e.g., (G-غ pairs were perceived as sig-
nificantly closer in visual space than the +P−V (e.g., (B-ب and
the –P−V pairs (e.g., -E). Thus, phonetic similarity did not
modulate the perceived distance among the cross-alphabet
pairs, with the visually similar pairs perceived to be the same
distance from each other regardless of phonetic similarity, and
the visually dissimilar pairs being rated as maximally distant
from each other regardless of whether they were phonetically
similar. A series of paired two-tailed t tests revealed +P+V to
be significantly different from +P−V (p < 0.00) and –P−V (p <
0.00), but not from –P+V (p = 0.48).More interestingly, –P+V
was also reliably different from +P−V (p < 0.01) and –P−V (p
< 0.02). This pattern of results clearly demonstrates that par-
ticipants carried out the task solely based on the visual simi-
larities of the letter pairs and completely ignored the phonetic
dimension as instructed.

Where the within-alphabet letter and allograph pairs are
concerned, the full visual similarity matrix for 110 allographs
can be accessed at https://osf.io/yqns4/, with the distance
measures rescaled using the distance formula mentioned
above. The dendrogram in Fig. 1 displays the hierarchical
relationships of the 110 Arabic allographs used in this
experiment.

The general technique we use here is hierarchical cluster-
ing, which aims to group similar objects into groups called
clusters (Kassambara, 2017; Jajuga, Sokolowski, & Bock,
2002; Stahl, Leese, Landau, & Everitt, 2011). The end point
of such an approach is to create a set of clusters that are
distinct from each other, while the objects within each cluster
are broadly similar to each other. Hierarchical clustering typ-
ically operates on a distance matrix. It starts by treating each
observation as a separate cluster, then it iteratively identifies

the two clusters closest to each other and merges them until no
clusters are left unmerged. The main output of hierarchical
clustering is a dendrogram, which is simply a diagram that
shows the hierarchical relationships between objects. The
main use of a dendrogram is to work out the best way to
allocate objects to clusters, and this usually requires (1) the
computation of the distance (similarity) between two given
clusters using a distance metric (e.g., Euclidean distance, city
block) and (2) selecting a linkage criterion to determine
whether the distance is computed between the two most sim-
ilar parts of a cluster (single-linkage), the two least similar bits
of a cluster (complete-linkage), the center of the clusters
(mean or average-linkage), or some other criterion.

In this study, all dendrograms are based on the standard
Euclidean distance metric and use “ward. D2” as a linkage
criterion to determine the distance between sets of observa-
tions as a function of the pairwise comparisons (Murtagh &
Legendre, 2014). However, since hierarchical cluster analysis
can typically yield as many cluster solutions as there are cases
to be clustered (Clatworthy, Buick, Hankins, Weinman, &
Horne, 2005), one needs to determine the appropriate cluster
solution using objective formal rules and equations to identify
the optimal number of clusters in a sample. Here we have
opted for the “gap statistic,” which operates by taking the
input of the hierarchical clustering analysis and compares
the change in within-cluster dispersion with that expected un-
der a reference null distribution. The gap statistic has been
reported to outperform other methods (Tibshirani & Walther,
2005) and to provide quite stable solutions (Yan and Ye,
2007). Upon applying this method to our data, the results
suggest that the value that maximized the gap statistic was
0.94, with an optimal number of 19 clusters (Table 4).

Table 4 shows that the largest of the 19 clusters consisted of
nine allographs, and the smallest consisted of two. The within-

Arabic Allographs 
Fig. 1 Hierarchical clustering (dendrogram) using the nearest neighbor method. The vertical axis of the dendrogram represents the distance or
dissimilarity between clusters. The horizontal axis represents the 110 Arabic allographs
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cluster sum of squares (SS), which measures the amount of
variance in the data, is < 2 for all clusters except Cluster 7.
Although the within-cluster SS is influenced by the number of
observations and is therefore often not directly comparable
across clusters with different numbers of observations, the
preponderance of low SS for all clusters save one suggests
that the clusters are highly consistent, with very little variabil-
ity. In addition, the total SS is 40.62 and the between-cluster
SS is 21.97, suggesting that data points cluster neatly in a 19-
dimensional space of visual attributes.

The component members of each cluster share a number of
characteristics that the participants relied on to assign their
similarity ratings. For example, Cluster 14 in Table 3 features
the allographs ظطظط , which share the egg-shaped loop
with a vertical stroke, and the only difference between them is
the dot above the first and third members of this set. Similarly,
the eighth cluster in the same table features the six allographs

خحجخحج , with the first three ligating to the right (i.e., to the
preceding letter), while the second three do not. Two main
features cut across the members of this cluster: the
downward-directed semicircle and the acute angle it makes
at its upper end. Even Cluster 7, which consists of nine seem-
ingly heterogeneous allographs overall, reveals a clear struc-
ture at a lower level of granularity, with the allographs ن and ن
sharing the downward-directed semicircle, while the ه,ة,ه

ه,ة, share the closed loop written on or above the line. The

final two members of this cluster are the isolated ك and the
right-ligating ك . One reason these two allographs are grouped
with Cluster 7 is arguably the small dot-like shape in the
middle of the two allographs, which allies them with the four
dot-bearing allographs in this cluster.

Table 4 further suggests that phonetic similarity among
allographs played little or no role in the similarity judgment
process. This is clearly illustrated by Cluster 1, for example,
where the allograph corresponds to a voiceless glottal stop
sound, whereas the allographs ععع and the allographs غغ
غ correspond to a voiced pharyngeal fricative and a voiced
velar fricative, respectively. More importantly, perhaps, the
cluster membership as illustrated in Table 4 is in keeping with
recent psycholinguistic and neurolinguistics research on
Arabic letter allography (Boudelaa et al., 2019; Friedmann
& Haddad-Hanna, 2012; Yakup, Abliz, Sereno, & Perea,
2014, 2015). For instance, the allographs ج and ج are two
different instantiations of the abstract letter ,ج but they belong
to Clusters 8 and 9, respectively. This strongly suggests that
different allographic shapes of the same abstract letter were
treated as two different perceptual objects in our similarity
judgment task. Further credence for this idea comes from the
recent demonstration by Boudelaa et al. (2019) that
transposed-letter priming (TL-priming) is modulated by allo-
graphic changes, such that a target word like نودعي “be happy”
is easier to recognize when preceded by the non-allographic
TL-prime نودعي than when preceded by the allographic TL-
prime نوعدي . Similar results were reported by Yakup et al.
(2014, 2015) for Uyghur, a non-Semitic language that uses
the Arabic writing system, and by Friedmann and Haddad-
Hanna (2012), who showed that Arabic dyslexic patients’ let-
ter migration errors when reading aloud were reduced for
words in which letter transposition or letter substitution
caused allographic changes.

The current experiment refines and extends the recent
findings of Wiley, Wilson, and Rapp (2016) in a number of
ways. For example, those authors studied the similarity struc-
ture of 45 Arabic letter shapes in a timed same–different judg-
ment task with experienced and novice speakers. Our study
included 110 allographs, allowing us to provide the principled
similarity structure displayed in Fig. 1 above for allograph
groups absent fromWiley et al.’s study. Consider, for instance,
the letter :ي In our study, this letter meaningfully clusters with
its allographic variant in a right-ligating context (i.e., ي ), with
the allograph called alif maqsuura in isolation with or without
a hamza ىئ , and with the alif maqsuura ligating to the right
with and without the glottal stop, hamza ئى . The same letter ي
in Wiley et al. (2016) clusters with م and ه in the latency and
accuracy data of the expert subjects, respectively, making it
more difficult to isolate the basis of the visual similarity un-
derlying such clusters. Further, Wiley et al. (2016) did not
include the glottal stop, hamza, either by itself ( ) or in the
context of the different letters that can support it, such as alif ,أ

Table 4 Optimal number of clusters based on visual similarity as
suggested by the gap method, the members of each class, and its
within-cluster sum of squares

Cluster
number

Cluster members Within-cluster SS

1 غعغغعع 1.083648

2 اأاإأآ 1.134387

3 ووؤؤ 0.72502

4 يىيىئئ 0.056119

5 يينتبئتبئ 0.909182

6 ثثتبثثتب 1.736229

7 هنكههنكةة 7.776124

8 خحجخحج 0.540865

9 خحجخحج 0.621634

10 نذدذد 0.177571

11 1.583232

12 0.000000

13 0.307081

14 ظ 1.515929

15 قققغع 0.383974

16 ففقفف 0.025204

17 كك 0.059794

18 لل 0.000000

19 مم 0.012434
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alif maqsuura ,ئ waaw ,ؤ or nabrah ئ . Presumably, Wiley
et al.’s choice is reasonably predicated on the standard view
that the hamza is not a letter of the alphabet.We have opted for
completeness and included the glottal stop in our analysis. In
doing so, we have gained the novel insight that this letter is
typically treated like a dot when it occurs in the context of a
supporting letter. Thus, ؤ clusters with وو , while ئ clusters
with ينتب . In contrast, isolated is treated like a full-
fledged letter allograph and clusters with غعغغعع , argu-
ably because it is perceived as a miniature .ع

Finally, our study provides strong empirical support for
Wiley et al.’s observation that allographs of letters in the mid-
dle position (e.g., جخحثتب ) are identical to the cor-
responding allographs in the initial position when the ligature
to the right is ignored (i.e., جخحثتب ). Based on the
structure of Clusters 5 and 9 in our data, it is clear that partic-
ipants ignored the right ligation of the middle allographs and
grouped them with their counterparts in the initial position.
This is a seemingly surprising outcome, since ligation is not
only taught as part of the letter form to Arabic learners, but it
also provides crucial information about word length and lex-
ical stress position (Boudelaa et al., 2019). It is however con-
sistent with recent research that reports comparable masked
repetition priming effects for isolated letter pairs with similar
(e.g., فف ) and with dissimilar ( عع ) visual features across
letter positions (Carreiras, Perea, Gil-López, & Abu Mallouh,
2013. Furthermore, event-related potential (ERP) data record-
ed continuously while subjects performed a masked same–
different matching task with visually similar (e.g., ) and
visually dissimilar (e.g., عع ) allographs clearly show an
early ERP (P/N150) associated with visual form similarity,
and a later ERP component (P300) related to abstract letter
representations. Specifically, allographs like ع-ع showed
clear electrophysiological response differences early on in
processing, while brain responses later in processing were
modulated by abstract letter representations such that ع-ع
were perceived as equally similar as - (Carreiras, Perea,
Gil-López, Abu Mallouh, & Salillas, 2013).

Phonetic letter similarity

The ability to quantify the phonetic similarity between words
is important in many fields, including computational linguis-
tics, dialectometry, applied linguistics, psycholinguistics, and
cognitive neuroscience. The literature provides a number of
methods for measuring the degree of phonetic similarity be-
tween segments. Some of these are based on experimental
studies showing, for instance, the degree of confusability of
different segments (Klatt, 1968; Greenberg & Jenkins, 1964;
Mohr & Wang, 1968). Others are based on more theoretical
arguments (Austin, 1957). Others still have opted for quanti-
fying the degree of similarity between segments by counting
the number of differences in their specifications in terms of

phonetic/phonological features (Ladefoged, 1970). Here we
opted for the use of phonetic features to quantify the amount
of similarity/difference among the various Arabic letter
sounds. Our choice is predicated on recent reports in the liter-
ature suggesting that similarity between component speech
sounds is much better captured by theoretically driven mea-
sures based on phonetic/phonological features than empirical-
ly derived measures based on confusability (Bailey & Hahn,
2005; Hahn & Bailey, 2005). Accordingly, we focused on
providing a similarity metric that simultaneously compares
consonants and vowels using 16 features from phonological
theory. Specifically, these consist of a first set of three Major
Class features that define the major classes of sounds in the
language into consonantal, sonorant, and approximant. A sec-
ond set consists of seven Place of Articulation features, name-
ly, labial, coronal, dorsal, pharyngeal, anterior, distributed,
and high, serving to define the specific articulator involved
in producing the sound. A third set of four features, continu-
ous, lateral, nasal, and strident, pertains to the manner in
which the letter sound is produced. Finally, a fourth set con-
sists of one Laryngeal feature, voicing, that distinguishes
voiced from voiceless segments, and a fifth set comprises a
Quantity feature, categorizing segments as long and short. The
full matrix of features for the 28 consonants and 6 vowels of
the language is accessible here: https://osf.io/mx5t7/.

Using these features, each letter was then converted into a
vector consisting of 16 elements of 0s and 1s (0 if the feature
did not apply to the letter and 1 if it did). We then performed
the same hierarchical clustering procedure on these vectors as
before in order to determine the similarity structure underlying
them (see Fig. 2).

Visual inspection of the dendrogram in Fig. 2 suggests that
there are seven distinct phonetic sound clusters, with an aver-
age number of letter sounds per cluster ranging from two to
eight. However, to more objectively determine the optimal
number of groups that the 36 letter sounds cluster into, we
used the gap statistic as before. The results of this analysis
suggest that the optimal number of clusters is five, with a
maximal value of 0.23. The sizes of these clusters, displayed
in Table 5, range from 5 to 10 members.

Interestingly, the different clusters make intuitive sense.
For instance, the members of Cluster 1 are all back fricative
consonants except for the voiceless glottal stop أ / /, which is
part of this cluster because it shares many features with the
voiceless

glottal fricative ه /h/, which in turn naturally clusters with
the back fricatives عخحغ / x ħ γ/. Similarly, the members of
Cluster 2 are all bilabial consonants except for the palatal
approximant ي /y/ arguably added to this cluster due to its
similarity to the bilabial approximant و /w/, which shares the
place feature of bilabial with all the other members of the
cluster. The largest cluster, Cluster 3 with 10 members, con-
sists of consonants that are all non-back consonants with
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places of articulation starting with the ج /j/ at the palate and
progressing anteriorly to the dental area with the ذ /ð/ and ث /θ/
sounds. Cluster 4 includes seven sounds, all emphatic. In the
environment of such sounds, the low front vowel phoneme /æ/
of the language is standardly pronounced as a low back vowel
/a/, which is the typical manifestation of phonetic emphasis in
Arabic. The only non-emphatic sound in this cluster is the
velar ك /k/, arguably added to this cluster by virtue of sharing
the features back, voiceless, and plosive with the sound ق /q/.
Finally, Cluster 5 includes the six vowels of the language.

It is interesting to note that the within-cluster SS is 8.59 on
average, while the total SS and between-cluster SS stand at
90.6 and 47.6, respectively, suggesting a high degree of
consistency within the component members of each cluster.
Furthermore, our theoretically driven measure of similarity
based on phonetic features is in agreement with empirically
derived measures based on confusability as shown by hidden
Markov recognition systems. For instance, Maaly, Elobeid,
and Ahmed (2002) reported that the sounds /ℏ/ and / / are
highly confusable and that their automatic Arabic phoneme
recognizer failed to distinguish between them. It is also with
consistent with the phonological neutralization processes at
play in many Arabic dialects. For instance, in the Egyptian

dialect spoken in Cairo, the interdental voiceless fricative ث /θ/
is typically realized as ت /t/ (e.g., نث /θæmæn/ “price” pro-
nounced نت /tæmæn/) or /s/ (e.g., ةيناث /θaanyæ/ “second”
pronounced ةينا /saanyæ/). These phonemes /θ, t, s/ are
members of Cluster 3. Analogously, phonological speech er-
rors made by children learning Arabic (e.g., يبق /qalbi/ “my
heart” pronounced as يبك /kalbi/ “my dog”) also seem to
target phonemes that are members of the same clusters
(Dyson & Amayreh, 2000).

Finally, it is important to note that as far as we know, there
are no phonetic confusion tables for Arabic like those avail-
able for English (e.g., Luce, 1986; Shattuck-Hufnagel &Klatt,
1979; Wickelgren, 1966). Interestingly, however, Bailey and
Hahn (2005) have forcefully argued that measures of similar-
ity based on theoretically motivated phonetic features, as we
have applied here, are superior to similaritymeasures based on
confusability from speech perception, speech production, and
short-term memory. Therefore, we feel confident that the cur-
rent phonetic similarity matrix can serve as the basis for fur-
ther explorations either within a language (Kishon-Rabin &
Rosenhouse, 2000) or across languages (Boudelaa, 2018;
Khattab, 2002).

Motoric Letter Similarity

Our ability to generate similar shapes with different limbs or
execution modes suggests the existence of a relatively ab-
stract, effector-independent level of representation that spec-
ifies the forms of letters (Keele, 1981; Rapp & Caramazza,
1997). If this is so, then language users must somehow devel-
op a motoric scheme that represents information about the
characteristics of the strokes required to write down a given
allograph. Research into the written spelling performance of
patients with dysgraphia strongly supports the involvement of

Arabic Consonant and Vowel Sounds 

Fig. 2 Hierarchical clustering (dendrogram) using the nearest neighbor method. The vertical axis of the dendrogram represents the distance or
dissimilarity between clusters. The horizontal axis represents the 34 Arabic sounds

Table 5 Optimal number of clusters based on phonetic letter similarities
as suggested by the gap method, the members of each class, and its
within-cluster sum of squares

Cluster number Cluster members Within-cluster SS

1 هغعخحأ 428571.9

2 يومفب 000000.6

3 نلذدجثت 700000.14

4 كقظ 666667.8

5 ياو .4166667
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multiple representational types, including a relatively abstract,
effector-independent representational level that specifies the
features of the component strokes of letters (Rapp &
Caramazza, 1997). Specifically, individuals with dysgraphia
seem to make well-formed letter substitution errors in written
spelling, such as writing “F-A-P-L-E” for TABLE, while cor-
rectly spelling the target word as [ti, ei, bi, el, i]). Similarly,
neuroimaging research suggests that the motoric features of
letters activate significant portions of the brain in the left
intraparietal sulcus and in areas previously associated with
spelling processes (Rothlein & Rapp, 2014).

Given the importance of understanding the content of mo-
tor plans used to execute letter writing, we sought to develop a
motoric letter similarity matrix for Arabic letters and their
allographs based on 26 stroke features we established to be
necessary to uniquely identify each of 100 letter allographs of
Arabic.1 We used 10 generic features to capture the visuospa-
tial characteristics of each allograph in terms of a set of
strokes. Accordingly, for each letter allograph, we specified
the number of strokes (1 to 5) required to create it and the
shape of those strokes (i.e., line, curve). When the stroke
was a line, we specified its shape as downward- or upward-
directed and its orientation, horizontal or vertical. When the
stroke was a curve, we defined its shape (clockwise or anti-
clockwise). We also included the number and position of the
dots as well as the overall shape of the allograph and the
number of angles it contained. Finally, we determinedwhether
the allograph’s main part was above or below the line and
whether its overall shape was a half or full loop with no dots.
The combination of these features allowed us to quantize each
of the 100 letter allographs into a 26-element vector that cap-
tured the motor scheme necessary to create it. These vectors,
accessible at https://osf.io/v2gb7/, were then submitted to a
hierarchical clustering analysis with a view to determining
the similarity structure underlying the motor plans of the
different allographs. The dendrogram in Fig. 3 displays the
clusters yielded by the nearest-neighbor method.

Using the gap statistic suggests that the data optimally
cluster into 12 groups with a maximal value of 0.40. The
average within-cluster SS is 16.46, while the total SS is
418.62 and the between-cluster SS is 221.07, thus suggesting
a high degree of consistency within clusters. Table 6 displays
the members of each cluster along with the associated within-
cluster SS.

According to Table 6, a number of motoric features seem to
underlie the way in which the 100 Arabic allographs used here
cluster. Specifically, these are the presence and to some extent
the number and position of the dots, as well as the presence

and shape of a loop. Thus, for instance, the six members of
Cluster 12, ييقققق share two dots, and four of them
exhibit a clockwise downward-directed loop. Similarly, the
seven members of Cluster 10, نن feature a single
dot above the allograph, while those of Cluster 5 ثث
share the three dots above the allograph itself. The importance
of the presence and number of dots in this context is that they
define whether the abstract motoric program required to write
down a letter allograph can be completed with or without
lifting the pen: When a dot is present, the letter allograph
cannot be written without lifting the pen. Another dimension
of similarity arising fromCluster 1, نلككذدخخححجبا

يي , is the presence of an angle, which can be either a right
angle, as in يينبالك , or an acute angle, as in خححج

ذدخك . A final example is Cluster 9, م ,
where the presence of a closed loop in all allographs save
appears to underlie the motoric similarity of this group of
allographs. One obvious reason the allograph clusters with
this group is the presence of the line segment that it shares in
shape and orientation with and in shape only with .

Overall, then, there is a clear sense in which one might
claim that similarity in terms of the characteristics of the
strokes—number, orientation, and direction—that are re-
quired to produce the different allographs has a significant
weight in the structure of each cluster. The viability of the
present matrix as a measure of similarity between the motoric
plans required to write each letter allograph is consistent with
the performance of patients with dysgraphia as described by
Nashaat, Kilany, Hasan, Helal, Gebril, and Abdelraouf (2016).
Some of these patients made letter substitution errors in writ-
ing (e.g., تيأد for تيأ ), where the downward-directed stroke
that starts above the “discontinuous” line and ends with a
straight stroke on the line –د– substitutes for a downward-
directed stroke that begins on the line and ends underneath
it, - –. Further research is needed to examine the extent to
which the motoric plan of allograph writing maps onto the
neurocognitive domains of Arabic processing.

Conclusion

We present new data on the frequencies and similarities of
Arabic letters and their allographs in the visual, phonetic,
and motoric domains. These sets of frequencies of Arabic
letters and their allographs, which are based on a 40-million-
word corpus, comprise the only frequencies of letter allo-
graphs available for MSA. The visual similarity matrix is
based on ratings collected from untimed responses of 125
participants to clearly presented allographic variants of the
same letter. This methodology preempts serious issues likely
to be inherent in matrices formed from data generated in atyp-
ical reading conditions, using, for example, speeded naming
or degraded presentation conditions. Our visual similarity

1 The reason we did not use the 110 allographs used in Experiment 1 is that it
was not always easy to translate the letter shapes as defined by visuospatial
features into an appropriate stroke set. This difficulty stems from the fact that
the letter allographs we left out, ئئئئؤؤأاإأآ , were all carrier letters for
hamza and had identical shapes to allographs we have included in this study.
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builds on and significantly extends previous findings in the
literature (e.g., Wiley et al., 2016). The phonetic similarity
matrix is based on theoretically motivated major phonetic/
phonological class features, an approach that has recently
been demonstrated to be efficient in identifying cognitively
relevant similarities while at the same time significantly
avoiding spurious task-specific similarities that characterize
similarity metrics based on the perception of speech in noise
(Bailey & Hahn, 2005). Finally, the motoric similarity matrix
is based on a set of stroke features necessary to implement
each letter and its allographs. This sort of similarity matrix is
not very common across languages, and the only one we know
of is the motoric similarity matrix developed for English
(Rapp & Caramazza, 1997). Collectively, these new data will
be a valuable tool for psycholinguistic research directed to-
ward the study of letter stimuli and the effects and time

courses of their visual similarity (Boudelaa et al., 2019;
Carreiras et al., 2012; Gutiérrez-Sigut, Marcet, & Perea,
2019; Perea et al., 2010). They will be equally useful in
informing cognitive neuropsychological reading research
(Friedmann & Haddad-Hanna, 2012; Khwaileh, Body, &
Herbert, 2014; Prunet, Béland, and Idrissi, 1998). Finally,
since alphabet knowledge is consistently recognized as the
strongest and most durable predictor of later literacy achieve-
ment (Jones, Clark, & Reutzel, 2012), the current results have
clear practical implications for developing strategies to in-
crease the effectiveness of teaching alphabet knowledge to
youngMSA learners by capitalizing on the similarity structure
underlying the different letter and allograph groups
(Mahfoudhi, Everatt, & Elbeheri, 2011; Perea, Abu Mallouh,
& Carreiras, 2013; Taha, 2013).

Authors’ note This research was funded by two United Arab
Emirates University College of Humanities and Social
Sciences grants to Sami Boudelaa (G00002367 and
G00003158).
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